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The Yang–Mills ˛-flow in vector bundles over four manifolds
and its applications
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Abstract. In this paper we introduce an ˛-flow for the Yang–Mills functional in vector bundles
over four dimensional Riemannian manifolds, and establish global existence of a unique smooth
solution to the ˛-flow with smooth initial value. We prove that the limit of the solutions of the
˛-flow as ˛ ! 1 is a weak solution to the Yang–Mills flow. By an application of the ˛-flow,
we then follow the idea of Sacks and Uhlenbeck [22] to prove some existence results for Yang–
Mills connections and improve the minimizing result of the Yang–Mills functional of Sedlacek
[26].
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1. Introduction

Suppose thatM is a connected compact four dimensional Riemannian manifold and
E is a vector bundle over M . For each connection DA, the Yang–Mills functional is
defined by

YM.AIM/ D

Z
M

jFAj
2 dv;

where FA is the curvature of DA. In a local trivialization, we can express DA as
d C A, where A 2 �.EndE ˝ T �M/ is the connection matrix.

We say that a connectionDA is a Yang–Mills connection if it is a critical point of
the Yang–Mills functional; i.e. DA satisfies the Yang–Mills equation

D�AFA D 0 : (1.1)

Yang–Mills equations originated from the theory of classical fields in particle
physics. It turns out that Yang–Mills theory has substantial applications in pure
mathematics, especially in dimension 4. In [3], Atiyah, Hitchin, Drinfel’d and
Manin established the fundamental existence result of instantons on S4. Uhlenbeck
[33, 34] established important analytic theorems for Yang–Mills connections on
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4-manifolds. Donaldson [7] successfully applied the Yang–Mills theory to four
dimensional geometric topology.

The Yang–Mills equation is a typical example of partial differential equations
involving gauge invariant of a group action. Besides its applications to geometry and
topology, the study of the existence of Yang–Mills connections is very interesting in
itself. Motivated by the seminal work of Eells–Sampson [10] on harmonic maps,
Atiyah and Bott [2] suggested to use the method of the Yang–Mills flow to establish
the existence of Yang–Mills connections. The Yang–Mills flow equation is

@DA

@t
D �D�AFA; (1.2)

with initial condition DA.0/ D D0, where D0 is a given smooth connection on
E. In [8], Donaldson used the Yang–Mills flow to establish the important result
that an irreducible holomorphic vector bundle E over a compact Kähler surface X
admits a unique Hermitian-Einstein connection if and only if it is stable. Without the
holomorphic structure of the bundleE, it is still open whether the Yang–Mills flow in
four dimensional manifolds develop a singularity in finite time. Struwe [30] proved
the existence of the weak solution to the Yang–Mills flow in vector bundles on four
manifolds, where the weak solution is regular away from finitely many singularities
in M � .0;1/. Schlatter [24] gave the details for the blow-up analysis at each
singular point and the longtime behaviour of the Yang–Mills flow in dimension four.
If the Yang–Mills flow blows up at a finite time T > 0, the weak solution constructed
by Struwe [30] after the time T lies on the new vector bundle QE, which might have
different second Chern number from the original bundle E.

The Yang–Mills functional in dimension four is conformally invariant, which is
similar to the conformal invariance of the Dirichlet energy of maps in dimension
two, so there are general expectations that those results, which hold for harmonic
maps from surfaces, should remain true in some sense for Yang–Mills connections
in dimension four, if the gauge invariance problem is treated properly. In their
celebrated paper [22], Sacks and Uhlenbeck proposed to study the perturbed energy
of a map u from M to N

E˛.u/ D

Z
M

.1C jduj2/˛dv:

For ˛ > 1, the functional E˛.u/ satisfies the Palais–Smale condition and therefore
it is not difficult to find critical points of E˛ . They then analyzed the limit of the
critical points when ˛ goes to 1. In spite of the possible blow-up phenomena, several
interesting applications concerning the existence of harmonic maps were made. One
of the major goals of this paper is to develop a parallel theory for the Yang–Mills
functional in dimension four. Namely, we introduce the Yang–Mills ˛-functional

YM˛.A/ D

Z
M

.1C jFAj
2/˛dv:
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The Euler–Lagrange equation for the functional YM˛ is

D�A

�
.1C jFAj

2/˛�1FA

�
D 0: (1.3)

A solution to the Yang–Mills ˛-equation (1.3) is called a Yang–Mills ˛-connection.
In order to show the existence of smooth ˛-connections, one maybe check the Palais–
Smale condition for YM˛ and then prove the regularity of the weak solution of (1.3).
Instead, in this paper we introduce the Yang–Mills ˛-flow

@A

@t
D �D�AFA C .˛ � 1/

�.d jFAj
2
^ �FA/

1C jFAj
2

(1.4)

with initial condition A.0/ D A0. Then we apply the Yang–Mills ˛-flow to deform
any given connection to a smooth Yang–Mills ˛-connection. More precisely, we
prove

Theorem 1.1. For a given smooth connection A0, there exists a unique global
smooth solution A˛.x; t/ to the evolution problem (1.4) in M � Œ0;1/ for ˛ � 1
sufficiently small. Moreover, for any ti !1, by passing to a subsequence, A˛.�; ti /
converges up to transformations to a limiting connection A1˛ in C k.M/ for any
k � 1, and the connection A1˛ is a smooth solution of (1.3).

Remark. Recently, L. Schabrun [23] proved that the solution of the Yang–Mills ˛-
flow converges to a unique limit A1˛ as t !1.

To prove the global existence of the smooth solution of the Yang–Mills ˛-flow
is not easy since the Yang–Mills ˛-flow is not parabolic. For the local existence of
the flow, we modify an idea of Donaldson [8] to study a equivalent flow. The main
difficulty in proving the global existence is to establish the local solution of the flow
for a fixed time t0 depending on initial values (see Theorem 2.4). Due to the energy
inequality, the Yang–Mills energy of the solution to the ˛-flow does not concentrate
at any time T > 0 for each fixed ˛ > 1. However, we cannot follow the same
proof of Struwe in [29] to control the norm H 2 of the curvature F since the extra
terms

R
M
jrF j4 dv and

R
M
jF j4 dv come out due to the complexity of the ˛-flow.

Instead, we work on the gauge-equivalent flow and prove that for any t > 0, the
Yang–Mills ˛-flow has a smooth solution inM � Œt; t C t0� for a fixed t0 > 0, which
depends on YM˛.A˛/, so that we can extend the smooth solution toM � Œ0;1/ (see
Theorem 2.3).

Following an idea from [17], we apply the Yang–Mills ˛-flow to obtain a new
proof of the existence of a weak solution of the Yang–Mills flow, which might be
a different global weak solution from the one obtained by Struwe in [30], as in the
following.

Theorem 1.2. Let A˛ be the smooth solution of the Yang–Mills ˛-flow with the
same initial condition A0 for each ˛ > 1. Then, there is a closed singularity set
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† � M � .0;1/ with finite 2-dimensional parabolic Hausdorff measure such that
†t D †\.M �ftg/ is at most a finite set for any t . There is a smooth bundle QE over
M � Œ0;1/ n† with QEjM�f0g isomorphic to E and a smooth connection A1.t/ on
QEjM�ftgn†t such that (1) A1.t/ is a solution of the Yang–Mills flow; (2) for each

compact set K � M � Œ0;1/ n†, there are gauge transformations �˛ over K with
��˛A˛ converging smoothly to A1 over K as ˛ ! 1.

To prove Theorem 1.2, we establish a Bochner type estimate uniformly in ˛ and a
local parabolic monotonicity formula for the Yang–Mills ˛-flow, which is similar to
one in [29] and [16]. Then we follow an idea of Schoen [25] (also see [29]) to obtain
a uniform estimate on jFA˛ j in ˛. However, there is a technical difficulty that we do
not have Bochner formulas for higher order derivatives of FA˛ , so we cannot apply
the Moser estimate to obtain the unform estimates of higher order derivatives of FA˛ .
To overcome this difficulty, we obtain the uniform Sobolev norms of rkA˛FA˛ for all
integers k � 1 by using the equation of FA˛ (see Lemma 3.6).

With the analytic tools developed in the proof of the previous two theorems, we
investigate further applications of the ˛-flow. It is not hard to establish an "-regularity
result for studying the blow-up of a sequence of Yang–Mills ˛-connections. When
a blow-up phenomenon happens, we will study the change of the topology of the
bundle. More precisely, the original bundle E, on which the blow-up sequence lies,
is the connected sum of the weak limit bundle overM and the bubbling bundles over
S4. Following the idea of Sacks and Uhlenbeck’s paper [22], we apply the existence
of smooth Yang–Mills ˛-connections of Theorem 1.1 to show

Theorem 1.3. If �3.G/ is a free abelian group of rank r , then there exist at least r
different Yang–Mills G-connections over S4.

Remark. It is well known that any simple compact Lie groupG has �3.G/ D Z. So
the result is useful only for semi-simple compact Lie groups, for example SO.4/.

Furthermore, we can apply the Yang–Mills ˛-flow to improve the minimizing
theory of the Yang–Mills functional on E. In [26], Sedlacek studied the direct
minimizing method for the Yang–Mills functional in E. More precisely, let Di
be a minimizing sequence in the given bundle E over M . Using the weak
compactness result of Uhlenbeck [34], Sedlacek proved thatDi weakly converges in
W 1;2.Mnfx1; :::xlg/ to a limiting connectionD1 which can be extended to a Yang–
Mills connection in a (possibly) new bundle E 0 over M with the same topological
invariant �.E 0/ D �.E/, which is an element of H 2.M; �1.G//. Because there is
only W 2;2 control of the transition functions, one can not use the gluing argument
of Uhlenbeck in [34] to obtain a bundle map. Therefore, the relation between the
original bundle and the limit bundle E 0 (which may be different) is not quite clear.
It is known that the topology of a vector bundle over a 4-manifold is determined
by some � invariant, and the vector Pontryagin number (see the appendix in [26]).
By using the ˛-flow, we modify the minimizing sequence to obtain a better control
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and new minimizing sequence, which converges to the same limit in the smooth
topology up to gauge transformation away from finite singular points. Moreover, for
the modified minimizing sequence, a blow-up analysis is discussed and an energy
identity is proved.

Theorem 1.4. Let E be a vector bundle over M with structure group G. Assume
that Di is a minimizing sequence of the Yang–Mills functional YM among smooth
connections on E, which converges weakly to some limit connection D1 by
Sedlacek’s result. There is a modified minimizing sequence D0i , a finite set S � M
and a sequence of gauge transformations �i defined on M n S , such that for any
compact K � M n S , ��i D

0
i converges to D01 smoothly in K, where D01 is gauge

equivalent to the connection D1. Moreover, there are a finite number of bubble
bundles E1; � � � ; El over S4 and Yang–Mills connections QD1; � � � ; QDl such that

lim
i!1

YM.Di / D YM.D1/C

lX
jD1

YM. QDj /:

This improves Theorem 5.5 of [26] because the convergence of ��i D
0
i is smooth.

(See [18] for a similar discussion using Sobolev bundles and the weak convergence.)
Finally, we would like to discuss some potential application of the Yang–Mills

˛-flow to the Morse theory of the Yang–Mills functional. It is well known that
the Yang–Mills functional in dimension four does not satisfy the Palais–Smale
condition. Many efforts have been made in this direction (see [32] and the references
therein). Following an idea in [22], one expects to study the limiting solutions of the
˛-equations (1.3) as ˛ goes to 1. It seems that the Yang–Mills ˛-flow provides a new
analytic tool to prove the existence of Yang–Mills connections. In Subsection 4.4, we
use it as the analytic tool to provide a new proof of the existence of the nonminimal
Yang–Mills connection on S4, which is due to Sibner, Sibner and Uhlenbeck [27].

The rest of the paper is organized as follows: In Section 2, we prove Theorem 1.1
and some other analytic results needed for the applications. In Section 3, we study
the limit of the ˛-flow as ˛ goes to 1 and prove Theorem 1.2. In the final section, we
study serval applications of the ˛-flow.

2. Existence of the ˛-flow and its equivalent flow

2.1. Local existence of the ˛-flow. It is well known that (1.4) is not a parabolic
system and that this difficulty can be overcome by using a kind of Deturk trick.
Throughout this paper, let Dref be a fixed smooth background connection.

