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Lower bounds for Pythagoras numbers of function fields
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Abstract. We show that the transcendence degree of a real function field over an arbitrary real
base field is a strict lower bound for its Pythagoras number and a weak lower bound for all its
higher Pythagoras numbers.

Mathematics Subject Classification (2010). 12D15, 13J30, 14C17.

Keywords. Pythagoras number, real function fields, valuations.

1. Introduction

The Pythagoras number p.F / of a field F is the smallest integer n such that every
sum of squares in F is equal to a sum of n squares if such an n exists, or infinite
otherwise. Recall that F is called real if �1 is not a sum of squares in F . The main
result of this article is the following.

Theorem 1.1. Let F be a real field that is finitely generated of transcendence degree
d over a subfield K. Then p.F / � d C 1.

For K D R, this was shown by Kucharz in [11], and later extended in [12] to
the case where K is a real closed field. Kucharz obtains the lower bound d C 1 by
showing that it is the minimal number of generators of some finitely generated ideal
in the real holomorphy ring of the function field. He uses the geometric description
of real holomorphy rings by [5], which rely on Hironaka’s resolution of singularities
and points of indeterminacy of rational maps.

The present paper also uses geometric methods, in particular a version of
Bertini’s theorem, as well as valuation theoretic methods, and a generalization of a
well known result of Cassels, Ellison and Pfister. However, in difference to Kucharz’
proofs in [11] and [12], the results given here do not rely on Hironaka’s resolution
of singularities or points of indeterminacy.

The paper is structured as follows. In Section 2, we show the existence of certain
valuations on a real function fieldF=K in d variables, in particular a valuation whose
residue field is a rational function field in d � 1 variables over a finite real extension
of K.
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In Section 3, we first observe that the result of Cassels, Ellison and Pfister in [6]
implies Theorem 1.1 with the better bound p.F / � d C 2 in the case where F=K is
a rational function field in d � 2 variables.

Then we consider the case of a general real function field F=K in d � 3 variables
and show that the valuation obtained in Section 2 allows a reduction to the previous
case of rational function fields. The case d D 2 is shown in a similar but slightly
different way. The cases d D 0; 1 were known before.

We also show the weaker lower bound d for the so called higher Pythagoras
numbers in Section 3. In contrast to the proof of the stronger lower bound d C 1
for the usual Pythagoras number, the proof of the weaker bound for the higher
Pythagoras number does rely on Kucharz’ result, and therefore on resolution of
singularities.

2. Some arithmetic of real function fields

We start with some general observations on valuation rings that are centered in a
regular local ring or in a prime ideal of a polynomial ring.

Lemma 2.1. Let .R;m/ be a regular local domain with field of fractions F . Then
there exists a valuation ring .O;M/ in F dominating .R;m/ such that the natural
embedding R=m ,! O=M is an isomorphism.

Proof. This follows for example from [1, Chapter II, Lemma 3.4].

Corollary 2.2. Let K be a field and p a prime ideal of the polynomial ring
KŒX1; : : : ; Xd � for some d 2 N . Then there exists a valuation ring .O;m/ with field
of fractionsK.X1; : : : ; Xd / containingKŒX1; : : : ; Xd �with p D m\KŒX1; : : : ; Xd �
and such that the field of fractions ofKŒX1; : : : ; Xd �=p is canonically isomorphic to
O=m.

Proof. Let O0 denote the localization of KŒX1; : : : ; Xd � at p. We denote m0 the
maximal ideal of O0. Obviously O0=m0 is canonically isomorphic to the fraction
field of KŒX1; : : : ; Xd �=p. As a localization of a polynomial ring over a field, we
have ([7, Exercise 13.6]) that O0 is a regular local ring. The statement now follows
from Lemma 2.1.

We recall from [4, Theorem 1.1.8] that real fields are exactly the fields that admit
an ordering that is compatible with addition and multiplication. By a variety, we
mean a reduced scheme of finite type over a field. We call a point on the variety real
if its residue field is real. We call an irreducible variety real if its generic point (i.e.
its function field) is real. The following is a well known fact to real geometers, at
least in the situation of a real closed base field.
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Proposition 2.3. A irreducible variety is real if and only if it admits a nonsingular
real point.

