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1. Introduction and statement of the result

We denote by .R2n; !/ the standard symplectic vector space. The (unoriented) La-
grangian Grassmannian L is the space of all Lagrangian subspaces of R2n. It is a
homogeneous space

L Š U.n/=O.n/;

see [AG01], [MS98]. Every Lagrangian subspace can be identified with the fixed
point set of a linear orthogonal anti-symplectic involution. Using this identification,
we define a smooth map

‚ W L � L ! L

by

.R; S/ 7! RSR;

which we think of as a product. On every space there are products such as constant
maps and projections to one factor. In [Hop41] Hopf introduced the notion of �-
manifolds which rules these trivial products out. The purpose of this paper is to
prove that the above product gives the Lagrangian Grassmannian L the structure of
a �-manifold for n odd.

Definition 1.1. A closed, connected, orientable manifold M carries the structure of
a �-manifold if there exists a map

‚ W M �M ! M
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such that the maps

x 7! ‚.x; y0/ and y 7! ‚.x0; y/

have non-zero mapping degree for one and thus all pairs .x0; y0/ 2 M �M .

It is well known that L is orientable if and only if n odd, see [Fuk68]. The main
result of this article is the following theorem.

Theorem 1.2. If n is odd, then .L ; ‚/ is a �-manifold.

Using Hopf’s theorem ([Hop41], Satz 1), we get a new proof of the following
corollary due to Fuks [Fuk68].

Corollary 1.3 ([Fuk68]). For n odd, the rational cohomology ring of L is an exterior
algebra on generators of odd degree.

Remark 1.4. The cohomology ring of the oriented and unoriented Lagrangian Grass-
mannian was computed by Borel and Fuks for all n, see [Bor53a], [Bor53b], [Fuk68].
A nice summary of these results can be found in Chapter 22 of the book by Vassilyev
[Vas88].

The above situation fits into the following general framework. It is well known that
L embeds into U.n/ as the set U.n/\ Sym.n/, i.e. the symmetric unitary matrices.
Indeed the image of a Lagrangian subspaceƒ � Cn is the symmetric unitary matrix
Aƒ WD uut 2 U.n/ \ Sym.n/ where a 2 U.n/ maps Rn onto ƒ. The unique
orthogonal anti-symplectic involution with fixed point set ƒ is then the map Aƒ B �
where � W Cn ! Cn is complex conjugation. Thus, the Lagrangian Grassmannian L
can be interpreted as the fixed point set of the involutive anti-isomorphism A 7! AT

of U.n/. On any Lie group G we can define a new product: .g; h/ 7! gh�1g.
If I W G ! G is an involutive anti-isomorphism then this new product restricts to a
product on the fixed point set Fix.I /. This is precisely the situation for the Lagrangian
Grassmannian, namely the map‚ corresponds under the embedding of L into U.n/
to .g; h/ 7! gh�1g.

For general Lie groups this new product does not always give rise to a �-structure
for various reasons. For example, if we takeG D O.n/ resp.G D U.n/ and I.A/ WD
A�1, then Fix.I / can be identified with

S
k G.k; n/, the union of all real resp. complex

Grassmannians, which is not connected. Another example is G D SU.n/ with I D
transposition. Then for n D 2 we can identify Fix.I / Š S2. But by Hopf’s theorem
([Hop41], Satz 1) S2 is not a �-manifold.
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2. Proof of Theorem 1.2

We recall that the (unoriented) Lagrangian Grassmannian L is the homogeneous
space

L Š U.n/=O.n/;

see [AG01], [MS98]. Since n is odd, L is a closed connected orientable manifold
[Fuk68]. The space L is naturally identified with the space of linear orthogonal
anti-symplectic involutions of R2n with the standard symplectic structure. Using this
identification, we define the map

‚ W L � L ! L

by .R; S/ 7! RSR. In order to prove Theorem 1.2, it suffices to show for one choice
of basepoint R0 that the mapping degrees of

S 7! ‚.R0; S/ and S 7! ‚.S;R0/

are non-zero. Since

S 7! ‚.R0; S/ D R0SR0 7! ‚.R0; R0SR0/ D R0R0SR0R0 D S;

the first map is an involution and therefore has mapping degree ˙1. The non-trivial
case is to compute the mapping degree of

‚0.S/ WD ‚.S;R0/ D SR0S:

Theorem 1.2 follows immediately from the following proposition.

