
Comment. Math. Helv. 90 (2015), 155–193
DOI 10.4171/CMH/350

Commentarii Mathematici Helvetici
© Swiss Mathematical Society

On the existence of three closed magnetic geodesics for
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Abstract. We consider exact magnetic flows on closed orientable surfaces. We show that for
almost every energy � below Mañé’s critical value of the universal covering there are always at
least three distinct closed magnetic geodesics with energy �. If in addition the energy level is
assumed to be non-degenerate we prove existence of infinitely many closed magnetic geodesics.
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1. Introduction

In this paper we study the problem of existence of closed orbits with prescribed
energy for exact magnetic flows on closed orientable surfaces.

Let .M; g/ be a closed oriented Riemannian surface and let � be a smooth
1-form onM . Set f WD ?d� , where ? is the Hodge star operator of g. The magnetic
geodesics 
 W R!M are the solutions to the ordinary differential equation

D P


dt
D f .
/ i P
;

where D=dt is the covariant derivative and i is the almost complex structure
naturally associated to the oriented Riemannian surface. Magnetic geodesics were
introduced by V. I. Arnold in [3]. Certainly, the solutions to this ODE preserve the
kinetic energy E.x; v/ WD jvj2x=2.

The above ODE is the Euler–Lagrange equation of the Lagrangian L W TM ! R
given by

L.x; v/ D
1

2
jvj2x C �x.v/;

which is fiberwise strictly convex and superlinear, and hence satisfies the standard
hypotheses in Aubry–Mather theory. The corresponding Hamiltonian on T �M is
given by

H.x; p/ D
1

2
jp � �xj

2
x :
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We are interested in closed magnetic geodesics with prescribed energy �, and
hence it is useful to have a variational principle that picks up these orbits. This is
easily achieved by considering the free-period action functional

S�.
/ WD
Z T

0

�
L.
.t/; P
.t//C�

�
dt D T

Z
T

�
L.x.s/; Px.s/=T /C�

�
ds DW S�.x; T /;

where 
 W Œ0; T �! M is an absolutely continuous closed curve and x.s/ WD 
.T s/
is its reparametrization on T WD R=Z. This functional is smooth on the Hilbert
manifold M WD H 1.T;M/ � .0;C1/, and its critical points correspond to
periodic magnetic geodesics of energy � (as usual, H 1.T;M/ denotes the Hilbert
manifold of absolutely continuous closed loops x W T ! M whose derivative
is square integrable). Elements of M are denoted indifferently as closed curves

 W Œ0; T �!M or as pairs .x; T /, as above.

In [13] the authors proved that every energy level E�1.�/ (� � 0) contains a
closed magnetic geodesic. The proof hinges on the consideration of certain critical
energies known as Mañé’s critical values. For our purposes there are two of these
critical energies which are significant, and they are defined as follows:

cu WD inff� 2 R j S�.
/ � 0
for every absolutely continuous contractible closed curve 
g;

c0 WD inff� 2 R jS�.
/ � 0
for every absolutely continuous null-homologous closed curve 
g:

Clearly cu � c0 and equality holds forM D S2 andM D T2. However for surfaces
of higher genus the inequality could be strict [26]. If � > cu it is possible to show
that S� satisfies the Palais–Smale condition and it is bounded from below on each
connected component of the free loop space [12]. Thus one is able to derive the
same existence results as in the case of the geodesic flow of a Finsler metric. In
particular every non-trivial free homotopy class contains a closed magnetic geodesic
with energy � > cu. Actually, for � > c0 the flow on E�1.�/ can be reparametrized
to a Finsler geodesic flow. In particular, when M D S2 the flow for energies above
cu D c0 has always at least two closed magnetic geodesics by [6]. Katok’s example
from [18] shows that in this case there may be only two closed magnetic geodesics.

If � belongs to the interval .cu; c0�, then there are infinitely many closed magnetic
geodesics of energy �. Indeed, this interval is non-empty only ifM has genus greater
than 1, and in this case M has infinitely many connected components with the
property that no element of one of these is the iteration of an element of another
one. In this case, we can find infinitely many closed magnetic geodesics with energy
� > cu by minimizing S� on each of these connected components.
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In this paper we are concerned with the more difficult range of subcritical
energies in the interval .0; cu/. What makes this range of energies harder is that
there are basically no tools to tackle it: the free-period action functional is no longer
bounded from below and it may not satisfy the Palais–Smale condition. One is
tempted then to deploy the Symplectic Topology arsenal, but unfortunately, as it
was shown in [13], the energy levels below c0 are never of contact type at least for
M ¤ T2.

The idea used in [13] to produce a closed magnetic geodesic goes back to
I. Taimanov [29, 30, 31] (who proved similar results but with different methods)
and consists in considering just simple closed curves to make the action functional
bounded from below. Technically the space of simple closed curves is not the best
to work with but by considering integral 2-currents with suitable multiplicity one
can use the compactness and regularity results from Geometric Measure Theory. In
the end one obtains for � < c0 a closed magnetic geodesic ˛� which has negative
S�-action. This orbit has also the property of being a local C 1-minimizer. To obtain
this orbit one may need to pass to a finite cover (see Section 3) but this is not much
of a problem.

The other result that is available in the subcritical range is due to G. Contreras
[11]. He proved that for almost every � 2 .0; cu/ there is a closed contractible
orbit 
� with energy � and positive S�-action (this holds in any dimension and for
any Tonelli Lagrangian). The fact that 
� and ˛� have actions with different signs
implies they must be geometrically distinct (i.e. one is not an iterate of the other)
and hence we deduce that for almost every � 2 .0; cu/ there are at least two closed
magnetic geodesics with energy �.

The main purpose of the present paper is to upgrade this to almost everywhere
existence of at least three closed magnetic geodesics. Moreover, assuming in
addition that the energy level is non-degenerate we shall prove the existence of
infinitely many closed orbits with energy � 2 .0; cu/.

Theorem. Let .M; g/ be a closed oriented Riemannian surface and let � be a smooth
1-form. Then there exists a full measure set K � .0; cu/ such that for every � 2 K
there are at least three closed magnetic geodesics with energy �. Moreover, if for
� 2 K the energy level E�1.�/ is non-degenerate, then there are infinitely many
closed magnetic geodesics with energy �.

Let us clarify the meaning of “non-degenerate energy level". A closed orbit

 D .x; T / of energy � is said to be transversally non-degenerate if the alge-
braic multiplicity of the eigenvalue 1 of d'T .
.0/; P
.0// is exactly two, where
't W TM ! TM denotes the Lagrangian flow of L. This is equivalent to the fact
that the linearized Poincaré map associated to a transverse section to the orbit .
; P
/
in E�1.�/ does not have the eigenvalue 1, and is also equivalent to the fact that the
second differential of S� restricts to a non-degenerate form on the normal bundle of

T � .x; T / WD f.x.� C �/; T / j � 2 Tg :
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The latter equivalence is discussed in Appendix A. Transversal non-degeneracy
implies that there is a smooth family f.x�C� ; T .�C�//g�2.�";"/ of critical points of
S�C� (an orbit cylinder) such that .x� ; T .�// D .x; T / (see [2, Theorem 8.2.2] or
[17, Proposition 4.2]). The energy levelE�1.�/ is said to be non-degenerate if every
closed orbit on it is transversally non-degenerate.

Non-degeneracy is C r -generic for every 1 � r � 1: for every � > 0 there
exists a subset of the space of exact 2-forms d� which is residual in the C r topology
for which E�1.�/ is non-degenerate (see [24, Theorem 1.2]).

Thanks to results of J. A. G. Miranda’s, our main theorem implies that if � be-
longs to the full-measure set K � .0; cu/ which is associated to the magnetic
form d� , then there is an exact 2-form d Q� with kd Q� � d�kC1 < � such that the
exact magnetic flow associated to d Q� on the energy level � has positive topological
entropy: if E�1.�/ is non-degenerate, then this follows from the existence of
infinitely many closed orbits, thanks to [25, Theorem 1.2]; if E�1.�/ is not non-
degenerate, then it contains a non-hyperbolic closed orbit, and the existence of
d Q� follows from [25, Theorem 1.1] (when E�1.�/ has at least one non-hyperbolic
closed orbit, d Q� can be chosen to be close to d� in the C1 topology).

Let us briefly describe the idea of the proof of the Theorem. Since we are working
on an orientable surface the iterates ˛n� of ˛� are also local minimizers. Using that
the action of ˛� is negative and ideas in [4] we construct for all sufficiently large
values of n an appropriate negative minimax value and via Struwe’s monotonocity
argument [27] applied to the free-period action functional we prove the existence for
a.e. � 2 .0; cu/ of a closed orbit ˇ�;n with energy �, negative S�-action and which
is not a strict local minimizer. These facts ensure that ˇ�;n is not an iterate of ˛� or

� . Struwe’s monotonicity argument is used to bypass the lack of the Palais–Smale
condition as in [11]. In the non-degenerate situation we show that the mean index
of the minimax orbits ˇ�;n is actually positive which excludes the possibility that
the curves ˇ�;n for n 2 N are all iterates of finitely many simple periodic orbits.
To prove positivity of the mean index we use the following fact which is proved
in Section 2 and has independent interest: if a transversally non-degenerate closed
orbit has T 0.�/ � 0, then it must have positive mean index (or equivalently there
are conjugate points along the orbit). The tools used in the proof of this fact allow
us to prove that the mountain pass closed orbits are either non-hyperbolic or odd
hyperbolic (see Proposition 2.3 and Remark 8.2).

In [4, Theorem 4] Bangert shows that a Riemannian metric on S2 which
possesses a “waist" must have infinitely many closed geodesics. A waist is a closed
geodesic which is a local minimum of the energy functional. The situation that
we have for subcritical energies is similar: as we mentioned above ˛� is a local
minimizer of the free period action functional so at this stage it seems reasonable to
conjecture that for almost every � < cu there are infinitely many closed magnetic
geodesics with energy �, regardless of any non-degeneracy assumption. We hope to
address this question in a subsequent paper.
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2. Mean index of the free-period action functional

The contents of this section hold for arbitrary Tonelli Lagrangians on configuration
spaces of arbitrary dimension.