Proof. Let V be an irreducible variety over a field K, and let F denote its function
field. We can assume that V is affine and that K is real. Let us first assume that
V contains a real nonsingular closed point P . In particular its local ring OV;P is
regular and its residue field �.P / is real. By Lemma 2.1, there exists a valuation v
whose residue field is isomorphic to �.P /.

Suppose F is nonreal. Then 0 D x21 C � � � C x
2
s for some s � 1 and xi 2 F �.

Assume that v.x1/ D minfv.x1/; : : : ; v.xs/g. After dividing the equality by x21 , we
can assume that x1 D 1 and v.xi / � 0 for all 1 � i � s. It follows that �1 is a sum
of squares in the residue field �.P / of v, which yields the contradiction. Hence F is
real.

To show the converse implication, we start by assuming that F is real. In the
case where K is real closed, [4, Proposition 7.6.4 (i)] yields the existence of a real
nonsingular closed point in V . When K is an arbitrary real field, let K 0 denote the
relative algebraic closure of K in F . Considered as a variety over K 0, we have that
V is geometrically irreducible. Now let R denote a real closure of K 0 with respect
to an ordering that extends to F . The base change VR of V from base K 0 to base
R is irreducible and its function field FR is a real function field over R. By what
we said earlier, there exists a nonsingular rational point PR 2 VR with �.PR/ D R.
Let P denote the image of PR under the base change morphism VR ! V . Then
�.P / � �.PR/ D R, hence P 2 V is a nonsingular closed real point.

Corollary 2.4. The existence of a nonsingular real point on an irreducible variety
is a birational invariant. In particular, the set of nonsingular closed real points on a
real variety is Zariski dense.

Another consequence of Proposition 2.3 is the following.

Proposition 2.5. Let F=K be a real function field in d � 1 variables. Then F
admits a discrete K-valuation of rank one whose residue field is a rational function
field in d � 1 variables over a finite real extension of K.

Proof. Let V be a variety over K with function field F . By Proposition 2.3, V
contains a nonsingular closed real point P .

The exceptional fiber of the blowing-up B`fP g.V / W V 0 ! V of V along fP g
is isomorphic over K to Pn�1

�.P /
(see [14, Chap. 8, Thm. 1.19]). In particular,

its generic point � 2 V 0 is of codimension one in V 0 with residue field �.�/ Š
�.P /.X1; : : : ; Xd�1/. As V is regular in a neighborhood of P (see [14, Chap. 8,
Corollary 2.40]), and so is V 0 in a neighborhood of � (by [14, Chap. 8, Thm. 1.19]).
The local ring of V 0 at � is thus a discrete valuation ring, which yields the claimed
discrete K-valuation of rank one on F .
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Remark 2.6. In the preprint version [8] of this article, a more precise version of
the proposition is deduced from a general technical result [8, Lemma 4.1] from
which also the following more general result follows easily: Let F be the field of
fractions of a regular local ring of Krull dimension d � 2 and let E=K be a finite
field extension. Then F admits a discrete valuation of rank one with residue field
E.X1; : : : ; Xd�1/.

In the following, we will show the existence of valuations on function fields with
certain nonreal residue fields that will later be used to show the lower bound 3 for its
Pythagoras numbers in the two-dimensional case.

Proposition 2.7. Let K be a real field and V a geometrically irreducible projective
K-variety of dimension at least 2. Then there exist infinitely many nonreal
geometrically irreducible K-closed subsets C � V of codimension one.

