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1. Introduction

There is a general belief that topology of a manifold M with some low-dimensional
exceptions, does not influence ergodic properties of volume-preserving dynamical
systems on M and that restriction on topological properties of systems with strong
recurrence, say, come only from algebraic and differential topology rather than from
dynamics.

There are two aspects here: (i) the smooth realization problem that asks what iso-
morphism types or properties of measure-preserving transformations or flows appear
for volume-preserving dynamical systems on a compact manifold and (ii) the phase
space dependence: given an isomorphism type or property (measurable or topolog-
ical) that appear in a smooth dynamical system on a compact manifold M describe
the class of manifolds that allow a system of the same kind.

We do not discuss the smooth realization problem here. It is enough to mention
that, while the only known restriction is finiteness of entropy (and it is not specific to
systems preserving a smooth measure and true for any Borel measure), very few sys-
tems that are naturally not smooth have been shown to allow a smooth realization, e.g.
certain translation on the infinite-dimensional tori, see [2], and certain unpublished
constructions. More is known about the phase space dependence. For example, using
a surjective continuous map diffeomorphic on the interior from the closed disc onto
an arbitrary compact manifold (closed or with boundary) of the same dimension one

�Based on research supported by the NSF grants 1002554.
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shows that every system that can be realized on the disc Dn and is sufficiently flat
at the boundary can be realized on an arbitrary n-dimensional manifold. This was
used to show existence of a zero entropy ergodic diffeomorphisms and flows [1] and
Bernoulli transformations [4].

Beyond Bernoulli case and its simple concatenations with zero entropy examples,
smooth positive entropy examples are few and far between, see [11], [13]. In the
zero entropy setting however there is versatile approximation by conjugation method
originally introduced in [2] and sometimes calledAnosov–Katok method. We use this
method in the present work and introduce basic scheme in Section 2.3. For a detailed
modern overview of the method see [6]. In the discrete time case as the starting point
the method requires an effective smooth action of the circle (for ergodic properties)
or free or at least locally free action of the circle (for properties involving behavior
of all orbits such as minimality or unique ergodicity). Similarly for the continuous
time constructions an action of the two-dimensional torus on the ambient manifold
is needed.

After a long lull following the original development in the late 1960s to mid-1970s
this methods enjoyed a lively resurrection during the last decade or so. As examples
of important advances during that period one should mention a multiple frequency”
version of the method that allows to produce new classes of mixing examples [5],
[6] and realization of any circle rotation with a Liouvillean rotation number as a C1
volume preserving diffeomorphism of any compact manifold with a circle action [7].

Applicability of the approximation by conjugation method critically depends on
construction of successive conjugating diffeomorphisms with prescribed behavior.
This conjugacies are invariably very large in the appropriate topologies but they
should lie in the space; e.g. all derivatives for the map and its inverse must exist
although they may be very large. What is required from those conjugacies is con-
trolled behavior in a large mart of the phase space. In the smooth category such
constructions are readily available since maps defined on various parts of the space
can be glued together.1 However the situation changes drastically when one passes to
the real-analytic category. The most basic property required to start the construction
in a particular class is transitivity of the action by diffeomorphisms of that class on
pairs of points. In the setting of a real-analytic manifold M this means existence
of diffeomorphisms Hx;y for any pair x; y 2 M such that Hx;yx D y such that
both Hx;y and their inverses extend to a fixed complex neighborhood of M . We are
not aware of such a fact for closed manifolds but for manifolds with boundaries or
for a restricted version, say requiring that H fixes a point z that is excluded from
the construction there are obvious difficulties. Those are situations that appear for
example in the most basic cases where effective analytic action of the circle exists:
the disc D2 and the two-dimensional sphere S2. Accordingly the following basic
question is still open:

1Notice however difficulties of the global character that appear in the symplectic versions of the method,
see [9].



Vol. 89 (2014) Analytic uniquely ergodic volume preserving maps on odd spheres 965

Question 1. Does there exist a real analytic area preserving diffeomorphism of D2

or S2 that is ergodic and has zero entropy?

Other properties such as ergodicity and closeness to the identity, almost minimal-
ity, almost unique ergodicity, etc. are not available on the disc or the sphere in the
real analytic category.2

In this paper we consider the most basic situation where such a transitive family
commuting with a free action of the circle is present, namely the odd-dimensional
spheres. A construction of volume-preserving uniquely ergodic real-analytic diffeo-
morphisms on S2nC1 was outlines in [6]. In the present paper we give complete
proofs.

Let us emphasize that spheres are considered to present the method in a succinct
way. Existence of a transitive family with large domain of analyticity is the key. For
example, our results extend fairly straightforwardly to the case of compact Lie groups,
the setting is explained in Section 2.2. An even more general setting is possible; it
will appear in a subsequent paper.