Let D0 D Dref C A0 be a given smooth connection in E.
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Following [29], we consider an equivalent flow

@ ND

@t
D � ND�F ND C .˛ � 1/

�.d jF NDj
2 ^ �F ND/

1C
ˇ̌
F ND

ˇ̌2 � ND. ND�a/; (2.1)

with ND.t/ D Dref C a.t/ and a.0/ D A0. Then the equivalent flow is a nonlinear
parabolic system. By the well-known theory of partial differential equations, there
is a unique smooth solution of (2.1) defined on M � Œ0; T � for some T > 0. By the
theory of ordinary differential equations, there is a unique solution to the following
initial problem:

d

dt
S D �S ı . ND�a/; (2.2)

M � Œ0; T �, with initial value S.0/ D I . Here S.t/ is a global gauge transformation
and I is the trivial one.

Setting
D D .S�1/� ND;

we have (e.g. see [29], [14])

F ND D S
�1FS; ND. ND�a/ D ND ı . ND�a/ � ND�a ı ND:

Combining (2.1), (2.2) with the above facts yields

d

dt
D D

dS

dt
ı ND ı S�1 C S ı

d ND

dt
ı S�1 C S ı ND ı

dS�1

dt

D S

 
� ND�F ND C .˛ � 1/

�.d jF NDj
2 ^ �F ND/

1C
ˇ̌
F ND

ˇ̌2
!
S�1

D �D�AFA C .˛ � 1/
�.d jFAj

2 ^ �FA/

1C jFAj
2

:

This shows that D D .S�1/� ND satisfies the Yang–Mills ˛-flow with D.0/ D D0 in
M � Œ0; T � for some T > 0.

Next, we remark that the smooth solution of the Yang–Mills ˛-flow is unique.
In fact, let Di D Dref C Ai .i D 1; 2/ be two smooth solutions to the Yang–Mills
˛-flow with Ai .0/ D A0. By the theory of parabolic equations, there is a unique
local smooth solution of the parabolic system of second order:

d

dt
Si D �.Dref C Ai /

�ŒAiSi CDref Si � (2.3)

with S.0/ D I . By computation, we can check that the connections NDi D S�.Di /

are two solutions to the modified flow (2.1) with the same initial value. Hence,
ND1 and ND2 are the same. Moreover, (2.3) is nothing but the ODE (2.2). By the

uniqueness of ODEs, we know Si and hence Di are the same.
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A similar method to prove uniqueness was used for the Ricci flow and also for the
Seiberg–Witten flow [15]. Therefore, we have shown that the ˛-flow has a unique
solution in M � Œ0; T / for some T > 0.

2.2. Energy inequality of the ˛-flow.

Lemma 2.1. Let A.t/ be a solution to the Yang–Mills ˛-flow in M � Œ0; T / with
initial value A.0/ D A0. For each 0 < t < T , we haveZ
M

.1CjF j2/˛ dvC2˛

Z t

0

Z
M

.1CjF j2/˛�1
ˇ̌̌̌
@A

@s

ˇ̌̌̌2
dv ds D

Z
M

.1CjFA0 j
2/˛ dv:

(2.4)

Proof. Note @F
@t
D D @A

@t
. Then, multiplying (1.4) by .1 C jF j2/˛�1@tA and

integrating by parts, we have

d

dt

Z
M

.1C jF j2/˛dv D 2˛

Z
M

�
.1C jF j2/˛�1F;

@F

@t

�
dv

D 2˛

Z
M

�
D�..1C jF j2/˛�1F /;

@A

@t

�
dv

D �2˛

Z
M

.1C jF j2/˛�1
ˇ̌̌̌
@A

@t

ˇ̌̌̌2
dv:

Then (2.4) follows from integrating over Œ0; t �.

Lemma 2.2. Let A.t/ be a solution to the Yang–Mills ˛-flow in M � Œ0; T /. For
each 0 < t1 < t2 < T , we haveZ

BR.x/

.1C jF j2/˛.t2/dv �

Z
B2R.x/

.1C jF j2/˛.t1/dv C C
t2 � t1

R2
YM˛.A.0//:

(2.5)

Proof. Let ' be a cut-off function supported in B2R.x/ and ' � 1 on BR.x/.

d

dt

Z
M

'2.1C jF j2/˛dv D 2˛

Z
M

'2
�
D�..1C jF j2/˛�1F /;

@A

@t

�
C'.1C jF j2/˛�1F #r'#

@A

@t
dv

� �

Z
M

'2.1C jF j2/˛�1
ˇ̌̌̌
@A

@t

ˇ̌̌̌2
C .1C jF j2/˛�1 jr'j2 jF j2 dv:

The lemma follows from integration over Œt1; t2�.
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We also need a similar result in the other direction.

Lemma 2.3. Let A.t/ be a solution to the Yang–Mills ˛-flow in M � Œ0; T /. For
each 0 < t1 < t2 < T , we haveZ
BR.x/

.1C jF j2/˛.t1/dv �

Z
B2R.x/

.1C jF j2/˛.t2/dv C C
t2 � t1

R2
YM˛.A.0//

C

Z t2

t1

Z
M

.1C jF j2/˛�1
ˇ̌̌̌
dA

dt

ˇ̌̌̌2
dvdt:

Proof. The claim follows from the above proof in Lemma 2.2.

2.3. Global existence of the ˛-flow. In this section, we will show that the solution
of the Yang–Mills ˛-flow (for small ˛ � 1) exists in M � Œ0; T / for all T > 0.

Theorem 2.4. Let D0 D Dref C A0 be a smooth connection in E. Then there is
a smooth solution A to the ˛-flow (1.4) with initial value A0 in M � Œ0; t0/ for a
constant t0 > 0 depending only on YM˛.D0/.

We note that together with Lemma 2.1 and the uniqueness of smooth solution to
(1.4), Theorem 2.4 implies the global existence part of Theorem 1.1.

The proof involves higher order estimates for parabolic systems. For that
purpose, we resort to the modified flow (2.1) again. To start the proof, we need
the following lemma.

Lemma 2.5. Let D be a smooth connection on E with YM˛.D/ bounded, and let
Dref be some fixed reference connection on E. Then there exists a global smooth
gauge transformation s such that

s�D �Dref 

W 1;2˛.M/

� C:

Here C is some constant depending only on Dref and YM˛.D/.

Proof. Although not explicitly stated, the proof is essentially contained in the paper
[34] of Uhlenbeck. We briefly indicate how it follows from [34].

If the lemma is not true, then there exists a sequence of Di with YM˛.Di /

uniformly bounded such that for any smooth gauge transformation si , we have

s�i Di �Dref 

W 1;2˛.M/
� i: (2.6)

It is shown in [34] that by passing to some subsequence, there exists si such that
s�i Di converges weakly in W 1;p to some D1 for p D 2˛.

In the proof, Uhlenbeck chose some j sufficiently large and wrote s�i Di in local
trivialization �˛.j / as

d C ��1˛ .i/d�˛.i/C �
�1
˛ .i/A.˛; i/�˛.i/:
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Here we refer the reader to [34] to see the definitions of �˛.i/, �˛.i/ and A.˛; i/.
Moreover, Uhlenbeck proved that

��1˛ .i/d�˛.i/C �
�1
˛ .i/A.˛; i/�˛.i/

is bounded in W 1;p uniformly in i . Although the local expression of Dref in
the trivialization �˛.j / has no explicit bound, it is independent of i . Hence
s�i Di �Dref is bounded in W 1;p uniformly in i locally in the trivialization �˛.j /.
Since s�i Di �Dref is a tensor and we may show the same bound in �ˇ .j / for
ˇ ¤ ˛. We get a contradiction with (2.6) and the lemma is proved.

With this lemma, we may assume without loss of generality that A0 in Theo-
rem 2.4 has bounded W 1;2˛ norm.

Proof of Theorem 2.4. Instead of (1.4), we shall discuss (2.1). By our discussion in
Subsection 2.1, we know this is sufficient.

For some " > 0 to be determined later, the Hölder inequality and Lemma 2.5
imply that there exist r0 > 0 and C1 > 0 such that for all x 2M ,Z

Br0 .x/

jA0j
2
C
ˇ̌
rrefA0

ˇ̌2
dx � "=2 (2.7)

and Z
M

jA0j
2
C
ˇ̌
rrefA0

ˇ̌2
dx � C1: (2.8)

Let fxi 2 M ji D 1; � � � ; Lg be a finite number of points in M such that fBr0.xi /g
covers M and for each i there are at most k different j ’s ball Br0.xj / with
B2r0.xi / \ Br0.xj / ¤ ;. Although L depends on ", it is important to note that
k is a universal constant depending only on the dimension.

Let D.t/ D Dref C a.t/ be the local solution to (2.1) defined on Œ0; T /. Since
a.t/ is smooth, there exists a t1 > 0 which is the maximal time in Œ0; T � such that
for all i D 1; � � � ; L,

sup
0�t<t1

Z
Br0 .xi /

ja.t/j2 C
ˇ̌
rref a.t/

ˇ̌2
dx � " (2.9)

and

sup
0�t<t1

Z
M

ja.t/j2 C
ˇ̌
rref a.t/

ˇ̌2
dx C

Z t1

0

Z
M

ˇ̌̌
r
2
ref a

ˇ̌̌2
dxdt � 2C1: (2.10)

We shall find t0 depending on YM˛.D0/ and ˛ alone (the exact value of t0 is
determined in the process of proof) and prove that T � t0, which concludes the
proof of the theorem. If not, then either t1 < T < t0 or t1 D T < t0. It suffices to
show that neither case is possible.
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Before we give the details of the proof, we outline the idea of the proof. By
Lemma 2.5, we have (2.7) and (2.8) for the initial value a.0/. Step 1 below shows
that as long as the solution exists, (2.9) and (2.10) must remain true for t 2 Œ0; t0�
for some t0 > 0 depending only on YM˛.D0/. The condition (2.9) is a ‘smallness’
condition, which will enable us to prove higher derivative estimates for the nonlinear
parabolic system (2.11) of second order. This is done in Step 2 below.

Step 1: t1 < T < t0 is not possible.

To study the evolution of a.t/, we rewrite the flow equation (2.1) as

@a

@t
D 4ref aC .rref a#aC a#a#a/ �D�ref Fref (2.11)

C.˛ � 1/ .FD/#.r2ref aC a#rref aC a#a#aCrref Fref /;

with the initial value a.0/ D A0, where  .FD/ is a bounded function depending on
FD . For any i , let �i be a cut-off function supported in B2r0.xi / with �i � 1 on
Br0.xi /. For simplicity, we write � when it applies to all �i .

Multiplying .2:11/ by a and using Young’s inequality, we have

d

dt

Z
M

jaj2 dv C

Z
M

jrref aj
2 dv

�
1

2

Z
M

jrref aj
2 dv C C.˛ � 1/

Z
M

jr
2
ref aj

2 dv C C

Z
M

jaj4 dv C C: (2.12)

By our choice of t1, (2.10) and using the Sobolev embedding from W 1;2 to L4, we
have for t < t1,

d

dt

Z
M

jaj2 dv C
1

2

Z
M

ˇ̌
rref a

ˇ̌2
dv � C.˛ � 1/

Z
M

ˇ̌̌
r
2
ref a

ˇ̌̌2
dv C C:

Multiplying .2:11/ by4ref a, we have

d

dt

Z
M

jrref aj
2 dv C

Z
M

j4ref aj
2 dv

�
1

2

Z
M

j4ref aj
2 dv C C.˛ � 1/

Z
M

jr
2
ref aj

2 dv

C

Z
M

.jrref aj
2
jaj2 C jaj6/ dv C C: (2.13)
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By Hölder’s inequality and the Sobolev inequality, we obtainZ
M

jaj6 dv �

X
i

Z
Br0 .xi /

jaj6 dv

�

X
i

 Z
Br0 .xi /

jaj4

!1=2  Z
Br0 .xi /

jaj8 dv

!1=2
� C"

X
i

Z
Br0 .xi /

ˇ̌
rref a

ˇ̌2
jaj2 C jaj4 dv

� C"

Z
M

ˇ̌
rref a

ˇ̌2
jaj2 C jaj4 dv

� C"

Z
M

ˇ̌
rref a

ˇ̌2
jaj2 dv C C:

Similarly,Z
M

ˇ̌
rref a

ˇ̌2
jaj2 dv �

X
i

Z
Br0 .xi /

ˇ̌
rref a

ˇ̌2
jaj2 dv

�

X
i

 Z
Br0 .xi /

jaj4

!1=2  Z
Br0 .xi /

ˇ̌
rref a

ˇ̌4
dv

!1=2
� C"

