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“Large” conformal metrics of prescribed Gauss curvature on
surfaces of higher genus

Franziska Borer, Luca Galimberti and Michael Struwe�

Abstract. Let .M; g0/ be a closed Riemann surface .M; g0/ of genus .M/ > 1 and let f0 be
a smooth, non-constant function with maxp2M f0.p/ D 0, all of whose maximum points are
non-degenerate. As shown in [12] for sufficiently small � > 0 there exist at least two distinct
conformal metrics g� D e2u�g0, g� D e2u

�
g0 of Gauss curvature Kg� D Kg� D f0 C �,

where u� is a relative minimizer of the associated variational integral and where u� ¤ u� is
a further critical point not of minimum type. Here, by means of a more refined mountain-pass
technique we obtain additional estimates for the “large” solutions u� that allow to characterize
their “bubbling behavior” as � # 0.
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1. Introduction

Let .M; g0/ be a closed, connected Riemann surface endowed with a smooth
background metric g0. A classical problem in differential geometry is the question
which smooth functions f WM ! R arise as the Gauss curvature Kg of a conformal
metric g D e2ug0 onM and to characterize the set of all such metrics withKg D f .
By the uniformization theorem we may assume that g0 has constant Gauss curvature
Kg0 � k0. Finally, we normalize the volume of .M; g0/ to unity.

Recall that the Gauss curvature of a conformal metric g D e2ug0 on M is given
by the equation

Kg D e
�2u.��g0uC k0/ :

Therefore the question concerns the set of solutions of the equation

��g0 uC k0 D fe
2u : (1.1)
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Given a solution u of (1.1), upon integrating and using the Gauss–Bonnet
theorem we immediately obtain the identityZ

M

fd�g D

Z
M

k0d�g0 D k0 D 2��.M/ ; (1.2)

where d�g D e2ud�g0 is the element of area in the metric g D e2ug0. In particular,
for equation (1.1) to admit a solution on a surface M with Euler characteristic
�.M/ > 0 the function f has to be positive somewhere. Surprisingly, as was
shown by Moser [18], in the case when .M; g0/ is the projective plane P 2R D
S2=fid;�idg the condition supS2 f > 0 for a function f 2 C1.S2/ satisfying
f .p/ D f .�p/ for all p 2 S2 also is sufficient for the existence of a solution
u.p/ � u.�p/ to (1.1).

For the general case when .M; g0/ D .S2; gS2/, known as Nirenberg’s problem,
further necessary conditions have been obtained by Kazdan–Warner [15], but the gap
between these conditions and the sufficient conditions established by Chang–Yang
[7], Chang–Liu [8], and others remains considerable, and there is little known about
the structure of the set of solutions to equation (1.1) aside from the highly degenerate
case when f � 1.

If �.M/ D 0 by the Gauss–Bonnet theorem (1.1) cannot be solved unless f � 0,
or when f changes sign. In addition, whenever �.M/ � 0, upon multiplying
(1.1) with the function e�2u and integrating by parts we find the further necessary
condition Z

M

fd�g0 D

Z
M

.��g0 uC k0/e
�2ud�g0

D

Z
M

.�2jruj2g0 C k0/e
�2ud�g0 � 0; (1.3)

with equality if and only if ru D 0 and k0 D 0, that is, �.M/ D 0 and f � 0.
It was shown by Kazdan–Warner [14] that the combined conditions (1.2) and (1.3)
again are both necessary and sufficient for the existence of a solution to (1.1) in the
case when �.M/ D 0, but again nothing seems to be known about the structure of
the solution set.

In this paper we will focus on the case when M has genus greater than one, that
is, when �.M/ < 0 (and hence k0 < 0). In this case solutions u of (1.1) can be
characterized as critical points of the functional

Ef .u/ D
1

2

Z
M

�
jruj2g0 C 2k0u � fe

2u
�
d�g0 ; u 2 H

1.M; g0/ :

Note that Ef is strictly convex and coercive on H 1.M; g0/ when f � 0 does not
vanish identically. Hence for such f the functional Ef admits a unique critical
point uf 2 H 1.M; g0/, which is a strict absolute minimizer of Ef . Thus we have
the following classical result.
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Theorem 1.1. Let .M; g0/ be closed with �.M/ < 0, and let f 2 C1.M/ with
f � 0, f 6� 0. Then (1.1) admits a unique solution.

Our first result shows the nondegeneracy of any relative minimizer of Ef for
arbitrary f .

Theorem 1.2. Let .M; g0/ be closed with �.M/ < 0, and suppose that for some
f 2 C1.M/ the functional Ef admits a relative minimizer uf 2 H 1.M; g0/.
Then uf is a non-degenerate critical point of Ef in the sense that with a constant
c0 > 0 there holds

d2Ef .uf /.h; h/ D

Z
M

�
jrhj2g0 � 2fe

2uf h2
�
d�g0 � c0jjhjj

2
H1

(1.4)

for all h 2 H 1.M; g0/.

As a special case this results includes a stability result of Aubin [1] for functions
f � 0. Together with Theorem 1.1 and the implicit function theorem from (1.4)
we conclude that also for certain sign-changing functions f the corresponding func-
tional Ef admits critical points which can be characterized as relative minimizers
of Ef . In particular, for any given smooth, non-constant function f0 � 0 with
maxp2Mf0.p/ D 0, letting f� D f0C �, � 2 R, from Theorem 1.2 we deduce the
existence of relative minimizers u� of E� D Ef� for sufficiently small � > 0.

More precise quantitative conditions relating supM f and supM .�f / which are
sufficient for the existence of relative minimizers of Ef were established by Aubin
and Bismuth [2], [4].

Observe that for functions f with maxM f > 0 the functional Ef is no longer
bounded from below, as can be seen by choosing a comparison function v � 0

supported in the set where f > 0 and looking at Ef .sv/ for large s > 0. Therefore,
and in view of Theorem 1.1, whenever Ef admits a relative minimizer there is a
“mountain pass” geometry and one may expect the existence of a further critical
point of saddle-type. In fact, in the case of the above functionals E�, Ding–Liu [12]
show the following result.