Let M be a smooth orientable manifold and H W T �M ! R a Hamiltonian dual
to a Tonelli LagrangianL W TM ! R (that is,L is fiberwise superlinear and satisfies
dvvL.q; v/ > 0) via the Legendre transform L W TM ! T �M . Consider the free
period action functional

S�.x; T / D T
Z
T

�
L.x.s/; Px.s/=T /C �

�
ds; .x; T / 2 C1.T;M/ � .0;C1/:

If .x; T / is a critical point of S N� and 
.t/ D x.t=T / is the corresponding T -periodic
solution of the Euler–Lagrange equation associated to L, we define

z.t/ WD L.
.t/; P
.t//:

Then H.z.t// � N�, and z is a T -periodic orbit of the Hamiltonian vector field XH
on T �M , which is defined by

{XH! D �dH;

where ! D dp ^ dq is the standard symplectic form on T �M . We denote by �t the
flow of XH on T �M .

The vector XH .z.0// is an eigenvector with eigenvalue 1 of the differential of
the flow

d�T .z.0// W Tz.0/T
�M ! Tz.0/T

�M:

Since the above linear map is symplectic, the eigenvalue 1 has algebraic multiplicity
at least two. Let us assume that .x; T / is transversally non-degenerate, meaning that
the algebraic multiplicity of the eigenvalue 1 of d�T .z.0// is exactly two. In this
case, the closed orbit z admits a (unique) orbit cylinder: there exists a smooth map

.�; t/ 7! z�.t/; .�; t/ 2 . N� � �; N� C �/ � R;
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which is unique up to time-shifts, such that each z� is a closed orbit of XH with
period T .�/ on H�1.�/, and z N� D z, T . N�/ D T (see e.g. [2, Theorem 8.2.2] or [17,
Proposition 4.2]).

The presence of this orbit cylinder allows to decompose d�T .z.0// in the
following way (see also [23, pages 104–105]). Set

� WD �
@

@�
z�.0/

ˇ̌̌
�DN�

:

By differentiating the identity H.z�.0// D � with respect to � at N�, we obtain

�dH.z.0//Œ�� D 1:

Therefore
!.XH .z.0//; �/ D �dH.z.0//Œ�� D 1;

so XH .z.0// and � form a symplectic basis of the plane V spanned by these two
vectors. By differentiating the equation

�T.�/.z�.0// D z�.0/

with respect to � at N�, we obtain the identity

T 0. N�/XH .z.0// � d�T .z.0//Œ�� D ��;

which shows that the plane V is d�T .z.0//-invariant and that the restriction of
d�T .z.0// to V is represented by the matrix�

1 T 0. N�/

0 1

�
with respect to the symplectic basis XH .z.0//; �. Then the !-orthogonal comple-
mentW of V in Tz.0/T �M is also d�T .z.0//-invariant. Being !-orthogonal toXH ,
W is contained in the kernel of dH.z.0//, so it is the tangent space of a Poincaré
section, that is a hypersurface in H�1. N�/ which is transverse to the flow of XH at
z.0/. If we denote by P W W ! W the differential at z.0/ of the Poincaré return
map associated to such a section, we see that d�T .z.0// has the form

d�T .z.0// D

0@ 1 T 0. N�/ 0

0 1 0

0 0 P

1A (2.1)

with respect to the symplectic decomposition Tz.0/T �M D V ˚ W . Therefore,
the transversal non-degeneracy condition is equivalent to the fact that the linearized
Poincaré map P does not have the eigenvalue 1. From this, it can also be shown that
.x; T / is transversally non-degenerate if and only if the kernel of the second Gateaux
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differential of the free period action functional S N� at .x; T / is one-dimensional
(hence spanned by the vector . Px; 0/). We include a proof of this in the appendix
where we also describe in full the kernel of d2S N�.x; T /.

Denote by i.x; T / the index of the second differential of S N� at .x; T /. We will
also consider the fixed period action functional ST

N� .x/ D S N�.x; T /. The index of
d2ST

N� at a critical point x will be denoted by iT .x/. Clearly,

0 � i.x; T / � iT .x/ � 1: (2.2)

When .x; T / is strongly non-degenerate, meaning that the eigenvalue 1 of d�T .z.0//
has algebraic multiplicity two and geometric multiplicity one, or equivalently that P
does not have the eigenvalue 1 and T 0. N�/ ¤ 0, the Morse indices of the free period
action and of the fixed period action are related by the formula

i.x; T / D

�
iT .x/C 1 if T 0. N�/ > 0;
iT .x/ it T 0. N�/ < 0;

(2.3)

which is proved in [23, Theorem 1.3]. When .x; T / is transversally non-degenerate
but T 0. N�/ D 0, the second differential d2ST

N� of the fixed period action functional has
a two-dimensional kernel. The lower-semicontinuity of the Morse index allows to
generalize the above formula to the transversally non-degenerate case:
Proposition 2.1. Let .x; T / be a transversally non-degenerate critical point of S N� ,
and let

zk W R=T .�/Z!M; � 2 . N� � �; N� C �/;

be the corresponding orbit cylinder. Then the Morse indices of the free period and
of the fixed period action functional are related by the formula

i.x; T / D

�
iT .x/C 1 if T 0. N�/ � 0;
iT .x/ if T 0. N�/ < 0:

Proof. We just have to deal with the case T 0. N�/ D 0. We modify the Hamiltonian
H as follows

H� D h� ıH; � 2 R;
where h� is a diffeomorphism of R such that kh� � idkC2.R/ ! 0 for � ! 0, and
such that

h�.�/ D � C
1

2
�.� � N�/2;

for � close to N�. In particular,

h�. N�/ D N�; h0�. N�/ D .h
�1
� /
0. N�/ D 1; .h�1� /

00. N�/ D ��:

The Hamiltonian H� is Tonelli for j�j small, and we denote by L� its dual
Tonelli Lagrangian. The flow of the vector field XH� D h0

�
.H/XH is a time

reparametrization of the flow of XH : if z is an orbit of XH of energy H D �,

t 7! z.h0�.�/t/
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is an orbit of XH� of energy H� D h�.�/. Since h�. N�/ D N� and h0
�
. N�/ D 1, z N� is a

closed orbit of H� of energy H� D N�, and

z�� .t/ WD zh�1
�
.�/

�
h0�.h

�1
� .�//t

�
is the orbit cylinder of z N� with respect to XH� . The closed orbit z�� has energy
H� D � and period

T�.�/ D
T .�/

h0
�
.h�1
�
.�//
D .h�1� /

0.�/T .�/:

Since T 0. N�/ D 0, we find

T 0�. N�/ D .h
�1
� /
00. N�/T . N�/ D ��T . N�/: (2.4)

The point .x; T / is critical for the free-period action functionals which is associated
to the Lagrangian L� and the energy N�, for every j�j small. Being transversally non-
degenerate with respect to the Lagrangian L0 D L, .x; T / remains transversally
non-degenerate for the Lagrangian L� for j�j small enough, and the Morse index
i�.x; T /with respect to the free period action functional associated toL� is constant:

i�.x; T / D i.x; T / for j�j small.

By (2.4), .x; T / is strongly non-degenerate for L� when � ¤ 0, and by (2.3) the
index i�T .x/ of x with respect to the fixed period-T action functional associated to
L� is

i�T .x/ D

�
i.x; T / � 1 if � < 0;
i.x; T / if � > 0:

Since the second differential at x of the fixed period-T action functional associated to
L� varies continuously with �, the lower semi-continuity of the Morse index implies
that

iT .x/ D i
0
T .x/ D i.x; T / � 1:

The mean index with respect to the free period action functional is defined as

b{.x; T / WD lim
n!1

1

n
i.xn; nT /;

where xn.s/ WD x.ns/ for every s 2 T. By (2.2), the above limit exists, as
it coincides with the classical mean index with respect to the fixed period action
functional b{T .x/ WD lim

n!1

1

n
inT .x

n/;

and it is positive if and only if there are conjugate points along the orbit.



Vol. 90 (2015) On the existence of three closed magnetic geodesics 163

Theorem 2.2. Let 
 D .x; T / be a transversally non-degenerate critical point of S N� ,
and let z be the corresponding T -periodic orbit ofXH . Assume that the period T .�/
in the orbit cylinder which passes through z satisfies T 0. N�/ � 0. Thenb{.x; T / > 0.
As a consequence, if a transversally non-degenerate critical point .x; T / satisfies
i.x; T / � 1, thenb{.x; T / > 0.

A prototypical example is the pendulum, with phase space T �S1: the con-
tractible periodic orbits (i.e. the orbits whose energy is below that of the separatrix)
form an orbit cylinder for which T 0 > 0, and indeed these orbits have positive mean
index; the non-contractible periodic orbits form an orbit cylinder for which T 0 < 0,
and they all have zero mean index.

Proof. Since M is orientable, the vector bundle 
�.TM/ can be trivialized, and the
linearization of the Euler–Lagrange equation along x produces a linear second order
Lagrangian system in Rn. Following [7] one can associate to such a linear system
an index function ƒ W S1 ! N such that ƒ.1/ D iT .x/. We will make use of the
following properties of ƒ. For the proofs we refer to [7], [21], or [22, Section 2.2].

(i) The discontinuity points ofƒ are contained in S1\�.d�T .z.0///, where �.�/
indicates the spectrum of a linear map.

(ii) The splitting numbers S˙.z/ WD lim"!0˙ ƒ.e
i"z/ � ƒ.z/ are non-negative

and depend only on the restriction of d�T .z.0// to the generalised eigenspace
associated to the eigenvalue z.

(iii) inT .xn/ D
P
znD1ƒ.z/.

It follows from (iii) that

b{.x; T / Db{T .x/ D 1

2�

Z
S1
ƒ.z/ dz:

Thus, we conclude from the properties above that b{.x; T / D 0 if and only if
inT .x

n/ D 0 for every n.
By property (ii), by the expression (2.1) for dˆT .z.0//, and by the assumption

that P does not have the eigenvalue 1, the splitting numbers S˙.1/ are determined
by the matrix �

1 T 0. N�/

0 1

�
:

It turns out that the condition T 0. N�/ � 0 ensures that SC.1/ D S�.1/ D 1, see
[7, Examples I and II, page 181] and [21, page 198]. Therefore, by properties (i)
and (ii) we deduce that ƒ.e˙i"/ > 0 if " > 0 is sufficiently small and consequentlyb{.x; T / > 0.
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Finally, assume that i.x; T / � 1. If T 0. N�/ < 0 then the orbit is strongly non-
degenerate and (2.3) implies that

iT .x/ D i.x; T / � 1;

sob{.x; T / > 0. If T 0. N�/ � 0 thenb{.x; T / > 0 by the above statement.