X
i

Z
Br0 .xi /

ˇ̌̌
r
2
ref a

ˇ̌̌2
C
ˇ̌
rref a

ˇ̌2
dv

� C"

Z
M

ˇ̌̌
r
2
ref a

ˇ̌̌2
C
ˇ̌
rref a

ˇ̌2
dv

Using integration by parts, we haveZ
M

ˇ̌̌
r
2
ref a

ˇ̌̌2
dv �

Z
M

ˇ̌
4ref a

ˇ̌2
dv C C

Z
M

ˇ̌
rref a

ˇ̌2
dv;

which implies
3

4

Z
M

ˇ̌̌
r
2
ref a

ˇ̌̌2
dv �

Z
M

ˇ̌
4ref a

ˇ̌2
dv C C:

In summary, by choosing ˛ � 1 and " small, we have

d

dt

Z
M

jaj2 C
ˇ̌
rref a

ˇ̌2
dv C

1

4

Z
M

ˇ̌
rref a

ˇ̌2
C

ˇ̌̌
r
2
ref a

ˇ̌̌2
dv � C

for t 2 Œ0; t1�. Integrating the above inequality yields that there exists t0 > 0 such
that (2.10) remains true for t1 � t0.
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For (2.9), we need a local version of the above computation. Multiplying .2:11/
by �2i a and using Young’s inequality, we have

d

dt

Z
M

jaj2�2i dv C
1

2

Z
M

jrref aj
2�2i dv

� C.˛ � 1/

Z
M

jr
2
ref aj

2�2i dv C C: (2.14)

Here we have used the bound on jr�i j and
R
M jaj

4 dv for t � t1. Multiplying .2:11/
by �2i 4ref a, we have

d

dt

Z
M

jrref aj
2�2i dv C

1

2

Z
M

j4ref aj
2�2i dv

� C.˛ � 1/

Z
M

jr
2
ref aj

2�2i dv C

Z
M

.jrref aj
2
jaj2�2i C jaj

6�2i / dv C C

C C

Z
M

ˇ̌
rref a

ˇ̌2
jr�i j

2 dv: (2.15)

By integration by parts, we have

3

4

Z
M

ˇ̌̌
r
2
ref a

ˇ̌̌2
�2i dv �

Z
M

ˇ̌
4ref a

ˇ̌2
�2i dv C C

Z
M

ˇ̌
rref a

ˇ̌2
.�2i C jr�i j

2/dv

�

Z
M

ˇ̌
4ref a

ˇ̌2
�2i dv C C;

where we have used (2.10) for t < t1.
We can deal with the main nonlinear terms as before.Z

M

jaj6 �2i dv � C"

Z
M

ˇ̌
rref .'a

2/
ˇ̌2
C '2 jaj4 dv

� C"

Z
M

.jr�i j
2
C �2i / jaj

4
C �2i jaj

2
ˇ̌
rref a

ˇ̌2
dv

� C"

Z
M

�2i jaj
2
C
ˇ̌
rref a

ˇ̌2
dv C C

andZ
M

�2i jaj
2
ˇ̌
rref a

ˇ̌2
dv � C"

Z
M

ˇ̌
rref .�irref a/

ˇ̌2
C �2i

ˇ̌
rref a

ˇ̌2
dv

� C"

Z
M

�2i

ˇ̌̌
r
2
ref a

ˇ̌̌2
dv C C:

In summary, for t < t1, we have

d

dt

Z
M

�2i .jaj
2
C
ˇ̌
rref a

ˇ̌2
/dv � C:
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Therefore, by choosing t0 sufficiently small, we see that both (2.9) and (2.10) remain
true for t1 � t0. By our definition of t1, this shows t1 < T < t0 is not possible.

Step 2: t1 D T < t0 is not possible.

As pointed out before in Step 1, we now show thtat (2.9) and (2.10) together with
(2.11) imply higher order estimates up to T , so that the solution can be extended
beyond T .

For that purpose, we consider the evolution equation of a. Let ' be a cut-off

function in time. Precisely, '.t/ � 0 for t < t1=4 and '.t/ � 1 for t 2 Œt1=4; t1�.
Multiplying (2.11) with '3 and applying the Lp estimate (see Theorem 9.1 of [19];
pages 341–342), we obtain for p D 4,

'3a



W
2;1
p .M�Œ0;t1�/

� C.˛ � 1/



'3r2ref a




Lp.M�Œ0;t1�/

C C


'3rref a#a




Lp.M�Œ0;t1�/

C C


'3a#a#a




Lp.M�Œ0;t1�/

C C:

We denoteW 2;1
p by the space of functions whose space derivatives up to second order

and first order time derivative belong to Lp . The Lp norm of '2@t'a is bounded by
(2.10), which is why we assume p D 4.

By choosing ˛ � 1 sufficiently small and using Young’s inequality, we have

'3a


W
2;1
p .M�Œ0;t1�/

� C k'ak3L3p.M�Œ0;t1�/ C C


'2rref a

3=2L3p=2.M�Œ0;t1�/ C C:

Recall that M is covered by Br0.xi / and
R
Br0 .xi /

jaj4 dv � C"2. For simplicity,
we write Bi for Br0.xi /. An interpolation theorem of Nirenberg (Theorem 1 in [20])
implies that

k'akL3p.Bi / � C



'3r2ref a


1=3

Lp.Bi /
kak

2=3

L4.Bi /
C C kakL4.Bi / :

This implies that Z
Bi

j'aj3p dv � C"p
Z
Bi

ˇ̌̌
'3r2ref a

ˇ̌̌p
dv C C:

Hence, Z t1

o

Z
M

j'aj3p dv �

Z t1

0

X
i

Z
Br0 .xi /

j'aj3p dv

� C"p
Z t1

0

Z
M

ˇ̌̌
'3r2ref a

ˇ̌̌p
dv C C:
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That is

k'ak3L3p.M�Œ0;t1�/ � C"



r2ref .'3a/




Lp.M�Œ0;t1�/
C C:

Similarly,

'2rref a

3=2L3p=2.M�Œ0;t1�/ � C" 


r2ref .'3a/


Lp.M�Œ0;t1�/ C C:
The proof is the same, except that we use another interpolation inequality



'2rref a

L3p=2.Bi / � C 


'3r2ref a


2=3Lp.Bi / kak1=3L4.Bi / C C kakL4.Bi / :
By choosing " small, we obtain an W 2;1

p bound on a for p D 4, which allows us to
apply the estimates for linear parabolic system for higher order estimates. In fact,
the parabolic Sobolev embedding theorem (Lemma 3.3 of [19]; page 80) implies that
'2@t'a is in Lp.M � Œ0; t1�/ for any p > 1. We then repeat the above argument and
use the parabolic Sobolev embedding again to see that rref a is Hölder continuous.
The higher order estimates now follow from Schauder estimates and (2.11).

2.4. Convergence for ti ! 1. We now complete the proof of Theorem 1.1 by
considering ti ! 1. We first claim that we have some gauge transformations �i
such that the ��i .A.ti // are uniformly bounded in any C k norm. To see this, let t0 be
as in Theorem 2.4 and set si D ti � t0=2. Consider the solution QA.t/ to the modified
flow (2.1) with initial value QA.si / D A.si /. The proof in Step 2 of Theorem 2.4
in fact established a C k estimate for QA.ti /, which is gauge equivalent to A.ti / by
the discussion in Subsection 2.1. Therefore, there is a subsequence which converges
smoothly up to gauge transformations. By similar argument above, we have uniform
a bound on rkF.x; t/ for any k. Due to (1.4), we have a uniform bound for @

kA

@tk
as

well. Hence, there is C > 0 independent of t such that

@

@s

Z
M

.1C jF j2/˛�1
ˇ̌̌̌
@A

@s

ˇ̌̌̌2
dv � C:

Lemma 2.1 then implies that

lim
t!1

Z
M

ˇ̌̌̌
@A

@t

ˇ̌̌̌2
dv D 0:

Hence, the limit obtained above is a Yang–Mills ˛-connection. This completes the
proof of Theorem 1.1.
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2.5. Stability of the modified flow. The results in this subsection are prepared for
later applications. Since we shall use the Yang–Mills ˛-flow as a deformation in the
space of connections, we need to show that this flow depends at least continuously
on its initial value in some chosen topology.

Theorem 2.6. If Di D Dref C Ai .i D 1; 2/ are two initial connections satisfying

kAikCk;ˇ.M/ � K;

then by Theorem 2.4, there exists t0 > 0, which now depends on K and the solution
Ai .t/ to the modified flow (2.1), which is defined on Œ0; t0� and satisfies Ai .0/ D Ai
and

kAikCk;ˇ.M�Œ0;t0�/ � C.K/;

Moreover, for any " > 0, there exists ı.K/ > 0 such that if

kA1 � A2kCk;ˇ.M/ � ı;

then
kA1.t/ � A2.t/kCk;ˇ.M/ � ";

for t 2 Œ0; t0�.

Proof. The proof of the first part is essentially contained in the proof of Theorem 2.4.
At that time, we didn’t have good control over the initial value, hence a cut-off

function in time was used to produce higher order estimates on M � Œt0=2; t0�. For
our purposes here, it suffices to remove the cut-off function ' in Step 2 of the proof
there.

The proof of the second part follows from theory of linear partial differential
equations and is perhaps well known. Both A1 and A2 satisfy the modified Yang–
Mills flow, which for our purposes here is written as

@Ai

@t
D 4Ai C .˛ � 1/P.Ai ;rAi /#r2Ai CQ.Ai ;rAi /:

The exact form of P andQ is not important for us. It suffices to know that P andQ
are smooth functions of Ai and rAi . Subtracting the two equations, we have

@A1 � A2

@t
D 4.A1 � A2/C .˛ � 1/P.A1;rA1/#r2.A1 � A2/

C .P.A1;rA1/ � P.A2;rA2//#r2A2
C Q.A1;rA1/ �Q.A2;rA2/:

There are smooth functions R and S of Ai and rAi such that

@A1 � A2

@t
D 4.A1 � A2/C .˛ � 1/P.A1;rA1/#r2.A1 � A2/

C R.Ai ;rAi ;r
2A2/.A1 � A2/C S.Ai ;rAi ;r

2A2/.rA1 � rA2/:
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If we take the above as a linear parabolic system for A1 � A2, then (i) the system is
strictly parabolic in the sense of Petrovskiy (see page 4 of [11] by noting that P is
always bounded and hence the principle part is a small perturbation of the Laplacian)
and (ii) the coefficients are bounded in the C k�2;˛ norm.

For the strictly parabolic linear systems in the sense of Petrovskiy, Eidel’man
([11], pages 243–244) constructed the heat kernel Z explicitly. Moreover, the
solution to the linear system is expressed as the convolution

.A1 � A2/.x; t/ D

Z
M

.A1 � A2/.y; 0/Z.x; t Iy; 0/dv:

Therefore

kA1 � A2kC0.M�Œ0;t0�/ � C.K/ kA1.�; 0/ � A2.�; 0/kC0.M/ :

We can now apply the Schauder estimate to see

kA1.�; t / � A2.�; t /kCk;ˇ.M/ � kA1 � A2kCk;ˇ.M�Œ0;t0�/

� C.K/ kA1.�; 0/ � A2.�; 0/kCk;ˇ.M/ :

This proves our claim.

3. Convergence of ˛-flow solutions

In this section, we study the convergence of the ˛-flow solutions as ˛ goes to 1.
We follow the same idea as in [17]. The key ingredients in the proof are a Bochner
formula and a monotonicity formula, which are well known techniques but should
still be computed for our new equation.

We start with the Bochner formula.

3.1. Bochner formula and the uniform bound of F . Let A.t/ be a solution of the
Yang–Mills alpha flow; i.e.

@A

@t
D �D�F C 2.˛ � 1/

�.hrF;F i ^ �F /

1C jF j2
; (3.1)

where D D Dref C A. We recall that the curvature F of D satisfies

@F

@t
D �DD�F C 2.˛ � 1/D

�.hrF;F i ^ �F /

1C jF j2
: (3.2)

For each point p 2M , let ei be a normal frame of TM and !i the corresponding
orthonormal basis of the cotangent bundle T �M . Then at p 2M ,

F D
X
i<j

Fij!
i
^ !j :

At p 2M , we can assume that rei D 0 and r!i D 0.
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In order to derive a Bochner type formula, we need

Lemma 3.1. Let
' WD hrF;F i D 'k!

k :

Then at p 2M , we have

�.' ^ �F / D

4X
iD1

4X
jD1

'jFij!
i :

Proof. At p 2M , we have

F D F12!
1
^ !2 C F13!

