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Flexible bundles over rigid affine surfaces
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Abstract. We construct a smooth rational affine surface S with finite automorphism group
but with the property that the group of automorphisms of the cylinder S � A2 acts infinitely
transitively on the complement of a closed subset of codimension at least two. Such a surface
S is in particular rigid but not stably rigid with respect to the Makar-Limanov invariant.
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1. Introduction

A complex affine variety X is called rigid if it does not admit non trivial algebraic
actions of the additive group Ga D Ga;C. This is the case for “most” affine varieties,
for instance for every affine curve different from the affine line A1 and for every
affine variety whose normalization has non negative logarithmic Kodaira dimension.
The notion was actually introduced by Crachiola and Makar-Limanov in [4] under
the more algebraic equivalent formulation that the Makar-Limanov invariant ML.X/
of X , which is defined as the algebra consisting of regular functions on X invariant
under all algebraic Ga-actions, is equal to the coordinate ring �.X;OX / of X .

Among many important questions concerning this invariant, the understanding
of its behavior under the operation consisting of taking cylinders X � An, n � 1,
over a given affine variety X has focused a lot of attention during the last decade,
in connexion with the Zariski Cancellation Problem. Of course, rigidity is lost
even when passing to the cylinder X � A1 since these admit non trivial Ga-
actions by translations on the second factor. But one could expect that such
actions are essentially the unique possible ones in the sense that the projection
prX W X � A1 ! X is invariant for every Ga-action on X � A1, a property
which translates algebraically to the fact that ML.X � A1/ D �.X;OX /. This
property was indeed established by Makar-Limanov [14] and this led to wonder
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more generally whether a rigid variety is stably rigid in the sense that the equality
ML.X�An/ D �.X;OX / holds for arbitrary n � 1. Stable rigidity of smooth affine
curves is easily confirmed as a consequence of the fact that a smooth rigid curve does
not admit any dominant morphism from the affine line, and more generally every
rigid affine curve is in fact stably rigid [4]. Stable rigidity is also known to hold for
smooth factorial rigid surfaces by virtue of a result of Crachiola [5], and without
any indication of a potential counter-example, it seems that the implicit working
conjecture so far has been that every rigid affine variety should be stably rigid.

In this article, we construct a smooth rigid surface S which fails stable rigidity
very badly, the cylinder S � A2 being essentially as remote as possible from a rigid
variety in terms of richness of Ga-actions on it. Here “richness” has to be interpreted
in the sense of a slight weakening of the notion of flexibility introduced recently in
[1, 2] that we call flexibility in codimension one: a normal affine variety X is said to
be flexible in codimension one if for every closed point x outside a possibly empty
closed subset of codimension at least two in X , the tangent space TxX of X at x
is spanned by tangent vectors to orbits of Ga-actions on X . Clearly, the Makar-
Limanov invariant of a variety with this property is trivial, consisting of constant
functions only. Now our main result can be stated as follows:

Theorem 1.1. Let V � P3 be smooth cubic surface and let D D V \ H be a
hyperplane section of V consisting of the union of a smooth conic and its tangent
line. Then S D V n D is a smooth rigid affine surface whose cylinder S � A2 is
flexible in codimension one.

A noteworthy by-product is that while the automorphism group Aut.S/ of S is finite,
actually isomorphic to Z=2Z if the cubic surface V is chosen general, Theorem 0.1
in [1] implies that Aut.S � A2/ acts infinitely transitively on the complement of a
closed subset of codimension at least two in S � A2.

Our construction is inspired by earlier work of Bandman and Makar-Limanov
[3] which actually already contained the basic ingredients to construct a counter-
example to stable rigidity, in the form of a lifting lemma for Ga-actions which
asserts that if q W Z ! Y is a line bundle over a normal affine variety Y then
ML.Z/ � ML.Y /, and an example of a non trivial line bundle p W L ! QS over
a smooth rational rigid affine surface QS for which ML.L/ $ ML. QS/. Indeed, with
these informations, the property that ML. QS �A2/ is a proper sub-algebra of ML. QS/
could have been already deduced as follows: letting p0 W L0 ! QS be a line bundle
representing the class of the inverse of L in the Picard group of QS , the lifting lemma
applied to the rank 2 vector bundleE D L˚L0 D L� QSL

0 ! QS considered as a line
bundle over L via the first projection implies that ML.E/ � ML.L/ $ ML. QS/. But
combined with a result of Pavaman Murthy [15] which asserts in particular that every
vector bundle on such a surface QS is isomorphic to the direct sum of its determinant
and a trivial bundle, the construction of E guarantees that it is isomorphic to the
trivial bundle QS � A2 and hence that ML. QS � A2/ $ ML. QS/.
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Noting that the aforementioned result of Pavaman Murthy also applies to surfaces
S as in Theorem 1.1 enables a similar construction as in the previous paragraph,
provided that such an S admits a line bundle p W L! S whose total space is flexible
in codimension one, and that flexibility in codimension one lifts to total spaces of
line bundles. The lifting property follows easily from the fact that every line bundle
admits Ga-linearizations, but the existence of a line bundle p W L ! S with the
desired property is trickier to establish. To construct such a bundle, we exploit the
fact that S admits an A1-fibration � W S ! P1, i.e. a faithfully flat morphism with
generic fiber isomorphic to affine line. The strategy then consists in constructing a
suitable A1-fibered affine surface �F W SF ! P1 flexible in codimension one and to
which a variant of the famous Danielewski fiber product trick [6] can be applied to
derive the existence of an affine threefold flexible in codimension one and carrying
simultaneously the structure of a line bundle over S and SF .