The tools in the proof of the previous theorem can also be used to prove the
following proposition. Let us recall that a periodic orbit is hyperbolic if every
eigenvalue of its linearized Poincaré map P has modulus different from one. We
say that a periodic orbit is odd hyperbolic if it is hyperbolic and the number of
eigenvalues (counted with algebraic multiplicity) in the interval .�1; 0/ is odd.

Proposition 2.3. Let 
 D .x; T / be a critical point of S N� such that the Morse index
i.x; T / is odd and 
 is a hyperbolic periodic orbit. Then 
 is odd hyperbolic.

Proof. Let i.x; T / D 2k C 1, k 2 N. Since the only eigenvalue of d�T .z.0//
in the unit circle is 1, Bott’s index function ƒ is completely determined by the
Morse index of x (for the fixed period action functional) and the splitting number
SC.1/ D S�.1/. There are two possibilities:

(i) T 0. N�/ < 0: in this case iT .x/ D i.x; T / D 2k C 1, by (2.3), and
SC.1/ D S�.1/ D 0 (see again [7, Example II, page 181]); hence Bott’s
index function is constantly equal to 2k C 1.

(ii) T 0.�/ � 0: in this case iT .x/ D i.x; T / � 1 D 2k, by Proposition 2.1,
and SC.1/ D S�.1/ D 1 (see again [7, Examples I and II, page 181]);
consequently ƒ.1/ D 2k and ƒ.z/ D 2k C 1 for every z 2 S1 n f1g.

By Bott’s formula
inT .x

n/ D
X
znD1

ƒ.z/;

we conclude that in both cases the indices of the odd and even iterates of x have
different parities (more precisely, inT .xn/ D .2k C 1/n in case (i) and inT .xn/ D
.2k C 1/n � 1 in case (ii)).

Following [20, 21], one can define the index of a symplectic path (starting at
the identity) as the infimum of the Conley–Zehnder indices of a non-degenerate
perturbation in the C 0-topology (see [20, 21] for details). In this way, one can
define the index of a periodic orbit as the index of the symplectic path given by
the linearized Hamiltonian flow using a symplectic trivialization of T T �M along
the orbit. This index depends on the choice of the trivialization, but its parity does
not. Moreover, it coincides with the Morse index for Tonelli Hamiltonians if one
uses a vertical trivialization, that is, a trivialization of T T �M that sends the vertical
distribution to a fixed Lagrangian subspace in R2n, see [21, Theorem 7.3.4] and [22,
Theorem 2.3.5].
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Now, write z�.T T �M/ as a direct sum V ˚W , where the subbundles V and W
are obtained by applying the differential of the flow �t to V and W (recall that V
andW were introduced just before equation (2.1)) By construction, these subbundles
are invariant by d�t , symplectic and symplectic orthogonal. Fix a trivialization of
z�.T T �M/ that sends V and W to fixed symplectic subspaces of R2n. Assume also
that it sends �t WD � @

@�
z�.t/

ˇ̌̌
�DN�

and XH .z.t// to fixed vectors that do not depend
on t . Notice that this trivialization does not need to be vertical, but, as mentioned
above, it does not affect the parity of the index. Consequently, the parities of the
indices of the odd and even iterates are different.

By properties of the index, the index of z (with respect to this fixed trivialization)
is given by the sum of the indices of the linearized flow restricted to V and W .
The linearized flow restricted to V is a symplectic shear and it is not hard to see
that the parity of its index is the same for every iterate (see [21, Theorem 8.1.4];
in fact, one can actually show that the index is constantly equal to 0 in case (i) and
�1 in case (ii) for every iterate). Thus, the parities of the indices of the even and
odd iterates of the linearized flow restricted to W must be different. But it is well
known that this property holds if and only if the number of eigenvalues (counted
with algebraic multiplicity) of the linearized return map in the interval .�1; 0/ is odd
(see, for instance, [1, Proposition 1.4.5] or [32, Lemma 3.2.4]).

3. Existence of local minimizers

In this section we recall some of the main results in [13] and we show how
these results imply the existence of local minimizers of the functional S� on
H 1.T;M/ � .0;C1/, for every positive energy � below the Mañé critical value
c0.

Let M be a closed oriented surface and let p W M0 ! M denote the abelian
cover. If � < c0, there exists an absolutely continuous closed curve 
 W Œ0; T �!M0

with negative S�-action (here the action S� of a closed curve in M0 is associated to
the lift of L to M0). By the procedure explained in [13, Lemma 3.3] there exists
a simple piecewise smooth closed curve ˇ in M0 with constant speed

p
2k and

negative S�-action. The curve p ı ˇ is homologous to zero and has negative S�-
action, but it may not be simple. To remedy this we pass to a finite cover N ! M

as follows. Since the group of covering transformations of p W M0 ! M is abelian,
it is residually finite (i.e. the intersection of all its normal subgroups of finite index
is trivial). Hence given a compact set K � M0 there exist coverings pN W N ! M

and �N W M0 ! N such that pN ı �N D p, pN is a finite covering and �N jK is
injective. Since the image of ˇ is a compact set, we can find coverings as above with
�N ı ˇ a simple closed curve.
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Now if � < c0, Theorem C.5 in [13] shows that there exists a multicurve ˛ in
N homologous to zero and with negative S�-action such that each component is a
simple closed magnetic geodesic with energy �. In addition if � is any other smooth
simple closed multicurve homologous to zero, then

p
2� `.�/C

Z
�

� �
p
2� `.˛/C

Z
˛

� D S�.˛/;

where ` denotes length. Using the elementary estimate

S�.�/ �
p
2� `.�/C

Z
�

�;

we deduce that
S�.�/ � S�.˛/

i.e. ˛ is a global minimizer of the free-period action functional in N among all
simple closed multicurves homologous to zero. This implies in particular that each
component of ˛ is a local minimizer of the free-period action functional on the
space C 1.T; N / � .0;C1/ (because the set of C 1-embeddings of the circle is
C 1-open). Since the S�-action of the multicurve is negative, we find at least one
closed curve in N which has negative S�-action and which is a local minimizer in
C 1.T; N / � .0;C1/. If we project such a curve to M we find a closed curve
˛� in M which continues to have negative S�-action and is a local minimizer in
C 1.T;M/ � .0;C1/. The latter assertion follows from the fact that the projection
map

C 1.T; N / � .0;C1/! C 1.T;M/ � .0;C1/

is open. The curve ˛� may not be simple, but that is not an issue for us.
With a slight abuse of terminology, we say that ˛ D .x; T / is a strict local

minimizer of S� in C 1.T;M/ � .0;C1/ (resp. in H 1.T;M/ � .0;C1/) if the
T-orbit of ˛

T � ˛ D f.x.� C �/; T / j � 2 Tg

has a neighborhood U in C 1.T;M/�.0;C1/ (resp. inH 1.T;M/�.0;C1/) such
that

S�.
/ > S�.˛/ 8
 2 U n T � ˛:

We notice that if ˛ is a local minimizer of S� but not a strict local minimizer, then
there is a sequence .˛n/ � .T �˛/c of local minimizers which converges to ˛, and in
particular there are infinitely many closed magnetic geodesics.

We need to know that (strict) C 1-local minimizers are also (strict) H 1-local
minimizers. This follows from the lemma below, whose proof was communicated
to us by M. Mazzucchelli (see also [8], [9] and [28] for similar results in different
settings and with different proofs):
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Lemma 3.1. Let ˛ D .x; T / be a closed magnetic geodesic which is a local
minimzer of S� in C 1.T;M/ � .0;C1/. Then ˛ is also a local minimizer
of S� in H 1.T;M/ � .0;C1/. If moreover ˛ is a strict local minimizer in
C 1.T;M/�.0;C1/, then it is also a strict local minimizer inH 1.T;M/�.0;C1/.

Proof. Let us prove the first assertion. We assume that ˛ is not a local mini-
mizer in H 1.T;M/ � .0;C1/ and we prove that it is not a local minimizer in
C 1.T;M/ � .0;C1/ either. We carry out our argument after a few preliminaries.
Let U be a neighborhood of ˛ in H 1.T;M/ � .0;C1/ such that the elements
.y; S/ 2 U have uniform bounds

0 < T0 � S � T1 < C1 and k PykL2.T/ � C:

In particular, U is an equicontinuous family of periodic curves 
 W R ! M . Then
we can find a natural number h which is so large that the following holds: for
every 
 D .y; S/ 2 U and every j D 0; 1; : : : ; h � 1 there is a unique curve
ŒjS=h; .j C 1/S=h� ! M which minimizes the Lagrangian action among all
absolutely continuous curves on ŒjS=h; .j C 1/S=h� with end points 
.jS=h/ and

..j C 1/S=h/ (see e.g. [22, Theorem 4.1.1]). For such a large h we can define the
continuous map

ƒ W U ! H 1.T;M/ � .0;C1/; 
 7! O
;

which maps every 
 D .y; S/ 2 U to the unique curve O
 W R=SZ ! M such that
for every j D 0; 1; : : : ; h � 1:

(i) O
.jS=h/ D 
.jS=h/;
(ii) O
 jŒjS=h;.jC1/S=h� minimizes the Lagrangian action among the absolutely

continuous curves on ŒjS=h; .j C 1/S=h� with end points 
.jS=h/ and

..j C 1/S=h/.

The continuity ofƒ is a consequence of [22, Theorem 4.1.2] (and holds with a target
space having a much finer topology). The curve O
 D ƒ.
/ is a h-broken solution of
the Euler–Lagrange equation of L. By (ii) we have

S�
�
ƒ.
/

�
� S�.
/ 8
 2 U :

Moreover, being a smooth solution of the Euler–Lagrange equation of L and by our
choice of h, ˛ is a fixed point of ƒ.