1
^ !3 C F14!

1
^ !4

C F23!
2
^ !3 C F24!

2
^ !4 C F34!

3
^ !4:

Applying the Hodge star operator �, we have

�F D F12!
3
^ !4 � F13!

2
^ !4 C F14!

2
^ !3

C F23!
1
^ !4 � F24!

1
^ !3 C F34!

1
^ !2:

Hence

' ^ �F D C'1F12!
1
^ !3 ^ !4 � '1F13!

1
^ !2 ^ !4 C '1F14!

1
^ !2 ^ !3

C'2F12!
2
^ !3 ^ !4 � '2F23!

1
^ !2 ^ !4 C '2F24!

1
^ !2 ^ !3

C'3F13!
2
^ !3 ^ !4 � '3F23!

1
^ !3 ^ !4 C '3F34!

1
^ !2 ^ !3

C'4F14!
2
^ !3 ^ !4 � '4F24!

1
^ !3 ^ !4 C '4F34!

1
^ !2 ^ !4:

Applying the Hodge star operator again, we have

�.' ^ �F / D .'2F12 C '3F13 C '4F14/!
1

C .�'1F12 C '3F23 C '4F24/!
2

C .�'1F13 � '2F23 C '4F34/!
3

C .�'1F14 � '2F24 � '3F34/!
4

D

4X
iD1

4X
jD1

'jFij!
i :

This proves our claim.

Lemma 3.2. (Bochner type formula 1) When ˛ � 1 is sufficiently small, there is a
constant C such that

@

@t
jF j2�rei

 
.ıij C 2.˛ � 1/

˝
Flj ; Fli

˛
1C jF j2

/rej jF j
2

!
CjrF j2 � C jF j2 .1CjF j/:

(3.3)
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Proof. Recall that we use a local normal orthonomal frame feig and its dual f!ig at
p. Noticing the fact that rej e

j D 0 at p 2M , we have

r
�
rjF j2 D �

X
j

r
2
ej ;ej
jF j2 D �

X
j

rejrej jF j
2

and X
i

r
2
ei Iei
hF;F i D 2

X
i

˝
reiF;reiF

˛
C 2

X
i

˝
F;rei IeiF

˛
:

Let 4 D DD� CD�D denote the Hodge Laplacian with respect to the connection
D. The well-known Weizenböck formula is

4F D r�rF C F ı .Ric ^ g C 2R/C F #F:

Here Ric is the Ricci curvature of M , R is the curvature operator, and .Ric ^ g C
2R/ is a linear mapping from 2 forms to 2 forms. We refer to Theorem (3.10) of [4]
for the exact statement and the proof. Since we are not interested in the exact form
of the last term and it is quadratic in F , we denote it by F #F .

Using Bianchi’s identity DF D 0, we have

� hDD�F;F i D hreireiF C F #F � F ı .Ric ^ g C 2R/; F i :

For simplicity, we set

bij D 2.˛ � 1/

˝
Flj ; Fli

˛
1C jF j2

:

Then we have

@

@t
jF j2 � rei

�
.ıij C bij /rej jF j

2
�

(3.4)

D 2

�
F;

@

@t
F

�
� 2rei hreiF;F i � rei

�
bijrej jF j

2
�

D 2

�
F;
@F

@t
CDD�F

�
C hF;F #F � F ı .Ric ^ g C 2R/i

�2 jrF j2 � rei
�
bijrej jF j

2
�
:

By Lemma 3.1, we have

�.' ^ �F / D
X

'iFij!
j :
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Let f .jaj/ denote a function , whose absolute value is smaller than a constant
multiple of jaj; i.e. jf .a/j � C jaj for a constant C > 0. Then at p, we have

D
�.' ^ �F /

1C jF j2
D

D.�.' ^ �F //

1C jF j2
C d.1C jF j2/�1 ^ �.' ^ �F /

D
.'iFij /Ik!

k ^ !j

1C jF j2
C f .jrF j2

1

jF j
/

D
'i IkFij!

k ^ !j

1C jF j2
C f .jrF j2

1

jF j
/

which implies�
D
�.' ^ �F /

1C jF j2
; F

�
D

'i Ik
˝
Fij ; Fkj

˛
1C jF j2

C f .jrF j2/:

On the other hand, we have at p

rei

�
bijrej jF j

2
�
D ri

 
4.˛ � 1/

˝
Flj ; Fli

˛
1C jF j2

'j

!
(3.5)

D 4.˛ � 1/

˝
Flj ; Fli

˛
1C jF j2

'j Ii C .˛ � 1/
F #F #rF #rF
1C jF j2

C .˛ � 1/
F #F # hF;rF i2

.1C jF j2/2

� 4.˛ � 1/

�
D
�.' ^ �F /

1C jF j2
; F

�
� C.˛ � 1/ jrF j2 :

Since p is an arbitrary point of M , we may combine (3.2), (3.4) and (3.5) to get
(when ˛ � 1 small),

@

@t
jF j2 � rei

�
.ıij C bij /rej jF j

2
�
C jrF j2

� C jF j3 � hF;F ı .Ric ^ g C 2R/i : (3.6)

Since the manifold is compact and the curvatures are bounded, the lemma follows
trivially from (3.6). We shall use this shaper estimate later to prove a gap theorem
for Yang–Mills ˛-connections on S4.

As a consequence of Lemma 3.2 , we have

Lemma 3.3. (Bochner type formula 2) For each ˛ > 1, let A be the smooth solution
of the Yang–Mills ˛-flow andF WD FA the curvature ofA. Then for ˛�1 sufficiently
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small, we have

@

@t
.1C jF j2/˛ � rei

 
.ıij C 2.˛ � 1/

˝
Flj ; Fli

˛
1C jF j2

/rej .1C jF j
2/˛

!
� C.1C jF j2/˛.1C jF j/ (3.7)

for a constant C > 0.

Proof. In fact, one sees

@

@t
.1C jF j2/˛ D ˛.1C jF j2/˛�1

@ jF j2

@t

and
rej .1C jF j

2/˛ D ˛.1C jF j2/˛�1rej jF j
2:

For simplicity, we set

aij D ıij C 2.˛ � 1/

˝
Flj ; Fli

˛
1C jF j2

:

Then we have

rei

�
aijrej .1C jF j

2/˛
�
D ˛rei .aij .1C jF j

2/˛�1rej jF j
2/

D ˛.1C jF˛j
2/˛�1rei .aijrejF j

2/

C˛.˛ � 1/.1C jF j2/˛�2aijrei jF j
2
rej jF j

2:

By Lemma 3.2, we obtain

@

@t
.1C jF j2/˛ � rei

�
aijrej .1C jF j

2/˛
�

D ˛.1C jF j2/˛�1
�
@

@t
jF j2 � rei .aijrej jF j

2/

�
�˛.˛ � 1/.1C jF j2/˛�2aijrei jF j

2
rej jF j

2:

� C.1C jF j2/˛�1jF j2.1C jF j/:

This proves our claim.

3.2. Monotonicity formula. The global parabolic monotonicity formula for har-
monic maps was first established by Struwe in [28], and for the Yang–Mills flow
in [5] and [13]. Next, we will derive a local parabolic type of monotonicity for the
Yang–Mills ˛-flow as similar to one in [16].

Let i.M/ be the injectivity radius of M . For z0 D .x0; t0/ 2M � RC, we write

TR.z0/ D
˚
z D .x; t/ W t0 � 4R

2 < t < t0 �R
2; x 2M

	
:



Vol. 90 (2015) The Yang–Mills ˛-flow 95

When there is no ambiguity for z0, we write TR only.

If we take the normal coordinates fxig in Bi.M/.x0/, dv D
p
g.x/dx and the

Euclidean backward heat kernel to the (backward) heat equation with singularity at
z0 is

Gz0.z/ D
1

.4�.t0 � t //2
exp

�
�
jx � x0j

2

4.t0 � t /

�
; t < t0:

As before, we write G.x; t/ when z0 is obvious.

For a small R0 � i.M/ and some fixed x0 2 M , let � be a cut-off function
supported in BR0.x0/ with � � 1 on BR0=2.x0/. Assume that A is a solution of the
˛-flow (1.4) in M � RC. For any z0 D .x0; t0/ 2M � Œ0; T �, we set

ˆ˛.R;AI z0/ D R
4˛�2

Z
TR.z0/

.1CjF.z/j2/˛ �2.x�x0/Gz0.z/
p
g dx dt: (3.8)

Lemma 3.4. (Local Monotonicity) Let A be a regular solution of the ˛-flow (1.4).
Then, for z0 D .x0; t0/ 2 M � .0;1/ and for any two numbers R1, R2 with
0 < R1 � R2 � R0, we have

ˆ˛.R1; AI z0/ � C exp.C.R2 �R1//ˆ˛.R2; AI z0/C C.R22 �R
2
1/YM˛.A0/:

Proof. Although the main idea of the proof is similar to one for the Yang–Mills flow
in [16], the proof becomes much more involved, so we have to give more details
here.

Since the computation is local, we choose normal coordinates fxig around x0
and assume without loss of generality that t0 D 0 and x0 D 0.

In (3.8), we set x D R Qx and t D R2 Qt to obtain

ˆ˛.R;AI z0/ D

Z
T1

R4˛.1C jF j2.x; t//˛ �2.R Qx/G.Qz/
p
g.R Qx/ d Qz ;

where d Qz D d Qx d Qt .
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Then we compute

d

dR
ˆ˛.R;AI z0/

D

Z
T1

d

dR

h
R4˛Œ1C jF j2.R Qx;R2 Qt /�˛ �2.R Qx/

p
g.R Qx/

i
G. Qz/ d Qz

D 4˛R4˛�1
Z
T1

Œ1C jF j2.R Qx;R2 Qt /�˛ �2.R Qx/
p
g.R Qx/G.Qz/ d Qz

C˛R4˛
Z
T1

h
Œ1C jF j2.R Qx;R2 Qt /�˛�1 Qxk

�
@

@xk
jF j2.R Qx;R2 Qt / �2.R Qx/

p
g.R Qx/G. Qz/

i
d Qz

C˛R4˛
Z
T1

h
Œ1C jF j2.R Qx;R2 Qt /�˛�12R Qt

�
@

@t
jF j2.R Qx;R2 Qt / �2.R Qx/

p
g.R Qx/G.Qz/

i
d Qz

C

Z
T1

R4˛Œ1C jF j2.R Qx;R2 Qt /�˛ Qxk
@

@xk
.�2
p
g/.R Qx/G.Qz/ d Qz

WD I1 C I2 C I3 C I4 :

In order to estimate I1 and I2, we note that in local coordinates, we have

F D
1

2
Fijdx

i
^ dxj :

Let rA;xkF D
1
2
rA;xkFijdx

i ^ dxj be the gauge-covariant derivative of F with

respect to @

@xk
satisfying rA;xkFij D

@Fij

@xk
C ŒAk; Fij � �

P
s �

s
ik
Fsj �

P
s �

s
jk
Fis .