The article is organized as follows. In the first section we review basic results
about rigid and flexible affine varieties, with a particular focus on the case of affine
surfaces, and we establish that flexibility in codimension one does indeed lift to total
spaces of line bundles (see Lemma 2.3). Section two is devoted to the study of the
class of affine surfaces S considered in Theorem 1.1 and the construction of their
aforementioned flexible mates SF . The appropriate variant of the Danielewski fiber
product trick needed to achieve the proof of Theorem 1.1 is discussed in the last
section.

2. Preliminaries on (stable) rigidity and flexibility

2.1. Rigid and flexible affine varieties.
Given a normal complex affine variety X D Spec.A/, we denote by DerC.OX / '
HomX .�1X=C;OX / the sheaf of germs of C-derivations from OX to itself. It is a
coherent sheaf of OX -modules whose global sections coincide with elements of the
A-module DerC.A/ of C-derivations of A. We denote by MLNDC.A/ the sub-A-
module of DerC.A/ generated by locally nilpotent C-derivations, i.e. C-derivations
@ W A ! A for which every element of A is annihilated by a suitable power of
@. Recall that such derivations coincide precisely with velocity vector fields of Ga-
actions on X (see e.g. [12]).

Definition 2.1. A normal affine variety X D Spec.A/ is called:

a) Rigid if MLNDC.A/ D f0g, equivalently X does not admit non trivial Ga-
actions,

b) Flexible in codimension 1, or 1-flexible for short, if the support of the co-kernel of
the natural homomorphism MLNDC.A/˝AOX ! DerX .OX / has codimension
at least 2 in X .
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2.1.1. The above definition of 1-flexibility says equivalently that there exists a closed
subset Z � X of codimension at least 2 such that the restriction of DerC.OX / over
X nZ is generated by elements of MLNDC.A/. A closed point x 2 X at which the
natural homomorphism MLNDC.A/˝AOX;x ! DerX .OX /x is surjective is called
a flexible point of X , this property being equivalent by virtue of Nakayama Lemma
to the fact that the Zariski tangent space TxX of X at x is spanned by the tangent
vectors to orbits of Ga-actions on X . The set Xflex of flexible points is contained in
the regular locus Xreg of X and is invariant under the action of the automorphism
group Aut.X/ of X . In particular, if there exists a flexible point x 2 X such that the
complement of the Aut.X/-orbit of x is contained in a closed subset of codimension
at least two, then X is flexible in codimension 1.

2.1.2. We warn the reader that our definition of flexibility for a normal affine variety
X is weaker than the one introduced earlier in [1, 2] which asks in addition that
Xflex D Xreg. Since for a 1-flexible variety the set X nXflex has codimension at least
two in X , this makes essentially no difference for global properties of X depending
on regular functions, for instance the Makar-Limanov invariant of a 1-flexible affine
variety is trivial. Furthermore, all the properties of the regular locus of a flexible
variety in the sense of loc. cit. hold for the open subset Xflex of a 1-flexible variety
X , for instance the sub-group of Aut.X/ generated by its one-parameter unipotent
sub-groups acts infinitely transitively on Xflex.

Clearly, the only 1-flexible affine curve is the affine line A1. While the classification
of flexible affine surfaces in the stronger sense of [1, 2] is not known and most
probably quite intricate, 1-flexible surfaces coincide with the so-called Gizatullin
surfaces [13] with no non constant invertible functions. More precisely, we have the
following characterization (see also [1, Example 2.3]).

Theorem 2.2. For a normal affine surface S , the following are equivalent:

a) S is 1-flexible,

b) S admits two A1-fibrations over A1 with distinct general fibers,

c) �.S;O�S / D C� and S admits a normal projective completion S ,! V whose
boundary is a chain of proper smooth rational curves supported on the regular
locus of V .

Proof. It is well known that every A1-fibration q W S ! C over a smooth
affine curve C arises as the algebraic quotient morphism q W S ! S==Ga D
Spec.�.S;OS /Ga/ of a non trivial Ga-action on S . In particular, the general fibers of
such fibrations coincide with the general orbits of a Ga-action on S . Since a flexible
surface admits at least two Ga-actions with distinct general orbits, this provides two
A1-fibrations on S with distinct general fibers and whose respective base curves are
isomorphic to A1 due to the fact that they are dominated by a general fiber of the
other fibration. Conversely, let qi W S ! A1, i D 1; 2, be A1-fibrations on S
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associated with a pair of Ga-actions �1 and �2 on S with distinct general orbits.
Since the morphism q1 � q2 W S ! A2 is quasi-finite [8, Lemma 2.21], it follows on
the one hand that general orbits of �1 and �2 intersect each other transversally and
on the other hand that the intersection S0 of the fixed point loci of �1 and �2 is finite.
This implies in turn that every point in S n S0 can be mapped by an element of the
sub-group of Aut.S/ generated by �1 and �2 to a point p 2 S at which a general
orbit of �1 intersects a general orbit of �2 transversally. Such a point p is certainly
flexible. Therefore every point outside the finite closed subset S0 is a flexible point
of S which proves the equivalence between a) and b). For the equivalence b), c)
we refer the reader to [8] (in which the statement of Theorem 2.4 should actually be
corrected to read: A normal affine surface with no non constant invertible functions
is completable by a zigzag if and only if it admits two A1-fibrations whose general
fibers do not coincide).

2.2. Stable rigidity/stable flexibility.

Rigidity property for line bundles.