Let � 2 C1.T/ be a smooth non-negative function with support in .�1=2; 1=2/
and integral 1. For each � > 0 we set ��.t/ D �.t=�/=�, so that �� converges to
the Dirac delta ı0 in the sense of distributions for � ! 0. By Whitney’s theorem,
there exists an embedding M ,! RN and, for a tubular neighborhood U � RN of
M , a smooth retraction r W U ! M . For each sufficiently small � > 0 we define a
continuous mapping

‚� W U ! C1.T;M/ � .0;C1/
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by ‚�.y; S/ WD .y�; S/, where

y� WD r ı .y � ��/;

and � denotes the convolution on T.
Consider a sequence 
n D .xn; Tn/ which converges to ˛ D .x; T / in

H 1.T;M/ � .0;C1/ and such that

S�.
n/ < S�.˛/ 8n 2 N:

The sequence O
n D . Oxn; Tn/ WD ƒ.
n/ also converges to ˛ inH 1.T;M/� .0;C1/

and
S�. O
n/ � S�.
n/ < S�.˛/ 8n 2 N: (3.1)

Each restriction OxnjŒj=h;.jC1/=h� is a reparametrized Euler–Lagrange curve whose
end-points converge to x.j=h/ and x..j C 1/=h/. By the continuous dependence of
the absolute minimizers of the Lagrangian action with respect to the end-points (see
[22, Theorem 4.1.2]), we have the convergence

OxnjŒj=h;.jC1/=h� ! xjŒj=h;.jC1/=h� (3.2)

in the C1-topology, for every j D 0; 1 : : : ; h � 1.
By (3.1), we can find an infinitesimal sequence .�n/ � .0;C1/ such that

S�
�
‚�n. O
n/

�
< S�.˛/ 8n 2 N:

There remains to prove that ‚�n. Oxn/ converges to x in the C 1-topology.
Since Oxn is continuous and piece-wise smooth, it is absolutely continuous and its

a.e. defined pointwise derivative agrees with its distributional derivative. Therefore



 dds � Oxn � ��n�� d

ds
x






L1.T/

D





� dds � Oxn � x�� � ��n C � dds x� � .��n � ı0/





L1.T/

�





� dds � Oxn � x�� � ��n





L1.T/

C





� dds x� � .��n � ı0/





L1.T/

�





 dds � Oxn � x�





L1.T/„ ƒ‚ …

DWpn

� k��nkL1.T/„ ƒ‚ …
D1

C





� dds x� � .��n � ı0/





L1.T/„ ƒ‚ …

DWqn

:

The sequence .pn/ is infinitesimal by (3.2). The sequence .qn/ is also
infinitesimal because x is smooth and .��n/ converges to ı0 in the distributional
sense. Therefore,



 dds � Oxn � ��n� � d

ds
x






L1.T/

! 0 for n!1:
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Since the retraction r is smooth and fixes x, we conclude that



 dds‚�. Oxn/ � d

ds
x






L1.T/

! 0 for n!1:

This proves the first statement.
Now assume that the local minimizer ˛ D .x; T / is not strict in H 1.T;M/ �

.0;C1/. Then we can find a sequence of local minimizers 
n D .xn; Tn/ in the
complement of T � ˛ which converges to ˛ in H 1.T;M/ � .0;C1/. In particular,
.xn/ converges to x uniformly and, up to a subsequence, .dxn=ds/ converges to
dx=ds almost everywhere. Since the curves 
n are solutions of the Euler–Lagrange
equation, the smooth dependence of the Cauchy problem on initial data implies that
.xn/ converges to x in C1.T;M/. In particular, the local minimizer ˛ D .x; T / is
not strict in C 1.T;M/ � .0;C1/, as we wished to prove.

Summarizing, we have proved the following:

Lemma 3.2. For every � 2 .0; c0/ there is a closed magnetic geodesic ˛� with
energy � and S.˛�/ < 0 which is a local minimizer of S� in H 1.T;M/ � .0;C1/.

We observe that in principle ˛� may belong to a non-trivial homotopy class and
might even be not null-homologous (since we have chosen one suitable component
of the null-homologous cycle ˛).

4. Persistence of local minimizers

Set M WD H 1.T;M/ � .0;C1/. The fact that M is an orientable surface implies
that a closed curve in M which is a (strict) local minimizer of S� on M remains a
(strict) local minimizer also when iterated:

Lemma 4.1. If ˛ W Œ0; T �!M is a local minimizer (resp. strict local minimizer) of
S� on M, then for every n � 1 its n-th iterate ˛n.t/ W Œ0; nT � ! M is also a local
minimizer (resp. strict local minimizer) of S� on M.

This type of result fails in dimensions greater than or equal to three even in the
Riemannian case as examples of Hedlund show [14]. It also fails for non-orientable
surfaces, cf. [19, Exercise 9.7.1].

The proof of Lemma 4.1 hinges on the following lemma, in which we say that a
sequence of C 1 curves 
h W ŒSh; Th� ! M converges to a curve 
 W ŒS; T � ! M

in C 1 iff Th � Sh ! T � S and xh.s/ WD 
h.Sh C .Th � Sh/s/ converges to
x.s/ WD 
.S C .T � S/s/ in C 1.Œ0; 1�;M/.

Lemma 4.2. Let 
 W Œ0; T � ! M be a smooth immersed closed curve, let n � 2

be an integer, and let 
h W Œ0; Th� ! M be a sequence of C 1 closed curves which
converges to the n-th iterate 
n W Œ0; nT � ! M in C 1. Then, up to a subsequence
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and up to time-shifts in parametrization of the closed curves 
h and 
 , there exists a
sequence Sh 2 Œ0; Th� such that:

(i) Sh ! T ;

(ii) 
h.0/ D 
h.Sh/ D 
h.Th/;

(iii) the sequence 
hjŒ0;Sh� converges to 
 in C 1;

(iv) the sequence 
hjŒSh;Th� converges to 
n�1 in C 1.

Proof. Extend the functions 
 and 
h to the whole R by periodicity. Since M is an
orientable surface, we can choose coordinates .�; �/ 2 R=TZ�R on a neighborhood
of the immersed closed curve 
.R/ in such a way that


.t/ D .t C TZ; 0/ 8t 2 R:

Up to neglecting finitely many terms, the sequence .
h/ consists of curves whose
image is in such a neighborhood and hence


h.t/ D
�
�h.t/C TZ; �h.t/

�
;

where the sequences of C 1 functions �h; �h W R ! R converge to the identity and
to the zero function in C 1.R;R/, �h is Th-periodic, and �h satisfies

�h.t C Th/ D nT C �h.t/ 8t 2 R:

Up to neglecting finitely many terms, �h W R ! R is a C 1 diffeomorphism and its
inverse satisfies

��1h .s C nT / D Th C �
�1
h .s/ 8s 2 R: (4.1)

Fix some h 2 N. The real bi-infinite sequence

.�j /j2Z WD
�
�h
�
��1h .jT /

��
j2Z

is n-periodic. In particular, it cannot be strictly monotone: w.l.o.g. we can find an
integer k D kh 2 Œ1; n � 1� such that

�k�1 � �k and �k � �kC1:

Then the continuous function

f .�/ WD �h

�
��1h

�
.k C �/T

��
� �h

�
��1h

�
.k � 1C �/T

��
satisfies f .0/ � 0 and f .1/ � 0. Therefore, there exists �h 2 Œ0; 1� such that
f .�h/ D 0. Set

sh WD �
�1
h

�
.kh � 1C �h/T / and th WD �

�1
h

�
.kh C �h/T /:
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Up to a subsequence, .sh/ converges to some Ns and .th/ converges to some Nt with
Nt � Ns D T . Since �h is a zero of f , we find


h.sh/ D
�
.kh � 1C �h/T C TZ; �h

�
��1h ..kh � 1C �h/T /

��
D

�
.kh C �h/T C TZ; �h

�
��1h ..kh C �h/T / � Th

��
D

�
.kh C �h/T C TZ; �h

�
��1h ..kh C �h/T /

��
D 
h.th/;

where we have used (4.1) and the Th-periodicity of �h. Moreover, the sequence

hjŒsh;th� converges to 
 jŒNs;Nt� in C 1, while 
hjŒth;shCTh� converges to 
 jŒ NT ;NtCnT �
in C 1. The conclusion follows by shifting 
h by sh and 
 by Ns, and by setting
Sh WD th � sh.

Proof of Lemma 4.1. We assume that ˛ is a local minimizer (resp. strict local
minimizer) and we prove that also ˛n is a local minimizer (resp. strict local
minimizer) for every n 2 N. We argue by induction on n, the case n D 1 being
trivially true. Assume the statement to be true for n� 1 and, by contradiction, that it
fails for some n � 2. Then Lemma 3.1 implies that ˛n is not a local minimizer (resp.
not a strict local minimizer) in the C 1 topology: there exists a sequence of closed
C 1 curves 
h W Œ0; Th�!M which converges to ˛n in C 1 and satisfies

S�.
h/ < Sk.˛n/ D nS�.˛/ (4.2)

(resp. 
h … T � ˛n and S�.
h/ � Sk.˛n/ D nS�.˛/):

By Lemma 4.2, up to a subsequence and time-shifts, 
h is the juxtaposition of two
curves 
hjŒ0;Sh� and 
hjŒSh;Th� such that 
h.0/ D 
h.Sh/ D 
h.Th/, which converge
to ˛ and ˛n�1 in C 1, respectively. The curves 
hjŒ0;Sh� and 
hjŒSh;Th� belong a
fortiori to M, and they converge to ˛ and ˛n�1 in the topology of M. Since ˛
and ˛n�1 are local minimizers (resp. strict local minimizers) in M by the inductive
hypothesis,

S�
�

hjŒ0;Sh�

�
� S�.˛/; S�

�

hjŒSh;Th�

�
� S�.˛n�1/ D .n � 1/S�.˛/;

(resp. S�
�

hjŒ0;Sh�

�
> S�.˛/ or 
hjŒ0;Sh� 2 T � ˛;

S�
�

hjŒSh;Th�

�
> S�.˛n�1/ D .n � 1/S�.˛/ or 
hjŒSh;Th� 2 T � ˛n�1);

for h large enough, from which we obtain

S�.
h/ D S�
�

hjŒ0;Sh�

�
C S�

�

hjŒSh;Th�

�
� S�.˛/C .n � 1/S�.˛/ D nS�.˛/;

(resp. S�.
h/ > S�.˛/C .n � 1/S�.˛/ D nS�.˛/ or 
h 2 T � ˛n);

which contradicts (4.2).
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5. The negative gradient flow of S� and strict local minimizers

Let ' W .0;C1/ ! .0;C1/ be a smooth function such that '.T / D T 2 for
T � 1=2 and '.T / D 1 for T � 1. Following [11], we endow the Hilbert manifold
M D H 1.T;M/ � .0;C1/ with the Riemannian structure

h.�1; �1/; .�2; �2/i.x;T / WD �1�2 C '.T /h�1; �2ix;

where .x; T / 2M,

.�1; �1/; .�2; �2/ 2 TxM D TxH
1.T;M/ � R;

and h�; �ix denotes the standard Riemannian structure onH 1.T;M/which is induced
by a Riemannian structure on M . Since '.T / ! 0 for T ! 0, this metric has
more non-converging Cauchy sequences than the product one and is a fortiori not
complete.