Theorem 1.3 (Ding–Liu [12]). For any smooth, non-constant function f0 � 0 D

maxp2M f0.p/ consider the family of functions f� D f0 C �, � 2 R, and the
associated family of functionals E�.u/ D Ef�.u/ on H 1.M; g0/. There exists a
number �� > 0 such that for 0 < � < �� the functionalE� admits a local minimizer
u� and a further critical point u� ¤ u� of mountain-pass type.

Thus, uniqueness may be lost when f is sign-changing. However, the previous
result gives no information about the geometric shape of the solutions. Here we give
a new proof of the Ding–Liu result using the “monotonicity trick” from [20], [21] in
a way similar to [23] which allows to bound the volume of the “large” solutions u�

as � # 0 suitably. We are thus able to establish the following result.
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Theorem 1.4. Let f0 � 0 be a smooth, non-constant function, all of whose maximum
points p0 are non-degenerate with f0.p0/ D 0, and for � 2 R also let f� D f0C�,
E�.u/ D Ef� as in Theorem 1.3 above. There exist I 2 N, a sequence �n # 0 and
a sequence of non-minimizing critical points un D u�n of E�n such that for suitable
r
.i/
n # 0, p.i/n ! p

.i/
1 2M with f .p.i/1 / D 0, 1 � i � I , the following holds.

i) We have un ! u1 smoothly locally on M1 DM n fp
.i/
1 I 1 � i � I g, and

u1 induces a complete metric g1 D e2u1g0 on M1 of finite total curvature
Kg1 D f0.

ii) For each 1 � i � I , either a) there holds r .i/n =
p
�n ! 0 and in local conformal

coordinates x around p.i/n D 0 we have

wn.x/ WD un.r
.i/
n x/ � un.0/C log 2! w1.x/ D log

� 2

1C jxj2

�
smoothly locally inR2, where w1 induces a spherical metric g1 D e2w1gR2
of curvature Kg1 D 1 on R2, or b) we have r .i/n D

p
�n, and in local

conformal coordinates around p.i/1 with a constant c.i/1 there holds

wn.x/ D un.r
.i/
n x/C log.�n/C c.i/1 ! w1.x/

smoothly locally in R2, where the metric g1 D e2w1g
R2 on R2 has finite

volume and finite total curvature with Kg1.x/ D 1 C .Ax; x/, where A D
1
2
Hessf .p

.i/
1 /.

In conclusion, in case ii.a) for suitably small � > 0 there exist (at least) two
distinct conformal metrics g� D e2u�g0, g� D e2u

�
g0 of Gauss curvature Kg� D

Kg� D f�, which differ (essentially) only by huge spherical bubbles of curvature
� attached along cusps protruding from M near certain zero points of f0. More
detailed information is given in Proposition 5.3 and Remark 5.4 below.

We thank the referee for bringing the paper [12] to our attention.

2. Nondegeneracy and stability of relative minimizers

Throughout the remainder of this paper we assume that .M; g0/ is closed with
�.M/ < 0. In this section we present the proof of Theorem 1.2.
Proposition 2.1. Suppose that for some f 2 C1.M; g0/ the functional Ef admits
a relative minimizer uf 2 H 1.M; g0/. Then uf is a non-degenerate critical point
of Ef in the sense of (1.4).

For a relative minimizer uf 2 H 1.M; g0/ of Ef we have

d2Ef .uf /.h; h/ D

Z
M

�
jrhj2g0 � 2fe

2uf h2
�
d�g0 � 0 (2.1)

for all h 2 H 1.M; g0/.



Vol. 90 (2015) “Large” conformal metrics of prescribed Gauss curvature 411

Therefore
c0 WD inf

khk
H1
D1
d2Ef .uf /.h; h/ � 0:

The claim in Proposition 2.1 is equivalent to the claim that c0 > 0. Otherwise
c0 D 0, and the following two lemmas will lead to a contradiction.

Lemma 2.2. If c0 D 0 there exists h 2 H 1.M; g0/ such that

d2Ef .uf /.h; h/ D 0 and khkH1 D 1:

Proof. Let .hk/k2N with khkkH1 D 1 such that d2Ef .uf /.hk; hk/ ! 0 as
k !1. Since .hk/ is bounded in H 1, we may assume that hk + h weakly in
H 1.M; g0/ and strongly in Lp for any p <1 for some h 2 H 1.M; g0/. Since uf
is smooth, then we also have convergence f e2uf h2

k
! f e2uf h2 in L1, and from

(2.1) it follows that

krhkk
2
L2
D d2Ef .uf /.hk; hk/C 2

Z
M

f e2uf h2kd�g0 ! 2

Z
M

f e2uf h2d�g0

� d2Ef .uf /.h; h/C 2

Z
M

f e2uf h2d�g0 D krhk
2
L2

as k !1 :

Recalling that hk ! hweakly inH 1.M; g0/ and strongly inL2, we conclude strong
convergence hk ! h in H 1.M; g0/. The claim follows. �

By Lemma 2.2, when c0 D 0 the functional v 7! d2Ef .uf /.v; v/ attains a
minimum at v D h. It follows that

d2Ef .uf /.h; w/ D 0 for all w 2 H 1.M; g0/I

that is, h 2 H 1.M; g0/ weakly solves the equation

��g0h D 2f e2uf h in .M; g0/: (2.2)

In particular then h is smooth and classically solves (2.2).

Lemma 2.3. Assume c0 D 0 and let h 2 H 1.M; g0/ as determined in Lemma 2.2.
Then

d4Ef .uf /.h; h; h; h/ D �8

Z
M

f e2uf h4 < 0:

Proof. Note that h ¤ const: Otherwise (2.2) would yieldZ
M

f e2uf d�g0 D 0

contrary to (1.2). Multiplying equation (2.2) by h3 we get

2f e2uf h4 D �h3�g0h D �
1

4
�g0.h

4/C 3jrhj2g0h
2:
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Upon integration this yields

d4Ef .uf /.h; h; h; h/ D �8

Z
M

f e2uf h4d�g0 D �12
Z
M

jrhj2g0h
2d�g0 < 0;

as claimed. �

Proof of Proposition 2.1. Assume by contradiction that c0 D 0 and let h 2
H 1.M; g0/ as determined in Lemma 2.2. Using the fact that dEf .uf / D 0 and
the relation d2Ef .uf /.h; h/ D 0 we first can expand

Ef .uf C "h/ D Ef .uf /C
"3

6
d3Ef .uf /.h; h; h/CO."