2.2.1. The total space of a line bundle p W L ! X over an affine variety
X D Spec.A/ always admits Ga-actions by generic translations along the fibers
of p, associated with locally nilpotent A-derivations of �.L;OL/. More precisely,
these derivations corresponds to Ga;X -actions on L, i.e. Ga-actions on L by
X -automorphisms, and are in one-to-one correspondence with global sections
s 2 H 0.X;L/ of L. Indeed, letting p W L D Spec.Sym.M_// ! X , where
M ' H 0.X;L/ is a locally free A-module of rank 1, one has �1Sym.M_/=A '

Sym.M_/˝AM_ and the isomorphism

DerA.Sym.M_// ' HomSym.M_/.�
1
Sym.M_/=A;Sym.M_// ' Sym.M_/˝AM

identifies A-derivations of �.L;OL/ ' Sym.M_/ with global sections of the pull-
back p�L ofL to its total space. Since a Ga;X -action onL corresponding to a locally
nilpotent A-derivation @ of Sym.M_/ restricts on every fiber of p W L! X to a Ga-
action which is either trivial or a translation, it follows that the corresponding section
of p�L is constant along the fibers of p W L ! X whence is the pull-back by p of
a certain section s@ 2 H 0.X;L/. Consersely, every global section s 2 H 0.X;L/

gives rise to a Ga;X -action on L defined by �s.t; `/ D ` C ts.p.`// where the
fiberwise addition and multiplication are given by the vector space structure. More
formally, viewing p W L ! X as a locally constant group scheme for the law
� W L �X L! L induced by the addition of germs of sections, global sections
s 2 H 0.X;L/ give rise to homomorphisms s W Ga;X ! L of group schemes over
X whence to Ga;X -actions �s D � ı .s � idL/ W Ga;X �X L! L on L.
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2.2.2. Even though they are no longer rigid, it is natural to wonder whether total
spaces of line bundles p W L! X over rigid varietiesX stay “as rigid as possible” in
the sense that they do not admit any Ga-actions besides the Ga;X -actions described
above. For the trivial line bundle prX W X � A1 ! X , the question was settled
affirmatively by Makar-Limanov [14] (see also [12, Proposition 9.23]). Let us briefly
recall the argument for the convenience of the reader: viewing �.X�A1;OX�A1/ D

AŒx� D
L
i�0A�x

i as a gradedA-algebra, every nonzero locally nilpotent derivation
@ of AŒx� associated with a non trivial Ga-action onX �A1 decomposes into a finite
sum @ D

P
i2Z @i of nonzero homogeneous derivations @i W AŒx�! AŒx� of degree

i 2 Z, the top homogeneous component @m being itself locally nilpotent. Note that
m � �1 for a nonzero derivation and that derivations of the form a@x for a certain
a 2 A n f0g correspond to the case m D �1. On the other hand, if m � 0 then
@m D xm Q@0 for a certain derivation of degree 0 and since @m.x/ 2 xmC1A � xA,
x must belong to the kernel of @m. This implies that Q@0 is a locally nilpotent
derivation of degree 0 whose restriction to A D A � x0 � AŒx� is trivial as X is
rigid. But since x 2 Ker.Q@0/ D Ker.@m/, Q@0 whence @ would be the zero derivation,
a contradiction.

2.2.3. In contrast, as mentioned in the introduction, it was discovered by Bandman
and Makar-Limanov [3] that the above property can fail for non trivial line bundles.
The fact that the rigid surfaces considered in Theorem 1.1 admit line bundles
p W L! S with 1-flexible total spaces (see §4.0.4 below) shows that such total
spaces can be in general very far from being rigid.

Lifting flexibility in codimension one to split vector bundles.

2.2.4. The total space of the trivial line bundle prX W X � A1 ! X over a
1-flexible (resp. flexible in the sense of [2]) affine variety X D Spec.A/ is
again 1-flexible (resp. flexible). Indeed, every locally nilpotent derivation @ of A
canonically extends to a locally nilpotent derivation Q@ of AŒx� containing x in its
kernel in such way that the projection prX W X � A1 ! X is equivariant for the
corresponding Ga-actions on X and X � A1 respectively. It follows that for every
point p 2 X � A1 dominating a flexible point x of X , say for which DerC.OX /x
is generated by the images of locally nilpotent derivations @1; : : : ; @r of A, the
OX�A1;p-module DerC.OX�A1/p is generated by the images of Q@1; : : : ; Q@r together
with the image of the locally nilpotent A-derivation @x of AŒx�. This implies that
pr�1X .Xflex/ � .X � A1/flex and hence that the set of non flexible points in X � A1
has codimension at least two. Furthermore, .X �A1/flex coincides with .X �A1/reg

in the case where Xflex D Xreg.

2.2.5. Even though different results related with lifts of Ga-actions on an affine
variety X to Ga-actions on total spaces of line bundles p W L ! X over it exist
in the literature (in particular, [3, Lemma 9] and [1, Corollary 4.5]), it seems that the
question whether 1-flexibility or flexibility of X lifts to total spaces of arbitrary line
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bundles over it has not been clearly settled yet. This is fixed by the following cost
free generalization:
Lemma 2.3. Let X be a normal affine variety and let p W E ! X be a vector bundle
which splits as a direct sum of line bundles. If X is 1-flexible (resp. flexible) then so
is the total space of E.

Proof. SinceE is isomorphic to the fiber productL1�XL2 � � ��XLr of line bundles
pi W Li ! X , we are reduced by induction to the case of a line bundle p W L ! Y

over a 1-flexible (resp. flexible) affine variety. Recall that for a connected algebraic
group G acting on a normal variety Y , there exists an exact sequence of groups

0! H 1
alg.G; �.Y;O�Y //! PicG.Y /

˛
! Pic.Y /! Pic.G/

where PicG.Y / denotes the group of G-linearized line bundles on Y and where
H 1

alg.G; �.Y;O�Y // parametrizes isomorphy classes of G-linearizations of the trivial
line bundle over Y (see e.g. [7, Chap. 7]). In the case where G D Ga, this
immediately implies that every line bundle p W L ! Y admits a Ga-linearization
(note furthermore that such a linearization is unique up to isomorphism provided
that �.Y;O�Y / D C�).