Proposition 2.1. The mapping degree of ‚0 equals

deg‚0 D 2mC1

where n D 2mC 1.

Proof. Identify R2n D Cn in the standard way. Denote by � W Cn ! Cn the map
given by complex conjugation of all coordinates simultaneously. It is a standard fact,
see for instance [MS98], that an orthogonal symplectic map R2n ! R2n corresponds
to a unitary map Cn ! Cn. It follows that an orthogonal anti-symplectic map
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R W R2n ! R2n can be written as the composition A B � W Cn ! Cn for A a unitary
linear map. The condition R2 D Id then translates to A xA D Id. So, we identify

L D fA 2 U.n/ j A xA D Idg:
Under this identification, the map ‚ is given by

‚.A;B/ D A xBA:
Let B0 be the unitary matrix corresponding to R0. Then the map ‚0 is given by

‚0.A/ D ‚.A;B0/ D A xB0A:
In the following, we take B0 D B , the diagonal matrix with entries bjk D ei�j ıjk
where

0 < �j < 2�; �1 < �2 < � � � < �n:
For this choice ofB0, we show that Id is a regular value of‚0 and compute the signed
cardinality of ‚�1

0 .Id/.
Indeed, if ‚0.A/ D Id, then A xBA D Id, and therefore xAB D A. Throughout

this paper, we do not use the Einstein summation convention. Letting ajk denote the
matrix entries of A, we have

Najkei�k D ajk :

Write ajk D rjke
i jk , where rjk 2 R and 0 �  jk < � . So,

ei2 jk D ajk= Najk D ei�k ;

and therefore  jk D �k=2. Writing the unitary condition for A in terms of rjk and
 jk , we have

ıjl D
X
k

ajk Nalk D
X
k

rjkrlke
i. jk� lk/ D

X
k

rjkrlk :

Thus rjk is an orthogonal matrix. Furthermore, the condition A xA D Id translates to

ıjl D
X
k

ajk Nakl D
X
k

rjkrkle
i.�k��l /=2:

In particular, taking j D l , we obtain

1 D
X
k

rjkrkj cos..�k � �j /=2/:

Writing r 0
jk

D cos..�k � �j /=2/rjk , we can reformulate the preceding equation in
terms of the inner product of the row and column vectors r 0

j � and r�j . Namely,

r 0
j � � r�j D 1: (2.1)
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On the other hand, since rjk is unitary, jr�j j D 1 and

jr 0
j �j2 D

X
k

r2jk cos2..�k � �j /=2/ �
X
k

r2jk D jrj �j2 D 1;

with equality only if rjk D 0 when k ¤ j . Applying Cauchy–Schwartz to equa-
tion (2.1), we have

1 � jr 0
j �jjr�j j D jr 0

j �j � 1:

Thus equality must hold, and the matrix rjk is diagonal. Moreover, orthogonality
implies that rjk D ˙ıjk . Summing up,A 2 ‚�1

0 .Id/ if and only if we haveA D A� ,
where

� D .�1; : : : ; �n/; �k 2 f0; 1g;
and A� is the matrix with elements

a�jk D ei.�k=2C�k�/:

In particular, ‚�1
0 .Id/ has unsigned cardinality 2n.