Proof. Let V � Pn be a closed K-immersion in projective space. Let Q denote the
variety of all quadric hypersurfaces of Pn, and Q.K/ the set of quadrics defined over
K. Consider the degree-2 Veronese embedding

f W Pn ,! PN

Œx0 W � � � W xn� 7! Œxixj �0�i;j�n

where PN D P roj .QŒYi;j j 0 � i � j � n�/. Note that Q D f �1.Gr.1;N //,
where Gr.1;N / is the grassmanian variety of linear subspaces of codimension one
in PN . By a version of Bertini’s theorem [10, Corollary 6.11] applied to f jV there
exists a nonemptyK-Zariski-open subset U � Q.K/ such that theK-variety V \Q
is geometrically irreducible for everyQ 2 U . We claim that infinitely many quadrics
Q 2 U have a underlying quadratic form that is totally definite, i.e. definite at every
field ordering ofK. For such a quadricQ, we have that the geometrically irreducible
subvariety C WD V \Q has no L-point over any real field extension L=K, and is
thus nonreal.

In order to verify the existence of infinitely many quadrics Q 2 U with totally
definite underlying quadratic form, we start with the totally definite quadratic form
' WD

Pn
iD0X

2
i defined over Q. The quadric it defines may not be contained in

U , but we can consider a neighborhood W';" � Q.Q/ in the real topology for
a given positive � 2 Q consisting of the quadrics defined by the quadratic formsP
0�i�j�n ai;jXiXj with a0;0 D 1 and ai;j 2 Q with jai;j � ıi;j j < ". Note

that for " small enough, all quadrics in W';" are given by totally definite quadratic
forms. Since W';" is Zariski-dense in Q.K/, we have that W';" \ U ¤ ;, in fact
this intersection is infinite, since we can replace U by any cofinite subset of U in the
previous argument.
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Corollary 2.8. Let K be a real field and F=K a function field in d � 2 variables
such thatK is relatively algebraically closed in F . There are infinitely many discrete
K-valuations of rank one on F whose residue fields are nonreal and contain no
proper algebraic extension of K.

3. Lower bounds for Pythagoras numbers

As mentioned in the introduction, we know that p.K.X1; : : : ; Xd // � d C 2 when
d � 2 for any real field K. More precisely, in [6] it was shown that the sum of 4
squares

M.X; Y / D .1CX2�2X2Y 2/2C.XY 2�X3Y 2/2C.XY�X3Y /2C.X2Y�X4Y /2

in Q.X; Y / is not a sum of 3 squares in R.X; Y /. Since the first order theory of
real closed fields is model-complete (see e.g. [4, Proposition 5.2.3]), it follows that
M.X; Y / is not a sum of 3 squares in R.X; Y / for any real closed field R. This
implies that M.X; Y / is not a sum of 3 squares in K.X; Y / for any real field K,
and hence p.K.X; Y // � 4. An iteration argument based on the Cassels–Pfister
representation theorem for quadratic forms [16, Chap. 1, Thm. 3.2] shows more
generally for d � 2 that the sum of d C 2 squares

M.X1; X2/CX
2
3 C � � � CX

2
d

is not a sum of d C 1 squares in K.X1; : : : ; Xd / for any real field K. In particular
p.K.X1; : : : ; Xd // � d C 2 when d � 2.

For a field F and a positive integer m, the 2m-th Pythagoras number of F is

p2m.F / D inf

(
n 2 N

ˇ̌̌̌
8x 2 F nC1 9y 2 F n with

nC1X
iD1

x2mi D

nX
iD1

y2mi

)
;

which generalizes the definition of the Pythagoras number (i.e. p.F / D p2.F /).

Remark 3.1. This definition could be extended to include the cases of powers of odd
exponents 2mC 1, but their study in context of function fields is not so interesting,
as they are bounded from above by a constant (that only depends on m but not on
the transcendence degree of the function field), as was observed in [3, Proposition
2.8]. Hence, when we speak of higher Pythagoras numbers, we only refer to the
ones defined with respect to powers of even exponent 2m as above.

Becker showed in [3] that all higher Pythagoras numbers of a finitely generated
field extension of R are finite. In fact, he found an effective bound depending only
on the transcendence degree d of the extension and the ‘order’ m of the considered
higher Pythagoras number p2m.
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While the optimality of Pfister’s upper bound 2d for the usual Pythagoras number
(m D 1) is a big open question, Becker’s bound is known not to be optimal.
For example, it was shown in [18] that p4.R.X// � 6, i.e. the 4th Pythagoras
number is significantly smaller than Becker’s lower bound, which is 36 in the one-
dimensional case, and in [19] the upper bound 6was verified1 for all one-dimensional
real function fields over R.