It follows in particular that every Ga-action on Y can be lifted to a Ga-action
on L preserving the zero section Y0 � L and for which the structure morphism
p W L ! Y is Ga-invariant. So the 1-flexibility (resp. the flexibility) of L
follows from that of Y thanks to [1, Corollary 4.5]. But let us provide a self-
contained argument: the above property translates algebraically to the fact that every
locally nilpotent derivation @ of �.Y;OY / extends to a locally nilpotent derivation
Q@ of �.L;OL/ mapping the ideal IY0

of Y0 into itself and such that the induced
derivation on �.Y0;OY0

/ D �.L;OL/=IY0
coincides with @ via the isomorphism

�.Y;OY /
�
! �.Y0;OY0

/ induced by the restriction of p. Since Y is affine, given
any point ` 2 L, we can find a global section s 2 H 0.Y; L/ which does not vanish
at y D p.`/. Now if y is a flexible point of Y , say for which DerC.OY /y is
generated by the images of locally nilpotent derivations @1; : : : ; @r of �.Y;OY / then
`0 D p�1.y/ \ Y0 is a flexible point of L at which DerC.OL/`0

is generated by
the lifts Q@1; : : : ; Q@r of @1; : : : ; @r together with the locally nilpotent derivation @s of
�.L;OL/ corresponding to the Ga;Y -action �s W Ga;Y �Y L! L associated with s
(see §2.2.1 above). Furthermore, since s does vanish at y, the Ga-action induced by
�s on p�1.y/ is transitive, and so p�1.y/ consists of flexible points of L. This shows
that p�1.Yflex/ � Lflex and completes the proof.

3. Construction of rigid and 1-flexible A1-fibered surfaces over over P1

In this section, we first consider affine surfaces SR which arise as complements of
well-chosen hyperplane sections of a smooth cubic surface in P3. We check that
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they are rigid by computing their automorphism groups and we exhibit certain A1-
fibrations �R W SR ! P1 on them. We then construct auxiliary 1-flexible A1-fibered
surfaces �F W SF ! P1 which will be used later on in section 4 for the proof of
Theorem 1.1.

3.1. A family of rigid affine cubic surfaces . Most of the material of this sub-
section is borrowed from [10] to which we refer the reader for the details.

3.1.1. Given a smooth cubic surface V � P3 and a line L on it, the restriction to V
of the linear pencil HL D jOP3.1/˝ ILj on P3 generated by planes containing L
can be decomposed as HL jVD LC L where L is a base point free pencil defining
a conic bundle ˆL W V ! P1 with five degenerate fibers each consisting of the
union of two lines. The restriction ˆL jLW L ! P1 is a double cover and for
every branch point x 2 P1 of ˆL jL, the intersection of V with the corresponding
hyperplane Hx 2 H consists either of a smooth conic tangent to L or two distinct
lines intersectingL in a same point, which is then an Eckardt point of V . The second
case does not occur if V is chosen general. We fix from now on a cubic surface V , a
line L on it and a hyperplane section D D H \ V for which D D LC C where C
is a smooth conic tangent to L at a point p 2 L.

3.1.2. Given a pair .V;D/ where D D LC C as above, the surface SR D V nD

is affine as D is a hyperplane section of V . It comes equipped with an A1-fibration
�R W SR ! P1 which is obtained as follows: we let � W V ! P2 be the birational
morphism obtained by contracting a 6-tuple of disjoint lines L;F1; : : : ; F5 � V

with the property that each Fi , i D 1; : : : ; 5, intersects C transversally. Since L is
tangent to C , the image ��.C / of C in P2 is a cuspidal cubic. The rational pencil
on P2 generated by ��.C / and three times its tangent T at its unique singular point
�.p/ lifts to a rational pencil q W V 99K P1 having the divisors C C

P5
iD1 Fi

and 3T C L as singular members. Letting � W OV ! V be a minimal resolution
of q, the induced morphism q ı � W OV ! P1 is a P1-fibration whose restriction to
SR D V nD ' OV n ��1D is an A1-fibration �R W SR ! P1 with two degenerate
fibers: one is irreducible of multiplicity three consisting of the intersection of the
proper transform of T with SR and the other is reduced, consisting of the disjoint
union of the curves Fi \ SR ' A1, i D 1; : : : ; 5 (see Figure 3.1).

Remark 3.1. Choosing an alternative 6-tuple of disjoint lines F0;1F0;2; F1;1; : : : ;
F1;4 such that F1;1; : : : ; F1;4 intersect C transversally while F0;1 and F0;2
intersects L but not C , we obtain another contraction morphism Q� W V ! P2 for
which the proper transforms of C and L are respectively a conic and its tangent line
at the point Q�.p/. One checks that the lift to V of the rational pencil on P2 generated
by Q��.C / and 2��.L/ restricts on SR to an A1-fibration � 0R W SR ! P1 with
two reducible degenerate fibers: one consisting of the disjoint union of the curves
F0;i \ S ' A1, i D 1; 2, both occuring with multiplicity two and the other one
consisting of the disjoint union of the reduced curves F1;i\SR ' A1, i D 1; : : : ; 4.
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The description of the degenerate fibers shows that this second A1-fibration is not
isomorphic to the one �R W SR ! P1, so that SR carries at least two distinct types
of A1-fibrations over P1.

F1

�1

F2

�1

F3

�1

F4

�1

F5

�1

C

�5

E5

�1E4
�2

E3
�2

E2 �2

E1

�2
L
�3

T

�1

Figure 3.1. The total transform of ��.C / [ T � P2 in the minimal resolution � W OV ! V of
q. The plain curves correspond to the irreducible components of ��1.D/ and the exceptional
divisors Ei of � are numbered according to the order they are extracted.