Since A is compatible with the Riemannian structure, we have

@

@xk
jF j2 D

1

2

D
rA;xkFijdx

i
^ dxj ; Flmdx

l
^ dxm

E
:

In local coordinates, the Bianchi identity DF D 0 is equivalent to

rA;xkFij D rA;xiFkj � rA;xjFki :

Using the Bianchi identity, we have

xk
@

@xk
jF j2 D

1

2
xk
D
.rA;xiFkj � rA;xjFki /dx

i
^ dxj ; Flmdx

l
^ dxm

E
D

D
rA;xi .x

kFkj /dx
i
^ dxj ; Flmdx

l
^ dxm

E
� 4jF j2

�

D
xkFsj�

s
kidx

i
^ dxj ; Flmdx

l
^ dxm

E
;
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where rA;xi .x
kFkj / WD

@

@xi
.xkFkj / C ŒAi ; x

kFkj � � x
kFks�

s
j i is the gauge-

covariant derivative of xkFkj with respect to @

@xi
. Changing back to .x; t/, we have

I1 C I2 D ˛R4˛�3
Z
TR

.1C jF j2/˛�1
h
4.jF j2 C 1/C xk

@jF j2

@xk

i
�2G

p
g dz

D ˛R4˛�3
Z
TR

h
.1C jF j2/˛�1

�

h
4C

D
rA;xi .x

kFkj /dx
i
^ dxj ; Flmdx

l
^ dxm

E i
�2G

p
g
i
dz

�˛R4˛�3
Z
TR

h
.1C jF j2/˛�1

�

D
xkFsj�

s
kidx

i
^ dxj ; Flmdx

l
^ dxm

E
�2G

p
g
i
dz:

Note that

D�Œ.1C jF j2/˛�1F � D �gilrA;xi Œ.1C jF j
2/˛�1Flm�dx

m :

Then using Stokes’ formula, we haveZ
TR

.1C jF j2/˛�1
D
rxi .x

kFkj /dx
i
^ dxj ; Flmdx

l
^ dxm

E
�2G

p
g dz

D 2

Z
TR

.1C jF j2/˛�1
D
rxi .x

kFkj /dx
j ; gilFlmdx

m
E
�2G

p
g dz

D 2

Z
TR

D
xkFkjdx

j ; D�Œ.1C jF j2/˛�1F �
E
�2G

p
g dz

� 2

Z
TR

.1C jF j2/˛�1
D
xkFkjdx

j ; gilFlmdx
m
E
�2

@G

@xi
p
g dz

� 4

Z
TR

.1C jF j2/˛�1
D
xkFkjdx

j ; gilFlmdx
m
E
�
@�

@xi
G
p
g dz :

Using the fact that

jgij .x/ � ıij j � C jxj
2;

ˇ̌̌̌
@gij

@xk

ˇ̌̌̌
� C jxj;

@G

@xi
D
xi

2t
G;

we have

I1 C I2 � 2˛R
4˛�3

Z
TR

D
xkFkjdx

j ;D�..1C jF j2/˛�1F /
E
�2G

p
g dz

C ˛R4˛�3
Z
TR

.1C jF j2/˛�1jxigikFkjdx
j
j
2 1

jt j
G �2

p
g dz

�C˛R4˛�3
Z
TR1

.1C jF j2/˛.jxj2�2C jxjjr�j C
jxj4

jt j
�2/ G

p
g dz :
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To estimate I3,we note that the ˛-flow (1.4) is equivalent to

.1C jF j2/˛�1
@A

@t
D �D�

�
.1C jF j2/˛�1F

�
:

Then using Stokes’ formula, we have

I3 D 2˛R
4˛�3

Z
TR

.1C jF j2/˛�1 t
@

@t
jF j2 �2G

p
g dz

D 4˛R4˛�3
Z
TR

t

�
.1C jF j2/˛�1F; D.

@A

@t
/

�
�2G

p
gdz

D 4˛R4˛�3
Z
TR

t

�
D�

�
.1C jF j2/˛�1F

�
;
@A

@t

�
�2G

p
g dz

� 4˛R4˛�3
Z
TR

t .1C jF j2/˛�1
�
@A

@t
; gilFlmdx

m

� �
@G

@xi
�2 C 2�

@�

@xi
G

�
p
g dz

D 4˛R4˛�3
Z
TR

jt j .1C jF j2/˛�1j
@A

@t
j
2 �2G

p
g dz

� 2˛R4˛�3
Z
TR

.1C jF j2/˛�1
�
@A

@t
; xigilFlmdx

m

�
�2G
p
g dz

� 4˛R4˛�3
Z
TR

t .1C jF j2/˛�1
�
@A

@t
; gilFlmdx

m

�
2�
@�

@xi
G
p
g dz:

Using above estimates and also Young’s inequality, we obtain

d

dR
ˆ.RIA/ D I1 C I2 C I3 C I4

�
1

2
˛R4˛�3

Z
TR

jt j.1C jF j2/˛�1
ˇ̌̌̌
2
@A

@t
�
xi

jt j
gilFlmdx

m

ˇ̌̌̌2
�2G

p
g dz

� CR4˛�3
Z
TR

.1C jF j2/˛.jxj2�2 C jxjjr�j C
jxj4

t
�2 C jt jjr�j2/G

p
g dz;

where C is a constant depending on the geometry of M . We know that

R�1jxj2G � C.1CG/; R�1jt j�1jxj4G � C.1CG/ on TR :

Moreover, since r� D 0 for jxj < R0=2, we see that

.jxjjr�j C jt j jr�j2/G � C on TR:

Combining these estimates with Lemma 2.1, we obtain

d

dR
ˆ.RIA/ � �Cˆ.RIu;A/ � CRYM˛.A0/ :

The claim for ˆ follows from integrating the above inequality in R.
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3.3. The "�regularity and convergence.
Lemma 3.5. There exists a positive constant "0 < i.M/ such that for a solution A

to (1.4), if for some R with 0 < R < minf"0;
t
1=2
0

2
g the inequality

R4˛�6
Z
PR.x0;t0/

.1C jF j2/˛ dv dt � "0

holds, we have
sup

P 1
4
R
.x0;t0/

jF j2 � CR�4 ;

where the constant C depends on M and the bound of YM˛.A0/.

Proof. Without loss of generality, assume that .x0; t0/ D .0; 0/. For simplicity, we
set r1 D 1

2
R. As in [25], we choose r0 < r1 such that

.r1 � r0/
4˛ sup

Pr0

.1C jF j2/˛ D max
0�r�r1

"
.r1 � r/

4˛ sup
Pr

.1C jF j2/˛

#
;

and find .x1; t1/ 2 Pr0 such that

e0 WD .1C jF j
2/˛.x1; t1/ D sup

Pr0

.1C jF j2/˛ :

We claim that

e0 � 2
4˛.r1 � r0/

�4˛ : (3.9)

Otherwise, we have

�0 D e
� 1
4˛

0 �
r1 � r0

2
:

Rescale
B. Qx/ D �0A.x1 C �0 Qx; t1 C �

2
0
Qt / :

and
e�0 WD .�

4
0 C jFB j

2/˛ D �4˛0 .1C jF j2/˛:

Then we have

1 D e�0.0; 0/ � sup
NP1

e�0. Qx; Qt / D �
4˛
0 sup

P�0 .x1;t1/

.1C jF.x; t/j2/˛

� �4˛0

�r1 � r0
2

��4˛ �r1 � r0
2

�4˛
sup

P r1Cr0
2

.1C jF.x; t/j2/˛

� �4˛0

�r1 � r0
2

��4˛
.r1 � r0/

4˛ e0 D 2
4˛;

with QP1 WD f. Qx; Qt / W . Qx; Qt / 2 B1.0/ � Œ�1; 1�g.
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This implies that
jFB j

2
� 16 on NP1:

Combining this with Lemma 3.3, we have

.
@

@Qt
e�0 �

Qrei

 
.ıij C 2.˛ � 1/

˝
FBlj ; FBli

˛
�40 C jFB j

2
/ Qrej e�0

!

D �2C4˛0

"
@

@t
.1C jF j2/˛ � rei

 
.ıij C 2.˛ � 1/

˝
Flj ; Fli

˛
1C jF j2

/rej .1C jF j
2/˛

!#
� Ce�0 ; in QP1 ;

where the constant C depends on i.M/ and supx2M jRmj. Then Moser’s parabolic
Harnack inequality yields

1 D e�0.0; 0/ � C

Z
QP1

e�0 d Qx d Qt D C�
4˛�6
0

Z
P�0 .x1;t1/

.1C jF j2/˛ dv dt : (3.10)

Taking � D 2�0 and noting that z1 D .x1; t1/ 2 Pr0 and � C r0 � R
2

, we apply
Lemma 3.4 with R1 D �

2
, R2 D R0 D 1

2
R to obtain

�4˛�60

Z
P�0 .z1/

.1C jF j2/˛ dv dt (3.11)

� C

Z
T� .x1;t1C2�2/

�4˛�2.1C jF j2/˛ G.x1;t1C2�2/ �
2 dv dt

� C

Z
T 1
2
R
.x1;t1C2�2/

R4˛�2.1C jF j2/˛ G.x1;t1C2�2/ �
2 dv dt

C CRYM˛.A0/

� CR4˛�6
Z
PR

.1C jF j2/˛ dv dt C CRYM˛.A0/ � C"0;

where we used the fact that for t1C2�2�R2 � t � t1C2�2� R
2

4
and x 2 BR.x1/,

there is a constant C such that

Gx1;t1C2�2 D
1

.4�.t1 C 2�2 � t //2
exp

�
�

.x � x1/
2

4.t1 C 2�2 � t /

�
� CR�4:

Letting "0 be sufficiently small, (3.11) contradicts (3.10). Therefore, we have proved
the claim (3.9), which implies

sup
PR=4

.1C jF j2/˛ � .
r1

2
/�4˛.r1 � r0/

4˛e0 � 2
4˛R�4˛ :

This proves Lemma 3.5.
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With the curvature bound obtained by Lemma 3.5, we may obtain higher order
derivative estimates of F .

Lemma 3.6. Suppose that A is a solution of the flow equation (3.1) on some
parabolic ball Pr.x0; t0/ and that

sup
Pr .x0;t0/

jF j � C:

Then for each k, there is a constant Ck such that

sup
Pr=2.x0;t0/

ˇ̌̌
r
kF
ˇ̌̌
� C.k/:

Proof. Assume that r D 1 and write Pr for Pr.x0; t0/. Recall that F satisfies

@F

@t
D �DD�F C 2.˛ � 1/D

�.hrF;F i ^ �F /

1C jF j2
:

By the Bianchi identity and Weizenböck formula, we have

@F

@t
D 4F C 2.˛ � 1/D

�.hrF;F i ^ �F /

1C jF j2
C F #F C Rm#F; (3.12)

where4 is the covariant Laplacian and Rm is the Riemannian curvature of M . The
proof is by induction. Let ' be a cut-off function supported in B1 with ' � 1 on
B3=4. Multiplying both sides of (3.12) by '2F and integrating over B1, we have

1

2

d

dt

Z
B1

'2 jF j2 dv C

Z
B1

'2 jrF j2 dv � C.˛ � 1/

Z
B1

'2 jrF j2 dv C L;

where L contains all ‘lower order terms’.
In the above equation, it includes

R
B1
'2 jF j3 dv and

R
B1
'2 jF j2 dv, which are

bounded, and
R
B1
jr'j' jrF j jF j dv, which arises in the integration by parts. We

shall see that
L � �

Z
B1

'2 jrF j2 dv C C: (3.13)

In fact, Z
B1

jr'j' jrF j jF j dv � C C �

Z
B1

'2 jrF j2 dv:

By choosing ˛ � 1 and � small, we conclude thatZ
P3=4

jrF j2 dvdt � C:

We may choose a good time slice on which the space integration of
jrF j2 is bounded. Instead of further shrinking the neighborhood, we assume
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P1
jrF j2 dvdt � C and

R
B1
jrF j2 .�;�1/dv � C , which is the starting point for

the next step of induction.
Applying r on (3.12), multiplying by '4rF and integrating over B1, we have

1

2

d

dt

Z
B1

'4 jrF j2 dv C

Z
B1

'4
ˇ̌
r
2F
ˇ̌2
dv

� C.˛ � 1/

Z
B1

'4
ˇ̌
r
2F
ˇ̌2
C '4 jrF j4 dv C L:

The lower order terms (still denoted by L) which arise from switching the order
of covariant derivatives, integration by parts and interchanging r and @

@t
can be

controlled by �
R
B1
'4 jrF j4 C '4

ˇ̌
r2F

ˇ̌2
dv C C as before. For example,Z

B1

ˇ̌
r
2F
ˇ̌
jrF j

ˇ̌
r.'4/

ˇ̌
dv � C

Z
B1

ˇ̌
'2r2F

ˇ̌
j'rF j jr'j dv

� �

Z
B1

'4 jrF j4 C '4
ˇ̌
r
2F
ˇ̌2
dv C C:

Thanks to the boundedness of F , we haveZ
B1

'4 jrF j4 dv D

Z
B1

'4hrF;rF i jrF j2 dv (3.14)

� C

Z
B1

'4
ˇ̌
r
2F
ˇ̌
jrF j2 dv C C

Z
B1

jr'j'3 jrF j3 dv

�
1

2

Z
B1

'4 jrF j4 C C C C

Z
B1

'4
ˇ̌
r
2F
ˇ̌2
dv:

By taking ˛ � 1 small, we have that
R
P3=4

ˇ̌
r2F

ˇ̌
dvdt is bounded, due to the

boundedness of
R
B1
jrF j2 .�;�1/dv.