We also mention that in the more simple case of manifolds that are a product
of a circle and a compact Nilmanifolds or of a circle and a homogeneous spaces
of compact type, it was shown in [3] that there exists real analytic distributionally
uniquely ergodic diffeomorphisms (that is, diffeomorphisms for which the set of
invariant distributions has dimension 1).

2. Formulation of the result and outline of proof

2.1. Notations. We will consider the standard embedding of the sphere S2n�1 into
R2n and the standard complexification R2n � C2n. The vector-field defined in
Euclidean coordinates as v0.x1; : : : ; x2n/ D 2�.x2;�x1; : : : ; x2n; x2n�1/ defines a
linear action of the circle S1 which we will denote by �t ; t 2 R, �1 D Id. In Eu-
clidean coordinates �t .x1; : : : ; x2n/ D .cos.2�t/x1 C sin.2�t/x2;� sin.2�t/x1 C
cos.2�t/x2; : : : ; cos.2�t/x2n�1 C sin.2�t/x2n;� sin.2�t/x2n�1 C cos.2�t/x2n/.
We will use the same notations v0 and 't for extensions to C2n or its subsets. We
will call a function on S2n�1 entire if it extends to a holomorphic function on C2n.
We say that the map is in C!� if it extends to a holomorphic function in the ball
B� WD fz 2 C2n W jzj 6 �g. We then use the notation h 2 C!1 if h is entire. A map
f W S2n�1 ! S2n�1 is said to beC!� if its coordinate functions areC!� . A diffeomor-
phism f W S2n�1 ! S2n�1 is C!� if both f and f �1 are C!� . Invertible linear maps
are obviously entire diffeomorphisms. Notice that product of entire diffeomorphisms
is an entire diffeomorphism so that entire diffeomorphisms form a group that we will
denote Ent.S2n�1/. Its subgroup of entire diffeomorphisms preserving Lebesque

2The original Bernoulli construction on the sphere or the disc from [10] can be carried out in the real-analytic
category with proper adjustments; see [8], [12].
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measure � is denoted by Ent.S2n�1; �/. A homeomorphism h of a compact metric
spaceX is uniquely ergodic if it has only one invariant Borel probability measure. If
h preserves a measure with full support (nonempty open sets have positive measure)
then unique ergodicity implies minimality (every orbit is dense). Unique ergodicity
is equivalent to a uniform distribution property: time averages of any continuous
function converge uniformly to a constant which is then equal to the integral with
respect to the invariant probability measure.

2.2. Formulation of the result. Fix n 2 N. For � > 0 and f; g 2 C!� .S2n�1/ we
write

jf � gj� D max
°

max
z2B�

jf .z/ � g.z/j; max
z2B�

jf �1.z/ � g�1.z/j
±
:

Theorem 1. For any t0 2 Œ0; 1� and any " > 0,� > 0, there exists a uniquely ergodic
volume preserving diffeomorphism f 2 C!� .S2n�1/ that satisfies

jf � 't0 j� < ":
Furthermore, the diffeomorphism f is obtained as a limit in the C!� norm of entire
maps of the form Fn D Hn B 'tn BH�1

n ,Hn 2 Ent.S2n�1; �/.

Remark 1. The starting point of our argument is existence of a double transitive
family of entire diffeomorphisms, commuting with the S1 action, namely rotations.
Our argument works whenever such a family exists with modifications that are es-
sentially notational. Examples are compact connected Lie groups and some of their
homogeneous spaces.

Here are more details on the compact Lie group setting. Let G be a compact
connected Lie group with probability Haar measure �. We denote by lg and rg
correspondingly the left and right translation on G by the element g 2 G.

The groupG can be embedded into SO.N;R/ as a subgroup defined by polynomial
equations in the matrix coefficients. Without loss of generality we may assume that
the image of G is Zariski dense in SO.N;R/. We consider the standard coordinate
embeddings SO.N;R/ ,! Rn

2
,! Cn2

.
We will call a function onG entire if it extends to a holomorphic function in Cn2

.
Entire maps and diffeomorphisms of G are defined as in the previous section. Left
and right translations are given by linear maps in matrix coordinates and thus extend
to invertible linear maps of Cn2

and are thus entire diffeomorphisms. We use the
same notations for the extensions.

2.3. The approximationby conjugation construction scheme. We will use the ap-
proximation by conjugation method sometimes called Anosov–Katok method which
was originally introduced in [2].
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Without loss of generality we can assume that t0 is rational, say t0 D P0=Q0
where P0 and Q0 are relatively prime integers.