The functional S� is smooth on M, and rS� denotes its gradient vector field
with respect to the Riemannian structure defined above. We shall use the following
results from [11].

Lemma 5.1 ([11], Lemma 6.9). Let .x; T / W Œ0; �/ ! M be a flow line of �rS�
such that

lim inf
r!�

T .r/ D 0:

Then
lim
r!�

S�
�
x.r/; T .r/

�
D 0:

Lemma 5.2. Let � > 0 and let .xh; Th/ be a Palais–Smale sequence for S� i.e.
S�.xh; Th/ remains bounded and kdS�.xh; Th/k tends to zero. If .Th/ is bounded,
then .xh; Th/ has a convergent subsequence in M.

Proof. The sequence .Th/ is bounded away from zero: if not, Proposition 3.8 in
[11] would imply that a subsequence of .xh/ converges to a constant loop which
is an equilibrium orbit with energy �. But in the case of a magnetic Lagrangian, all
constant loops are equilibrium orbits with zero energy. The results now follows from
the fact that Palais–Smale sequences .xh; Th/ with .Th/ bounded and bounded away
from zero have a converging subsequence by [11, Proposition 3.12].

The above result implies in particular that the Palais–Smale condition holds
locally, and this allows to prove that the T-orbit of a strict local minimizer ˛ has
neighborhoods on whose boundary the infimum of S� is strictly larger than S�.˛/:
Lemma 5.3. Let ˛ D .x; T / be a strict local minimizer of S� on M. If the
neighborhood U of T � ˛ is sufficiently small, then

inf
@U

S� > S�.˛/:
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Proof. Denote by Nı the open ı-neighborhood of the set T � ˛ in M. Let ı > 0 be
so small that the gradient of S� is bounded on Nı and there holds

S�.
/ > S�.˛/ 8
 2 Nı n T � ˛: (5.1)

Let U be a neighborhood of T � ˛ which is contained in Nı=2, and assume by
contradiction that

inf
@U

S� D S�.˛/:

Let � > 0 be such that
@U � Nı=2 nN�:

Let � be the negative gradient flow of S� . Since the gradient of S� is bounded on
Nı , the above inclusion implies the existence of a positive number � such that

�
�
Œ0; �� � @U

�
� Nı nN�=2:

Let .
h/ � @U be a sequence such that .S�.
h// converges to S�.˛/. Since

min
r2Œ0;��



dS�.�r.
h//

2 � 1

�

Z �

0



dS�.�r.
h//

2 dr D �1
�

Z �

0

d

dr
S�.�r.
h// dr

D
1

�

�
S�.
h/ � S�.��.
h//

�
�
1

�

�
S�.
h/ � S�.˛/

�
! 0;

the functional S� has a Palais–Smale sequence

Q
h D �.�h; 
h/ 2 Nı nN�=2; �h 2 Œ0; ��;

such that .S�. Q
h// converges to S�.˛/. By Lemma 5.2 we deduce the existence of a
critical point


 2 Nı nN�=2

such that S�.
/ D S�.˛/. This contradicts (5.1).

6. The minimax values

For any � 2 .0; cu/ � .0; c0/ let ˛� 2 M be a local minimizer of S� with
S�.˛�/ < 0, whose existence is guaranteed by Lemma 3.2. Let P � .0; cu/ be the
set of values of � for which the local minimizer ˛� is strict, and letQ � P be the set
of values � for which ˛� is transversally non-degenerate (see the Introduction and
Section 2 for the definition). By Lemma 4.1, ˛n� is a strict local minimizer for every
� 2 P and every n 2 N (when � 2 Q, ˛n� may not be transversally non-degenerate
for n � 1, because the linearized Poincaré map of ˛� may have eigenvalues which
are roots of 1).
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We shall define two minimax values: the first one is associated to energies close
to a value �� 2 P , the second one is associated to energies close to a value �� 2 Q.

We begin with the case of an energy level �� in P . Since �� < cu, the infimum
of S�� over all contractible curves is �1, so we can find an element � 2M in the
same free homotopy class of ˛�� such that

S��.�/ < S��.˛��/ < 0:

Since S� ! S�� pointwise for � ! ��, we can find an open interval I � .0; cu/

containing �� such that

S�.�/ < S�.˛��/ < 0; 8� 2 I: (6.1)

For every n 2 N we set

Pn WD
˚
u 2 C 0.Œ0; 1�;M/ j u.0/ D ˛n�� ; u.1/ D �

n
	
;

and we define a function pn W I ! R by

pn.�/ WD inf
u2Pn

max
�2Œ0;1�

S�
�
u.�/

�
:

Since S� depends monotonically on �, the function � 7! pn.�/ is (not necessarily
strictly) increasing for every n 2 N.

Now let �� 2 Q. Therefore, the kernel of d2S��.˛��/ is one-dimensional and
coincides with the tangent line to T � ˛�� at ˛�� . Let I � .0; cu/ be an open interval
containing �� for which there is a smooth orbit cylinder f Q̨�g�2I with Q̨�� D ˛�� W Q̨�
is a T .�/-periodic orbit of energy �, with T 0.��/ ¤ 0. The closed curve Q̨� may or
may not coincide with ˛� . Up to reducing I , we may assume that Q̨� is a transversally
non-degenerate local minimizer of S� for every � 2 I .

Since �� < cu we can find a closed curve � 2 M in the same free homotopy
class of ˛�� such that

S��.�/ < S��.˛��/ < 0:
Up to reducing I even more, we may assume that

S�.�/ < S�. Q̨�/ < 0 8� 2 I: (6.2)

For every � 2 I and every n 2 N we set

Qn.�/ WD
˚
u 2 C 0.Œ0; 1�;M/ j u.0/ D Q̨n� ; u.1/ D �

n
	
;

and we define a function qn W I ! R by

qn.�/ WD inf
u2Qn.�/

max
�2Œ0;1�

S�
�
u.�/

�
:

Notice that, unlike Pn, the class Qn.�/ depends on the energy level �. Therefore,
the monotonicity of qn does not follow directly from the monotonicity of � 7! S� ,
but requires a proof:
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Lemma 6.1. The function qn W I ! R is monotonically increasing.

Proof. Let �0 < �1 be elements of I . For every u 2 Qn.�1/ we define the path
v 2 Qn.�0/ as

v.�/ WD

(
Q̨n
�0C2�.�1��0/

; if 0 � � � 1=2;
u.2� � 1/; if 1=2 < � � 1:

Since Q̨� is a critical point of S� , we find

d

d�
S�. Q̨�/ D dS�. Q̨�/

h@ Q̨�
@�

i
C
@S�
@�
. Q̨�/ D

@S�
@�
. Q̨�/ D T .�/ > 0:

Therefore we have for � 2 Œ�0; �1�

S�0. Q̨
n
� / D nS�0. Q̨�/ � nS�. Q̨�/ � nS�1. Q̨�1/ D S�1. Q̨

n
�1
/ D S�1.u.0//;

from which we obtain

max
�2Œ0;1�

S�0.v.�// � max
�2Œ0;1�

S�1.u.�//:

By taking the infimum over all u 2 Qn.�1/ we conclude that qn.�0/ � qn.�1/.

The following lemma is based on an argument which is due to V. Bangert [4]:

Lemma 6.2. Let �0; �1 2M be in the same free homotopy class, and let

Rn WD
˚
u 2 C 0.Œ0; 1�;M/ j u.0/ D �n0; u.1/ D �

n
1

	
:

Fix a number � and set

cn WD inf
u2Rn

max
�2Œ0;1�

S�.u.�//:

Then there exists a number A such that

cn � n maxfS�.�0/;S�.�1/g C A 8n 2 N:

Proof. Let u D .x; T / 2 R1 be such that the curve

� W Œ0; 1�!M; �.�/ WD x.�/.0/

is smooth and let O� be the inverse curve, O�.�/ WD �.1 � �/.
Let n be a natural number. Let v 2 Rn be the homotopy connecting �n0 to �n1

which is obtained from u by pulling one loop at a time (see [4, Fig. 1]). That is, for



176 A. Abbondandolo, L. Macarini and G.P. Paternain CMH

a typical value of � in Œ0; 1�, v.�/ is obtained as the juxtaposition of the following
curves:

�h0 W Œ0; hT0�!M;

� jŒ0;s� W Œ0; s�!M;


s W Œ0; Ts�!M;

� jŒs;1� W Œs; 1�!M;

�n�h�11 W Œ0; .n � h � 1/T1�!M;

O� W Œ0; 1�!M;

(6.3)

for some natural number h D h.�/ � n � 1 and for some real number s D s.�/ 2

Œ0; 1�. For other values of � 2 Œ0; 1� the form of the curve is different, because the
first loop �0 has still to be transported to �1, or all the loops have been transported
to �n1 and there is still to eliminate the curves � and O� . See [5, proof of Theorem 1]
for the precise construction.

Notice that here we never reparametrize the curves, we just juxtapose them
by shifting their original parametrization. The free period action functional S� is
additive with respect to such a way of juxtaposing curves, therefore the action of the
curve v.�/ defined by (6.3) is

S�
�
v.�/

�
D hS�.�0/C S�.� jŒ0;s�/C S�.
s/C .n � h � 1/S�.�1/C S�. O�/:

This quantity can be bounded from above by

S�
�
v.�/

�
� n maxfS�.�0/;S�.�1/g C A;

where the number

A WD �minfS�.�0/;S�.�1/g C max
s2Œ0;1�

S�.� jŒ0;s�/C S�. O�/C max
s2Œ0;1�

S�.
s/

does not depend on n. The thesis follows.

