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On minimal spheres of area 4z and rigidity

Laurent Mazet and Harold Rosenberg*

Abstract. Let M be a complete Riemannian 3-manifold with sectional curvatures between 0
and 1. A minimal 2-sphere immersed in M has area at least 4;r. If an embedded minimal sphere
has area 47, then M is isometric to the unit 3-sphere or to a quotient of the product of the unit
2-sphere with R, with the product metric. We also obtain a rigidity theorem for the existence
of hyperbolic cusps. Let M be a complete Riemannian 3-manifold with sectional curvatures
bounded above by —1. Suppose there is a 2-torus 7' embedded in M with mean curvature one.
Then the mean convex component of M bounded by 7 is a hyperbolic cusp, i.e., it is isometric
to T x R with the constant curvature —1 metric: e~2d ag + dt? with d O'g a flat metric on 7T'.
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1. Introduction

Consider a smooth (C°°) complete metric on the 2-sphere S whose curvature is
between 0 and 1. It is well known that a simple closed geodesic in S has length at
least 27 (see [4] or Klingenberg’s theorem in higher dimension [3], [2]). It is less
well known that when such an S has a simple closed geodesic of length exactly 2,
then S is isometric to the unit 2-sphere S2. This resultis proved in [1], and the authors
attribute the theorem to E. Calabi.

With this in mind, we consider what happens in a complete 3-manifold M with
sectional curvatures between 0 and 1 (henceforth we suppose this curvature condition
on M, unless stated otherwise).

Let ¥ be an embedded minimal 2-sphere in M. Then the Gauss—Bonnet theorem
and the Gauss equation tells us that the area of S is at least 47: indeed we have

4 :/ Ks = /det(A) + K7y 5/ 1= A(D) (1)
z z

with det(A4) the determinant of the shape operator which is non-positive. We prove
in Theorem 1, that when the area of ¥ equals 47, then M is isometric to the unit
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3-sphere S3 or to a quotient of the product of the unit 2-sphere with R, S? x R, with
the product metric.

We remark that Theorem 1 does not hold for embedded minimal tori. Given ¢
greater than zero, there are Berger spheres with curvatures between 0 and 1, which
contain embedded minimal tori of area less than . But a minimal sphere always has
area at least 4.

It would be interesting to know what happens in higher dimensions. In the unit
n-sphere S, a compact minimal hyper-surface X always has volume at least the
volume of the equatorial n — 1 sphere S;’_l. Is there a rigidity theorem when one
allows metrics on S” (= M) of sectional curvatures between 0 and 1? Two questions
arise. First, does an embedded minimal hyper-sphere ¥ in M have volume at least
the volume of S?~1. If this is so, and if ¥ is an embedded minimal hyper-sphere with
volume exactly the volume of S”~!, is M isometric to S¥ or to S7~! x R?

In the same spirit as Theorem 1, we prove a rigidity theorem for hyperbolic cusps.
We recall that a 3-dimensional hyperbolic cusp is a manifold of the form 7 x R
with 7" a 2-torus and the hyperbolic metric e~ do + dt? with dog a flat metric
on 7. In Theorem 2, we prove that if M is a complete Riemannian manifold with
sectional curvatures bounded above by —1 and T is a constant mean curvature-1 torus
embedded in M then the mean convex side of 7" in M is isometric to a hyperbolic
cusp.

2. Minimal spheres of area 4 and rigidity of 3-manifolds

In this section, we prove a rigidity result for a Riemannian 3-manifold M whose
sectional curvatures are between 0 and 1. As explained in the introduction, any
minimal sphere in such a manifold has area at least 4.

We denote by S} the sphere of dimension n with constant sectional curvature 1.
We then have the following result.

Theorem 1. Let M be a complete Riemannian 3-manifold whose sectional curvatures
satisfy 0 < K < 1. Assume that there exists an embedded minimal sphere ¥ in M
with area 4ww. Then the manifold M is isometric either to the sphere Sf orto a
quotient of S? x R.