4/:

Recalling that uf is a relative minimizer, we see that d3Ef .uf /.h; h; h/ D 0. But
then the expansion to fourth order by Lemma 2.3 yields

Ef .uf C "h/ D Ef .uf /C
"4

24
d4Ef .uf /.h; h; h; h/CO."

5/ < Ef .uf /

for small " > 0, and we arrive at the desired contradiction. �

From Proposition 2.1 and the implicit function theorem the following result now
is immediate.

Proposition 2.4. Suppose that for some f 2 C1.M; g0/ the functional Ef admits
a relative minimizer uf 2 H 1.M; g0/. Then there exists an open neighborhood U
of f in C 0.M; g0/ and a smooth map U 3 ' 7! u' 2 H

1.M; g0/ such that for
every ' 2 U the function u' is a strict relative minimizer of E' .

3. Existence of a saddle-type critical point

For any smooth, non-constant function f0 � 0 D maxp2Mf0.p/ consider the
family of functions f� D f0 C �, � 2 R, and the associated family of functionals
E�.u/ D Ef�.u/ on H 1.M; g0/. By Proposition 2.4 there exists �0 > 0 such
that for any � 2 ƒ0 D�0; �0� the functional E� admits a strict relative minimizer
u� 2 H

1.M; g0/, depending smoothly on �. In particular, as � # 0 we have smooth
convergence u� ! u0, the unique solution of (1.1) for f D f0. Hence, after
replacing �0 with a smaller number �0 > 0, if necessary, we can find � > 0 such
that

E�.u�/ D inf
jju�u0jjH1<�

E�.u/ � sup
�;�2ƒ0

E�.u�/

< ˇ0 WD inf
�2ƒ0I�=2<jju�u0jjH1<�

E�.u/;
(3.1)

uniformly for all � 2 ƒ0.
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Clearly, we may assume that �0 < 1. Fix some number � 2 ƒ0. Recalling that
for � > 0 the functional E� is unbounded from below, we can also fix a function
v� 2 H

1.M; g0/ such that
E�.v�/ < E�.u�/

and hence
c� D inf

p2P
max
t2Œ0;1�

E�.p.t// � ˇ0 > E�.u�/; (3.2)

where
P D fp 2 C

�
Œ0; 1�IH 1.M; g0/

�
W p.0/ D u0; p.1/ D v�g: (3.3)

Note that since u� ! u0 for � # 0, for sufficiently small �0 > 0 we can fix the
initial point of comparison paths p 2 P to be u0 instead of u�.

For suitable choice of v� we obtain an explicit estimate of the mountain-pass
energy level c� associated with P .

Lemma 3.1. For anyK > 4� there is �K 2�0; �0=2� such that for any 0 < � < �K
there is v� 2 H 1.M; g0/ so that choosing v� D v� for every � 2 Œ�; 2�� the
number c� is unambiguously defined independent of �, and we obtain the bound
c� � K log.2=�/.

Proof. Let p0 2 M be such that f0.p0/ D 0. Choose local conformal coordinates
x near p0 D 0 such that e2u0g0 D e2v0g

R2 for some smooth function v0 with
v0.0/ D 0. Letting A D 1

2
Hessf .p0/, for a suitable constant L > 0 we have

f0.x/ D .Ax; x/CO.jxj
3/ � ��=2 on Bp

�=L
.0/;

and f� � �=2 on Bp
�=L

.0/. Set w�.x/ D z�.Lx=
p
�/, where z� 2 H 1

0 .B1.0// is
given by z�.x/ D log.1=jxj/ for � � jxj � 1 and z�.x/ D log.1=�/ for jxj � �,
satisfying

krw�k
2
L2
D krz�k

2
L2
D 2� log.1=�/:

Extending w�.x/ D 0 outside Bp
�=L

.0/, for sufficiently small � > 0 and any s > 0
we obtainZ
M

f�e2.u0Csw�/d�g0 �
�

2

Z
Bp

�=L
.0/

e2.u0Csw�/d�g0 � kf0kL1
Z
M

e2u0d�g0

�
�

4

Z
Bp

�=L
.0/

e2sw�dx � Ckf0kL1 ;

where after substituting y D Lx=
p
� we have

�

Z
Bp

�=L
.0/

e2sw�dx D

Z
B1.0/

e2.sz�Clog.�=L//dy

�

Z
B�.0/

e2.sz�Clog.�=L//dx D �L�2�4�2s:
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Given anyK > 4� , we letK1 D 1
2
.KC4�/, ı D K1�4�

4�
and use Young’s inequality

2ab � ıa2 C b2=ı for a; b > 0 to bound

kr.u0 C sw�/k
2
L2
� .1C ı/s2krw�k

2
L2
C .1C

1

ı
/kru0k

2
L2

D
K1s

2

4�
krw�k

2
L2
C C;

where C D C.u0; K/ > 0. Since k0 < 0, w� � 0, for any s > 0 we also haveZ
M

k0.u0 C sw�/d�g0 � k0

Z
M

u0d�g0 :

Thus, with a constant C0 D C0.u0; f0; K/ > 0 for any s > 0 we find

E�.u0 C sw�/ � K1
s2

4
log.1=�/ �

�

8L2
�4�2s C C0:

In particular, for any 0 < � < 1 we have E�.u0 C sw�/! �1 as s !1 and we
may fix some s� > 2 with v� D u0 C s�w� satisfying E�.v�/ < inf�2ƒ0 E�.u�/
to obtain

c� � sup
s>0

E�.u0 C sw�/ � sup
s>0

�
K1
s2

4
log.1=�/ �

�

8L2
�4�2s C C0

�
:

For any 0 < � < 1 the supremum in the latter quantity is achieved for some s D
s.�/ > 2, with s.�/! 2 as � # 0. Thus, for all sufficiently small � > 0 there results

c� � K log.1=�/;

as desired. Since E�.v�/ � E�.v�/ for � > �, the same comparison function v�
can be used for every � 2 ƒ WD��; 2�Œ� ƒ0, and for such � we obtain the bound

E�.v�/ < E�.u�/ � sup
�2ƒ

E�.u�/ < ˇ0 � c� � K log.1=�/ � K log.2=�/;

(3.4)
where ˇ0 and c� for � 2 ƒ are as defined in (3.1), (3.2). Moreover, since v�
by construction depends continuously on � with E�.v�/ < inf�2ƒ0 E�.u�/ the
number c� is defined independently of � such that � < � < 2�. The claim follows.

