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On minimal spheres of area 4� and rigidity

Laurent Mazet and Harold Rosenberg�

Abstract. Let M be a complete Riemannian 3-manifold with sectional curvatures between 0

and 1. A minimal 2-sphere immersed in M has area at least 4� . If an embedded minimal sphere
has area 4� , then M is isometric to the unit 3-sphere or to a quotient of the product of the unit
2-sphere with R, with the product metric. We also obtain a rigidity theorem for the existence
of hyperbolic cusps. Let M be a complete Riemannian 3-manifold with sectional curvatures
bounded above by �1. Suppose there is a 2-torus T embedded in M with mean curvature one.
Then the mean convex component of M bounded by T is a hyperbolic cusp, i.e., it is isometric
to T � R with the constant curvature �1 metric: e�2t d�2

0
C dt2 with d�2

0
a flat metric on T .
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1. Introduction

Consider a smooth (C 1) complete metric on the 2-sphere S whose curvature is
between 0 and 1. It is well known that a simple closed geodesic in S has length at
least 2� (see [4] or Klingenberg’s theorem in higher dimension [3], [2]). It is less
well known that when such an S has a simple closed geodesic of length exactly 2� ,
then S is isometric to the unit 2-sphere S2

1. This result is proved in [1], and the authors
attribute the theorem to E. Calabi.

With this in mind, we consider what happens in a complete 3-manifold M with
sectional curvatures between 0 and 1 (henceforth we suppose this curvature condition
on M , unless stated otherwise).

Let † be an embedded minimal 2-sphere in M . Then the Gauss–Bonnet theorem
and the Gauss equation tells us that the area of S is at least 4� : indeed we have

4� D
Z

†

xK† D
Z

det.A/ C KT † �
Z

†

1 D A.†/ (1)

with det.A/ the determinant of the shape operator which is non-positive. We prove
in Theorem 1, that when the area of † equals 4� , then M is isometric to the unit
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3-sphere S3
1 or to a quotient of the product of the unit 2-sphere with R, S2

1 � R, with
the product metric.

We remark that Theorem 1 does not hold for embedded minimal tori. Given "

greater than zero, there are Berger spheres with curvatures between 0 and 1, which
contain embedded minimal tori of area less than ". But a minimal sphere always has
area at least 4� .

It would be interesting to know what happens in higher dimensions. In the unit
n-sphere Sn

1 , a compact minimal hyper-surface † always has volume at least the
volume of the equatorial n � 1 sphere Sn�1

1 . Is there a rigidity theorem when one
allows metrics on Sn (D M ) of sectional curvatures between 0 and 1? Two questions
arise. First, does an embedded minimal hyper-sphere † in M have volume at least
the volume of Sn�1

1 . If this is so, and if † is an embedded minimal hyper-sphere with
volume exactly the volume of Sn�1

1 , is M isometric to Sn
1 or to Sn�1

1 � R?
In the same spirit as Theorem 1, we prove a rigidity theorem for hyperbolic cusps.

We recall that a 3-dimensional hyperbolic cusp is a manifold of the form T � R
with T a 2-torus and the hyperbolic metric e�2td�2

0 C dt2 with d�2
0 a flat metric

on T . In Theorem 2, we prove that if M is a complete Riemannian manifold with
sectional curvatures bounded above by �1 and T is a constant mean curvature-1 torus
embedded in M then the mean convex side of T in M is isometric to a hyperbolic
cusp.

2. Minimal spheres of area 4� and rigidity of 3-manifolds

In this section, we prove a rigidity result for a Riemannian 3-manifold M whose
sectional curvatures are between 0 and 1. As explained in the introduction, any
minimal sphere in such a manifold has area at least 4� .

We denote by Sn
1 the sphere of dimension n with constant sectional curvature 1.

We then have the following result.

Theorem 1. Let M be a complete Riemannian 3-manifoldwhose sectional curvatures
satisfy 0 � K � 1. Assume that there exists an embedded minimal sphere † in M

with area 4� . Then the manifold M is isometric either to the sphere S3
1 or to a

quotient of S2
1 � R.

Proof. Let ˆ be the map † � R ! M , .p; t/ 7! expp.tN.q// where N is a unit
normal vector field along †. In the following we focus on † � RC; by symmetry of
the configuration, the study is similar for † � R�.