We will construct the desired diffeomorphism f inductively, as limn!1 Fn with
F�1 D 't0 . Each diffeomorphism Fn, n > 0, will be conjugate via an entire
diffeomorphism Hn to a rational element of the action ' with rapidly increasing
periods:

Fn D Hn B 'PnC1=QnC1 BH�1
n :

The conjugating diffeomorphisms are defined inductively as3

Hn D Hn�1 B hn; with hn B 'Pn=Qn D 'Pn=Qn B hn:
Thus, at the nth step of the construction the parameters are the diffeomorphism
hn 2 Ent.S2n�1; �/ and the rational tnC1 D PnC1=QnC1. First one chooses the
diffeomorphism hn to make all orbits of the S1 action 'n defined by

'n D Hn B ' BH�1
n D Hn�1 B hn B ' B h�1

n BH�1
n�1 (1)

distributed in an equivalent way to Lebesgue measure, in the sense that Birkhoff aver-
ages of continuous functions along the 'n action become as n tends to 1 proportional
with a fixed ratio distortion to the Lebesgue averages of these functions. This will be
sufficient to guarantee unique ergodicity of the limit map.

Naturally, Hn, although entire, is likely to have large derivatives, and in partic-
ular to be very large on B�. Thus, tnC1 has to be chosen with a sufficiently large
denominator QnC1 to make the orbits of the finite subgroup

Hn B 'ktnC1 BH�1
n ; k D 0; : : : ;QnC1 � 1;

of the action 'n approximate the continuous orbits of 'n sufficiently well to maintain
the uniform distribution almost without any loss of precision. Moreover, for the
convergence of the construction in the analytic norms, observe that the S1 action 'n
is entire (since Hn;H�1

n and ' are entire), thus on every compact subset of C2n,
hn'

tnC1h�1
n ! 'tn if tnC1 ! tn. Hence the latter further constraint on the choice

of tnC1 will guarantee closeness on B� between FnC1 and Fn, and between their
inverses.

Since there are no other restrictions on the choice of tnC1 the only essential part
of the inductive step is the construction of the diffeomorphism hn. It is here where
the difficulties of the analytic case are very obvious. Since those maps are very
large in the real domain control of the complexification presents great problems. A
natural approach inspired by the smooth case would be to construct smooth maps
first and then to make some kind of approximation (by polynomials or other special
classes of functions) to guarantee analyticity in a large domain. The problem however

3In our case, we will actually have instead of the equality that hn B'Pn=Qn Bh�1
n is close in theC!

� norm

to 'Pn=Qn (see Section 2.4 below).
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remains since even if such a general approximation procedure works the inverses
would have singularities close to the real domain and the construction collapses.
Thus it is necessary to find conjugating diffeomorphisms of a special form which
may be inverted more or less explicitly to guarantee analyticity of both maps and
their inverses in a large complex domain. We now proceed to showing how to do this
in the specific case in question.

2.4. Making S1 orbits uniformly distributed on the sphere. The action ', which
may of course be considered as a subgroup of the orthogonal group SO.2n/, has a
large centralizer in SO.2n/. An easy way to see it is to identify R2n with Cn via the
map

.x1; x2; : : : ; x2n�1; x2n/ ! .x1 C ix2; : : : ; x2n�1 C ix2n/:

In the complex coordinates ' becomes scalar action

't .z1; : : : ; zn/ D .exp 2�itz1; : : : ; exp 2�itzn/:

The unitary group U.n/ commutes with '. For our purposes it is useful to notice
that already the special unitary group SU.n/which has finite intersection with ', acts
transitively on the sphere S2n�1.

Assume we are given a collection of one-parameter compact subgroups of period
one k0; : : : ; kN acting transitively on S2n�1. Given any tn we want to construct
hn 2 Ent.S2n�1; �/ and tnC1 such that xFn D hn B 'tnC1 B h�1

n is arbitrarily close
to 'tn and such that the arcs of orbits of xFn of length QnC1 for any x 2 S2n�1,
that we denote O. xFn;QnC1; x/, are distributed with high precision in the same way
as the family 'tks00 : : : k

sN C1

NC1 y, .t; s0; : : : ; sNC1/ 2 TNC2 for some y 2 S2n�1
that depends on x. The latter distribution is equivalent to Lebesgue measure. The
precision with which the orbits O. xFn;QnC1; x/ become distributed as the transitive
family can be made so high that even after application of the conjugacy Hn�1 it
still holds that the orbits O.Fn;QnC1; x/ are distributed in an equivalent way to the
Lebesgue measure.

The construction of hn and xFn is itself done using a finite number of successive
conjugations of periodic times of the ' action. This is the main ingredient in the
construction and we now describe it.