For k > 2, we give an indication of how the above process works. By a similar
computation,

1

2

d

dt

Z
B1

'
ˇ̌̌
r
kF
ˇ̌̌2
dv C

Z
B1

'
ˇ̌̌
r
kC1F

ˇ̌̌2
dv

� C.˛ � 1/

Z
B1

' �

 X lY
iD1

jr
aiF j

bi

!
C L:

Here the summation
P

is over all possible .ai ; bi / satisfying (1) ai D 1; � � � ; kC 1,
bi 2 N with i D 1; � � � ; l for some l 2 N and (2)

Pl
iD1 aibi D 2.k C 1/. The sum

of those terms with
Pl
iD1 aibi < 2.k C 1/ are denoted by L.
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By Young’s inequality, we haveZ
B1

'
X lY

iD1

jr
aiF j

bi dv � C

kC1X
iD1

Z
B1

'
ˇ̌
r
iF
ˇ̌ 2.kC1/

i dv:

We now claim that for each i D 1 � � � k, we haveZ
B1

'
ˇ̌
r
iF
ˇ̌ 2.kC1/

i dv � C

Z
B1

'
ˇ̌
r
iC1F

ˇ̌ 2.kC1/
iC1 dv C C C L:

The claim can be proved by induction from i D 1, which is essentially (3.14).
For i > 1,Z

B1

'
ˇ̌
r
iF
ˇ̌ 2.kC1/

i dv � C

Z
B1

'
ˇ̌
r
i�1F

ˇ̌ ˇ̌
r
iC1F

ˇ̌ ˇ̌
r
iF
ˇ̌ 2.kC1/

i
�2
dv C L:

� �

Z
B1

'
ˇ̌
r
iF
ˇ̌ 2.kC1/

i dv C �

Z
B1

'
ˇ̌
r
i�1F

ˇ̌ 2.kC1/
i�1 dv

C C�

Z
B1

'
ˇ̌
r
iC1F

ˇ̌ 2.kC1/
iC1 dv C C C L:

By the induction assumption and choosing � small, we see that the claim is true.

Once we know that the C k norm of the curvature is bounded in some parabolic
neighborhood, it is natural to expect a good ‘gauge’ in which the connection form is
bounded in C kC1. This will be the parabolic analogue of Uhlenbeck’s gauge fixing
theorem. The precise statement and the proof of such a result will be interesting in
its own right. For our purposes, since we have all C k bounds and the connection is
a solution of a parabolic equation, we can reduce the following result to its elliptic
counterpart.

Lemma 3.7. LetD.t/ be a solution to the Yang–Mills ˛-flow defined on B� Œt1; t2�.
Assume that

sup
B�Œt1;t2�

ˇ̌̌
r
kF
ˇ̌̌
� C.k/:

Then there is a trivialization (independent of t ) in which D.t/ D d C A.t/ and all
derivatives (space and time) of A.t/ are bounded.

Proof. For t D t1 fixed, we may apply Uhlenbeck’s gauge fixing to find a
trivialization such that at least allC k norms ofA.t1/ are bounded (see Lemma 2.3.11
in [9]). We can now use (3.1) to see that @A

@t
is bounded for B� Œt1; t2�. The Newton–

Leibnitz formula

A.t/ D A.t1/C

Z t

t1

@A

@t
ds

then implies that A.t/ is uniformly bounded inM � Œt1; t2�. If we take derivatives of
(3.1) both in space and time, by noticing that the right hand side involves only F , we



104 M.-C. Hong, G. Tian and H. Yin CMH

know that @
kA

@tk
are bounded on B � Œt1; t2�. By using the Newton–Leibnitz formula

again, the space derivatives of A are uniformly bounded on B � Œt1; t2�. Since A
is bounded, one can argue inductively that both covariant derivatives and the partial
derivatives are bounded.

We now prove Theorem 1.2.

Proof. Let A˛ be the smooth solution of the Yang–Mills ˛-flow in M � Œ0;1/ with
the same initial value A0 for each ˛ > 1. The concentration set † is defined by

† D
\

0<R<RM

�
z 2M � Œ0;1/ W lim inf

˛!1
R4˛�6

Z
PR.z/

.1C jFA˛ j
2/˛ dv dt � "0

�
for some "0 > 0. It is standard to show that † is closed. The same argument as in
[17] also yields that for any two positive t1 and t2, P2.† \ .M � Œt1; t2�// is finite,
where P2 denotes the 2-dimensional parabolic Hausdorff measure. Moreover, for
any t 2 .0;C1/, †t D † \ .M � ftg/ consists of at most finitely many points.

For a point z0 outside †, there is a constant R > 0 such that for sequence of
˛ ! 1, we have

R4˛�6
Z
PR.z0/

.1C jFA˛ j
2/˛ dv dt � "0:

Then applying Lemma 3.5, we know that FA˛ is uniformly bounded in ˛ inside
PR=2.z0/.

Lemma 3.6 and Lemma 3.7 then imply that there is a trivialization on PR=2.z0/
such that A˛.t/ is bounded in any C k norm. We then choose a sequence of such
neighborhoods fPig covering M � Œ0;1/ n †. Denote the transition functions by
�˛ij . The C k bound of �˛ij follows from those of A˛i .

By taking a subsequence, we may assume that �˛ij converges to �ij and A˛i to Ai
smoothly as ˛ goes to 1. The �ij ’s define a bundle E1 overM � Œ0;1/ n† and the
Ai ’s define a connectionD1 ofE1. Since the convergence is strong, we know from
the evolution equation of A˛i that Ai .t/ is a solution to the Yang–Mills flow.

Before we conclude this section, we would like to make some remarks. Both are
related to the singular set †.

Remark 3.8. Let T D inf.x;t/2† t be the first concentration time in Theorem 1.2.
We may follow from the argument of Theorem 1.3 in [17] to show that T is the same
as the first singular time T 0 of the Yang–Mills flow.

As in [17], one may ask what more we can say about the singular set †. For the
general case, not much is known. However, we do know something for a minimizing
sequence.
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Precisely, we have

Proposition 3.9. Let Di be a minimizing sequence of YM.�/ among all smooth
connections of the bundle E. Then we choose a subsequence of ˛i ! 1 such that
YM˛i .Di / < YM.Di /CV.M/C 1

i
, where V.M/ denotes the volume ofM . Denote

by Di .t/ the ˛i�flow solution with initial value Di . If we consider i ! 1, then
the concentration set † as defined above satisfies

† D

l[
jD1

˚
pj
	
� .0;1/:

Proof. By the same proof of Theorem 1.2, the singular set† has the following form:

† D
\

0<R<RM

�
z 2M � Œ0;1/ W lim inf

˛i!1
R4˛�6

Z
PR.z/

.1C jFDi .t/j
2/˛i dv dt � "0

�
:

For completeness, we give a proof of the finiteness of †t D † \ .M � ftg/. Let
fxj g

l
jD1 be any finite subset of †t . By the definition of †, we know

lim inf
˛i!1

R4˛i�6
Z
PR.xj ;t/

.1C
ˇ̌
FDi .t/

ˇ̌2
/˛idvdt > "0

for any R < RM . Let R be small positive number such that BR.xi /, i D 1; � � � ; l ,
are mutually disjoint. Hence, for ˛ close to 1, we have

R�2
Z
PR.xi ;t/

.1C
ˇ̌̌
F
Di .t/

ˇ̌̌2
/˛idvdt > "0R

4�4˛i � C"0;

because R is small and ˛ > 1. Summing over i yields

lC "0 � R
�2

Z t

t�R2

Z
M

.1C
ˇ̌̌
F
Di .t/

ˇ̌̌2
/˛idvdt:

By Lemma 2.1, l is bounded by a uniform bound of the total energy YM.Di / and
"0, which implies the finiteness of †t .

For any t4 > t3 > 0, since Di is a minimizing sequence, by our suitable choice
of ˛i ! 1 we have

V.M/C YM.Di /C
1

i
� YM˛i .Di / � YM˛i .Di .t3//

� YM˛i .Di .t4// � V.M/C YM.Di /;

where we have used Lemma 2.1.
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By Lemma 2.1 again, we have

lim
i!1

Z t4

t3

Z
M

.1C
ˇ̌
FDi .t/

ˇ̌2
/˛i�1

ˇ̌̌̌
dDi .t/

dt

ˇ̌̌̌2
dvdt D 0: (3.15)

Moreover, the convergence is uniform with respect to t3 and t4. For any t2; t1 > 0,
if .x; t1/ … †, we will show .x; t2/ … † either. Since .x; t1/ … †, we have some
r1 > 0 such that for a subsequence (for simplicity, we still denote the subsequence
by i ), Z

Br1 .x/

.1C
ˇ̌
FDi .t1/

ˇ̌2
/˛idv �

"0

4
:

Let ' be some cut-off function supported in Br1.x/. Thenˇ̌̌̌
d

dt

Z
M

'2.1C
ˇ̌
FDi

ˇ̌2
/˛idv

ˇ̌̌̌
D

ˇ̌̌̌Z
M

˛i'
2.1C

ˇ̌
FDi

ˇ̌2
/˛i�1hFDi ;

@FDi
@t
idv

ˇ̌̌̌
�

Z
M

ˇ̌̌̌
˛i'

2
hD�i

�
.1C

ˇ̌
FDi

ˇ̌2
/˛i�1FDi

�
;
@Di

@t
i

ˇ̌̌̌
C 2˛i'.1C

ˇ̌
FDi

ˇ̌2
/˛i�1 jr'j

ˇ̌
FDi

ˇ̌ ˇ̌̌̌@Di
@t

ˇ̌̌̌
dv

�

Z
M

˛i'
2.1C

ˇ̌
FDi

ˇ̌2
/˛i�1

ˇ̌̌̌
@Di

@t

ˇ̌̌̌2
dv

C C

 Z
M

˛i'
2.1C

ˇ̌
FDi

ˇ̌2
/˛i�1

ˇ̌̌̌
@Di

@t

ˇ̌̌̌2
dv

!1=2
�

�Z
M

˛i jr'j
2 .1C

ˇ̌
FDi

ˇ̌2
/˛i�1

ˇ̌
FDi

ˇ̌2
dv

�1=2
:

The term in the last line above is bounded by a constant depending on r1 but not on
i . Therefore, if we integrate from t1 to t3 and let i !1, we have, thanks to (3.15),

lim
i!1

Z
M

'2.1C
ˇ̌
FDi

ˇ̌2
/˛i .t3/dv < "0=2:

Hence, by taking every t3 2 Œt2� r2i ; t2C r
2
i �, we have (for some subsequence which

we labeled by i )

lim
i!1

r
4˛i�6
1

Z
Pri .x;t2/

.1C
ˇ̌
FDi

ˇ̌2
/˛idvdt � "0:

Therefore .x; t2/ is not in † and the proof is done.
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4. Applications

In this section, we study the applications of the Yang Mills ˛-flow and the Yang
Mills ˛-connection produced as the limit of the flow. The outline is as follows:
in Subsection 4.1, we will prove the "-regularity estimate for smooth Yang Mills
˛-connections. In Subsection 4.2, we will recall some facts about the topology
of bundles and prove Theorem 1.3. In Subsection 4.3, we discuss a minimizing
sequence of YM.�/ and prove Theorem 1.4. Finally, we show how the Yang–Mills
˛-flow can be used to obtain a nonminimal Yang–Mills connections over S4.

4.1. An "-regularity lemma. This is an analogue of what Sacks and Uhlenbeck
called ‘main estimate’. It is necessary for the blow-up analysis. Please note that
we use the ˛-flow to obtain a Yang–Mills ˛-connection as the limit as ti ! 1. It
follows from Theorem 1.1 that the ˛-connection is smooth.

Lemma 4.1. There is "1 > 0 such that if D is a smooth ˛-Yang–Mills connection
defined on B1 with

R
B1
jF j2 dv � "21, then in some trivialization with D D d C A,

kAkCk.B1=2/ � C.k/ kF kL2.B1/ :

Although we can prove it directly, we show a parabolic version, from which
Lemma 4.1 follows obviously.