† is compact, so there is an " such that ˆ is an immersion and even an embedding
on † � Œ0; "/. Let us define

"0 D supf" > 0 j ˆ is an immersion on † � Œ0; "/gI
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"0 can be equal to C1. Using ˆ, we pull back the Riemannian metric of M to
† � Œ0; "0/. This metric can be written ds2 D d�2

t C dt2 where d�2
t is a smooth

family of metrics on †. With this metric, ˆ becomes a local isometry from †�Œ0; "0/

to M and .† � Œ0; "0/; ds2/ has sectional curvatures between 0 and 1. Moreover, †0

is minimal and has area 4� . Actually, we will prove the following facts.

Claim. The metric d�2
0 has constant sectional curvature 1 so .†; d�2

0 / is isometric
to S2

1. Moreover, we have two cases:

(1) "0 D �=2 and d�2
t D sin2 td�2

0 , or

(2) "0 D C1 and d�2
t D d�2

0 .

Let us denote by †t D † � ftg the equidistant surfaces. We denote by H.p; t/

the mean curvature of †t at the point .p; t/ with respect to the unit normal vector @t .
We also define �.p; t/ � 0 such that H C � and H � � are the principal curvature
of †t at .p; t/. We notice that � D 0 if †t is umbilical at .p; t/.

The surfaces †t are spheres, so, using the Gauss equation, the Gauss–Bonnet
formula implies that

4� D
Z

†t

xK†t
D

Z
†t

.H C �/.H � �/ C Kt D
Z

†t

H 2 � �2 C Kt

where xK†t
is the intrinsic curvature of †t and Kt is the sectional curvature of the

ambient manifold of the tangent space to †t . Since Kt � 1, we obtain the following
inequality:

Z
†t

�2 D
Z

†t

H 2 C Kt � 4� �
Z

†t

H 2 C A.†t / � 4� (2)

where A.†t / is the area of †t . In the following, we denote by F.t/ the right-hand
side of this inequality.

Claim 1. F is vanishing on Œ0; "0/.

Since †0 is minimal and has area 4� , we have F.0/ D 0. We notice that this
implies that �.p; 0/ D 0, so †0 is umbilical and KT †0

D 1. Thus .†0; d�0/ is
isometric to S2

1.
We have the usual formulae:

@

@t
A.†t / D �

Z
†t

2H and
@H

@t
D 1

2
.Ric.@t / C jAt j2/ (3)

where At is the shape operator of †t and Ric is the Ricci tensor of † � Œ0; "0/. Since
the sectional curvatures of M � Œ0; "0/ are non-negative, Ric is non-negative. So the
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second formula above implies that H is non-decreasing and thus H � 0 everywhere.
Let us now compute and estimate the derivative of F :

F 0.t/ D
Z

†t

.2H
@H

@t
� 2H 3/ �

Z
†t

2H

D
Z

†t

H.Ric.@t / C jAt j2 � 2H 2 � 2/

D
Z

†t

H
�
.Ric.@t / � 2/ C ..H C �/2 C .H � �/2 � 2H 2/

�

D
Z

†t

H..Ric.@t / � 2/ C 2�2/

� 2

Z
†t

H�2

where the last inequality comes from Ric.@t /�2 � 0 because of the hypothesis on the
sectional curvatures. If we choose " < "0, there is a constant C � 0 such that H � C

on † � Œ0; "�. So for t 2 Œ0; "�, using the inequality (2), we get F 0.t/ � 2CF.t/.
Then F.t/ � F.0/e2C t D 0 on Œ0; "�. So F � 0 on Œ0; "0/ and, because of (2),
F D 0 on Œ0; "0/; this finishes the proof of Claim 1.

The first consequence of Claim 1 is that all the equidistant surfaces †t are um-
bilical (see inequality (2)); so � � 0. In the computation of the derivative of F , this
implies that Z

†t

H.Ric.@t / � 2/ D 0:

Since H.Ric.@t / � 2/ � 0 everywhere, we obtain

H.Ric.@t / � 2/ D 0 everywhere. (4)

Moreover the umbilicity and (3) imply that
@H

@t
D 1

2
Ric.@t / C H 2. We now prove

the following claim.