�

Note that there holds

E�.u/ �E�.u/ D �
� � �

2

Z
M

e2u d�g0 (3.5)

for every u 2 H 1.M; g0/ and every �; � 2 R. Given 0 < � < �0=2, with
ƒ D��; 2�Œ as above it follows that the function

ƒ 3 � 7! c�

is non-increasing in �, and therefore differentiable at almost every � 2 ƒ.
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We now have the following result.

Proposition 3.2. Suppose the map ƒ 3 � 7! c� is differentiable at some � > �.
Then there exists a sequence .pn/n2N in P and a corresponding sequence of points
un D pn.tn/ 2 H

1.M; g0/, n 2 N, such that

E�.un/! c�; sup
0�t�1

E�.pn.t//! c�; dE�.un/! 0 in H�1 as n!1; (3.6)

and with .un/ satisfying, in addition, the “entropy bound”

1

2

Z
M

e2un d�g0 D
ˇ̌ d
d�
E�.un/

ˇ̌
� jc0�j C 3; uniformly in n: (3.7)

For the proof of Proposition 3.2 we note the following lemma.

Lemma 3.3. For anym > 0 there exists a constant C D C.M; g0; f0; m/ such that

i) for every �1; �2 2 R and for every u 2 H 1.M; g0/ satisfying jjujjH1 � m

there holds
jjdE�1.u/ � dE�2.u/jjH�1 � C j�1 � �2j I

ii) for any j�j < 1, any u; v 2 H 1.M; g0/ with jjvjjH1 � 1, we have

E�.uC v/ � E�.u/C hdE�.u/; viH�1�H1 C C jjvjj
2
H1
:

Proof. i) Pick v 2 H 1.M; g0/ such that jjvjjH1 � 1 and compute

hdE�1.u/ � dE�2.u/; viH�1�H1 D .�2 � �1/

Z
M

e2uv d�g0

� j�2 � �1j
� Z
M

e4u d�g0
�1=2
jjvjjL2 � j�2 � �1j

� Z
M

e4u d�g0
�1=2

:

The claim follows from the Moser–Trudinger inequality as in [6], Corollary 1.7.
ii) By Taylor’s expansion, for every x 2M there exists �.x/ 2�0; 1Œ such that

E�.uC v/ �E�.u/ � hdE�.u/; viH�1�H1

D
1

2

Z
M

jrvj2g0 d�g0 �

Z
M

f�e
2.uC�v/v2 d�g0

�
1

2
jjvjj2

H1
C jjf�jjL1

Z
M

e2.uC�v/v2 d�g0 :

By Hölder’s inequality and Sobolev’s embedding we getZ
M

e2.uC�v/v2 d�g0 �
� Z
M

e4.uC�v/ d�g0
�1=2
jjvjj2

L4

� C
� Z
M

e8u d�g0 �

Z
M

e8jvj d�g0
�1=4
jjvjj2

H1
;

and again our claim follows from the Moser–Trudinger inequality. �
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Proof of Proposition 3.2. The following argument is similar to the reasoning in [23].
Clearly, we may assume that �0 < 1 so that j���j < 1 for every � 2 ƒ. Let � 2 ƒ
be a point of differentiability of c�. For a sequence of numbers �n 2 ƒ with �n # �
as n!1 fix a sequence .pn/ of paths pn 2 P such that

max
t2Œ0;1�

E�.pn.t// � c� C .�n � �/; n 2 N:

For any point u D pn.tn/, tn 2 Œ0; 1�, with

E�n.u/ � c�n � .�n � �/ (3.8)

then by (3.5) we have

c�n � .�n � �/ � E�n.u/ � E�.u/ � max
t2Œ0;1�

E�.pn.t// � c� C .�n � �/: (3.9)

Letting ˛ D �c0� C 1 > 0, for sufficiently large n0 2 N and any n � n0 we have

c�n � c� � ˛.�n � �/:

Thus from (3.9) and (3.5) we see that

0 �
E�.u/ �E�n.u/

�n � �
D
1

2

Z
M

e2u d�g0 � ˛ C 2I (3.10)

that is, for all such u D un, n � n0, we already have (3.7). Jensen’s inequality then
gives the uniform bound

2

Z
M

ud�g0 � log
�Z

M

e2u d�g0

�
� log.2˛ C 4/ D C.�/ <1 (3.11)

for all such .pn/ and u D un, n � n0. Recalling that k0 < 0, for all such u D un,
n � n0, we now obtain the estimate

jjrujj2
L2
D 2E�.u/ � 2k0

Z
M

ud�g0 C

Z
M

.f0 C �/e
2u d�g0

� 2E�.u/C C � 2c� C 2.�n � �/C C � C;