We start withp0=q0 D ˛0 D tn. We consider an entire function 0 that is constant
on any k0 orbit but such that  0.'t .�// depends wildly on t and  0.'˛0.�// D  0.�/
(the translation groups ki are chosen so that such functions do exist and are simple
to produce). Then if we let g0 D k

 0

0 we get that g0 B '˛0 B g�1
0 D '˛0 . As a

consequence of our choices, we observe that for ˛1 D p1=q1 sufficiently close to ˛0
we have that f0 D g0 B '˛1 B g�1

0 is close to f�1 D '˛0 while due to the twisting
of  0 under the 't action the orbits of f0 will be distributed as the continuous T2

orbits 'skt00 , .s; t0/ 2 T2.
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In the same way we introduce g1 D k
 1

1 that commutes with '˛1 and then choose
˛2 sufficiently close to ˛1 so that f1 D g0g1'

˛2g�1
1 g�1

0 is close to f1 while the
orbits of f1 are distributed as the families 'skt00 k

t1
1 , .s; t0; t1/ 2 T3. We then follow

this induction until we obtain ˛NC1 and fN D g0 : : : gN'
˛N C1g�1

N : : : g�1
0 such that

fN is close to f�1 D 'tn while its orbits are distributed as the families 'skt00 : : : k
tN
N ,

.s; t0; : : : ; tN / 2 TNC2. Thus we let tnC1 D ˛NC1, hn D g0 : : : gN , and xFn D fN
and the step n construction is accomplished.

Actually, in the above scheme we omitted an extra difficulty that is related to the
control of every orbit that is necessary for unique ergodicty. Namely the points x
for which the orbit O.f0; x; q1/ is well distributed are those for which the  0 twist
is effective and this excludes a small measure set of points (suppose for example
that  0 depends only on the coordinate z1, then  0.'t .z// does not depend on t for
points z such that z1 D 0). To overcome this difficulty a certain number of additional
conjugacies kNC1; : : : ; kM must be applied to make sure that each point is affected by
the twist in all the directions k0; : : : ; kN . A consequence of this extra difficulty is that
equi-distribution of different points will happen at different times and for different
indices in the maps fl , l 2 ŒN;M�.

3. Proof of Theorem 1

3.1. Criterion for unique ergodicity. Reduction to the main induction step

Definition 1. Given C > 0 and " > 0, a finite set O is said to be .C; "/-uniform-
ly distributed on a manifold X if for any ball B � X of radius " we have that
#.O \ B/=#O 2 .�.B/=C;C�.B//.
Definition 2. A finite collection of one-parameter compact subgroups of period 1:
k0; : : : ; kN 2 SU.n/ is said to have a transitive action on X if for all x; y 2 X there
exists t0; : : : ; tN 2 Œ0; 1/ such that y D k

t0
0 : : : k

tN
N x:

Let X WD S2n�1. In the sequel we will obtain and fix a finite collection of one-
parameter compact subgroups of period 1: k0; : : : ; kN 2 SU.n/ whose action is
transitive on X .

Definition 3. A finite set O is said to be "-uniformly distributed along k0; : : : ; kL
and x if for any ball B of radius " in Œ0; 1�LC1 we have that #.O \ NkBx/=#O 2
..1� "/Leb.B/; .1C "/Leb.B//. We used the notation NkBx WD fy D k

t0
0 : : : k

tL
L x W

.t0; : : : ; tL/ 2 Bg.

Proposition 1. There exists C0 > 0 such that for any " > 0, there exists � > 0 such
that for any x 2 X we have the following: If a finite set O is �-uniformly distributed
along NkN D k0; : : : ; kN and x, then O is .C0; "/-uniformly distributed on X .
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Proof. The proof is straightforward by transitivity and periodicity of the action by
k0; : : : ; kN and compactness of X . �

We now state a general criterion that we will use to prove unique ergodicity of a
volume preserving transformations f . For x 2 X andm 2 N, we denote the arcs of
orbits O.f;M; x/ WD ff m.x/ W m D 1; : : : ;M g.

Proposition 2. Let f be a volume preserving homeomorphism on X . Assume that
there existsC > 0 such that the following holds: For any " > 0 and any x 2 X , there
exists M 2 N, for which O.f;M; x/ is .C; "/-uniformly distributed on X . Then f
is uniquely ergodic.

Proof. The assumption implies that given any continuous function  W X ! C, and
any x 2 X , there exists a sequence Mn ! 1 such that

1

Mn

Mn�1X
iD1

 .f ix/ 2
� Z

X

 .z/d�.z/=C 0; C 0
Z
X

 .z/d�.z/

�

with C 0 D 2C . It follows that all the invariant probability measures by f are
equivalent to Lebesgue, whence unique ergodicty. �

We can now state what we will request at a given step of our construction to
guarantee unique ergodicity of the limiting transformation.

Proposition 3. If for any t0 2 T and any " > 0 and� > 0 there exists 	 2 T and a
diffeomorphism h 2 Ent.X; �/ such that the entire diffeomorphism f D h B'� Bh�1
satisfies the following:

� jf � 't0 j� < ".
� There existsM 2 N with the property that for every x 2X , there exist y 2X and
M 0.x/ < M such that O.f;M 0; x/ is "-uniformly distributed along k0; : : : ; kN
and y.