Claim 2. Let .p; t/ 2 † � Œ0; "0/ (t > 0) be such that H.p; t/ > 0 then H.q; t/ > 0

for any q 2 †

In other words, when the mean curvature is positive at a point of an equidistant,
it is positive at any point of this equidistant. We recall that H is increasing in the t

variable, so when it becomes positive it stays positive.
So assume that H.p; t/ > 0 and consider � D fq 2 † j H.q; t/ > 0g which is a

nonempty open subset of †. Let q 2 �. Since H.q; t/ > 0, Ric.@t /.q; t/ D 2 by (4).
Thus Ric.@t /.r; t/ D 2 for any r 2 x�. So if r 2 x�, then, for s < t , Ric.@t /.r; s/ > 0

for s close to t and, by (3), this implies that H.r; t/ > 0 and r 2 �. So � is closed
and � D †. This finishes the proof of Claim 2.
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Let us assume that there is an "1 > 0 such that H.p; t/ D 0 for .p; t/ 2 †�Œ0; "1�

and H.p; t/ > 0 for any .p; t/ 2 † � ."1; "0/. Because of the evolution equation of
H , this implies that Ric.@t / D 0 on †�Œ0; "1�. On †�."1; "0/, we have Ric.@t / D 2

because of (4). So by continuity of Ric.@t /, we get a contradiction and then we have
two possibilities:

(1) H D 0 on † � Œ0; "0/ and Ric.@t / D 0 on † � Œ0; "0/;

(2) H > 0 on † � .0; "0/ and Ric.@t / D 2 on † � Œ0; "0/.

In the first case, this implies that the sectional curvature of any 2-plane orthogonal
to †t is zero. Thus d�2

t D d�2
0 . Since the map ˆ ceases to be an immersion only if

d�2
t becomes singular this implies that "0 D C1. Thus † � RC with the induced

metric is isometric to S2
1 � RC and ˆ is a local isometry from S2

1 � RC to M .
In the second case, the sectional curvature of any 2-plane orthogonal to †t is equal

to 1. The sectional curvature of †t is also 1, since the inequality in (2) is an equality
by Claim 1. Thus d�2

t D sin2 td�0 and "0 D �=2. This also implies that ˆ.p; �=2/

is a point. So † � Œ0; �=2� with the metric ds2 is isometric to a hemisphere of S3
1

and the map ˆ is a local isometry from that hemisphere to M .
Doing the same study for † � R�, we get in the first case a local isometry

ˆ W S2
1 � R ! M and in the second case a local isometry ˆ W S3

1 ! M . Since
S2

1 � R and S3
1 are simply connected, ˆ is then the universal cover of M and M is

then isometric to a quotient of S2
1 � R or S3

1. Since ˆ is injective on † this implies
that in the second case, ˆ is actually injective and then a global isometry. �

Remark 1. In the proof, since ˆ is injective on †, the possible quotients of S2
1 � R

are either S2
1 �R or its quotient by the subgroup generated by an isometry of the form

S2
1 � R ! S2

1 � R, .p; t/ 7! .˛.p/; t C t0/ with ˛ an isometry of S2
1 and t0 ¤ 0.

Remark 2. Something can be said about constant mean curvature H0 spheres in
a Riemannian 3-manifold with sectional curvatures between 0 and 1. Indeed, the
computation (1) implies that the area of † is larger than 4�

1CH 2
0

, which is the area of

a geodesic sphere in S3
1 of mean curvature H0. Moreover, if † has area 4�

1CH 2 , the
above proof can be adapted to prove that the mean convex side of † is isometric to
a spherical cap of S3

1 with constant mean curvature H0 (see Theorem 2 below, for a
similar result in the hyperbolic case).

Remark 3. Let M be a Riemannian n-manifold whose sectional curvatures are be-
tween 0 and 1 and let † be a minimal 2-sphere in M . A computation similar to (1)
proves also that the area of † is larger than 4� . It also implies that, if † has area 4� ,
† is totally geodesic and isometric to S2

1.



926 L. Mazet and H. Rosenberg CMH

3. Existence of hyperbolic cusps

Let .T 2; g/ be a flat 2 torus, the manifold T 2 � RC with the complete Riemannian
metric e�2tg Cdt2 is a hyperbolic 3-dimensional cusp. T 2 �R is actually isometric
to the quotient of a horoball of H3 by a Z2 subgroup of isometries of H2 leaving the
horoball invariant. Any T 2 � ftg has constant mean curvature 1. The following theo-
rem says that, in certain 3-manifolds, a constant mean curvature 1 torus is necessarily
the boundary of a hyperbolic cusp.

