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A T -structure on Lagrangian Grassmannians
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1. Introduction and statement of the result

We denote by (R?", @) the standard symplectic vector space. The (unoriented) La-
grangian Grassmannian .Z is the space of all Lagrangian subspaces of R?". Itis a
homogeneous space

Z = U(n)/O(n),

see [AGO1], [MS98]. Every Lagrangian subspace can be identified with the fixed
point set of a linear orthogonal anti-symplectic involution. Using this identification,
we define a smooth map

0:LxYL L
by
(R,S) — RSR,
which we think of as a product. On every space there are products such as constant
maps and projections to one factor. In [Hop41] Hopf introduced the notion of I'-
manifolds which rules these trivial products out. The purpose of this paper is to

prove that the above product gives the Lagrangian Grassmannian .Z the structure of
a I"-manifold for » odd.

Definition 1.1. A closed, connected, orientable manifold M carries the structure of
a ['-manifold if there exists a map

O:MxM-—->M
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such that the maps
X 0O(x,y0) and y > O(xg,)

have non-zero mapping degree for one and thus all pairs (xg, yo) € M x M.

It is well known that .Z is orientable if and only if n odd, see [Fuk68]. The main
result of this article is the following theorem.

Theorem 1.2. Ifn is odd, then (£, ®) is a T -manifold.

Using Hopf’s theorem ([Hop41], Satz 1), we get a new proof of the following
corollary due to Fuks [Fuk68].

Corollary 1.3 ([Fuk68]). Forn odd, the rational cohomology ring of £ is an exterior
algebra on generators of odd degree.

Remark 1.4. The cohomology ring of the oriented and unoriented Lagrangian Grass-
mannian was computed by Borel and Fuks for all n, see [Bor53a], [Bor53b], [Fuk68].
A nice summary of these results can be found in Chapter 22 of the book by Vassilyev

[Vas88].

The above situation fits into the following general framework. Itis well known that
- embeds into U(n) as the set U(n) N Sym(n), i.e. the symmetric unitary matrices.
Indeed the image of a Lagrangian subspace A C C” is the symmetric unitary matrix
Ap := uu’ € U(n) N Sym(n) where a € U(n) maps R” onto A. The unique
orthogonal anti-symplectic involution with fixed point set A is then the map Ap ot
where 7: C"* — C" is complex conjugation. Thus, the Lagrangian Grassmannian .
can be interpreted as the fixed point set of the involutive anti-isomorphism A — AT
of U(n). On any Lie group G we can define a new product: (g,h) — gh™lg.
If I: G — G is an involutive anti-isomorphism then this new product restricts to a
product on the fixed point set Fix (7). This is precisely the situation for the Lagrangian
Grassmannian, namely the map ® corresponds under the embedding of .Z into U(n)
to (g, h) — gh™'g.

For general Lie groups this new product does not always give rise to a I'-structure
for various reasons. For example, if we take G = O(n) resp. G = U(n) and I(A) :=
A~!, thenFix(I) canbe identified with | J, G (k, n), the union of all real resp. complex
Grassmannians, which is not connected. Another example is G = SU(n) with [ =
transposition. Then for n = 2 we can identify Fix(/) = S2. But by Hopf’s theorem
([Hop41], Satz 1) S? is not a I"-manifold.
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2. Proof of Theorem 1.2

We recall that the (unoriented) Lagrangian Grassmannian .Z is the homogeneous
space

2 = U(n)/O(n),

see [AGO1], [MS98]. Since n is odd, .Z is a closed connected orientable manifold
[Fuk68]. The space .Z is naturally identified with the space of linear orthogonal
anti-symplectic involutions of R?” with the standard symplectic structure. Using this
identification, we define the map

0: ¥x¥ - &

by (R, S) — RSR. In order to prove Theorem 1.2, it suffices to show for one choice
of basepoint R that the mapping degrees of

S+ O(Rg,S) and S+ O(S, Ry)
are non-zero. Since
S @(R(), S) = ROSRO = @(R(), R()SR()) = R()R()SR()R() = S,

the first map is an involution and therefore has mapping degree 4-1. The non-trivial
case is to compute the mapping degree of

Bo(S) := 0O(S, Ro) = SRy S.
Theorem 1.2 follows immediately from the following proposition.
Proposition 2.1. The mapping degree of ©g equals
deg ©g = 2™ !
wheren = 2m + 1.