Let us consider again the case �� 2 P . Fix a number �� 2 I such that �� > ��.
If we apply the above lemma to �0 D ˛�� , �1 D � and � D ��, by (6.1) we can
find an integer n0 such that

pn.�
�/ < 0 8n � n0:

By the monotonicity of pn, we deduce that, up to the replacement of I by the interval
I \ .0; ��/, we may assume that

pn.�/ < 0 8� 2 I;8n � n0:
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Since ˛n0�� is a strict local minimizer of S�� , by Lemma 5.3 we can find a bounded
neighborhood U �M of T � ˛n0�� which does not contain �n0 and such that

inf
@U

S�� > S��.˛n0�� /:

Since S� ! S�� uniformly on bounded sets for � ! ��, up to reducing the interval
I even more we may assume that

inf
@U

S� > S�.˛n0�� /; 8� 2 I:

Since any path belonging to Pn0 must cross @U , the above inequality implies that

pn0.�/ > S�.˛n0�� /; 8� 2 I: (6.4)

Recalling also (6.1), we have proved the following:
Lemma 6.3. For any �� 2 P there is a natural number n0 and an open interval
I � .0; cu/ containing �� such that

S�.�n0/ < S�.˛n0�� / < pn0.�/ < 0

for every � in I .
Now let �� 2 Q. Applying Lemma 6.2 to � D ��, for some �� 2 I , �� > ��,

�0 D Q̨�� and �1 D �, by (6.2) we have

lim
n!1

qn.�
�/ D �1:

Since qn is increasing, up to the replacement of I with the interval I \ .0; ��/ we
may assume that

lim
n!1

qn.�/ D �1 uniformly in � 2 I; (6.5)

and in particular there exists an integer n0 � 1 such that

qn.�/ < 0 8� 2 I; 8n � n0:

Let � 2 I . Since Q̨� is a strict local minimizer, Lemma 4.1 implies that Q̨n� is a strict
local minimizer for every n 2 N. Therefore

qn.�/ > S�. Q̨n� / 8� 2 I; 8n 2 N:

Notice that here, unlike in (6.4), the strict inequality between the minimax value and
the value of the functional on one end-point of the paths in the mountain pass class
holds for every n and every � 2 I . In (6.4) instead, enlarging the set of n for which
the inequality is strict may force to reduce the interval I . Recalling also (6.2), we
have proved the following:
Lemma 6.4. Let �� 2 Q. Then there is a natural number n0 and an open interval
I � .0; cu/ containing �� such that

S�.�n/ < S�. Q̨n� / < qn.�/ < 0

for every � in I and every n � n0.
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7. The monotonicity argument

The following lemma uses Struwe’s monotonicity argument [27] (see also [11,
Proposition 7.1] for an application of this argument to the free period action
functional) and replaces the classical deformation lemma.

Lemma 7.1. Let �� 2 P (resp. �� 2 Q). Let n0 and I be as in Lemma 6.3 (resp.
6.4). Let N� 2 I be a point where the function

c.�/ WD pn0.�/ (resp. c.�/ WD qn.�/ for some n � n0)

has a linear modulus of right-continuity, that is there exist ı > 0 and M > 0 such
that

c.�/ � c. N�/ �M.� � N�/; 8� 2 Œ N�; N� C ı/ � I: (7.1)

Then for every open neihborhood U of the set

crit S N� \ fS N� D c. N�/g

there exists an element v of Pn0 (resp. of Qn. N�/) such that

v.Œ0; 1�/ � fS N� < c. N�/g [ U :

Proof. Let .�h/ � I be a strictly decreasing sequence which converges to N�, and set
�h WD �h � N� # 0. We pick uh in Pn0 (resp. in Qn.�h/) such that

max
�2Œ0;1�

S�h
�
uh.�/

�
� c.�h/C �h:

Let 
 D .x; T / 2 uh.Œ0; 1�/ be such that S N�.
/ > c. N�/ � �h. Since N� satisfies (7.1),
we have

T D
S�h.
/ � S N�.
/

�h � N�
�
c.�h/C �h � c. N�/C �h

�h
�M C 2:

Moreover,

S N�.
/ � S�h.
/ � c.�h/C �h � c. N�/C .M C 1/�h:

By the above considerations,

uh
�
Œ0; 1�

�
� Ah [

˚
S N� � c. N�/ � �h

	
; (7.2)

where

Ah WD
˚
.x; T / 2M

ˇ̌
T �M C 2 and S N�.x; T / � c. N�/C .M C 1/�h

	
:

The estimate

S N�.x; T / D
1

2T

Z
T
j Px.s/j2 ds C

Z
T
x�.�/C N�T �

1

2T
k Pxk2

L2
� k�k1k PxkL2
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implies that the set Ah is bounded in M, uniformly in h. Set

A0 WD S N�.˛n0�� / in the case �� 2 P;

A0 WD S N�. Q̨nN� / in the case �� 2 Q:

By Lemmata 6.3 and 6.4 we can find numbers A1; A2; A3; A4 such that

A0 < A1 < A2 < c. N�/ < A3 < A4 < 0:

In the case �� 2 P we have uh.0/ D ˛
n0
�� and uh.1/ D �n0 , so Lemma 6.3 implies

that
S N�.uh.0// D A0 < A1; S N�.uh.1// < A0 < A1: (7.3)

In the case �� 2 Q the left-hand point of uh is instead Q̨n�h , but the continuity of
� 7! Q̨n� guarantees the existence of � > 0 such that

S N�. Q̨�/ < A1 8� 2 . N� � �; N� C �/; (7.4)

so also in this case

S N�.uh.0// < A1; S N�.uh.1// < A0 < A1; (7.5)

for h large enough.
Let � be the flow of the vector field obtained by multiplying �rS N� by a suitable

non-negative function, whose role is to make the vector field bounded on M,
vanishing on

fS N� � A1g [ fS N� � A4g;

while keeping the uniform decrease condition

d

dr
S N�
�
�r.z/

�
� �min

˚
kdS N�.�r.z//k2; 1

	
; if A2 � S N�.�r.z// � A3: (7.6)

Then � is well-defined on Œ0;C1Œ�M: the only source of non-completeness is T
going to 0, which by Lemma 5.1 happens only for negative-gradient flow lines for
which the action tends to 0; but we have made the vector field vanish near level 0.
Since S N� decreases along the flow lines and � maps bounded sets into bounded sets,
we have from (7.2)

�.Œ0; 1� � uh.Œ0; 1�// � Bh [
˚
S N� � c. N�/ � �h

	
; (7.7)

for some uniformly bounded set

Bh �
˚
S N� � c. N�/C .M C 1/�h

	
: (7.8)

Let B �M be a bounded closed set which contains Bh for every h 2 N. Since the
Palais–Smale condition holds on bounded sets (Lemma 5.2), the set

K WD B \ crit S N� \ fS N� D c. N�/g
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is compact. The open set U is in particular a neighborhood of K. Since K consists
of fixed points of the flow �, we can find an open neighoborhood V � U of K such
that

�.Œ0; 1� � V/ � U : (7.9)

Since S N� satisfies the Palais–Smale condition on B, we can find � > 0 and 0 < ı � 1
such that

kdS N�.
/k � ı 8
 2 .B n V/ \ fc. N�/ � � � S N� � c. N�/C �g: (7.10)

By (7.7) and (7.8), for every .r; �/ 2 Œ0; 1� � Œ0; 1� and every h 2 N there holds

�r.uh.�// �
�
B \ fS N� � c. N�/C .M C 1/�hg

�
[ fS N� < c. N�/g: (7.11)

Let � 2 Œ0; 1� be such that

S N�.�1.uh.�/// � c. N�/ and �1.uh.�// … U : (7.12)

By (7.9), �r.uh.�// cannot belong to V for any r 2 Œ0; 1�, and together with (7.11)
and the fact that S N� decreases along the orbits of �, we obtain

�.Œ0; 1� � fuh.�/g/ � .B n V/ \ fc. N�/ � S N� � c. N�/C .M C 1/�hg:

If h is so large that .M C 1/�h � �, (7.10) implies that

kdS N�.�r.uh.�///k � ı 8r 2 Œ0; 1�;

so by (7.6)

c. N�/ � S N�.�1.uh.�/// D S N�.�0.uh.�///C
Z 1

0

d

dr
S N�.�r.uh.�/// dr

� c. N�/C .M C 1/�h � ı
2:

The above inequality implies that �h � ı2=.M C 1/. Since .�h/ is infinitesimal, this
gives us an upper bound on h: when h is larger than this upper bound, then there
cannot be any � 2 Œ0; 1� such that (7.12) holds. For such a large h we must hence
have

�1.uh.�// 2 fS N� < c. N�/g [ U 8� 2 Œ0; 1�: (7.13)

Let h be a large natural number, so that (7.13) holds. In the case �� 2 Q we also
require h to be so large that �h < N� C �, where � is the positive constant appearing
in (7.4). In the case �� 2 P we define

v WD �1 ı uh;

and we observe that, since the flow � fixes the points in fS N� � A1g, (7.3) implies
that v belongs to Pn.
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In the case �� 2 Q the end points of the path uh 2 Qn.�h/ are also fixed by the
flow � because of (7.5), and we obtain an element of Qn. N�/ by setting

v.�/ WD

(
Q̨ N�C2�.�h�N�/ for 0 � � � 1=2;
�1.uh.2� � 1// for 1=2 < � � 1:

Since for � 2 Œ N�; �h�
S N�. Q̨�/ < A1 < c. N�/

by (7.4), we conclude that in both cases

v.Œ0; 1�/ � fS N� < c. N�/g [ U :

8. The proof of the Theorem

Lemma 7.1 has the following consequence, where we incorporate a result about the
nature of the set of critical points found by a mountain pass minimax which, under
the assumption that the Palais–Smale condition holds, is due to H. Hofer (see [15]
and [16]).

Lemma 8.1. Let �� 2 P (resp. �� 2 Q). Let n0 and I be as in Lemma 6.3 (resp.
6.4). Then for almost every N� in I the number c WD pn0. N�/ (resp. c WD qn. N�/ for
any n � n0) is a critical value of S N� . Furthermore, every open neighborhood U of

crit S N� \ fS N� D cg

has a connected component U0 such that the set

U0 \ fS N� < cg

is non-empty and not connected. In particular, there is a critical point ˇ of S N� of
action S N�.ˇ/ D c which is not a strict local minimizer. If such a ˇ is transversally
non-degenerate then it has Morse index 1.