Then it is possible to construct a transformation that satisfies the requirements of
Theorem 1.

Proof. Assume that sequences Mn 2 N, tn and Hn 2 Ent.X; �/ have been con-
structed such that H�1 D Id and Fn D Hn B 'tnC1 BH�1

n satisfies

.Hn/: jFn � Fn�1j� < "=2n for any n > 0; and for any 0 6 j 6 n, and any x 2 X ,
there exists M 0

j .x/ < Mj such that O.Fn;M
0
j ; x/ is .C0; 1=.j C 1//-uniformly

distributed in X .

Clearly the first step n D 0 follows from Proposition 1 and the assumption. At
step n, givenHn, observe that there exists "n such that if hnC1 and tnC2 andMnC1 are
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such that NfnC1 D hnC1 B'tnC2 B h�1
nC1 satisfies that for any x 2 X there exists y and

M 0
nC1.x/ < MnC1 such that O. NfnC1; xM 0

nC1; x/ is "n-uniformly distributed along
k0; : : : ; kN and y, then, using Proposition 1, FnC1 D Hn B NfnC1 BH�1

n satisfies that
O.FnC1;M 0

nC1.x/; x/ is .C0; 1=.nC 2//-uniformly distributed in X for any x 2 X
(we took M 0

nC1.x/ D xM 0
nC1.H�1

n .x// < MnC1). In addition we can require due to
our assumption that NfnC1 be arbitrarily close to 'tnC1 . As a consequence of the latter
FnC1 will be arbitrarily close to Fn and the requirements of .HnC1/ will hold if we
take HnC1 D Hn B hnC1.

The limiting diffeomorphism f D limFn thus satisfies that O.f;M 0
j .x/; x/ is

.C0; 1=.jC1//-uniformly distributed inX . The unique ergodicity criterion of Propo-
sition 2 being satisfied by f , Theorem 1 follows. �

It only remains to prove the main inductive step given by Proposition 3. Before
we do this we shall introduce now the special translations that we will use in order to
move the orbits transversally to the '-action.

3.2. A special family of translations. For any q 2 N and i 2 f1; : : : ; ng, we define
 i;q.z/ D Re.zqi / and �i;q.z/ D Re..z1 � zi /

q/. Clearly  i;q and �i;q are entire,
since they are polynomials in the variables x1; : : : ; x2n. A crucial property is that
g B 'p=q D g for g D  i;q or �i;q .

The translations we will use are


si .z1; : : : ; zn/ D .z1; : : : ; zi�1; ei2�szi ; ziC1; : : : ; zn/;
	 si .z1; : : : ; zn/ D .z1;s; z2; : : : ; zi�1; zi;s; ziC1; : : : ; zn/;

z1;s D 1=2
�
.ei2�s C 1/z1 C .ei2�s � 1/zi

�
;

zi;s D 1=2
�
.ei2�s � 1/z1 C .ei2�s C 1/zi

�
:

Note that under the action by 	 si we have that z1;s C z2;s D ei2�s.z1 C z2/ while

z1;s � z2;s D .z1 � z2/. This is crucial to insure that
�


A j;q

i

��1 D 

�A j;q

i and the

similar property for 	
A�i;q

i . Also, as a consequence of our definitions we have that
for any A > 0,



A j;q

i 'p=qz D 'p=q

A j;q

i z; for all j ¤ i;

	
A�i;q

i 'p=qz D 'p=q	
A�i;q

i z:

Observe finally that 

A j;q

i and 

�A j;q

i are entire maps as well as 	
A�i;q

i and 	
�A�i;q

i .

Proposition 4. Let k0 D 
1, k1 D 	2, k2 D 
2, k3 D 
3; : : : ; kn D 
n, knC1 D 	2,
knC2 D 
2, knC3 D 	3, knC4 D 
3; : : : ; k3n�3 D 	n, k3n�2 D 
n, k3n�1 D 	2,
k3n D 
2, k3nC1 D 	3, k3nC2 D 
3; : : : ; k5n�5 D 	n, k5n�4 D 
n. Then the
sequence k0; : : : ; k5n�4 is transitive.
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Remark2. The translationk1 D 	2 is not necessary in making the sequence transitive
but will be useful later when we will build the conjugacy to make sure that the shear
along the z1 direction is triggered.

The proof of Proposition 4 will be an immediate consequence of Lemma 2 below.

Lemma 1. Fix j D 1; : : : ; n and .z1; : : : ; zn/ 2 X . For any �1, �j such that
�21 C �2j D jz1j2 C jzj j2 there exist t; s 2 Œ0; 1�2 such that z0 D 	 sj 


t
j z satisfies

jz0
1j D �1 and jz0

j j D �j .