3.1.3. To determine the automorphism group of SR D V n D we first notice that
the subgroup Aut.V;D/ of Aut.V / consisting of automorphisms of V which leaveD
globally invariant can be identified in a natural way with a subgroup of Aut.SR/. The
latter is always finite, and even trivial if the cubic surface V is chosen general. On
the other hand, SR admits at least another natural automorphism which is obtained
as follows: the projection P3 99K P2 from the point p D L \ C induces a rational
map V 99K P2 with p as a unique proper base point and whose lift to the blow-
up ˛ W W ! V of V at p coincides with the morphism � W W ! P2 defined
by the anticanonical linear system j � KW j. The latter factors into a birational
morphism W ! Y contracting the proper transform of L followed by a Galois
double cover Y ! P2 ramified over an irreducible quartic curve � with a unique
double point located at the image of L. The non trivial involution of the double
cover Y ! P2 induces an involution GW W W ! W fixing L and exchanging the
proper transform of C with the exceptional divisorE of ˛. The former descends to a
birational involutionGV;p W V 99K V which restricts further to a biregular involution
jGV;p

of SR D V nD.

The following description of the automorphism group of SR shows in particular that
these surfaces are rigid:

Lemma 3.2. For a surface SR D V nD as above, there exists a split exact sequence

0! Aut.V;D/! Aut.SR/! fidSR
; jGV;p

g ' Z2 ! 0:



130 A. Dubouloz CMH

Proof. We interpret every automorphism of SR as a birational self-map f W V 99K V
of V restricting to an isomorphism from SR D V nD to itself. Since f 2 Aut.V;D/
in case it is biregular, it is enough to show that either f or GV;p ı f is biregular.
To establish this alternative, it suffices to check that the lift fW D ˛�1f ˛ W

W 99K W of f to W is a biregular morphism, hence an automorphism of the
pair .W; ˛�1.D/red/. Indeed if so, then fW preserves the union of E and the
proper transform of C as these are the only .�1/-curves contained in the support
of ˛�1.D/red. Since by construction GW exchanges E and the proper transform of
C , it follows that either fW or GW ı fW leaves E, the proper transform of C and
the proper transform of L invariant. This implies in turn that either f D f̨W ˛

�1 or
˛GW ıfW ˛

�1 D .˛GW ˛
�1/ı . f̨W ˛

�1/ D GV;p ıf is a biregular automorphism
of V .

To show that fW is a biregular automorphism of W , we consider the lift
Qf D ��1 ı f ı � W QV 99K QV of f to the variety Q̨ W QV ! W obtained from W

by blowing-up further the intersection point of E and of the proper transform of
C , say with exceptional divisor QE. We identify SR with the complement in QV of
the SNC divisor QD D L [ C [ E [ QE. Now suppose by contradiction that Qf is

strictly birational and consider its minimal resolution QV
ˇ
 X

ˇ 0

! QV 0. Recall that the
minimality of the resolution implies in particular that there is no .�1/-curve in X
which is exceptional for ˇ and ˇ0 simultaneously. Furthermore, since QV is smooth
and QD is an SNC divisor, ˇ0 decomposes into a finite sequence of blow-downs of
successive .�1/-curves supported on the boundary B D ˇ�1. QD/red D .ˇ

0/�1. QD/red

with the property that at each step, the proper transform ofB is again an SNC divisor.
The structure of QD implies that the only possible .�1/-curve in B which is not
exceptional for ˇ is the proper transform of QE, but after its contraction, the proper
transform of B would no longer be an SNC divisor, a contradiction. So Qf W QV ! QV

is a morphism and the same argument shows that it does not contract any curve in
the boundary QD. Thus Qf is a biregular automorphism of QV , in fact, an element
of Aut. QV ; QD/. Since QE is the unique .�1/-curve contained in the support of QD
it must be invariant by Qf which implies in turn that fW D Q̨ Qf Q̨�1 is a biregular
automorphism of the pair .W; ˛�1.D/red/, as desired.

3.2. Flexible mates. In this subsection, we construct 1-flexible affine surfaces SF
admitting A1-fibrations �F W SF ! P1 whose degenerate fibers resemble the
ones of the fibrations �R W SR ! P1 described in §3.1.2 above. A more precise
interpretation of this resemblance, going beyond the bare fact that the number of
their irreducible components and their respective multiplicities are the same, will be
given in section 4 below.

3.2.1. For the construction, we start with a Hirzebruch surface �n W Fn D P.OP1 ˚

OP1.�n// ! P1, n � 0, in which we fix an ample section C ' P1 of �n and two
distinct fibers, say F0 D ��1n .p0/ and F1 D ��1n .p1/, where p0; p1 2 P1. We let
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� W X ! Fn be the birational map obtained by the following sequence of blow-ups:

Step 1 consists of the blow-up of five distinct points p1;1; : : : ; p1;5 on F1 n C
with respective exceptional divisors G1;1; : : : ; G1;5.

Step 2 consists of the blow-up of a point p0;1 2 F0 n C with exceptional divisor
E1, followed by the blow-up of the intersection point p0;2 of the proper
transform of F0 with E1, with exceptional divisor E2, then followed by the
blow-up of the intersection point p0;3 of the proper transform of F0 with E2,
with exceptional divisor E3. Finally, we blow-up a point p0;4 2 E3 distinct
from the intersection points of E3 with the proper transforms of F0 and E2
respectively. We denote the last exceptional divisor produced by G0;1.