Theorem 4.2. There is some "1 > 0 such that if D.t/ is a smooth solution to the
˛-Yang–Mills flow on P1 D B1 � Œ�1; 0� and

sup
t2Œ�1;0�

Z
B1

jF j2 dv � "21;

then
sup

t2Œ�1=4;0�

sup
B1=2

ˇ̌̌
r
kF
ˇ̌̌
� C.k/:

The proof is omitted because it is rather well known and follows the same method
as in Lemma 3.5. It suffices to use the first Bochner formula (3.3). Moreover, the
same method can be used to prove a stronger result by choosing a different blow-up
factor. We need the following for the blow-up analysis

Theorem 4.3. There exists "1 > 0 such that if D.t/ is a smooth solution to the
˛-Yang–Mills flow satisfying

sup
Œt0�R2;t0�

Z
BR.x0/

jF j2 dv � "21;

then we have

sup
BR=2.x0/�Œt0�R

2=4;t0�

jF j �
C"1=2

R2
;
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where

" WD sup
t2Œt0�R2;t0�

Z
BR.x0/

jF j2 dV:

Proof. By scaling and translation, we may assume that R D 1, x0 D 0 and t0 D 0.
Set

Pr.x; t/ D f.x
0; t 0/jx0 2 Br.x/ and t � r2 � t 0 � tg:

It is supP1=2 jF j that we want to estimate. Find .x1; t1/ in P1=2 such that

jF j .x1; t1/ �
1

2
sup
P1=2

jF j :

It now suffices to bound f1 WD jF j .x1; t1/. If we are lucky, then we have

sup
P1=4.x1;t1/

jF j � 16f1: (4.1)

If not, we can find .x2; t2/ in P1=4.x1; t1/ such that

jF j .x2; t2/ D 16f1:

By induction, we claim that after finitely many times, we have k 2 N, such that

jF j .xk; tk/ D 16
k�1f1

and
sup

P
1=4k

.xk ;tk/

jF j � 16 jF j .xk; tk/ D 16
kf1:

In fact, if we write dP for parabolic distance, then we have

dP ..xk; tk/; .xk�1; tk�1// �
1

4k�1
:

Since .x1; t1/ is in P1=2, we know .xk; tk/ 2 P5=6 for all k. However, F is smooth
in P1 and hence supP5=6 jF j is bounded.

We do a scaling and translation on P1=4k .xk; tk/ to get QA such that

sup
P 1
4
f
1=2
1

ˇ̌
F QA

ˇ̌
� 16 and

ˇ̌
F QA

ˇ̌
.0; 0/ D 1 (4.2)

and

sup
Œ�f1=16;0�

Z
B 1
4
f
1=2
1

ˇ̌
F QA

ˇ̌2
dV � ":
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Applying (4.2) to Theorem 4.2 and noticing Lemma 3.2, we have

@

@t

ˇ̌
F QA

ˇ̌2
� 4

ˇ̌
F QA

ˇ̌2
C C

ˇ̌
F QA

ˇ̌2
:

Consider g.x; t/ D e�Ct
ˇ̌
F QA

ˇ̌2 which is a subsolution to the heat equation. By
Theorem 4.2, we know f1 is bounded by a constant. HenceZ 0

�f1=16

Z
B 1
4
f
1=2
1

g.x; t/dxdt � C

Z 0

�f1=16

Z
B 1
4
f
1=2
1

ˇ̌
F QA

ˇ̌2
.x; t/dxdt:

By Mean Value inequality for linear heat equation,

1 D g.0; 0/ � Cf �21 ";

which finishes the proof of this lemma.

4.2. Connected sum of vector bundles. We recall some topological facts about
vector bundles (principal bundles). Let G be a connected compact Lie group. There
is a topological space BG, which is called the classifying space of G, and a G-
bundle EG with BG as its base, which is called the universal bundle, such that for
any G�bundle E over M , there is a map f W M ! BG such that E is just the pull
back bundle f �.EG/. Moreover, the isomorphism classes ofG-bundles are in one to
one correspondence with the homotopy classes of maps from M to BG. Therefore,
the classification of bundles is equivalent to the classification of continuous maps
from M to BG.

The topology of BG is closely related to that ofG. Since EG is contractible, the
exact sequence of homotopy groups implies that

�iC1.BG/ D �i .G/:

Moreover, it is known that for all connected Lie groups G, �1.G/ is a finitely
generated abelian group, �2.G/ D 0 and �3.G/ is a finitely generated free abelian
group. An invariant of the classifying map f (hence of E) related to �1.G/ is
called an � invariant. It was defined via Čech cohomology in [26]. In particular,
if �1.G/ D 0 or M D S4, then � is always trivial. There is another invariant
called the vector Pontryagin number related to �3.G/. For our purposes, we shall
restrict ourselves to the case M D S4 below. Hence, it is nothing but an element in
�4.BG/ D �3.G/ D Zl .

To define the connected sum of bundles, let us consider two bundles Ei over Mi

for i D 1; 2. Pick any pi 2 Mi and let Bi be a small ball around pi such that
Ei jBi are trivial bundles. We obtain two manifolds with boundary Mi n Bi and two
bundles Ei jMinBi . We identify @Bi with orientation taken into account to obtain
the connected sum M D M1#M2. Such an identification is uniquely determined
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topologically. We still need an identification of Ei j@Bi . Although they are trivial
bundles over S3, there are many different bundle isomorphisms between them.
Among those isomorphisms, there is a natural one. Ei j@Bi admits a trivialization
inherited from the trivialization of Ei jBi . By identifying the two trivializations,
we obtain the natural isomorphism and a bundle E over M , which is called the
connected sum of E1 and E2. Since we will always consider connected manifolds
Mi , the definition is independent of the choice of pi and the size of (small) Bi . We
remark that M#S4 DM for any closed 4�manifold M .

It is well known that when we consider the convergence of a sequence of Yang–
Mills connections on bundle E with bounded energy, blow-up occurs. In fact, the
same discussion works for ˛-Yang–Mills connections, or any other sequence of
connections as long as we have the "-regularity and a total energy bound. This results
in a weak limit on some different bundle E 0 and finitely many bubble connections
on Ei over S4 for i D 1 � � � l . The point is that E D E 0#E1# � � � #El . This follows
from the removable singularity theorem of Uhlenbeck and some analysis on the neck
region, which we briefly recall as follows.

Assume for simplicity that there is only one bubble. That is Ai , after gauge
transformations, converges onM nBı to the weak limitA0, and after scaling,Ai jB�iR
converges on BR to the bubble connection QA. Since ı and R can be arbitrary, A0 is
defined on M n fpg and QA is defined on R4. The removable singularity theorem
claims that in fact A0 and QA are smooth connections of E 0 over M and QE over S4.
Topologically, there are different ways to extend a bundle over M n fpg to M . This
amounts to the choice of a trivialization of Ej@Bı (up to topological equivalence).
There is one naturally dictated by the converging sequence Ai . By the "�regularity,
if we restrict Ai to Bı nBı=2 and scale to B2 nB1, it is a connection with arbitrarily
small curvature (in any norm). This decides a trivialization (see Lemma 2.4 in [33]).
Similar analysis works for the bubble connection on B2�iR n B�iR.

To see that E is the connected sum of E 0 and QE, it suffices to show that the
trivialization of E on Bı n Bı=2 and B2�iR n B�iR agree with each other. This is
related to how the bubble tree is constructed. If one follows the process of Ding and
Tian [6], we know that the energy of the Ai restricted to Bt n Bt=2 are smaller than
any given "1 for t 2 Œ2�iR; ı�. For each t , the smallness of energy and "�regularity
implies a choice of trivialization. As t changes from 2�R to ı, we see that the
two trivialization can be continuously deformed to each other. If one follows the
construction of Parker [21], we have the total energy over the neck regionBı nB2�iR
is small (see (1.3) and (1.6) in [21]), say smaller than "1. Using the trivialization over
B2�iR n BR, we may extend the connection to BR with a controlled amount of the
energy. We can do the same at the infinity to obtain a smooth connection over S4

whose energy is smaller than a multiple of "1. Hence, the bundle must be trivial and
it implies that the two trivialization agree with each other.
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The proof of Theorem 1.3 depends on the following lemma, which is well known.

Lemma 4.4. Let a1; a2 be two elements in �3.G/ andE1 andE2 be the correspond-
ing bundles over S4. If E D E1#E2, then E corresponds to the element a1 C a2 in
�3.G/.

Proof. The key proof is to clarify the correspondence between homotopy class of
maps from S3 to G and the bundle over S4. This can be done via the clutching
functions.

Let S4 be the unit sphere in R5 with coordinates x1; � � � ; x5. Let S4N be the north
hemisphere given by fx5 � 0g and S4S be the south hemisphere. We also identify
the equator fx5 D 0g by S3. For any G bundle E over S4, its restrictions to both
hemispheres are trivial. Hence, we may choose the trivialization on both S4N and
S4S . The topology of E is encoded in the gluing map � W S3 ! G, which we call
a clutching function. It is obvious that the isomorphism class of E corresponds to
homotopic class of clutching functions � .

Next, we study the connected sum of bundles in this setting. Let E1 and E2 be
two bundles over S4 as assumed. By abuse of notations, we may write a1 and a2
for the clutching functions of E1 and E2 respectively. In doing connected sum, we
identify the trivialization on the south hemisphere part of E1 with the trivialization
on the north hemisphere part of E2. Hence, the new bundle is glued from three
pieces. The central one is a trivial bundle over S3 � Œ0; 1�. If we remove the
central piece, we see the clutching function of the new bundle is a1 � a2 (Lie group
multiplication).

It remains to see that the homotopy class of a1 � a2 is just the sum of a1 and a2.
In fact, we may pick a map homotopic to a1 (or a2), still denoted by a1 (or a2),
such that its restriction to a neighborhood of south (or north) hemisphere is the unit
of G. Then, by the definition of group structure of �3.G/ (as given on page 341
of Hatcher’s book [12]), the homotopic class of a1 � a2 is the sum of a1 and a2 in
�3.G/.

We now prove Theorem 1.3.

Proof of Theorem 1.3. Recall that G-bundles over S4 correspond to the homo-
topy classes of maps from S4 to the classifying space BG of G, and that
�4.BG/ D �3.G/. Assume the theorem is not true. Then there are at most
r � 1 G-bundles which admit Yang–Mills G�connections. Let a1; � � � ; ar�1 be
elements in �4.BG/ corresponding to these G-bundles. By our assumption, there is
a 2 �4.BG/ which is not generated by fa1; � � � ; ar�1g.

Let E be the bundle corresponding to a. Pick any smooth connection on E.
Consider the ˛-flow starting from it. Theorem 1.1 gives a Yang–Mills ˛-connection
A˛ for each ˛ > 1. Since E is not a trivial bundle and S4 is simply connected, A˛
cannot be flat. Take the limit as ˛ to 1.
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If the convergence is strong, then we find a Yang–Mills G-connection, which
contradicts the choice of a. If not, the bundle E splits into a connected sum of
E1,. . . ,El over S4, and each admits a Yang–MillsG-connection. By our assumption,
Ei .i D 1; � � � ; l/ corresponds to one of a1; � � � ; ar�1. Moreover, by Lemma 4.4, the
fact that E is a connected sum of E1; � � � ; El implies that a is a combination of
a1; � � � ; ar�1 in �4.BG/ D �3.G/. This is a contradiction to our choice of a.

4.3. Minimizing sequences of YM.�/. In this subsection, we prove Theorem 1.4.
For a closed 4�manifold M and the G-bundle E, let m.E/ be the infimum of
YM.A/ for all G�connections A of E.

First, let us show a general result which has nothing to do with the blow-up.

Proposition 4.5. If E D E 0#E1# � � � #El , where E 0 is a bundle over M and Ei are
bundles over S4, then

m.E/ � m.E 0/C

lX
iD1

m.Ei /:

Proof. For simplicity, consider l D 1. If suffices to show that for any " > 0 and
any two connections D1 and D2 of E 0 and E1 respectively, we may construct a
connection D of E such that

YM.D/ � YM.D1/C YM.D2/C ":

(This is exactly Lemma 5.7 in [18]). For completeness, we also give a proof here.
Given any smooth connectionDi and a trivialization of the bundle over some ball

B , by multiplying by a cut-off function, we may assume that Di is flat in a smaller
ball at the expense of any small change of the energy. More precisely, for any " > 0,
there is a ı > 0 and we have another connection D0i such that

(1) Di D D0i outside Bı ;

(2) D0i D d on Bı=2;

(3)
ˇ̌
YM.D0i / � YM.Di /

ˇ̌
< ".

Indeed, if Di D d C Ai on B , due to the smoothness of Ai , there exists ı > 0

such that if we scale Bı to B2, Di becomes d C QAi with


 QAi

Ck as small as we

need.
Let ' be a cut-off function: ' � 1 on B2 n B3=2 and ' � 0 in B1. Consider a

new connection d C .' QAi /. It agrees with d C QAi outside B3=2 and is d in B1. We
scale d C .' QAi / back to B� and denote the new connection by D0i . It remains to
see that the change in the energy is small. Due to the scaling invariance of energy, it
suffices to check that any C k norm of F D d.' QAi /C Œ' QAi ; ' QAi � is small on B2.