Proof. Let J � I be the set of points at which pn0 is differentiable (resp. qn is
differentiable for every n � n0). Since pn0 (resp. qn) is a monotone function, J
has full measure in I (in the case �� 2 Q we also use the fact that a countable
intersection of sets of full measure has full measure).

Let N� 2 J . Then c D pn0. N�/ (resp. c D qn. N�/ for some n � n0) is a critical
value of S N� : if not we can take U D ; in Lemma 7.1 and we find v in Pn0 (resp.
Qn. N�/) such that

v.Œ0; 1�/ � fS N� < cg;

thus contradicting the definition of c D pn. N�/ (resp. c D qn. N�/).
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Now let U be an open neighborhood of

crit S N� \ fS N� D cg

and assume by contradiction that for each connected component U0 of U the open
set

U0 \ fS N� < cg
is either empty or connected. By Lemma 7.1 we can find v in Pn0 (resp. Qn. N�/)
such that

v.Œ0; 1�/ � fS N� < cg [ U :
Consider the open set

U WD v�1.U/ � Œ0; 1�:
Since S N� ı v < c on the compact set I n U , we have

max
InU

S N� ı v < c:

Since the function S N� ı v is uniformly continuous on Œ0; 1�, we can find a positive
number ı such that if U0 is a connected component of U with length less than ı then
S N� ı v < c on U0. Therefore, there are at most finitely many connected components
U1; U2; : : : ; Uk of U where the supremum of S N� ı v is at least c. Then we can find
numbers

0 < a1 < b1 < a2 < b2 < � � � < ak < bk < 1

such that
Œaj ; bj � � Uj 8j D 1; 2; : : : ; k

and
max

Œ0;1�n
Sk
jD1.aj ;bj /

S N� ı v < c:

Since v.aj / and v.bj / belong to the same connected component of U , our
assumption implies that there exists a continuous path vj W Œaj ; bj � ! M such
that vj .aj / D v.aj /, vj .bj / D v.bj /, and

vj .Œaj ; bj �/ � U \ fS N� < cg:

Therefore the path

w.�/ WD

(
v.�/ for � 2 Œ0; 1� n

Sk
jD1.aj ; bj /

vj .�/ for � 2 Œaj ; bj �; j D 1; 2; : : : ; k;

is in Pn0 (resp. Qn. N�/) and satifies

max
Œ0;1�

S N� ı w < c:
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This contradicts the definition of c D pn. N�/ (resp. c D qn. N�/) and implies that there
is at least one component of U whose intersection with fS N� < cg is non-empty and
not connected.

In particular, crit S N� \ fS N� D cg contains a point ˇ which not a strict local
minimizer: if this set consists of strict local minimizers, then it has an open
neighborhood U such that U \ fS N� < cg is empty.

When ˇ is transversally non-degenerate, the connected component of crit S N� \
fS N� D cg containing ˇ is of the form T � ˇ, and the Morse–Bott Lemma implies that
this component consists of critical points of Morse index 1: Morse–Bott components
of index zero have neighborhoods U0 such that U0 \ fS N� < cg is empty, while
Morse–Bott components of index larger than one have neighborhoods U0 such that
U0 \ fS N� < cg is connected.

Remark 8.2. Since the Morse index of ˇ is one if it is transversally non-degenerate,
Proposition 2.3 implies that the eigenvalues �; 1=� of the linearized Poincaré map
P of the closed magnetic geodesic ˇ are either on the unit circle (that is, ˇ is non-
hyperbolic), or in .�1; 0/ n f�1g (ˇ is odd hyperbolic).

Let R � .0; cu/ be the set of values � for which the energy level E�1.�/ is
non-degenerate. Notice that

R � Q � P � .0; cu/:

The above lemma, together with known results, has the following consequence:

Lemma 8.3. Let � be an energy level in .0; cu/. Then:

(i) if � 2 P c D .0; cu/ n P then there are infinitely many closed magnetic
geodesics of energy �;

(ii) every � 2 P is contained in an open interval I.�/ � .0; cu/ in which there is a
set I0.�/ of full measure such that for every �0 2 I0.�/ there are at least three
closed magnetic geodesics of energy �0;

(iii) every � 2 Q is contained in an open interval J.�/ � .0; cu/ in which there is a
set J0.�/ of full measure such that for every �0 2 J0.�/\R there are infinitely
many closed magnetic geodesics of energy �0.

Proof.
(i) If � 2 P c , then the local minimizer ˛� is not strict, hence S� has a sequence

of local minimizers in M n T � ˛� which converges to ˛� . In particular, there are
infinitely many closed magnetic geodesics of energy �, proving (i).

(ii) G. Contreras has proved in [11] that for almost every � in .0; cu/ there exists
a closed contractible orbit 
� with energy � and positive S�-action (for more general
systems on arbitrary compact configuration spaces, of any dimension). In particular,

� is geometrically distinct from ˛� , all of whose iterates have negative S�-action.
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By Lemma 8.1, � 2 P is contained in an open interval I.�/ � .0; cu/ such that
for almost every �0 2 I.�/ the functional S�0 has a critical point ˇ with action
S�0.ˇ/ D pn0.�0/ < 0 which is not a strict local minimizer. In the case �0 2 P c ,
there are infinitely many closed magnetic geodesics of energy �0 by (i). In the case
�0 2 P , the closed magnetic geodesic ˇ cannot coincide with an iterate of ˛�0 ,
because all such iterates are strict local minimizers. Moreover, it cannot coincide
with an iterate of 
�0 because these iterates have positive S�0-action. Therefore for
almost every �0 2 I.�/ there are at least three geometrically distinct closed magnetic
geodesics of energy �0.

(iii) By Lemma 8.1, � 2 Q is contained in an open interval J.�/ � .0; cu/

which has a subset J0.�/ of full measure with the following property: for every
�0 2 J0.�/ \ R and every n � n0 the functional S�0 has a critical point ˇ�0;n of
action S�0.ˇ�0;n/ D qn.�0/ and Morse index i.ˇ�0;n/ D 1. We claim that the closed
magnetic geodesics ˇ�0;n, n � n0, cannot be the iterates of only finitely many closed
magnetic geodesics. Indeed, if by contradiction this is the case, we can find a closed
magnetic geodesic ˇ and a sequence of integers .mh/, mh � n0 and mh ! C1,
such that ˇ�0;mh is the iterate ˇkh , for some sequence of integers kh � 1. Since the
sequence

qmh.�0/ D S�0.ˇ�0;mh/ D kh S�0.ˇ/

tends to �1 (see (6.5)), the sequence .kh/ must diverge to C1. Therefore, ˇ has
mean index zero:

b{.ˇ/ D lim
h!1

i.ˇkh/

kh
D lim
h!1

i.ˇ�0;mh/

kh
D lim
h!1

1

kh
D 0:

On the other hand, Theorem 2.2 implies that ˇ�0;mh has positive mean index, and
hence b{.ˇ/ D 1

kh
b{.ˇ�0;mh/ > 0:

This contradiction proves that the set
˚
ˇ�0;n j n � n0

	
consists of infinitely many

geometrically distinct closed magnetic geodesics of energy �0.

Proof of the Theorem. The Theorem stated in the Introduction follows from Lemma
8.3 purely by set- and measure-theoretic arguments. Indeed, for every � 2 P let
I.�/ and I0.�/ be as in Lemma 8.3 (ii). Since the topology of R admits a countable
basis, there exists an at most countable subset P0 of P such that

P �
[
�2P0

I.�/: (8.1)
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By Lemma 8.3 (i) and (ii), the energy level E�1.�/ admits at least three magnetic
geodesics whenever � belongs to the set

K3 WD P
c
[

[
k2P

I0.�/;

where P c denotes the complement of P in .0; cu/. We must show that the above set
has full measure in .0; cu/, that is, that its complement

P \
�[
k2P

I0.�/
�c

has measure zero. By (8.1), the above set is contained in� [
�2P0

I.�/
�
\

�[
k2P

I0.�/
�c
;

which is clearly contained in [
�2P0

�
I.�/ n I0.�/

�
:

The above set has measure zero, being an at most countable union of sets with
measure zero. This proves that K3 has full measure in .0; cu/.

Now let J.�/ and J0.�/ be the sets given by Lemma 8.3 (iii), and letQ0 be an at
most countable subset of Q such that

R � Q �
[
�2Q0

J.�/: (8.2)

By Lemma 8.3 (iii) the energy level E�1.�/ admits infinitely many magnetic
geodesics whenever � belongs to the set

K1 WD
[
k2Q

�
J0.�/ \R

�
� R:

We must prove that K1 has full measure in R, that is, that R n K1 has measure
zero. We have the inclusion

R nK1 D R n
[
k2Q

�
J0.�/ \R

�
� R n

[
k2Q0

J0.�/;

from which, together with (8.2), we obtain

R nK1 �
� [
�2Q0

J.�/
�
n

� [
k2Q0

J0.�/
�
�

[
�2Q0

�
J.�/ n J0.�/

�
:

Therefore, R nK1 has measure zero.
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We conclude that the set

K WD K3 \ .R
c
[K1/ � .0; cu/

satisfies the requirements of the Theorem. Indeed, K has full measure in .0; cu/
because Kc3 and

.Rc [K1/
c
D R \Kc1 D R nK1

have measure zero. Being a subset ofK3,K consists of energy levels for which there
are at least three closed magnetic geodesics. From the inclusion

R \K � R \ .Rc [K1/ D R \K1 D K1

it follows that for every energy level in R \ K there are infinitely many closed
magnetic geodesics.

A. The second differential of the free period action functional

In this appendix we characterize the kernel of d2S�.x; T /. In particular, we show
that a periodic orbit .x; T / is transversally non-degenerate if and only if the kernel
of d2S�.x; T / is one-dimensional (that is, spanned by the vector .x0; 0/).

For our purposes it suffices to assume that M D Rn and � D 0 is a regular
energy level (hence orbits with energy zero are non-constant). The free period action
functional is denoted simply by S, while ST denotes the action functional on the
space of T -periodic curves.