The structure morphism �n W Fn ! P1 lifts to a P1-fibration p D �n ı � W X ! P1
with two degenerate fibers p�1.p0/ D F0 C E1 C 2E2 C 3E3 C 3G0;1 and
p�1.p1/ D F1C

P5
iD1G1;i . The inverse image by � of the divisor F0[C [F1

is pictured in Figure 3.2. Letting SF be the open complement in X of the divisor
B D F1 [ C [ F0 [ E3 [ E2 [ E1, the restriction of p to SF is an A1-fibration
�F W SF ! P1 with two degenerate fibers: the one ��1F .p0/ is irreducible of
multiplicity three consisting of the intersection of G0;1 with SF and the other one
��1F .p1/ is reduced, consisting of the disjoint union of the curvesG1;i\SF ' A1,
i D 1; : : : ; 5.

G1;1

�1

G1;2

�1

G1;3

�1

G1;4

�1

G1;5

�1

F1

�5

C

F0
�3

E3

�2

E2
�2

E1

�2

G0;1

�1

Figure 3.2. The total transform of F0 [ C [ F1 � Fn in X . The plain curves correspond to
irreducible components of the boundary divisor B .

Lemma 3.3. A surface SF D X n B as above is affine and 1-flexible.

Proof. By construction, B is chain of smooth complete rational curves. So the
1-flexibility of SF will follows from Theorem 2.2 provided that SF is indeed
affine and has no non constant invertible functions. Since �F W SF ! P1 is an
A1-fibration, an invertible function on SF is constant in restriction to every non
degenerate fiber of �F and hence has the form f ı�F for a certain global invertible
function f on P1. So such a function is certainly constant. To establish the affineness
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of SF , we first observe that SF does not contain a complete curve. Indeed, otherwise
since the points blown-up by � W X ! Fn are contained in Fn n C , the image by
� of such curve would be a complete curve in Fn which does not intersect C , in
contradiction with the ampleness of C in Fn. On the other hand, since C has positive
self-intersection in Fn, whence in X , one checks by direct computation that for
a1; a; a0; a1; a2; a3 2 Z>0 such that a0 � a3 � a2 � a1 and a� max.a0; a1/,
the effective divisor QB D a1F1CaC Ca0F0Ca1E1Ca2E2Ca3E3 has positive
self-intersection and positive intersection which each of its irreducible components.
It then follows from the Nakai–Moishezon criterion that QB is an ample effective
divisor supported on B , and hence that SF D X n B is affine.

Remark 3.4. In the construction of §3.2.1, one can replace Step 1 and 2 by the
following alternative sequence of blow-ups � 0 W X 0 ! Fn:

Step 10 consists of the blow-up of four distinct points p01;1; : : : ; p
0
1;4 on F1 n C

with respective exceptional divisors G01;1; : : : ; G
0
1;4.

Step 20 consists of the blow-up of a point p00;1 2 F0 n C with exceptional divisor
E 01, followed by the blow-up of the intersection point p00;2 of the proper
transform of F0 with E 01, with exceptional divisor E 02, then followed by the
blow-up of a pair of distinct points p00;3 and p000;3 on E 02 distinct from the
intersection points of E 02 with the proper transforms of F0 and E 01, with
respective exceptional divisors G00;1 and G00;2.

The morphism p0 D �n ı �
0 W X 0 ! P1 is then a P1-fibration with two

degenerate fibers p0�1.p0/ D F0 C E
0
1 C 2E

0
2 C 2G

0
0;1 C 2G

0
0;2 and p0�1.p1/ D

F1 C
P4
iD1G

0
1;i . The same argument as in the proof of Lemma 3.3 above

shows that the complement in X 0 of the chain of smooth complete rational curves
B 0 D F1[C[F0[E

0
1[E

0
2 is a 1-flexible affine surface, on which p0 restricts to an

A1-fibration � 0F W S
0
F ! P1 with two degenerate fibers consisting respectively of

the disjoint union of G00;i \ S
0
F ' A1, i D 1; 2 both occurring with multiplicity 2

and of the disjoint union of the reduced curves G0
1;i \ S

0
F ' A1, i D 1; : : : ; 4. So

� 0F W S
0
F ! P1 resembles the alternative A1-fibration � 0R W SR ! P1 described in

Remark 3.1 above.

4. Rigidity lost

The last ingredient needed to derive Theorem 1.1 is the following result:

Proposition 4.1. Let �R W SR ! P1 and �F W SF ! P1 be a pair of A1-fibered
surfaces as constructed in §3.1.2 and 3.2.1 above. Then there exists an algebraic
space ı W C ! P1 such that �R and �F factor respectively through étale locally
trivial A1-bundles �R W SR ! C and �F W SF ! C.
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Let us first explain how to derive the 1-flexibility of the cylinder SF � A2 from this
Proposition.

4.0.2. Recall that since the automorphism group of A1 is the affine group Aff1 D

Gm n Ga, every étale locally trivial A1-bundle � W S ! C is in fact an affine-
linear bundle. This means that there exists a line bundle p W L ! C such that
� W S ! C has the structure of an étale L-torsor, that is, an étale locally trivial
principal homogeneous bundle under L, considered as a group space over C for
the group law induced by the addition of germs of sections. Isomorphy classes of
such principal homogeneous L-bundles are then classified by the cohomology group
H 1
Ket.C; L/ (see e.g. [9, §1.2]).

4.0.3. So Proposition 4.1 implies in particular that �R W SR ! C and �F W SF ! C
can be equipped with the structure of principal homogeneous bundles under suitable
line bundles pR W LR ! C and pF W LF ! C respectively. As a consequence,
the fiber product Z D SR �C SF is simultaneously equipped via the first and
second projection with the structure of a principal homogeneous bundle under the
line bundles ��RLF and ��FLR respectively. But since SR and SF are both affine,
the vanishing of H 1

Ket.SR; �
�
RLF / and H 1

Ket.SF ; �
�
FLR/ implies that pr1 W Z ! SR

and pr2 W Z ! SF are the trivial ��RLF -torsor and ��FLR-torsor respectively. In
other word, Z carries simultaneously the structure of a line bundle over SR and SF .