It remains to show that Id is a regular value and compute the signs. Let Sym.n/
denote the space of real n � n symmetric matrices. It is easy to see that the tangent
space to L at A D Id is given by

TId L D fT 2 u.n/ j T C xT D 0g D fiQ j Q 2 Sym.n/g:
Recall that U.n/ acts on L by A 7! UA xU�1. Thus, if A D U xU�1, we have an
isomorphism

�U W TId L ��!� TAL

given by T 7! UT xU�1. Since L is a U.n/ homogeneous space, the isomorphism
�U preserves orientation. Moreover, for T 2 TA�L we have

d‚0jA� .T / D T xBA� C A� xBT D T xA� C xA�T:
If U � 2 U.n/ satisfies

A� D U �. xU �/�1;
then A� is a regular point of ‚0 if the linear map

˛� D d‚0jA� B �U W TId L ! TId L

is invertible, and in that case the sign of A� is sign det.˛�/. Explicitly,

˛�.T / D U �T . xU �/�1 xA� C xA�U �T . xU �/�1
D U �T .U �/�1 C xU �T . xU �/�1
D U �T .U �/�1 � xU � xT . xU �/�1
D 2i Im.U �T .U �/�1/:
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Writing T D iQ, we can think of ˛� as the map Sym.n/ ! Sym.n/ given by

˛�.Q/ D 2Re.U �Q.U �/�1/:

For convenience, we take U � to be the unitary linear map given by

u�jk D ei.�k=4C�k�=2/ıjk :

Then, denoting by qjk the matrix elements of Q, we have

˛�.Q/jk D 2Re
�
ei

�
.�j ��k/=4C.�j ��k/�=2

��
qjk

D 2 cos
�
.�j � �k/=4C .�j � �k/�=2

�
qjk :

Since Q is a symmetric matrix, it is determined by qjk for j � k. Thus

det.˛�/ D
Y
j�k

2 cos
�
.�j � �k/=4C .�j � �k/�=2

�
qjk :

We need to show that this determinant does not vanish and compute its sign. For
j D k, clearly cos

�
.�j � �k/=4C .�j � �k/�=2

� D 1. For j < k, by assumption,
0 < �j < �k < 2� , so

��
2
<
�j � �k
4

< 0:

It follows that for all j � k, we have cos
�
.�j��k/=4C.�j��k/�=2

� ¤ 0. Therefore
det.˛�/ ¤ 0 for all � and Id is a regular value. Moreover,

cos
�
.�j � �k/=4C .�j � �k/�=2

�
< 0 if and only if �j D 0; �k D 1:

Let‡n be the set of all binary sequences � D .�1; : : : ; �n/. For � 2 ‡n define sign.�/
to be the number modulo 2 of pairs j < k such that �j D 0 and �k D 1. The upshot
of the preceding calculations is that

sign det.˛�/ D sign.�/;

therefore
deg‚0 D

X
�2‡n

.�1/sign.�/:

A combinatorial argument given below in Lemma 2.2 then implies the theorem. �

Lemma 2.2. For n D 2mC 1, we have

dn WD
X
�2‡n

.�1/sign.�/ D 2mC1:
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Proof. Let Mn denote the number of � 2 ‡n such that sign.�/ D 0. Then

dn D Mn � .2n �Mn/ D 2Mn � 2n:
For � 2 ‡n denote by par.�/ the parity of �, or in other words the number modulo2ofj
such that �j D 1. LetPn denote the number of � 2 ‡n such that sign.�/Cpar.�/ D 0.
By analyzing what happens when we adjoin either 1 or 0 to the beginning of a sequence
� 2 ‡n�1, we find that

Mn D Mn�1 C Pn�1; Pn D .2n�1 � Pn�1/CMn�1:

Iterating these recursions twice, we obtain

Mn D Mn�2 C Pn�2 C 2n�2 � Pn�2 CMn�2 D 2Mn�2 C 2n�2:

Clearly M1 D 2, so d1 D 2. Using the preceding recursion for Mn, we obtain

dn D 2.2Mn�2 C 2n�2/ � 2n D 2.2Mn�2 � 2n�2/ D 2dn�2:

The lemma follows by induction. �
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