(3.12)

with uniform constants C D C.�/ independent of n. In addition, since k0 < 0, from
writing (3.12) as

jjrujj2
L2
C 2k0

Z
M

ud�g0 D 2E�.u/C

Z
M

.f0 C �/e
2u d�g0 � C

we also obtain a uniform lower bound for the average of u, which together with
(3.11) and (3.12) implies the uniform bound

jjujj2
H1
C

Z
M

e2u d�g0 � C1 (3.13)

for all u D un as above, n � n0, with a uniform constant C1 D C1.�/. Note that n0
is independent of the choice of .pn/.
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Now assume by contradiction that there is ı > 0 such that jjdE�.u/jjH�1 � 2ı
for sufficiently large n for every u D un D pn.tn/ 2 H 1.M; g0/ as above. By (3.13)
we have the uniform bound jjujjH1 < m for some number m > 0, and with the
short-hand notation jj � jj D jj � jjH�1 , h�; �i D h�; �iH�1�H1 Lemma 3.3 implies

hdE�n.u/; dE�.u/i D jjdE�.u/jj
2
� hdE�.u/ � dE�n.u/; dE�.u/i

�
1

2
jjdE�.u/jj

2
�
1

2
jjdE�.u/ � dE�n.u/jj

2

�
1

2
jjdE�.u/jj

2
� C j� � �nj

2

� 2ı2 � C j� � �nj
2
� ı2

(3.14)

for any such .pn/ and u, if n � n1 for some sufficiently large n1 � n0.
Choose a function � 2 C1.R/ such that 0 � � � 1 and with �.s/ D 1 for

s � �1=2, �.s/ D 0 for s � �1. For n 2 N, w 2 H 1.M; g0/ let

�n.w/ � �
�E�n.w/ � c�n

�n � �

�
:

Note that for u D pn.tn/ there holds �n.u/ D 0 unless u satisfies (3.8).
Identifying dE�.w/ 2 H�1 with a vector in H 1.M; g0/ through the inner

product, for n � n1 we define new comparison paths Qpn by letting

Qpn.t/ WD pn.t/ �
p
�n � � �n.pn.t//

dE�.pn.t//

jjdE�.pn.t//jj
; 0 � t � 1:

Writing again u D pn.tn/ and likewise Qu D Qpn.tn/ for brevity and recalling that we
have j� � �nj � 1, we find jju � QujjH1 � 1. Hence for any u D pn.tn/ satisfying
(3.8) by the second part of Lemma 3.3 and (3.13) with constants C D C.�/
independent of u D pn.tn/ for sufficiently large n � n1 on account of (3.14) we
obtain

E�n. Qu/ � E�n.u/ �

p
�n � ��n.u/

jjdE�.u/jj
hdE�n.u/; dE�.u/i C C.�n � �/�

2
n.u/

� E�n.u/ �
1

2

p
�n � ��n.u/jjdE�.u/jj C C.�n � �/�n.u/

� E�n.u/ � ı
p
�n � ��n.u/C C.�n � �/�n.u/

� E�n.u/ �
ı

2

p
�n � ��n.u/:

It follows that

c�n � max
t2Œ0;1�

E�n. Qpn.t// � max
t2Œ0;1�

�
E�n.pn.t// �

ı

2

p
�n � ��n.pn.t//

�
:
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Since the maximum in the last inequality can only be achieved at points t where
E�n.pn.t// � c�n � .�n � �/=2 and hence �n.pn.t// D 1, for n � n1 we find

c�n � max
t2Œ0;1�

E�n.pn.t// �
ı

2

p
�n � �

� max
t2Œ0;1�

E�.pn.t// �
ı

2

p
�n � �

� c� C .�n � �/ �
ı

2

p
�n � �

� c�n C .˛ C 1/.�n � �/ �
ı

2

p
�n � � < c�n :

The contradiction proves the claim. �

Proposition 3.4. Let � be a point of differentiability for the map c�. Then the
functional E� admits a critical point u� with energy E�.u�/ D c� and volumeR
M
e2u

�
d�g0 � 2.jc

0
�j C 3/, and such that u� is not a relative minimizer of E�.

Proof. Let � be a point of differentiability for the map c�. Then Proposition 3.2
guarantees the existence of a sequence .pn/n2N in P and a corresponding sequence
of points un D pn.tn/ 2 H

1.M; g0/, n 2 N, satisfying (3.6) and (3.7), and hence
also (3.13), as shown in the proof of Proposition 3.2. Passing to a subsequence, if
necessary, we may then assume that un + u� weakly in H 1.M; g0/ as n ! 1
for some u� 2 H 1.M; g0/. Recalling that the map H 1.M; g0/ 3 ' 7! e2' 2

L2.M; g0/ is compact, we also may assume that e2un ! e2u
�

in L2.M; g0/.
Thus, with error o.1/! 0 as n!1 we obtain

o.1/ D hdE�.un/; un � u
�
i

D

Z
M

.run;run � ru
�/g0 d�g0

C k0

Z
M

.un � u
�/ d�g0 �

Z
M

f�e
2un.un � u

�/ d�g0

D krun � ru
�
k
2
L2
C o.1/;

that is, un ! u� strongly in H 1.M; g0/ as n ! 1. But then we also have
convergence E�.un/ ! E�.u

�/ and dE�.un/ ! dE�.u
�/ as n ! 1, and u�

is a critical point for E� at level E�.u�/ D c�.
Finally, u� cannot be a relative minimizer of E�; otherwise Theorem 1.2 and

an estimate similar to (3.1) would give a contradiction to our choice of .pn/ with
sup0�t�1E�.pn.t// ! c� as n ! 1 and the fact that un D pn.tn/ for some
tn 2 Œ0; 1�, n 2 N. �
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4. Completion

It is not difficult to also find non-minimizing critical points for the exceptional values
of � 2 ƒ where the map � 7! c� fails to be differentiable. Fix � 2 ƒ as above.
By Proposition 3.4, there is a sequence of numbers �n # � and critical points un of
E�n with E�n.un/ D c�n and not of minimum type for every n 2 N. Our aim is to
show that .un/ is relatively compact. First we note the following estimate.