Proof. Let @ be the map ¥ x R — M, (p,1) + exp,(tN(q)) where N is a unit
normal vector field along X. In the following we focus on ¥ x R ; by symmetry of
the configuration, the study is similar for ¥ x R_.

¥ is compact, so there is an € such that ® is an immersion and even an embedding
on X x [0, €). Let us define

g0 = sup{e > 0 | ® is an immersion on X x [0, €)};
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&o can be equal to +o0o. Using ®, we pull back the Riemannian metric of M to
¥ x [0, &9). This metric can be written ds?> = do? + dt? where do? is a smooth
family of metrics on X. With this metric, ® becomes a local isometry from X x [0, g¢)
to M and (X x [0, &9), ds?) has sectional curvatures between 0 and 1. Moreover,
is minimal and has area 4. Actually, we will prove the following facts.

Claim. The metric dag has constant sectional curvature 1 so (X, d 03) is isometric
to Sf. Moreover, we have two cases:

(1) &0 = w/2 and do? = sin” tdog, or

(2) g9 = +o0 and afcrt2 = dag.

Let us denote by X; = X x {¢} the equidistant surfaces. We denote by H(p,t)
the mean curvature of X, at the point (p, t) with respect to the unit normal vector d;.
We also define A(p, ) > 0 such that H + A and H — A are the principal curvature
of X, at (p,t). We notice that A = 0 if 3, is umbilical at (p, t).

The surfaces 3, are spheres, so, using the Gauss equation, the Gauss—Bonnet
formula implies that

4 = IZE,:/(H+A)(H—A)+Kt: H? - A* + K,
)P P Xt

where Ky . 1s the intrinsic curvature of X; and K; is the sectional curvature of the
ambient manifold of the tangent space to ;. Since K; < 1, we obtain the following
inequality:

/ M=| H>+K;,—4n< | H*+ AZ,) —4n ()
2 s Zr

where A(X;) is the area of X,. In the following, we denote by F(¢) the right-hand
side of this inequality.

Claim 1. F is vanishing on [0, g¢).

Since X is minimal and has area 47, we have F(0) = 0. We notice that this
implies that A(p,0) = 0, so Xy is umbilical and K75, = 1. Thus (2o, doy) is
isometric to S?.

We have the usual formulae:

ad oH

1
A =~ /Z 2H and L= SRie(dn) + A 3)

where A; is the shape operator of X; and Ric is the Ricci tensor of X x [0, g9). Since
the sectional curvatures of M x [0, &) are non-negative, Ric is non-negative. So the
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second formula above implies that H is non-decreasing and thus H > 0 everywhere.
Let us now compute and estimate the derivative of F':

H
F’(t)=/ (2Ha——2H3)—/ 2H
5, ot 5,

= | H(Ric(d;) + |A;]* —2H?* - 2)
P

= / H((Ric(d;) —2) + (H + A)> + (H —1)*> —2H?))
)

= | H((Ric(d;) —2) +21?)
Xy

<2 | HM
2P}
where the last inequality comes from Ric(d;) —2 < 0 because of the hypothesis on the
sectional curvatures. If we choose ¢ < gg, there is a constant C > Osuchthat H < C
on X x [0,¢]. So for ¢ € [0, €], using the inequality (2), we get F'(¢) < 2CF(t).
Then F(t) < F(0)e** = 0 on [0,¢]. So F < 0 on [0, &) and, because of (2),
F = 0o0n |0, &); this finishes the proof of Claim 1.

The first consequence of Claim 1 is that all the equidistant surfaces 3; are um-
bilical (see inequality (2)); so A = 0. In the computation of the derivative of F, this
implies that

H(Ric(d;) —2) = 0.
Xy
Since H(Ric(d;) —2) < 0 everywhere, we obtain

H(Ric(d;) —2) =0 everywhere. “4)

oH
Moreover the umbilicity and (3) imply that — = 1Ric(d;) + H?. We now prove

a2

the following claim.