Theorem 2. Let M be a complete Riemannian 3-manifold with its sectional curva-
tures satisfying K � �1. Assume that there exists a constant mean curvature 1 torus
T embedded in M . Then T separates M and its mean convex side is isometric to a
hyperbolic cusp.

As a consequence, the existence of this torus implies that M can not be compact.
The proof uses the same ideas as in Theorem 1

Proof. Let us consider the map ˆ W T � RC ! M , .p; t/ 7! expp.tN.p// where N

is the unit normal vector field normal to T such that N is the mean curvature vector
of T . Let us define

"0 D supf" > 0 j ˆ is an immersion on T � Œ0; "/g:
Using ˆ, we pull back the Riemannian metric of M to T � Œ0; "0/; it can be written
ds2 D dt2 C d�2

t . We define Tt D T � ftg the equidistant surfaces to T0. We
also denote by H.p; t/ the mean curvature of the equidistant surfaces at .p; t/ with
respect to @t . We finally define �.p; t/ such that H C � and H � � are the principal
curvatures of Tt at .p; t/.

The surfaces Tt are tori so, by the Gauss equation and the Gauss–Bonnet formula,
we have

0 D
Z

Tt

xKTt
D

Z
Tt

H 2 � �2 C Kt

where Kt is the sectional curvature of the ambient manifold of the tangent space to
Tt . Since Kt � �1, we obtain the inequalityZ

Tt

�2 D
Z

Tt

H 2 C Kt �
Z

Tt

H 2 � A.Tt /:

We denote by F.t/ the right-hand term of the above inequality. By hypothesis,
H.p; 0/ D 1 so F.0/ D 0 and F.t/ � 0 for any t � 0. Let us compute the derivative
of F :

F 0.t/ D
Z

Tt

�
2H

@H

@t
� 2H 3

�
C

Z
Tt

2H

D
Z

Tt

H
�
Ric.@t / C jAt j2 � 2H 2 C 2

� D
Z

Tt

H
�
.Ric.@t / C 2/ C 2�2

�
:
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Since H.p; 0/ D 1, we can consider " 2 .0; "0/ such that 0 < H � C on
T � Œ0; "�. Since Ric.@t / C 2 � 0 we get

F 0.t/ �
Z

Tt

2H�2 � 2CF.t/:

Thus F.t/ � F.0/e2C t for t 2 Œ0; "�; this implies F.t/ D 0 on that segment. We then
obtain � D 0 on T � Œ0; "� (the equidistant surfaces are umbilical) and Ric.@t / D �2

since H > 0. Thus H satisfies the differential equation
@H

@t
D �2 C 2H 2. This

gives that H D 1 on T � Œ0; "� since H D 1 on T0. Thus we can let " tend to "0 to
obtain that F.t/ D 0 on Œ0; "0/ and Ric.@t / D �2 and H D 1 on T � Œ0; "0/. Since
0 D R

Tt
H 2 C Kt and Kt � �1, it follows that Kt D �1 for all t in the interval. We

then have proved that the sectional curvature of T �Œ0; "0/ with the metric ds2 is equal
to �1 for any 2-plane. Moreover, we get that d�2

0 is flat and that d�2
t D e�2td�2

0 .
This implies that ˆ is actually an immersion on T � RC ("0 D C1) and T � RC is
isometric to a hyperbolic cusp. ˆ is then a local isometry from this hyperbolic cusp
to M .

To finish the proof, let us prove that ˆ is in fact injective. If this is not the case,
let "1 > 0 be the smallest " such that ˆ is not injective on T � Œ0; "�. This implies
that there exist p and q in T such that either

� ˆ.p; 0/ D ˆ.q; "1/, or
� ˆ.p; "1/ D ˆ.q; "1/ (with p ¤ q in this case).

Let U and V be respective neighborhoods of .p; 0/ (or .p; "1/) in T0 (or T"1
) and

.q; "1/ in T"1
such that ˆ is injective on them. Since "1 is the smallest one, ˆ.U / and

ˆ.V / are two constant mean curvature 1 surfaces in M that are tangent at ˆ.q; "1/.
Moreover, in the first case, ˆ.U / is included in the mean convex side of ˆ.V / so
by the maximum principle ˆ.U / D ˆ.V /. Thus ˆ.T0/ would be equal to ˆ.T"1

/

which is impossible since these two surfaces do not have the same area. In the second
case, ˆ.U / is included in the mean convex side of ˆ.V / and then ˆ is not injective
on Ts for s near t , s < t , which is a contradiction. �
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