The critical points of ST are the T -periodic solutions of the Euler–Lagrange
equation

d

dt
Lv.
; P
/ D Lq.
; P
/

associated to L, and its second differential at a critical point 
 has the form

d2ST .
/Œ�; �� D
Z T

0

�
Lvv.
; P
/Œ P�; P��C Lvq.
; P
/Œ P�; ��

C Lqv.
; P
/Œ�; P��C Lqq.
; P
/Œ�; ��
�
dt;

where �; � 2 H 1.R=TZ;Rn/. Integration by parts and the fundamental lemma of
the calculus of variations show that a curve � is in the kernel of d2ST .
/ if and only
if it is a (smooth) T -periodic solution of the linear equation

D.
/� D 0;
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where D.
/ is the linear second order differential operator which is obtained by
linearizing the Euler–Lagrange equation along 
 :

D.
/ WD d

dt

�
Lvv.
; P
/

d

dt
C Lqv.
; P
/

�
� Lvq.
; P
/

d

dt
� Lqq.
; P
/:

The fact that the energy

E.q; v/ WD Lv.q; v/Œv� � L.q; v/

is a first integral of the Euler–Lagrange equation implies that also the linear equation
D.
/� D 0 has a first integral:

Lemma A.1. If � 2 C1.R;Rn/ is a solution of D.
/� D 0, then

dE.
; P
/Œ.�; P�/� D const:

Proof. By multiplying the equation D.
/� D 0 by P
 , we obtain

d

dt

�
Lvv.
; P
/ P� C Lqv.
; P
/�

�
� P
 D Lvq.
; P
/Œ P�; P
�C Lqq.
; P
/Œ�; P
�: (A.1)

By differentiating the function

dE.
; P
/Œ.�; P�/� D Eq.
; P
/Œ��CEv.
; P
/Œ P��

D Lqv.
; P
/Œ�; P
� � Lq.
; P
/Œ��C Lvv.
; P
/Œ P�; P
�

with respect to the time variable, we get

d

dt
dE.
; P
/Œ.�; P�/� D

d

dt

�
Lvv.
; P
/ P� C Lqv.
; P
/�

�
� P


C Lvv.
; P
/Œ P�; R
� � Lqq.
; P
/Œ P
; �� � Lq.
; P
/Œ P��:

Together with (A.1) we find

d

dt
dE.
; P
/Œ.�; P�/� D Lvq.
; P
/Œ P�; P
�C Lvv.
; P
/Œ P�; R
� � Lq.
; P
/Œ P��

D
�
Lvv.
; P
/ R
 C Lvq.
; P
/ P
 � Lq.
; P
/

�
� P�:

The latter term vanishes because 
 is a solution of the Euler–Lagrange equation.

We now compute the second differential of the free period action functional S at a
critical point 
 D .x; T / along a pair of variations .u; �/; .w; �/ 2 H 1.T;Rn/�R.
If we set

�.t/ WD u.t=T /; �.t/ WD v.t=T /;
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we find

d2S.x; T /Œ.u; �/; .w; �/� D d2ST .
/Œ�; ��C
��

T 2

Z T

0

Lvv.
; P
/Œ P
�
2 dt

C
�

T

Z T

0

�
Lq.
; P
/Œ�� � Lvq.
; P
/Œ P
; �� � Lvv.
; P
/Œ P
; P��

�
dt

C
�

T

Z T

0

�
Lq.
; P
/Œ�� � Lvq.
; P
/Œ P
; �� � Lvv.
; P
/Œ P
; P��

�
dt:

By using the energy, the expression for d2S.x; T / can be simplified as

d2S.x; T /Œ.u; �/; .w; �/� D d2ST .
/Œ�; ��C
��

T 2

Z T

0

Lvv.
; P
/Œ P
�
2 dt

�
�

T

Z T

0

dE.
; P
/Œ.�; P�/� dt �
�

T

Z T

0

dE.
; P
/Œ.�; P�/� dt:

Let us determine the kernel of d2S.x; T /. An element .u; �/ belong to this kernel if
and only if

d2S.x; T /Œ.u; �/; .0; �/� D 0 8� 2 R;
and

d2S.x; T /Œ.u; �/; .w; 0/� D 0 8w 2 H 1.T;Rn/:
The first condition is equivalent to

�

T

Z T

0

Lvv.
; P
/Œ P
�
2 dt D

Z T

0

dE.
; P
/Œ.�; P�/� dt:

Since the first integral is positive (we are assuming that 
 is a non-constant periodic
solution), the above equation tells us that � is uniquely determined by � as

� D T

R T
0
dE.
; P
/Œ.�; P�/� dtR T

0
Lvv.
; P
/Œ P
�2 dt

:

Integration by parts and the fundamental lemma of the calculus of variations imply
that the second condition is equivalent to

D.
/� D �

T

�
d

dt
Ev.
; P
/ �Eq.
; P
/

�
:

Therefore, we have proved that an element .u; �/ 2 H 1.T;Rn/ � R belongs to the
kernel of d2S.x; T / if and only if the curve �.t/ WD u.t=T / is a (smooth) T -periodic
solution of the linear equation

D.
/� D
R T
0
dE.
; P
/Œ.�; P�/� dtR T

0
Lvv.
; P
/Œ P
�2 dt

�
d

dt
Ev.
; P
/ �Eq.
; P
/

�
; (A.2)
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and � is given by

� D T

R T
0
dE.
; P
/Œ.�; P�/� dtR T

0
Lvv.
; P
/Œ P
�2 dt

: (A.3)

It is useful to simplify this characterisation of the elements of the kernel of
d2S.x; T /. We start by observing that D.
/ P
 D 0 and that the identity

D.
/Œt P
� D tD.
/ P
 C Lvv.
; P
/ R
 C
d

dt
.Lvv.
; P
/ P
/

D
d

dt
Ev.
; P
/ �Eq.
; P
/

(A.4)

holds.
Assume that .u; �/ is an element of the kernel of d2S.x; T /, and set �.t/ WD u.t=T /.

We define � 2 C1.R;Rn/ as

�.t/ WD �.t/ �
�

T
t P
.t/ 8t 2 R:

Notice that
�.t C T / D �.t/ � � P
.t/ 8t 2 R:

Since � and � satisfy (A.2) and (A.3), � solves the equation

D.
/� D D.
/� � �
T
D.
/Œt P
� D 0;

because of (A.4). Moreover

dE.
; P
/Œ.�; P�/� D dE.
; P
/Œ.�; P�/� �
�

T
.tdE.
; P
/Œ. P
; R
/�CEv.
; P
/Œ P
�/ :

By integrating this identity over Œ0; T � and by using (A.3), we obtainZ T

0

dE.
; P
/Œ.�; P�/� dt

D
�

T

Z T

0

Lvv.
; P
/Œ P
�
2 dt �

�

T

Z T

0

�
t
d

dt
E.
; P
/CEv.
; P
/Œ P
�

�
dt

D
�

T

Z T

0

Lvv.
; P
/Œ P
�
2 dt �

�

T

Z T

0

Ev.
; P
/Œ P
� dt;

where we have integrated by parts and used the fact that E.
; P
/ D 0. Since

Ev.
; P
/Œ P
� D Lvv.
; P
/Œ P
�
2;

the integral of dE.
; P
/Œ.�; P�/� over Œ0; T � vanishes. Since this function is constant
by Lemma A.1, we conclude that

dE.
; P
/Œ.�; P�/� D 0:



190 A. Abbondandolo, L. Macarini and G.P. Paternain CMH

Conversely, assume that � 2 C1.R;Rn/ is a solution of D.
/� D 0 such that

�.t C T / D �.t/ � � P
.t/ 8t 2 R;

for some � 2 R, and
dE.
; P
/Œ.�; P�/� D 0:

Then the above computations show that the T -periodic curve

�.t/ WD �.t/C
�

T
t P
.t/

satisfies (A.2) and (A.3). We can summarize the above discussion into the following:

Lemma A.2. The kernel of d2S.x; T / is isomorphic to the vector space

Z WD
˚
� 2 C1.R;Rn/

ˇ̌
D.
/� D 0; dE.
; P
/Œ.�; P�/� D 0;
9� 2 R such that �.t C T / D �.t/ � � P
.t/ 8t 2 R

	
:

The isomorphism is given by the map

.u; �/ 7! �.t/ WD u.t=T / �
�

T 2
t Px.t=T /:

The non-vanishing vector . Px; 0/ always belongs to the kernel of d2S.x; T /. The
line R. Px; 0/ corresponds, by means of the above isomorphism, to the line R P
 .

Let 't be the Euler–Lagrange flow on Rn � Rn which is induced by L. This
flow preserves the hypersurface E�1.0/, and the point .
.0/; P
.0// is a fixed point
of 'T . Therefore, the linear mapping d'T .
.0/; P
.0// maps the linear space
T.
.0/; P
.0//E

�1.0/ onto itself. Moreover,

. P
.0/; R
.0// 2 T.
.0/; P
.0//E
�1.0/

is an eigenvector with eigenvalue one of d'T .
.0/; P
.0//. The induced quotient
mapping

P W
T.
.0/; P
.0//E

�1.0/

R. P
.0/; R
.0//
�!

T.
.0/; P
.0//E
�1.0/

R. P
.0/; R
.0//
is the linearized Poincaré map associated with the T -periodic orbit 
 . The orbit 
 is
said to be transversally non-degenerate if P does not have the eigenvalue one.

Proposition A.3. There is an isomorphism

ker d2S.x; T /
R. Px; 0/

Š ker.P � I /:

In particular, 
 is transversally non-degenerate if and only if the kernel of d2S.x; T /
is one-dimensional (and hence spanned by . Px; 0/).
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Proof. Thanks to Lemma A.2, it is enough to construct an isomorphism

Z
R P

Š ker.P � I /:

By Lemma A.1, by the existence and uniqueness of the solution of the Cauchy
problem associated to D.
/, and by the T -periodicity of the coefficients of D.
/,
the evaluation

� 7! .�.0/; P�.0//

maps Z isomorphically onto the space of pairs .a; b/ 2 Rn � Rn such that .a; b/ 2
T.
.0/; P
.0//E

�1.0/ and

d'T .
.0/; P
.0//Œ.a; b/� � .a; b/ 2 R. P
.0/; R
.0//:

Taking the quotient by R P
 we obtain an isomorphism onto ker.P � I /.
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