Proof. Let zj D rj e
i2��j . We have that

z0
1 D ei�s

�
cos.�s/r1e

i2��1 � i sin.�s/r2e
i2��j ei2�t

�
;

hence if we choose t C�=2C �j D �1Œ2�� and tan.�s/ D r1=r2 we get that z0
1 D 0

hence jz0
j j2 D r21Cr2j . Since z0

j D ei�s.�i sin.�s/r1ei2��1Ccos.�s/r2ei2��j ei2�t /
it is also possible to choose t and s such that z0

j D 0. By continuity any value between
0 and r21 C r2j is possible for jz0

j j2 and the lemma is proved. �

Lemma 2. Given any �1; : : : ; �n such that �21 C � � � C �2n D 1 and any z 2 X , there
exist t1; : : : ; t4n�4 such that

z0 D 	
t4n�4

2 

t4n�5

2 : : : 	 t2n
n 
 t2n�1

n 	
t2n�2

2 

t2n�3

2 : : : 	 t2n 

t1
n z

satisfies jz0
j j D �j for every j D 1; : : : ; n.

Proof. Making repeatedly use of Lemma 1 we first obtain t1; : : : ; t2n�2 such that
Nz D 	

t2n�2

2 

t2n�3

2 : : : 	
t2
n 


t1
n z satisfies Nzj D 0 for every j D 2; : : : ; n. Next we

choose t2n�1 and t2n such that Nz.2/ D 	
t2n
n 


t2n�1
n Nz satisfies j Nz.2/n j D �n : this is

possible by Lemma 1 since 1 D jNz1j2 C jNznj2 > �2n. We proceed inductively so that

at each step j 6 n � 2 we have that j Nz.j /
l

j D �l for n � j 6 l 6 n and Nz.j /
l

D 0

for 1 < l < n � j . Indeed, since j Nz.j /1 j2 C jNz.j /n�j�1j2 D 1 � �2n � � � � � �2n�j >
�2n�j�1, we can apply Lemma 1 and choose t2nC2.jC1/�1 and t2nC2.jC1/ such that

Nz.jC1/ D 	
t2nC2.j �2/

n�j�1 

t2nC2.j �2/�1

n�j�1 Nz.j / satisfies j Nz.jC1/
n�j�1j D �n�j�1. Since 	n�j�1

and 
n�j�1 leave the r th coordinates intact for r ¤ 1 and r ¤ n� j � 1 we still have

j Nz.jC1/
l

j D �l for n � j 6 l 6 n. �

Proof of Proposition 4. From Lemma 2 it follows that with an appropriate choice of
snC1; : : : ; s5n�4 it is possible to obtain arbitrary moduli for the coordinates of Nz D
k
snC1

nC1 : : : k
s5n�4

5n�4 z. Next, with an appropriate choice of s0; : : : ; sn, such that s1 D 0

we can further fix the arguments of z0 D k
s0
0 : : : k

sn
n Nz D 


s0
1 


s2
2 


s3
3 : : : 


sn
n Nz, and the

proof of Proposition 4 is complete. �
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3.3. The inductive step of the successive conjugation construction. The novelty
in our construction is that the each step of the successive conjugacy is itself constructed
through an inductive procedure that allows to saturate all the directions of the transitive
sequence of rotations.

We further expand our transitive sequence of ki ’s by introducing k5n�3 D 	n; : : : ;

k6n�5 D 	2, k6n�4 D 
2.
We let M D 6n � 4.
For a choice (to be determined later) of sequences A0; : : : ; AM and q0; : : : ; qM ,

we let

g0 D k
A0 2;q0

0 ; k0 D 
1;

g1 D k
A1�2;q1

1 ; k1 D 	2;

g2 D k
A2 1;q2

2 ; k2 D 
2;

g3 D k
A3 1;q3

3 ; k3 D 
3;

: : :

gn D k
An 1;qn
n ; kn D 
n;

next, we let

gnC1 D k
AnC1�2;qnC1

nC1 ; knC1 D 	2;

gnC2 D k
AnC2 1;qnC2

nC2 ; knC1 D 
2;

: : :

g5n�5 D k
A5n�5�2;q5n�5

5n�5 ; k5n�5 D 	n;

g5n�4 D k
A5n�4 1;q5n�4

5n�4 ; k5n�4 D 
n;

and finally

g5n�3 D k
A5n�3�2;q5n�3

5n�3 ; k5n�3 D 	n;

: : :

g6n�5 D k
A6n�5�2;q6n�5

6n�5 ; k6n�5 D 	2;

g6n�4 D k
A6n�4 1;q6n�4

6n�4 ; k6n�4 D 
2:

We define for each l 6 M , Gl D g0 B � � � B gl .
Definition 4. We say that z is .mI a1; : : : ; asI /-transversal if for any i ¤ m we
have for � D 0 and � D 1,

Lebft1; : : : ; ts W j�.at11 : : : atss z/i � .at11 : : : atss z/mj < g < C
where C is a constant that does not depend on z or .
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Notice that if z is such that jz1j > � then for any  > 0 sufficiently small

Lebft W j.
 tj z/j � z1j < g < C;
a property that we denote by z is ..1; j /; 
j I /-transversal.