4.0.4. Now since SF is 1-flexible by virtue of Theorem 2.2, we deduce from
Lemma 2.3 that Z is 1-flexible. Furthermore, the same Lemma implies that given
any line bundle p W Z0 ! SR, the total space of the rank 2 vector bundle
pr1 � p W E D Z0 �X Z ! SR over SR is 1-flexible. On the other hand, it
follows from [15, Theorem 3.2] that every rank 2 vector bundle E ! SR splits off

a trivial factor, whence is isomorphic to the direct sum of its determinant detE and
of the trivial line bundle. Choosing for Z0 a line bundle representing the inverse
of the class of pr1 W Z ! SR in the Picard group Pic.SR/ of SR yields a vector
bundle E D Z0 �X Z ! SR with trivial determinant, whence isomorphic to the
trivial bundle SR � A2, and with 1-flexible total space.

4.1. Proof of Proposition 4.1.
4.1.1. To prove Proposition 4.1, we first observe that if it exists, an algebraic space
ı W C ! P1 with the property that a given A1-fibration � W S ! P1 on a smooth
surface S factors as ı ı �, where � W S ! C is an étale locally trivial A1-bundle,
is unique up to isomorphism of spaces over P1. Indeed, suppose that ı0 W C ! P1
is another such space for which we have � D ı0 ı �0 where �0 W S 0 ! C0 is an
étale locally trivial A1-bundle. The closed fibers of � and �0 being both in one-to-
one correspondence with irreducible components of closed fibers of � , it follows
that for every closed point c 2 C there exists a unique closed point c0 2 C0 such
that ı.c/ D ı0.c0/ and ��1.c/ D .�0/�1.c0/ � ��1.ı.c//. So the correspondence
c 7! c0 defines a bijection  W C ! C0 such that �0 D  ı � and ı D ı0 ı  .



134 A. Dubouloz CMH

Letting f W C ! C be an étale cover over which � W S ! C becomes trivial, say
with isomorphism � W S �C C

�
! C �A1, and choosing a section � W C ! C �A1

of prC W C � A1 ! C , the composition  ı f D  ı f ı prC ı � is equal to
 ı � ı pr1 ı �

�1 ı � and hence to �0 ı pr1 ı �
�1 ı � by construction of  .

C � A1 ��1
//

prC

%%

S �C C
pr1 //

pr2
��

S

�

��

�0

��

C
�

ee

f
// C

 
// C0

This implies that  ı f W C ! C0 is a morphism whence that  W C ! C0 is
a morphism since being a morphism is a local property with respect to the étale
topology. The same argument on an étale cover f 0 W C 0 ! C0 over which
�0 W S 0 ! C0 becomes trivial implies that the set-theoretic inverse  �1 of  is also a
morphism, and so  W C! C0 is an isomorphism of spaces over P1.
4.1.2. In what follows, given an A1-fibered surface � W S ! P1, we use the
notation S=A1 to refer to an algebraic space ı W C ! P1 with the property that
� factors through an étale locally trivial A1-bundle � W S ! C. The previous
observation implies that its existence is a local problem with respect to the Zariski
topology on P1. More precisely, we may cover P1 by finitely many affine open
subsets Ui , i D 1; : : : ; r over which the restriction of � W S ! P1 is an A1-
fibration with a most a degenerate fiber, say ��1.pi / for some pi 2 Ui . Since the
restriction of � over Ui;� D Ui n fpig is then a Zariski locally trivial A1-bundle,
we see that if ıi W Ci D ��1.Ui /=A1 ! Ui exists then the restriction of ıi over
Ui nfpig is an isomorphism of schemes over Ui . This implies that the isomorphisms
ı�1j ı ıi jı�1.Ui;�\Uj;�/

W ı�1i .Ui;� \ Uj;�/! ı�1j .Ui;� \ Uj;�/, i; j D 1; : : : ; r ,
satisfy the usual cocyle condition on triple intersections whence that the algebraic
space ı W C D S=A1 ! P1 with the desired property is obtained by gluing the
local ones ıi W Ci ! Ui , i D 1; : : : ; r along their respective open sub-schemes
ı�1i .Ui;� \ Uj;�/ � Ci , i; j D 1; : : : ; r via these isomorphisms.
4.1.3. Now we turn more specifically to the case of the A1-fibrations �R W SR ! P1
and �F W SF ! P1 constructed in §3.1.2 and §3.2.1 respectively. Both
have exactly two degenerate fibers, one irreducible of multiplicity three and the
other one consisting of the disjoint union of five reduced curves. So up to an
automorphism of P1 we may choose a pair of distinct point p0; p1 2 P1 such that
��1R .p0/ D 3T \ SR, ��1F .p0/ D 3G0;1 \ SF , ��1R .p1/ D

F5
iD1 Fi \ SR and

��1F .p1/ D
F5
iD1G1;i \ SF . Letting U0 D P1 n fp1g and U1 D P1 n fp0g,

the existence and isomorphy of the algebraic spaces ��1R .U0/=A1 and ��1F .U0/=A1
(resp. ��1R .U1/=A1 and ��1F .U1/=A1) hence of those SR=A1 and SF =A1, follows
from a reinterpretation of a description due to Fieseler [11]:

– Since the unique degenerate fiber of the restriction of �R (resp. �F ) over
U1 is reduced, consisting of five irreducible components, ��1R .U1/=A1 and
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��1F .U1/=A1 are isomorphic to the scheme ı1 W C1 ! U1 obtained from
U1 by replacing the point p1 by five copies p1;1; : : : ; p1;5 of itself, one for
each irreducible component of ��1R .p1/ (resp. ��1F .p1/). More explicitly, �R
restricts on SR;1;i D ��1R .U1/ n

F
j¤i .Fj \ SR/, i D 1; : : : ; 5, to an A1-fibration

�R;1;i W SR;1;i ! U1 with no degenerate fiber over the factorial base U1 ' A1
and hence is a trivial A1-bundle. So SR;1;i=A1 ' U1 and ��1R .U1/=A1 is thus
isomorphic to the U1-scheme obtained by gluing five copies ı1;i W U1;i

�
! U1,

i D 1; : : : ; 5, of U1 by the identity along the open subsets U1;i n fp1;ig, where
p1;i D ı

�1
1;i .p1/. The same description holds for ��1F .U1/=A1.

– The situation for the open subsets SR;0 D ��1R .U0/ and SF;0 D ��1F .U0/ is
a little more complicated. Letting g W QU0 ! U0 be a Galois cover of order three
ramified over p0 and étale everywhere else, the inverse image of ��1F .p0/red in the
normalization QSR;0 of the reduced fiber product .SR �U0

QU0/red is the disjoint union
of three curves `0;1, `0;", and `0;"2 (where " 2 C� is a primitive cubic root of unity)
which are permuted by the action of the Galois group �3 of cubic roots of unity.
The A1-fibration pr1 W SR;0 �U0

QU0 ! U 00 lifts to one Q�R;0 W QSR;0 ! QU0 with a
unique, reduced, degenerate fiber .� 0/�1R;0. Qp0/, where Qp0 D g�1.p0/, which consists
of the union of the `0;˛ , ˛ D 1; "; "2. The same argument as in the previous case
implies then that QC0 D QSR;0=A1 is isomorphic to the QU0-scheme Qı0 W QC0 ! QU0

obtained by gluing three copies Qı0;˛ W QU 0;˛
�
! QU0, ˛ D 1; "; "2, of QU0 by the

identity outside the points Qp0;˛ D . Qı0;˛/
�1. Qp0/. Furthermore, the action of the

Galois group �3 on QSR;0 descends to a fixed point free action on QC0 defined locally
by QU 0;˛ 3 Qp 7! " � Qp 2 QU 0;"˛ . A geometric quotient for this action on QC0 exists in
the category of algebraic spaces in the form of an étale �3-torsor QC0 ! QC0=�3 over
a certain algebraic space QC0=�3 and we obtain a commutative diagram

QSR;0 //

Q�R;0

��

QSR;0=�3 ' SR;0

�R;0

��

QC0 //

Qı0
��

QC0=�3

ı0

��

QU0 // QU0=�3 ' U0

in which the top square is cartesian. It follows that the induced morphism
�R;0 W SR;0 ! QC0=�3 is an étale locally trivial A1-bundle which factors the restric-
tion of �R to SR;0. So ı0 W QC0=�3 ! U0 is the desired algebraic space SR;0=A1.

It is clear from the construction that the isomorphy type of QC0=�3 as a space over
U0 depends only on the fact that SR;0 is smooth and that �R jSR;0

W SR;0 ! U0 is
an A1-fibration with a unique degenerate fiber of multiplicity three over p0, and not
on the full isomorphy type of SR;0 as a scheme over U0. In other words, the same
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construction applied �F jSF;0
W SF;0 ! U0 yields an algebraic space SF;0=A1 which

is isomorphic to QC0=�3 as spaces over U0.
Finally, the desired algebraic space C D SR=A1 D SF =A1 is obtained by gluing

C1 and C0 D QC0=�3 by the identity along the open sub-schemes ı�11 .U0 \ U1/ '
U0 \ U1 ' ı

�1
0 .U0 \ U1/. This completes the proof of Proposition 4.1.

Remark 4.2. A similar construction applies to the A1-fibrations � 0R W SR ! P1
and � 0F W SF ! P1 considered in remarks 3.1 and 3.4 respectively. The desired
algebraic space C0 D SR=A1 D SF =A1 is again obtained as the gluing by the
identity along ı0�11 .U0 \ U1/ ' U0 \ U1 ' ı0

�1
0 .U0 \ U1/ of two algebraic

spaces ı01 W C
0
1 ! U1 and ı00 W C

0
0 ! U0 which are constructed as follows:

– The algebraic space C01 is obtained from U1 be replacing the point p1 by
four copies of itself, one for each irreducible component in the reduced degenerate
fiber � 0�1R .p1/ (resp. � 0�1F .p1/).

– Corresponding to the fact that the degenerate fiber � 0�1R .p0/ (resp. � 0�1F .p0/)
has two irreducible components, both occurring with multiplicity two, the algebraic
space C00 is now itself a compound object. First we let g W QU0 ! U0 be Galois
cover of degree two ramified at p0 and étale elsewhere. Then we let QD00 ! QU0
be the scheme obtained by gluing two copies QU0;˙ of QU0 by the identity outside
Qp0 D g

�1.p0/. The Galois group �2 acts freely on QD00 by QU0;˙ 3 Qp 7! � Qp 2 QU0;�
and we let 
 00 W D

0
0 D

QD00=�2 ! U0 ' QU0=�2 be the geometric quotient taken in
the category of algebraic spaces. Finally, ı00 W C

0
0 ! U0 is obtained by gluing two

copies 
 00;i W D
0
0;i ! U0, i D 1; 2 of D00 by the identity along the open subschemes


 00;1
�1
.U0 n fp0g/ ' U0 n fp0g ' 


0
0;2
�1
.U0 n fp0g/.
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