Lemma 4.1. Let f 2 C1.M/ and suppose u 2 H 1.M; g0/ is a critical point for
the functional Ef . Then with a constant C.f / depending only on kf kC1 and on
.M; g0/ there holds Z

M

f 4e2u d�g0 � C.f /: (4.1)

Proof. Rearranging terms in (1.3) and recalling that k0 < 0, we obtain

2

Z
M

jruj2g0e
�2u d�g0 D k0

Z
M

e�2u d�g0 �

Z
M

f d�g0 � C1.f /: (4.2)

Next, multiply (1.1) by f 3 and integrate by parts to findZ
M

f 4e2u d�g0 D 3

Z
M

.ru;rf /g0 f
2 d�g0 C k0

Z
M

f 3 d�g0

� C2.f /

Z
M

jrujg0f
2 d�g0 C C2.f /:

(4.3)

But by Young’s inequality 2ab � ıa2 C ı�1b2 for all a; b; ı > 0 we can bound

C2.f /

Z
M

jrujg0f
2 d�g0 �

1

2

Z
M

f 4e2u d�g0 C C3.f /

Z
M

jruj2g0e
�2u d�g0 :

Our claim then follows from (4.2) and (4.3). �

Via Jensen’s inequality, applied with the probability measure f 2d�g0=kf k
2
L2

,
from (4.1) for any critical point u of Ef we conclude the boundZ

M

f 2ud�g0 � kf k
2
L2

log
�R
M
f 2eu d�g0

kf k2
L2

�
� C.f /: (4.4)

Given any non-constant f0 2 C1.M/ as in Theorem 1.2, any 0 < � < �0=2 < 1
as above, for any � 2 ƒ D Œ�; 2��, any sequence �n # � (n ! 1), and any
sequence of critical points un of E�n we then obtain the uniform bound

Nu
.f�n /
n WD

Z
M

f 2�nun d�g0=kf�nk
2
L2
� C.f0/ (4.5)

for the f�n-averages of un, n 2 N.
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Recall the following well-known variant of the Poincaré inequality.
Lemma 4.2. There exists a uniform constant C > 0 such that for any � 2 ƒ and
any u 2 H 1.M; g0/ there holds

ku � Nu.f�/kL2 � CkrukL2 : (4.6)

Proof. For completeness we give the simple proof, similar, for instance, to the
proof of Theorem 1.5 in [19]. Suppose by contradiction that there is a sequence
of functions vn 2 H 1.M; g0/ with Nv.f�n /n D 0 for a sequence .�n/ � ƒ such that

1 D kvnkL2 D kvn � Nv
.f�n /
n kL2 � nkrvnkL2 ; n 2 N:

Then a subsequence vn ! v strongly inH 1.M; g0/, where kvkL2 D 1 andrv D 0;
hence v � const D c0 ¤ 0, since M is connected. Moreover, we may assume that
�n ! � and therefore c0 D Nv.f�/ D limn!1 Nv

.f�n /
n D 0. The contradiction proves

the claim. �

Lemma 4.3. For un as above there exists a uniform constant C > 0 such that

krunk
2
L2
C jk0jj Nunj � 4E�n.un/C C; n 2 N: (4.7)

Proof. In view of (4.6) and the Gauss–Bonnet theorem for u D un then we have

2E�n.u/ D

Z
M

�
jruj2g0 C 2k0u � fe

2u
�
d�g0 D kruk

2
L2
C 2k0 Nu � 2��.M/

D kruk2
L2
C 2k0 Nu

.f�n / C 2k0. Nu � Nu
.f�n // � 2��.M/

� kruk2
L2
C 2k0 Nu

.f�n / � CkrukL2 � C:

Also using (4.5) to bound

k0 Nu
.f�n / � jk0jj Nu

.f�n /j � C � jk0jj Nuj � jk0jj Nu � Nu
.f�n /j � C

in view of (4.6) we find

E�n.u/ �
1

2
kruk2

L2
C jk0jj Nuj � CkrukL2 � C �

1

4
kruk2

L2
C jk0jj Nuj � C;

and our claim follows. �

Letting un for suitable �n # � 2 ƒ be the “large” solutions un D u�n

constructed in Proposition 3.4 with E�n.un/ D c�n � c�, from Lemma 4.3 we
obtain a uniform bound kunkH1 � C , n 2 N. The same argument as in the proof of
Proposition 3.4 now yields convergence of a subsequence un ! u� in H 1.M; g0/

as n!1, and by continuity there holds dE�.u�/ D 0.
Moreover, u� cannot be a relative minimizer of E�; otherwise, by Theorem 1.2

the function u� would be a strict relative minimizer of E� in the sense of (1.4), and
by continuity for sufficiently large n 2 N also un would be a strict relative minimizer
of E�n , contrary to assumption. Thus, in particular, u� ¤ u�.
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5. Proof of Theorem 1.4

In order to characterize the “large” solutions u� geometrically one would like to
apply the results of Brezis–Merle [5], Li–Shafrir [16], or Martinazzi [17] to show
that u� blows up in a “round bubble” as � # 0 suitably. However, the results in
[5] and [16] cannot be applied in the case when f� changes sign, as in our case.
Moreover, all the former results require a uniform bound on volume, which is not
available here. However, with the help of the bounds furnished by our existence
proof we can overcome these difficulties. First observe that by arguing as in [22],
from Lemma 3.1 we obtain the following result.

Lemma 5.1. We have lim inf�#0.�jc0�j/ � 4� .

Proof. Assume by contradiction that for constants K > K1 > 4� , �0 > 0 and
almost every � 2�0; �0� we have jc0�j � K=�. Then for any �0 > �1 > 0 we find

c�1 � c�0 C

Z �0

�1

jc0�jd� � c�0 CK log.�0=�1/:

But this is impossible since by Lemma 3.1 we have c�1 � K1 log.2=�1/ for all
sufficiently small �1 > 0. �

Now recall that by Proposition 3.4 for almost every sufficiently small � > 0

the non-minimizing solution u� obtained by our method satisfies the volume boundR
M
e2u

�
d�g0 � 2jc

0
�j C 6. Writing again � instead of �, we then have a sequence

of “large” solutions un D u�n of (1.1) for fn D f0 C �n with �n # 0, satisfying

lim sup
n!1

�
�n

Z
M

e2un d�g0
�
� 8�: (5.1)

Writing the Gauss–Bonnet identity (1.2) in the form

2��.M/ �

Z
M

f0e
2und�g0 D �n

Z
M

e2und�g0

from (5.1) we also obtain the uniform bound

sup
n2N

Z
M

.jf0j C �n/e
2und�g0 <1: (5.2)

As shown by Ding–Liu [12], p. 1063 f., there exists C0 > 0 such that un � �C0
for all n. Moreover, their proof of [12], Lemma 2, gives the uniform local boundZ