Proposition 5. Given any ˛0 D p0=q0 2 Œ0; 1/, any � > 0, � > 0 and " > 0,
there exist sequences A0; : : : ; AM , ˛1 D p1=q1; : : : ; ˛MC1 D pMC1=qMC1, and
"100 D "0 > "1 > � � � > "M such that if we denote fl D Gl'

˛lC1G�1
l

, f�1 D '˛0

we have the following.

(1) jf i
lC1 � f i

l
j
�
< "0=2

lC2 for all ji j 6 qlC1 andM � 1 > l > �1.
(2) For anyM > l > 2 and anyM > L > l , and any O such that O is "l -uniformly

distributed along ', kl ; : : : ; kL, z and if z is .1I kl ; : : : ; kLI "l/-transversal,
then gl�1O is "l�1-uniformly distributed along ', kl�1; : : : ; kL, z, and z is
.1I kl�1; kl ; : : : ; kLI "l�1/-transversal.

(3) (Case l D 2). For any M > L > 2, and for any O such that O is "2-uni-
formly distributed along ', k2; : : : ; kL, z and if z is .1I k2; : : : ; kLI "2/-trans-
versal, then g1O is "1-uniformly distributed along ', k1; : : : ; kL, z, and z is
.2I k1; k2; : : : ; kLI "1/-transversal (the difference form the previous property is
in the change of the transverse coordinate from 1 to 2).

(4) (Case l D 1). If O is "1-uniformly distributed along ', k1; : : : ; kL, z and z is
.2I k1; k2; : : : ; kLI "1/-transversal, then g0O is "0-uniformly distributed along
', k0; : : : ; kL, z.

(5) If jz1j > � then g6n�4.O.'˛6n�3 ; q6n�3; z// is "6n�4-uniformly distributed
along ', k6n�4 and z, and z is ..1; 2/I k6n�4I "6n�4/-transversal.

(6) If O is "6n�4-uniformly distributed along ', k6n�4 and z, and if moreover z is
..1; 2/; k6n�4I "6n�4/-transversal, then g6n�5O is "6n�5-uniformly distributed
along '; k6n�5; k6n�4, and z is .1; k6n�5; k6n�4I "6n�5/-transversal.

(7) If for some n > j > 2 we have that jz1 � zj j > �, then

g6n�j�3.O.'˛6n�j �2 ; q6n�j�2; z//

is "6n�j�3-uniformly distributed along k6n�j�3 and z, and, furthermore, z is
.1I k6n�j�3I "6n�j�3/-transversal.

Proof of Theorem 1. Before we prove Proposition 5 we show how it implies that
fM D GM'

˛MC1G�1
M satisfies the requirements of Proposition 3, from where The-

orem 1 would follow.
First of all, it follows from (1) of Proposition 5 and a choice of ˛0 such that

j˛0 � t0j < "0=2 that jfM � 't0 j� < "0.
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Given any x 2 X , we claim that there existsN 6 l 6 M such that O.fl ; qlC1; x/
is "0-uniformly distributed along fk0; : : : ; klg and some y 2 X . Due to (1) of
Proposition 5 this is sufficient to yield a similar property for fM (if we replace "0 by
"). But uniform distribution along fk0; : : : ; klg yields a fortiori uniform distribution
along fk0; : : : ; kN g and hence the requirements of Proposition 3 will be satisfied.

To prove our claim, we first need the following immediate lemma.

Lemma 3. Define � D 1=4nC1. Then, given any Nz 2 X , either j Nz1j > � or there
exists j 2 Œ2; n� such that z D g6n�j�2 : : : g6n�4 Nz satisfies jz1 � zj j > �.

Proof of Lemma 3. Define �j D 4j =4nC1 for j D 1; : : : ; n. If j Nz1j 6 �1 while
j Nz2j > �2 then since z D g6n�4 Nz satisfies z1 D Nz1 and jz2j D jNz2j we get that
jz1 � z2j > �2 � �1 > 2�1:We now apply a similar argument for j > 2.