Fix p 2 M and q 2 S4. By the above construction, we may assume that in
Bı.p/ and Bı.q/, there is a trivialization such that the connection is just d . Via the
stereographic projection, D1 is a connection over R4, which outside BR is nothing
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but d in some trivialization. We further scale it down to assume that R D ı=2. We
can now obtain a new connection by gluing D0 on M n Bı=2 and D1 on BR. Since
there is no energy at all in the overlap domain, the lemma is proved.

We then consider a minimizing sequence. For a given bundle E, let Di be a
minimizing sequence with

lim
i!1

YM.Di / D m.E/:

Since Di is smooth, we can find ˛i close to 1 such that

YM˛i .Di / � YM.Di /C V.M/C
1

i
:

Let Di .t/ be the solution of the ˛i -Yang–Mills flow from Di and set D0i D Di .1/.
Then,

YM.D0i /C V.M/ � YM˛i .D
0
i / � YM.Di /C V.M/C

1

i
:

This implies that D0i is another minimizing sequence.
In order to do the blow-up analysis for D0i , we need the following "�regularity

result,

Lemma 4.6. There exists " > 0 such that if Br.x/ �M satisfies

lim sup
i!1

Z
Br .x/

ˇ̌̌
FD0

i

ˇ̌̌2
dv � ";

then 


rkD0
i

FD0
i





C0.Br=4.x//

� Cr�k�2:

Proof. The proof relies on Theorem 4.2 and " will be determined by "1 and the
energy bound for our minimizing sequence.

By our choice of ˛i , we have

lim
i!1

Z
M

�
1C

ˇ̌̌
FD0

i

ˇ̌̌2�˛i
�

�
1C

ˇ̌̌
FD0

i

ˇ̌̌2�
dv D 0:

Hence,

lim sup
i!1

Z
Br .x/

.1C
ˇ̌̌
FD0

i

ˇ̌̌2
/˛i � 1 dv � 2":

The local energy inequality (Lemma 2.3) implies that there exists � > 0 depending
on the total energy and " such that for i sufficiently large,

sup
t2Œ1��r2;1�

Z
Br=2.x/

.1C
ˇ̌
FDi .t/

ˇ̌2
/˛i � 1 dv � 3":
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Therefore,

sup
t2Œ1��r2;1�

Z
Br=2.x/

ˇ̌
FDi .t/

ˇ̌2
dv � 4":

Set " D 1
4
"1 and the proof follows from Theorem 4.2.

Now we can do the well-known blow-up analysis for D0i . If there are nontrivial
bubbles and E D E 0#E1# � � � #El , then

m.E/ D lim
i!1

YM.D0i / � m.E
0/C

lX
iD1

m.Ei /:

This together with Proposition 4.5 will imply the energy identity:

Proposition 4.7. Let Di be a minimizing sequence of the Yang–Mills functional
among all smooth connections of the bundle E over M . Then, there exist bundles
E 0 over M and E1; � � � ; El over S4 for some l � 0 and Yang–Mills connections
D01 and QD1; � � � ; QDl such that

lim
i!1

YM.Di / D YM.D
0
1/C

lX
iD1

YM. QDi /:

Next, it remains to study the relation between the limit connection D01 and the
weak limit D1 of Sedlacek [26].

We try to prove that the two limit (two Yang–Mills connection on two smooth
bundles) are globally the same up to gauge transformations. This is the best one
could hope for.

Let S be the union of energy concentration sets, both forDi in the Sedlacek limit
and for D0i above. Let

˚
U ˇ

	
be an open cover of M n S . We shall consider three

bundles.

(1) The original one where the minimizing sequences and their ˛-flow lies on is
denoted by E.

(2) The weak limit bundle, E1, where the weak limit of Di lies. In the paper of
Sedlacek, it is given by transition functions. However, it is convenient to think
of it as an abstract bundle, with a set of trivialization.

(3) The strong limit bundle, E2, where the weak limit of D0i lies.

For eachDi , there is a trivialization eˇi in whichDi D dCA
ˇ
i , where




Aˇi 



W 1;2

is bounded. gˇ
i will denote the transition functions, by which we mean

e
ˇ
i D g

ˇ

i e



i : (4.3)
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There is a trivialization eˇ of E1 when restricted to M n S , in which the weak limit
D1 D d C A

ˇ
1. We denote the transition functions by gˇ
 , which means that

eˇ D gˇ
e
 : (4.4)

The convergence of the minimizing sequence Di on E in [26] can be reformulated
as follows. By part e) of Theorem 3.1 in [26], we have


Aˇi � Aˇ1




W 1;2
! 0:

By part c) of the same theorem, gˇ
i converges to gˇ
 weakly in W 1;4.

Remark 4.8. This convergence was shown to be weaklyW 1;2 in [26] and was shown
to be strong by Isobe in [18].

There is a bundle map 'ˇi W EjUˇ ! .E1/jUˇ by identifying trivialization eˇi
and eˇ . The above convergence can be written as


.'ˇi /�D1 �Di




W 1;2.Uˇ/
! 0: (4.5)

In [26], 'ˇi and '
i cannot be fitted together to get a larger bundle map. However,
we have the following relation between them.

Let v be any vector of EjUˇ\U 
 . Suppose that

v D Qve
ˇ
i D g

ˇ

i Qve



i :

By definition of v and (4.3), (4.4),

'
ˇ
i .v/ D Qve

ˇ (4.6)

D gˇ
 Qve


D gˇ
 Qv.'


i e


i /

D '


i .g

ˇ
g

ˇ
i Qve

ˇ
i /

D gˇ
g

ˇ
i '



i .v/:

The relation (4.6) will be important for us later.
Next, we describe the strong convergence of D0i to D01. We know there is a

sequence of bundle maps �i from EjMnS to E2jMnS such that

��i D01 �D0i

Ck.K/ ! 0

for any compact K in M n S . For any ˇ, we have

��i D01 �D0i

Ck.Uˇ/ ! 0: (4.7)
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By our construction, we know 

Di �D0i

L2 ! 0:

Hence, 


.'ˇi /�D1 � ��i D01



L2.Uˇ/

! 0:

That is 


D1 � .�ˇi /�D01



L2.Uˇ/

! 0; (4.8)

where �ˇi D �i ı .'
ˇ
i /
�1 is a bundle map from E1jUˇ to E2jUˇ .

We claim that �ˇi converges to �ˇ in weak W 1;2 topology and D1 D .�ˇ /�D01
on U ˇ . To see this, consider the meaning of (4.8) in trivialization eˇ and f ˇ . (Here
f ˇ is a trivialization of E2 on U ˇ .) SinceD1 D d CA1 andD01 D d CA

0
1, we

have 

A1 � .s�1i dsi C s
�1
i A01si /




L2.Uˇ/

� C:

Here si is the map �ˇi in a trivialization. Hence si is bounded in W 1;2 and our claim
follows. Moreover, although the convergence is only weakly W 1;2, �ˇ is smooth
since it maps smooth connections to smooth connections.

We next claim that �ˇ and �
 agree over U ˇ \ U 
 . Hence, this gives a global
bundle map � from E1jMnS to E2jMnS . To see this, it suffices to check that

lim
i!1

�i ı .'
ˇ
i /
�1
D lim
i!1

�i ı .'


i /
�1:

Due to the smoothness of �ˇ and �
 , it suffices to check the above for a dense
set of x 2 U ˇ \ U 
 . Thanks to (4.6) and the W 1;4 weak convergence of gˇ
i to
gˇ
 (Theorem 3.1 in [26]), we have a dense set W such that for x 2 W and any
v 2 .E1/x , we have

.'
ˇ
i /
�1.v/ � .'



i /
�1.v/! 0:

Because �i is a linear map and �i lies in G � SO.r/ (r is the rank of E), we have

lim
i!1

�i ı .'
ˇ
i /
�1.v/ � �i ı .'



i /
�1.v/ D 0:

Now we have a bundle map � defined onM nS satisfying ��D01 D D1. Finally,
since D1 and D01 are smooth connections, � extends automatically to a global
smooth gauge transformation with ��D01 D D1. In fact, locally on B n f0g,

A1 D �
�1d�C ��1A01�;

which implies � and all its derivatives are bounded on B n f0g since A1 and A01 are
smooth over B .

Hence, we finish the proof of Theorem 1.4.
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4.4. Another approach for Min-Max of the Yang–Mills functional. It is well
known that the Yang–Mills functional in dimension 4 does not satisfy the Palais–
Smale condition, which caused great difficulty in applying Morse theory to show the
existence of a nonminimal critical point. In 1989, Sibner, Sibner and Uhlenbeck [27]
proved the existence of nonminimal Yang–Mills connections on the trivial SU.2/
bundle over S4. They used the fundamental relationship between m�equivariant
gauge fields on S4 and monopoles on hyperbolic 3�space H3 as presented by Atiyah
[1]. If we identify S4 with R4[f1g by stereographic projection, we may introduce
the following coordinates

.z; �; .x; y// 7! .z cos �; z sin �; x; y/ 2 R4:

Hence, one can define a U.1/ action on S4 by

q.� 0/.z; �; .x; y// D .z; � C � 0.mod2�/; .x; y//

and leaving other points in S4 not represented by this coordinate system fixed.
Let

n
Oi ; Oj ; Ok

o
be a standard basis for su.2/ and s.�/ D e

Oim� .m � 2/ be a
homeomorphism from U.1/ to SU.2/. A connection D is called an m-equivariant
connection if

q.�/�D D s.�/�1 ıD ı s.�/

for all � 2 U.1/. Denote the set of allm-equivariant connections of the trivial SU.2/
bundle over S4 by M.

The authors of [27] followed a construction of Taubes [31] to find a non-
contractible loop of connections D
 .
 2 S1/ of m-equivariant connections in M,
satisfying

YM.D
 / < 8�m: (4.9)

The connections in Lemma 2 of [27] are in W 1;1, but by approximation, we can
assume that they are smooth and (4.9) remains true. Since they are smooth, we know

YM˛.D

 / < 8�mC !4

for sufficiently small ˛. Here !4 is the volume of S4.
We can now apply the Yang–Mills ˛-flow to the loop. The ˛-flow preserves

symmetry, so that the flow stays in M. By Theorem 2.6, we obtain a deformation of
the circle in M. We then claim that we obtain a nontrivial Yang–Mills ˛-connection
D˛ with YM˛.D˛/ < 8�m C !4. Otherwise, the flow will converge to the flat
connection for any 
 2 S1, which will result in a contraction of the loop to a single
point in M. This is not possible.

The energy of these Yang–Mills ˛-connections D˛ has a uniform lower bound.
This is a generalized gap theorem similar to the result of Bourguignon and Lawson
[4].
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Lemma 4.9. There is � > 0 depending only on G such that any nontrivial Yang–
Mills ˛-connection D˛ on S4 satisfies

YM.D˛/ > �:

Proof. Recall that we have proved a stronger Bochner formula (3.6) than stated in
Lemma 3.2. For our purpose here, @t jF j

2 vanishes and the Ric ^gC 2R is just the
4 times of the identify map on 2�forms. Hence,

�rei

�
.ıij C bij /rej jF j

2
�
� C jF j3 � 3 jF j2 ;

when ˛ � 1 is small. Multiplying both sides by jF j2 and integrating over S4, we
have Z

S4

ˇ̌̌
r jF j2

ˇ̌̌2
C jF j4 � C

Z
S4
jF j5 :

By the Sobolev inequality and the Hölder inequality, we obtain�Z
S4
jF j8

�1=2
� C

�Z
S4
jF j2

�1=2 �Z
S4
jF j8

�1=2
:

This implies that F is identically zero if the energy is small.

Now, we may pass to the limit ˛ ! 1. Note that � < YM.D˛/ < 8�m. The rest
of the proof goes just like Theorem 1 in [27]. If the convergence ofD˛ is strong, we
obtain a nonminimal Yang–Mills connection on the trivial SU.2/ bundle over S4. If
not, the energy bound 8�m implies that either the weak limit or one of the bubbles is
a nontrivial Yang–Mills connection on the trivial SU.2/ bundle (hence nonminimal),
because the energy is not enough for two nontrivial bundles.
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