Proof. Identify R?” = C” in the standard way. Denote by 7: C" — C” the map
given by complex conjugation of all coordinates simultaneously. It is a standard fact,
see for instance [MS98], that an orthogonal symplectic map R?” — R2” corresponds
to a unitary map C" — C”. It follows that an orthogonal anti-symplectic map
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R: R*" — R2" can be written as the composition A o 7: C" — C" for A a unitary
linear map. The condition R? = Id then translates to A4 = Id. So, we identify

L ={AeUn)| AA =1d}.
Under this identification, the map ® is given by
©(A, B) = ABA.
Let By be the unitary matrix corresponding to Ry. Then the map ® is given by
Oo(A) = O(A, By) = AByA.

In the following, we take Bo = B, the diagonal matrix with entries b;; = et Sk
where
0<6; <2m, 01 <0p<--<0b.

For this choice of By, we show that Id is a regular value of ®¢ and compute the signed
cardinality of ©;! (Id).

Indeed, if ®¢(4) = Id, then ABA = 1d, and therefore AB = A. Throughout
this paper, we do not use the Einstein summation convention. Letting a;; denote the
matrix entries of A, we have

szkeiek = ajg.
Write ajr = rjke””/k, where rjp € Rand 0 < ¥ < 7. So,

eizw;k — ajk/djk — eiOk’

and therefore ¥ = 0i /2. Writing the unitary condition for A4 in terms of r;; and
Yk, we have

S =Y ajkan =y rigre’ VTV = "y,
k k e

Thus ;i is an orthogonal matrix. Furthermore, the condition AA = Id translates to
= i (0 —06;)/2
8]'1 = Zajkakl = erkrklel( k=61)/ .
k k

In particular, taking j = [, we obtain

L= "rjkrij cos((6x — 6;)/2).
3

Writing r]’.k = cos((0x — 0)/2)rjk, we can reformulate the preceding equation in

terms of the inner product of the row and column vectors r]’._ and r.;. Namely,

r]/-_-r.j =1. 2.1
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On the other hand, since r;j is unitary, |r.;| = 1 and
2= rfcos? (6 — 6,)/2) < Y rk =rp.> =1,
k k

with equality only if r;z = 0 when k # j. Applying Cauchy—Schwartz to equa-
tion (2.1), we have
L<|rillr;l=1Ir.l <1

Thus equality must hold, and the matrix r;; is diagonal. Moreover, orthogonality
implies that rjx = £68,%. Summing up, A € O, (Id) if and only if we have A = A€,
where

€ =(€1,...,€,), € €{0,1},
and A€ is the matrix with elements

€ _ Li(0r/2+exm)
ajk—e .

In particular, ©; (Id) has unsigned cardinality 2".

It remains to show that Id is a regular value and compute the signs. Let Sym(n)
denote the space of real n x n symmetric matrices. It is easy to see that the tangent
space to .Z at A = Id is given by

Tus ={T eum)|T+T =0} ={iQ | Q € Sym(n)}.

Recall that U(n) acts on .Z by A +— UAU™!. Thus, if A = UU™!, we have an
isomorphism
ky: Tw Y = T4Z

given by T +— UTU ™. Since .Z is a U(n) homogeneous space, the isomorphism
Ky preserves orientation. Moreover, for T € Tge.Z we have

dOg|ae(T) = TBA® + A°BT = T A€ + A°T.
If U¢ € U(n) satisfies B
A€ = UG(UG)_I,
then A€ is a regular point of ® if the linear map
af = dOglgc oky: Ty — TuZL
is invertible, and in that case the sign of A€ is sign det(«€). Explicitly,
«(T) = UT(U) A + AU TU)™!

— UGT(UE)—I + ﬁeT(ﬁe)—l

— UET(UE)—I _ UET(UG)—I

=2iIm(UT(U$™).
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Writing T = iQ, we can think of «€ as the map Sym(n) — Sym(n) given by
a(Q) = 2Re(U QU)™").

For convenience, we take U € to be the unitary linear map given by

u;k — ei(Bk/4+ekn/2)5jk.
Then, denoting by ¢, the matrix elements of O, we have

#€(0);x = 2Re (e" (@r=60)/4+(ej—ei)m/ 2))qjk
= 2.cos ((Oj —Ok) /4 + (¢j — €k)7T/2)q]'k-

Since Q is a symmetric matrix, it is determined by g for j < k. Thus

det() = [ [ 2cos ((6; — 6k) /4 + (¢ — e)7/2) -
Jj<k

We need to show that this determinant does not vanish and compute its sign. For
Jj = k, clearly cos ((Oj —60k)/4+ (¢ — ek)n/2) = 1. For j < k, by assumption,
0<6; <0 <2m,so

T 9j - 0](

2 4

It follows that forall j < k, wehave cos ((6; —6k)/4+ (€j —€x)m/2) # 0. Therefore
det(a€) # O for all € and Id is a regular value. Moreover,

< 0.

cos ((Oj —0k)/4+ (6j —€x)m/2) <0 ifandonlyif € =0, ¢ = 1.