�

.jruCn j
2
g0
C juCn j

2/d�g0 � C.�/; (5.3)

where sC D maxfs; 0g, s 2 R, for any domain � � M whose closure is contained
in M� D fp 2M I f0.p/ < 0g; see also the Appendix.
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It then also follows that un � C 0.�/ for any such domain. To see this, fix a
ball B � B � M�. Since .uCn / is H 1-bounded on B , by the Moser–Trudinger
inequality (see Corollary 1.7 of [6]) the sequence .fne2un/ is L2-bounded on B .
Letting vn 2 H 2 \H 1

0 .B/ be the unique solution of the auxiliary problem

��g0vn C k0 D fne
2un on B; vn D 0 on @B;

then .vn/ is bounded in H 2.B/, and hence jvnj � C by Sobolev’s embedding. The
function wn D un � vn is harmonic on B . Since .uCn / is H 1-bounded, the uniform
bound jvnj � C together with the mean value theorem for harmonic functions then
shows thatwn, and hence un, is locally uniformly bounded from above in the interior
of B .

Thus, if a subsequence .un/ blows up near a point p0 2 M in the sense that for
every r > 0 there holds supBr .p0/ junj ! 1, necessarily f0.p0/ D 0 and there
exist points pn ! p0 such that un.pn/ D supp2Br .p0/ un.p/ for some r > 0.

Let p0 be such a blow-up point for a subsequence .un/. Introducing local
isothermal coordinates x on Br.p0/ near p0 D 0, we have g0 D e2v0g

R2 for some
smooth function v0. From .un/we then obtain a sequence vn D unCv0 of solutions
to

��vn D .f0.x/C �n/e
2vn on BR.0/ (5.4)

for some R > 0 and there is a sequence xn ! 0 such that

vn.xn/ D sup
jxj�R

vn.x/!1:

In particular, we have �vn.xn/ � 0; hence f0.xn/C �n � 0, which implies

jxnj
2
� C�n (5.5)

for some constant C > 0.
As final preparation for the proof of Theorem 1.4 note that the arguments of

Brezis–Merle [5] give the following result.

Lemma 5.2. For any r > 0 there holds

lim sup
n!1

Z
Br .0/

.f0 C �n/
Ce2vndx � 2�:

Proof. Suppose by contradiction that for some r > 0 on B D Br.0/ there holds

lim sup
n!1

Z
B

.f0 C �n/
Ce2vndx D ˛ < 2�: (5.6)

Split vn D v
.0/
n C v

.C/
n C v

.�/
n , where �v.0/n D 0 in B with v.0/n D vn on @B , and

where v.˙/n 2 H 1
0 .B/ solve

��v.˙/n D .f0 C �n/
˙e2vn on B:
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Then from (5.6) and [5], Theorem 1, we have the uniform bound ke2v
.C/
n kLp.B/ � C

for any 1 � p < 2�=˛. Moreover, by the maximum principle and the locally
uniform bounds for .un/ onM� we have jv.0/n j � sup@B jvnj � C.r/ <1, v.�/n � 0

in B . Therefore e2vn � Ce2v
.C/
n 2 Lp.B/ for any 1 � p < 2�=˛ with uniform

bounds. Fixing p D �=˛ C 1=2 > 1, from elliptic regularity theory we then obtain
a uniform bound for .vn/ in W 2;p.B/ ,! C 0.B/, contrary to our assumption that
.vn/ blows up near x D 0. �

Choose a subsequence .un/ blowing up at the points p.i/1 , 1 � i � I . In view
of the locally uniform bounds for .un/ on M� a further subsequence un ! u1

smoothly locally on M1 D M n fp
.i/
1 I 1 � i � I g. Moreover, from (5.2) we have

a uniform global L1-bound for .��g0un/n. Therefore, we may assume that we also
have un + u1 weakly in W 1;p.M/ for any p < 2, and u1 solves the equation

��g0u1 C k0 D f0e
2u1 C

IX
iD1

2�aiıp.i/1
on M (5.7)

in the distribution sense, where on account of Lemma 5.2 we have ai � 1, 1 � i � I .
Finally, we may then also assume that un ! u1 pointwise almost everywhere and
from (5.2) and Fatou’s lemma we obtain the boundZ

M

jf0je
2u1d�g0 � lim sup

n!1

Z
M

.jf0j C �n/e
2und�g0 <1: (5.8)

Proposition 5.3. There holds ai 2 f1; 2g, 1 � i � I , and the metric g1 D e2u1g0
on M1 is complete.

Proof. By (5.7), (5.8) in a local conformal chart around each p.i/1 D 0 for v1.x/ D
u1.x/C v0.x/ we have v1.x/ D ai log.1=jxj/C w1.x/, where

��w1 D f0e
2v1 2 L1: (5.9)

Invoking again [5], Theorem 1, given any p < 1, on a sufficiently small ball B
around x D 0 we have e2jw1j 2 Lp.B/. Also using that for a suitable constant
C > 0 we have C�1jxj2 � jf0.x/j � C jxj2 and hence that

C�1jxj2.1�ai /e2w1 � jf0.x/je
2v1 � C jxj2.1�ai /e2w1 ; (5.10)

by Hölder’s inequality and (5.2) for any q > 1 we can estimateZ
B

jxj
2.1�ai /

q dx D

Z
B

�
jxj2.1�ai /e2w1

� 1
q e�

2w1
q dx � C

� Z
B

e�
2w1
q�1 dx

� q�1
q

(5.11)
where the right hand side is finite for suitably small B . Thus, we conclude that
ai � 2, 1 � i � I .
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If ai < 2, by (5.9), (5.10) for some q > 1 there holds �w1 2 Lq.B/ on a
sufficiently small ball B around x D 0, and w1 2 L1.B/ by elliptic regularity. But
then for some c > 0 we have ev1 � cjxj�ai � cjxj�1 near x D 0, and the metric
g1 D e2u1g0 D e2v1geucl on B n f0g is complete. Since by (5.8) the metric
g1 also has finite total curvature, from Huber [13], Theorem 10, then it follows that
ai 2 N. But 1 � ai < 2; hence we conclude that ai D 1, as claimed.