We first show by induction on j that if j Nzi j 6 �i for i D 1; : : : ; j then z0 D
	
tj
j : : : 	

t2
2 


t1
2 Nz satisfies jz0

1j 6 2�j for any choice of t1; : : : ; tj . Indeed if we suppose

the latter true up to j and assume in addition that j NzjC1j 6 �jC1 then z WD 	
tj C1

jC1 z0

satisfies z1 D 1=2
�
.ei2�tj C1 C 1/z0

1 C .ei2�tj C1 � 1/ NzjC1
�

6 2�jC�jC1 6 2�jC1
(we used that z0

jC1 D NzjC1).
Now, if on the contrary we suppose that j Nzi j 6 �i for i D 1; : : : ; j while j NzjC1j >

�jC1 and use the same notations as above for z0 and z then since zjC1 � z1 D
z0
jC1 � z0

1 D NzjC1 � z0
1 we get that jzjC1 � z1j > �jC1 � 2�j D 2�j .

But since
Pn
iD1 j Nzi j2 D 1, we have that if j Nz1j 6 �, then there necessarily exists

a j 2 Œ1; n � 1� such that j Nzi j 6 �i for i D 1; : : : ; j while j NzjC1j > �jC1. This
finishes the proof of the lemma. �

Back to the requirements of Proposition 3, given x 2 X we let Nz D G�1
6n�4x.

Then we have two alternatives
� If j Nz1j > �, we prove that

O.f6n�4; q6n�3; x/

is "-uniformly distributed along fk0; : : : ; k6n�4g and Nz. This amounts to proving that
G6n�4.O.'˛6n�3 ; q6n�3; Nz// is "0-uniformly distributed along fk0; : : : ; k6n�4g and
Nz. To obtain the latter, we apply (5) of Proposition 5, then (6), and then (2) inductively
until we finish with (3) then (4).

� If j Nz1j 6 �, then for j as in Lemma 3 we let z D g6n�j�2 : : : g6n�4 Nz D
G�1
6n�j�3x, and we prove that

O.f6n�j�3; q6n�j�2; x/

is "0-uniformly distributed along fk0; : : : ; k6n�j�3g and z. Indeed, it is sufficient
to prove that G6n�j�3.O.'˛6n�j �2 ; q6n�j�2; z// is "0-uniformly distributed along
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fk0; : : : ; k6n�j�3g and z. Since jz1 � zj j > �, we can apply (6) of Proposition 5 and
then (2) inductively until we finish with (3) then (4).

The proof of Theorem 1 is hence completed. �

Proof of Proposition 5. Proposition 5 is proved by a finite induction of which the
main building block is provided by the following straightforward fact:

For any " > 0 and any a1; : : : ; as 2 fk0; : : : ; kM g there exists A > 0 and "0 > 0
such that: if g D aA�1;q with q > Q and .a; �/ D .	j ; �/ or .a; �/ D .
j ;  / and if
O is "0-uniformly distributed along ',a1; : : : ; as; z and if z is .1I a1; : : : ; asI "0/-
transversal then gO is "-uniformly distributed along ',a; a1; : : : ; as; z and z is
.1I a; a1; : : : ; asI "/-transversal.

The latter as we will see will be useful for the proof of (2) of Proposition 5. Similar
statements are valid and serve for proving (3)–(7) of the proposition.

We describe now how the finite induction is carried out to prove Proposition 5.
Assume that we are given Ai for i 6 6n � 5 and ˛i , "i for i 6 6n � 4. Then we
chooseA6n�4 sufficiently large and "0 such that if O is "0-uniformly distributed along
' and z and if jz1j > � then g6n�4O is "6n�4-uniformly distributed along '; k6n�4
and z is ..1; 2/; k6n�4I "6n�4/-transversal.

Now, we choose ˛6n�3 such that (1) of Proposition 5 holds with l D 6n � 5

and O.'6n�3; q6n�3; z/ is "0-uniformly distributed along ' and z. Hence (5) of
Proposition 5 holds.

Next, given Ai for i 6 6n� 6 and ˛i ; "i for i 6 6n� 5, we choose A6n�5 suffi-
ciently large and "6n�4 such that if O is "6n�4-uniformly distributed along '; k6n�4
and z and if z is ..1; 2/; k6n�4I "6n�4/-transversal then g6n�5O is "6n�5-uniformly
distributed along'; k6n�5; k6n�4 and z is .1; k6n�5; k6n�4I "6n�5/-transversal. Then
we choose ˛6n�4 to guarantee (1) of Proposition 5 with l D 6n� 6. We can also ask
from our choice of A6n�5 and "6n�4 and ˛6n�4 that (7) of Proposition 5 holds.

We can continue inductively: for l decreasing from l D 6n � 5 to l D 3, we
assume given Ai for i 6 l � 2 and ˛i ; "i for i 6 l � 1, we choose Al�1 and "l such
that (2) of Proposition 5 holds, then we choose ˛l such that (1) of Proposition 5 holds,
that is jf i

l�1 � f i
l�2j� < "0=2

l for all ji j 6 ql . For l > 5n � 2 we also ask that (7)
of Proposition 5 holds.

For l D 2, we choose A1 and "2, then ˛2 such that (3) of Proposition 5 holds and
jf i1 � f i0 j� < "0=4 for all ji j 6 q2. To finish, we choose A0 and "1, then ˛1 such
that (4) of Proposition 5 holds and jf i0 � f i�1j� < "0=2 for all ji j 6 q1. �
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