In [12, Corollary 2] every higher Pythagoras number of a real field that is finitely
generated of transcendence degree d over a real closed field was shown to be
bounded from below by d C 1. This is also the first nontrivial general lower bound
obtained for the usual Pythagoras number (m D 1). In this section, we will show the
following.

Theorem 3.2 (Main result). Let m be a positive integer. Let F=K be a real function
field of transcendence degree d . Then p2m.F / � d . Moreover, we have p2m.F / �
d C 1 when m D 1 or d � 2.

The bound p2.F / � d C 1 for d � 3 will be shown in Corollary 3.7. The
weaker bound p2m.F / � d for all higher Pythagoras numbers will be shown
in Corollary 3.10. Finally p2m.F / � d C 1 when d � 2 will be shown in
Proposition 3.12.

As mentioned in the introduction, we first give a relative bound of p2.F / (resp.
p2m.F /) in terms of the Pythagoras number (resp. 2m-th Pythagoras number) of a
certain rational function field in d � 1 variables. For d � 3, in order to obtain the
absolute bound p2.F / � dC1 (resp. p2m.F / � d ), we show that dC1 (resp. d ) is
a lower bound for the Pythagoras number (resp. for the 2m-th Pythagoras number)
of the rational function field, by applying the previous mentioned quadratic form
theoretic results for the Pythagoras number (resp. by considering a generic sum of
d powers of exponent 2m in the rational function field, and reducing this case to
Kucharz result). Let me stress that for obtaining the lower bound p2.F / � d C 1
for the ususal Pythagoras number, we will not reduce to Kucharz result in any way,
and even more, that there probably is no way to obtain such a reduction in general.

Analogously to the 2m-th Pythagoras number, we denote the 2m-th level of a
field F for some positive integer m by

s2m.F / D inffn 2 N j �1 D f 2m1 C � � � C f 2mn for some f1; : : : ; fn 2 F g:

We recall from [3, Thm.2.9] that s2m.F / <1 if and only if F is nonreal.

Lemma 3.3. Let m be a positive integer. Let v be a valuation on a field F with real
residue field �v . Let n 2 N and x1; : : : ; xn 2 �v such that x2m1 C � � � C x2mn ¤

y2m1 C � � � C y
2m
n�1 for any y1; : : : ; yn�1 2 �v . For 1 � i � n let Xi 2 F be a lift of

xi 2 �v with respect to the residue map. ThenX2m1 C� � �CX
2m
n ¤ Z2m1 C� � �CZ

2m
n�1

for any Z1; : : : ; Zn�1 2 F .

1A substantial gap in the proof pointed out by the author of [19] could be closed recently, as I learned
from oral communication with E. Becker.
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Proof. Assume that X2m1 C � � � C X2mn D Z2m1 C � � � C Z
2m
n�1 for some Zi 2 F .

Since �v is real, it follows that 0 D v.X2m1 C � � � C X2mn / D 2mmin v.Zi /. In
particular, we can apply the residue map to the Zi and obtain the contradiction that
x2m1 C � � � C x

2m
n D z

2m
1 C � � � C z

2m
n�1 in �v .

We recall briefly that a valuation v W F � ! � is called discrete if v.F �/ is
discrete as an ordered abelian group. By the rank of v we denote the Q-dimension
of v.F �/˝Z Q. One can show that the value group of a discrete valuation of finite
rank r is order-isomorphic to Zr endowed with lexicographic ordering.

Lemma 3.4. Let m be a positive integer. Let v be a discrete valuation of finite rank
on a field F with nonreal residue field �v of characteristic relatively prime to 2m. Let
s 2 N be minimal such that there exist x1; : : : ; xs 2 �v with �1 D x2m1 C� � �Cx

2m
s .