Let Y}, be the set of all binary sequences € = (€1, ..., €,). Fore € Y}, define sign(¢)
to be the number modulo 2 of pairs j < k such that €; = 0 and €4 = 1. The upshot
of the preceding calculations is that

sign det(a€) = sign(e),

therefore

deg®p = Y (—1)7e",

€eYy,

A combinatorial argument given below in Lemma 2.2 then implies the theorem. [

Lemma 2.2. Forn = 2m + 1, we have

dn = Z (_l)sign(e) — 2m+1'

eeYy,
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Proof. Let M, denote the number of € € T, such that sign(¢) = 0. Then
dy = M, — (2" — M,)) =2M,, —2".

Fore € Y, denote by par(¢) the parity of €, or in other words the number modulo 2 of j
suchthate; = 1. Let P, denote the number of € € Y}, such that sign(e) +par(e) = 0.
By analyzing what happens when we adjoin either 1 or O to the beginning of a sequence
€ € Y,_1, we find that

My = My + Por. Pu= 2" = Pyot) + Mp—1.
Iterating these recursions twice, we obtain
My =My_+ Pyy +2"2— Pyg+ My_y =2My,_» + 2" 2.
Clearly M; = 2, so d; = 2. Using the preceding recursion for M,,, we obtain
dy =2Q2M,_5 +2"72) = 2" =2(2M,_» —2"7%) = 2d, .

The lemma follows by induction. O

References

[AGO1] V.I.Arnol’d and A. B. Givental, Symplectic geometry. In Dynamical systems, IV, En-
cyclopaedia Math. Sci. 4, second ed., Springer, Berlin 2001, 1-138. Zbl 0780.58016
MR 1866631

[Bor53a] A. Borel, La cohomologie mod 2 de certains espaces homogenes. Comment. Math.
Helv. 27 (1953), 165-197. Zbl 0052.40301 MR 0057541

[Bor53b] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogenes
de groupes de Lie compacts. Ann. of Math. (2) 57 (1953), 115-207. Zbl 0052.40001
MR 0051508

[Fuk68] D. B. Fuks, The Maslov—Arnol ’d characteristic classes. Dokl. Akad. Nauk SSSR 178
(1968), 303-306; English transl. Soviet Math. Dokl. 9 (1968), 96-99. Zbl 0175.20304
MR 0225340

[Hop41] H. Hopf, Uber die Topologie der Gruppen-Mannigfaltigkeiten und ihre Verallge-
meinerungen. Ann. of Math. (2) 42 (1941), 22-52. Zbl 67.0747.01 MR 0004784

[MS98] D. McDuff and D. A. Salamon, Introduction to symplectic topology. Second ed.,
Oxford Math. Monogr., The Clarendon Press, Oxford University Press, New York
1998. Zbl 0844.58029 MR 1698616

[Vas88] V. A. Vassilyev, Lagrange and Legendre characteristic classes. Adv. Stud. Contemp.
Math. 3, Gordon and Breach Science Publishers, New York 1988. Zbl 0715.53001
MR 1065996


http://www.emis.de/MATH-item?0780.58016
http://www.ams.org/mathscinet-getitem?mr=1866631
http://www.emis.de/MATH-item?0052.40301
http://www.ams.org/mathscinet-getitem?mr=0057541
http://www.emis.de/MATH-item?0052.40001
http://www.ams.org/mathscinet-getitem?mr=0051508
http://www.emis.de/MATH-item?0175.20304
http://www.ams.org/mathscinet-getitem?mr=0225340
http://www.emis.de/MATH-item?67.0747.01
http://www.ams.org/mathscinet-getitem?mr=0004784
http://www.emis.de/MATH-item?0844.58029
http://www.ams.org/mathscinet-getitem?mr=1698616
http://www.emis.de/MATH-item?0715.53001
http://www.ams.org/mathscinet-getitem?mr=1065996

936 P. Albers, U. Frauenfelder and J. P. Solomon CMH
Received December 13, 2012

Peter Albers, Mathematisches Institut, Westfalische Wilhelms-Universitidt Miinster,
Germany

E-mail: peter.albers@wwu.de

Urs Frauenfelder, Department of Mathematics and Research Institute of Mathematics, Seoul
National University, Korea

E-mail: frauenf@snu.ac.kr

Jake P. Solomon, Institute of Mathematics, Hebrew University of Jerusalem, Israel
E-mail: jake @math.huji.ac.il



	Introduction and statement of the result
	Proof of Theorem 1.2
	References