Claim 2. Let (p,t) € X x[0,&9) (t > 0) be such that H(p,t) > 0then H(q,t) > 0
foranyq € X

In other words, when the mean curvature is positive at a point of an equidistant,
it is positive at any point of this equidistant. We recall that H is increasing in the ¢
variable, so when it becomes positive it stays positive.

So assume that H(p,t) > 0 and consider 2 = {g € ¥ | H(g,t) > 0} which is a
nonempty open subsetof X. Letg € Q2. Since H(q,t) > 0, Ric(d;)(¢,t) = 2by (4).
Thus Ric(d;)(r, 1) = 2 forany r € Q. Soif r € Q, then, fors < ¢, Ric(d;)(r,s) > 0
for s close to ¢ and, by (3), this implies that H(r,¢) > 0 and r € Q. So Q is closed
and 2 = X. This finishes the proof of Claim 2.
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Let us assume that there is an e; > O suchthat H(p,t) = Ofor (p,t) € X x|[0, &1]
and H(p,t) > O forany (p,t) € X X (&1, &9). Because of the evolution equation of
H , this implies that Ric(d;) = 0on X x [0, &1]. On X X (g1, &9), we have Ric(d;) = 2
because of (4). So by continuity of Ric(d;), we get a contradiction and then we have
two possibilities:

(1) H=00n X x [0, g) and Ric(d;) = 0on X x [0, &9);
(2) H > 0on X x (0,&p) and Ric(d;) =2 on X x [0, g9).

In the first case, this implies that the sectional curvature of any 2-plane orthogonal
to X; is zero. Thus da,z = dag. Since the map & ceases to be an immersion only if
datz becomes singular this implies that e = +o00. Thus X x R4 with the induced
metric is isometric to S% X R4 and @ is a local isometry from Sf X R4 to M.

In the second case, the sectional curvature of any 2-plane orthogonal to X is equal
to 1. The sectional curvature of X, is also 1, since the inequality in (2) is an equality
by Claim 1. Thus do? = sin? tdog and &9 = /2. This also implies that ®(p, 77/2)
is a point. So ¥ x [0, r/2] with the metric ds? is isometric to a hemisphere of S3
and the map @ is a local isometry from that hemisphere to M.

Doing the same study for ¥ x R_, we get in the first case a local isometry
®: S? x R — M and in the second case a local isometry ®: S — M. Since
S? x R and S? are simply connected, @ is then the universal cover of M and M is
then isometric to a quotient of S? x R or S3. Since @ is injective on ¥ this implies
that in the second case, ® is actually injective and then a global isometry. |

Remark 1. In the proof, since @ is injective on X, the possible quotients of S? x R
are either S? x R or its quotient by the subgroup generated by an isometry of the form
S? xR — S? xR, (p,t) = (a(p),t + to) with & an isometry of S? and 79 # 0.

Remark 2. Something can be said about constant mean curvature Hy spheres in
a Riemannian 3-manifold with sectional curvatures between 0 and 1. Indeed, the
4

computation (1) implies that the area of X is larger than a2 which is the area of
0

a geodesic sphere in S% of mean curvature Hy. Moreover, if X has area %, the
above proof can be adapted to prove that the mean convex side of ¥ is isometric to
a spherical cap of S$ with constant mean curvature Hy (see Theorem 2 below, for a

similar result in the hyperbolic case).

Remark 3. Let M be a Riemannian n-manifold whose sectional curvatures are be-
tween 0 and 1 and let X be a minimal 2-sphere in M. A computation similar to (1)
proves also that the area of X is larger than 4. It also implies that, if ¥ has area 47,
¥ is totally geodesic and isometric to S?.
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3. Existence of hyperbolic cusps

Let (T2, g) be a flat 2 torus, the manifold T2 x Ry with the complete Riemannian
metric e =2 g + dt? is a hyperbolic 3-dimensional cusp. T2 x R is actually isometric
to the quotient of a horoball of H3 by a Z? subgroup of isometries of H? leaving the
horoball invariant. Any T2 x {¢} has constant mean curvature 1. The following theo-
rem says that, in certain 3-manifolds, a constant mean curvature 1 torus is necessarily
the boundary of a hyperbolic cusp.