For 1 � i � s let Xi 2 F be a lift of xi 2 �v with respect to the residue map. Then
there exists a liftXsC1 2 F of 1 2 �v such thatX2m1 C� � �CX

2m
sC1 ¤ Z

2m
1 C� � �CZ

2m
s

for any Z1; : : : ; Zs 2 F .

Proof. If X2m1 C � � � CX
2m
s C 1 is a minimizer for v (i.e. an element that attains the

minimal positive value), then we set XsC1 D 1. Otherwise, we set XsC1 D 1C �

for a minimizer � for v, and we see that

X2m1 C� � �CX
2m
s CX

2m
sC1 D X

2m
1 C� � �CX

2m
s C1C�

2

 
2mX
iD2

 
2m

i

!
� i�2

!
C2m�

is also a minimizer for v. For the sake of contradiction, let us assume that X2m1 C

� � �CX2msC1 D Z
2m
1 C� � �CZ

2m
s for someZ1; : : : ; Zs 2 F with v.Zs/ D minfv.Zi / j

1 � i � sg. Since Z2m1 C � � � C Z
2m
s is a minimizer for v, we have that v.eZ2m1 C

� � � C eZ2ms / > 0, where eZi WD Zi=Zs for 1 � i � s � 1, since otherwise Z2s would
be a minimizer for v, which is impossible for a square. We obtain the contradiction
that �1 D Qz2m1 C � � � C Qz

2m
s�1 in �v , where Qzi denote the residues of QZi in �v .

Corollary 3.5. Let m be a positive integer. Let v be a discrete valuation of rank
one on a field F with residue field �v of characteristic relatively prime to 2m. Then
p2m.F / � p2m.�v/ if �v is real and p2m.F / � s2m.�v/C 1 if �v is nonreal.

Applying this to Proposition 2.5, we obtain immediately the following relative
lower bound for higher Pythagoras numbers of function fields.

Theorem 3.6. Let m be a positive integer. Let F=K be a real function field of
transcendence degree d . Then p2m.F / � p2m .L.X1; : : : ; Xd�1// for some finite
real extension L=K.

Recall from the introductory part of this section that two well known results from
quadratic form theory show that p2.L.X1; : : : ; Xd�1/ � d � 1C 2 when d � 1 � 2
and L is real. Hence we deduce the following absolute lower bound:
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Corollary 3.7. Let F=K be a real function field of transcendence degree d � 3.
Then p2.F / � d C 1.

Lemma 3.8. Letm a positive integer. Then p2m.K.X1; : : : ; Xd // � dC1 for every
real field K and integer d � 0.

Proof. Let R denote the real closure of K with respect to some ordering of K. By
[12, Corollary 2], we know that there are f1; : : : ; fd�1 such that 1C f 2m1 C � � � C

f 2m
d�1

is not a sum of d � 1 powers of exponent 2m in R.X1; : : : ; Xd�1/, and hence
in particular also not in the subfield R.f1; : : : ; fd�1/. Let p be the kernel of the
evaluation morphism RŒX1; : : : ; Xd�1� ! R.f1; : : : ; fd�1/ given by Xi 7! fi for
all 1 � i � d By Corollary 2.2, there exists a discrete R-valuation of finite rank on
R.X1; : : : ; Xd�1/ whose valuation ring contains RŒX1; : : : ; Xd�1� and such that the
residue homomorphism sends Xi to fi for any 1 � i � d � 1.

By Lemma 3.3 we have that 1CX2m1 C� � �CX
2m
d�1

is not a sum of d �1 powers
of exponent 2m in R.X1; : : : ; Xd�1/ and thus also not in K.X1; : : : ; Xd�1/.

Remark 3.9. The simple elegant idea of considering generic sums of higher even
powers in order to obtain the reduction via base change is due to K. J. Becher. It
simplified my previous proof that generalized Kucharz’ proof to rational function
fields over arbitrary real fields, in fact more generally, to real function fields that
admit a rational place.

Corollary 3.10. Let F=K be a real function field of transcendence degree d and let
m be an arbitrary positive integer m. Then p2m.F / � d . Moreover, for d � 3 we
have that p2.F / � d C 1.

Proof. By Theorem 3.6 we know that p2m.F / � p2m.L.X1; : : : ; Xd�1// for some
real field L. Then Lemma 3.8 yields the statement.

Remark 3.11. In discussions with D. Leep (not yet published), we observed that if
a real field K is not hereditarily pythagorean (i.e. it admits a finite real extension
with Pythagoras number 2 or higher), then every rational function field in one
variable over every finite real extension of K has Pythagoras number at least 3. By
Theorem 3.6, this yields that p2.F / � 3 for every real function field in two variables
F=K. In the following we show for all positive integers m that p2m.F / � 3, even
allowing K to be hereditarily pythagorean and F to be nonreal (of level at least 2).

Proposition 3.12. Let m be a positive integer. Let F=K be a function field of
transcendence degree d � 2 and assume that �1 is not a 2m-th power in F . Then
p2m.F / � d C 1.

Proof. When d D 0 there is nothing to show. When d D 1, we obtain that
p2m.F / � 2 for the simple reason that p2m.K.X// � 2, as 1 C X2m is not a
2m-th power in K.X/, and p2m.F / ¤ 1 then follows from a Going-Down result [3,
Thm. 3.8] for 2m-pythagorean finite extensions.



Vol. 90 (2015) Pythagoras numbers of function fields 373

When d D 2, we invoke Corollary 2.8 that asserts the existence of a discrete
valuation of rank one with nonreal residue field in which �1 is not a 2m-th power
for any positive integer m. Corollary 3.5 yields that p2m.F / � 3.

Remark 3.13. The statement of Proposition 3.12 actually yields a stronger version
of Theorem 1.1 in the case d D 2. Namely, we can replace the assumption that F is
real by the weaker assumption that �1 is not a square in F (and in fact for d D 0; 1
even this can be omitted).

4. Perspectives and conjectures

In [17], geometrically rational R-surfaces S without nonsingular real points were
considered. They showed that �1 is a sum of two squares in its function field R.S/,
which due to the identity X D .XC1

2
/2 � .X�1

2
/2 leaves the possibility that its

Pythagoras number is either 2 or 3. Together with Proposition 3.12, we obtain that
p.R.S// D 3. Note that this observation is not a consequence of Kucharz’ general
lower bound d C 1 for real function fields over R, since R.S/ is nonreal in the
situation of the theorem.

Clearly, if S is birational to a finite cover of a geometrically rational surface
without real points, then s.R.S// D 2 and p.R.S// D 3, as well. Conversely,
suppose that S is a geometrically irreducible surface without nonsingular real points
and p.R.S// D 3, whereby �1 a sums of two squares but not a square in R.S/.
We thus obtain an embedding of the function field of the conic C defined by X2 C
Y 2 C Z2 D 0 over R into R.S/, and we see that S is birational to a finite covering
of C �R A1, which is a geometrically rational surface without real points.

One is thus left with the task to characterize the real R-surfaces S such that
p.R.S// D 3. The only real R-surfaces for which the exact value of the Pythagoras
number is known are rational surfaces for which we have p.R.S// D 4 (e.g. by the
earlier mentioned work of Cassels–Ellison–Pfister).

Question 4.1. Is p.R.S// D 4 for every irreducible real R-surface S ?

For real fields F that are finitely generated of transcendence degree d over a real
closed field K, Kucharz showed in [12, Corollary 2] that p2m.F / � d C 1 for any
positive integerm. The question arises whether the lower bound dC1 for the higher
Pythagoras numbers still holds after removing the condition that the base field K
is to be real closed. For d � 2 or m D 1 we showed this. The difficulty in our
approach for the case d � 3 was that we do not know whether the lower bound
p2m.F / � d C 2 for rational function fields F=K still holds for m � 2. The main
problem is that the Cassels–Pfister representation theorem [16, Chap.1, Thm 3.2]
fails for higher even degree forms. Nevertheless, I believe that the results collected
in this article justify the following conjecture.
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Conjecture 4.2. All higher Pythagoras numbers of a real field that is finitely
generated of transcendence degree d over a subfield are bounded by d C 1 from
below.
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