Theorem 2. Let M be a complete Riemannian 3-manifold with its sectional curva-
tures satisfying K < —1. Assume that there exists a constant mean curvature 1 torus
T embedded in M. Then T separates M and its mean convex side is isometric to a
hyperbolic cusp.

As a consequence, the existence of this torus implies that M can not be compact.
The proof uses the same ideas as in Theorem 1

Proof. Letus consider the map ®: T' xRy — M, (p, 1) > exp,(tN(p)) where N
1s the unit normal vector field normal to 7 such that N is the mean curvature vector
of T'. Let us define

go = sup{e > 0| ® is an immersion on T x [0, €)}.

Using @, we pull back the Riemannian metric of M to T x [0, &¢); it can be written
ds?> = dt?* + do?. We define T, = T x {t} the equidistant surfaces to Tp. We
also denote by H(p,t) the mean curvature of the equidistant surfaces at (p, t) with
respect to d;,. We finally define A(p, t) such that H 4+ A and H — A are the principal
curvatures of Ty at (p, t).

The surfaces T; are tori so, by the Gauss equation and the Gauss—Bonnet formula,
we have

0= | Kr,=| H*-A+K,
T T

where K; is the sectional curvature of the ambient manifold of the tangent space to
T;. Since K; < —1, we obtain the inequality

/ M= H>+K, <[ H?>—AT).
iy T T
We denote by F(¢) the right-hand term of the above inequality. By hypothesis,

H(p,0) = 1s0 F(0) =0and F(z) > 0forany ¢ > 0. Let us compute the derivative
of F:

/ _ oH 3
F'(t) = 2H— —-2H ) + 2H
d
T[ t Tt

= / H (Ric(d;) + |4;|* —2H?* +2) = / H((Ric(d;) +2) +212).
Ty Ty
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Since H(p,0) = 1, we can consider ¢ € (0,&9) such that 0 < H < C on
T x [0, €]. Since Ric(d;) + 2 < 0 we get

F'(t) 5/ 2HA? <2CF(1).
Ty

Thus F(t) < F(0)e2C* fort € [0, €]; this implies F(z) = 0 on that segment. We then
obtain A = 0 on T x [0, ¢] (the equidistant surfaces are umbilical) and Ric(d;) = —2

oH
since H > 0. Thus H satisfies the differential equation T —2 + 2H?. This

givesthat H = 1 on T x [0, ¢] since H = 1 on Ty. Thus we can let ¢ tend to &g to
obtain that F(¢) = O on [0, &9) and Ric(d;) = —2and H = 1 on T x [0, &9). Since
0= th H? + K, and K; < —1, it follows that K; = —1 for all ¢ in the interval. We
then have proved that the sectional curvature of T x [0, &) with the metric ds? is equal
to —1 for any 2-plane. Moreover, we get that dog is flat and that do? = e™*'do.
This implies that ® is actually an immersion on 7' x R4 (g9 = +00) and T x R is
isometric to a hyperbolic cusp. @ is then a local isometry from this hyperbolic cusp
to M.

To finish the proof, let us prove that ® is in fact injective. If this is not the case,
let &1 > 0 be the smallest ¢ such that ® is not injective on T x [0, &]. This implies
that there exist p and ¢ in T such that either

s ®(p,0) = d(q, 1), or
e O(p,e1) = P(q, e1) (with p # g in this case).

Let U and V be respective neighborhoods of (p,0) (or (p,e1)) in Ty (or T,) and
(q.€1) in T, such that @ is injective on them. Since & is the smallest one, (U') and
® (V') are two constant mean curvature 1 surfaces in M that are tangent at (g, &1).
Moreover, in the first case, ®(U) is included in the mean convex side of ®(V) so
by the maximum principle ®(U) = ®(V'). Thus ®(7) would be equal to ®(7%,)
which is impossible since these two surfaces do not have the same area. In the second
case, ®(U) is included in the mean convex side of ®(1') and then P is not injective
on T for s near ¢, s < t, which is a contradiction. O
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