If ai D 2, using (5.10) from (5.9) we deduce that

��e�2w1 C 4jrw1j
2e�2w1 D 2e�2w1�w1 D �2f0jxj

�4
� C jxj�2:

Thus for any ˛ > 0 there holds

��.jxj˛e�2w1/ � C jxj˛�2 �
�
4jxj2jrw1j

2
� 4˛x � rw1 C ˛

2
�
jxj˛�2e�2w1 :

(5.12)

But by Young’s inequality for any a; b 2 R we have 4ab � a2 C 4b2. This allows
to estimate

4˛x � rw1 � ˛
2
C 4jxj2jrw1j

2;

and from (5.12) we obtain the differential inequality

��.jxj˛e�2w1/ � C jxj˛�2; (5.13)

where the right hand side is in Lq.B/ for some q D q.˛/ > 1. From elliptic
regularity we then infer that jxj˛e�2w1 � C . Hence for any ˛ > 0 there is a
constant A > 0 such that near x D 0 we have the bound e2v1 D jxj�4e2w1 �
Ajxj˛�4, and again the metric g1 on B n f0g is complete. �

Proof of Theorem 1.4 (completed). It remains to analyse the blow-up behavior near
each point p.i/1 , 1 � i � I . Introducing local isothermal coordinates x 2 B D BR.0/
around p.i/1 D 0 and again letting vn.x/ D un.x/ C v0.x/, with .xn/ such that
vn.xn/ D supjxj�R vn.x/ as above, we first consider the case that �2ne

2vn.xn/ !1.
Rescale

wn.x/ D vn.xn C rnx/ � vn.xn/

on Dn D fxI jxn C rnxj < Rg, where

r2n�ne
2vn.xn/ D 1:

Then r2n=�n ! 0 as n!1 and wn with wn � 0 D wn.0/ satisfies the equation

��wn D r
2
n.f0.xn C rnx/C �n/e

2.wnCvn.xn// D hne
2wn on Dn;

where hn.x/ D f0.xn C rnx/=�n C 1 � 1, andZ
Dn

e2wn dx D �n

Z
B

e2vn dx � C: (5.14)
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Recalling (5.5) and that r2n=�n ! 0, for a suitable subsequence we have uniform
convergence hn ! h1 to some constant limit h1 D limn!1 f0.xn/=�n C 1 2 Œ0; 1�.
In view of (5.14) from [5], Theorem 1, we conclude that a subsequence wn ! w1
locally uniformly, where w1 � 0 D w1.0/ solves the equation

��w1 D h1e
2w1 onR2;

with
R
R2
e2w1 dx < 1. By the Chen-Li [9] classification of all solutions to this

equation we have h1 > 0 and w1 D log
�

1
1Ch1jxj2=4

�
. Thus after replacing rn by

2rn=
p
h1 the assertion of Theorem 1.4, ii.a) follows.

We are thus left with the case when �2ne
2vn.xn/ � C uniformly in n. Observe

that Lemma 5.2 also implies that 1 � C�2ne
2vn.xn/, so that jvn.xn/C log.�n/j � C

in this case. Set r2n D �n and rescale

wn.x/ D vn.rnx/C log.�n/:

Then we have j supDn wnj � C . Moreover, wn satisfies the equation

��wn D hne
2wn on Dn;

where hn.x/ D f0.rnx/=�n C 1 � 1 in view of (5.5) and our choice r2n D �n
for a suitable subsequence now uniformly converges to the limit function h1.x/ D
1C .Ax; x/, where A D 1

2
Hessf .0/. As before, in view of (5.1) and (5.2) from [5],

Theorem 1, it follows that a subsequence wn ! w1 locally smoothly onR2, where

��w1 D h1e
2w1 onR2;

with finite volume and finite total curvatureZ
R2

e2w1 dx <1;

Z
R2

jh1je
2w1 dx <1: (5.15)

The proof of Theorem 1.4 is complete. �

Remark 5.4. i) Solutions of the type arising in case ii.b) were studied by Cheng–Lin
[10]. Observe that (5.14) together with the precise characterization of h1 allows
to obtain a rather precise bound on jw1.x/j for large jxj. Let x 2 Dn with
B D Br.x/ � Dn, where r D jxj=2 � r0 for some sufficiently large r0 � 1 so
that for some C > 0 we have hn � �jxj2=C on B . Then from Jensen’s inequality
we can bound

2wn.x/ �
2

�r2

Z
B

wndx � log
� 1

�r2

Z
B

e2wndx
�

� log
� C

jxj4

Z
B

jhnje
2wndx

�
� C � 4 log jxj:
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Coupling this observation with the results of Cheng–Lin [10] gives strong indication
that solutions of this type can only arise as blow-up limits near blow-up points p.i/1
of multiplicity ai D 2, if they arise at all.

ii) Coupling the assertion (5.1) and Lemma 5.2 we see that our sequence .un/
can blow up in at most I D 4 points, regardless of how many maximum points the
function f0 possesses. Thus if there are more than 4 distinct maximum points pi
where f .pi / D 0, we may conjecture that E� for sufficiently small � > 0 admits
multiple non-minimizing critical points.

iii) Prompted by our work Del Pino-Romàn [11] have obtained multiple branches
of bubbling solutions to (1.1) for f� as � # 0 by matched asymptotic expansion, with
the asymptotics predicted by our Theorem 1.4, ii.a).

A. Appendix

The proof of (5.3) given in [12] contains a small mistake, which, however, can easily
be repaired, as follows. Let Br.p/ �M�. Fix a smooth cut-off function 0 �  � 1
supported in B D Br=2.p/ and with  � 1 on Br=4.p/, and let � D  2. Also let
un be a solution of (1.1) for fn D f0 C �n as above, where �n # 0 as n!1.

Multiplying equation (1.1) with �2uCn and integrating by parts, similar to [12],
formula (8), then we obtain the identityZ

B

�
ruCn � r.�

2uCn /C k0�
2uCn � fne

2u
C
n �2uCn

�
d�g0 D 0: (A.1)

Note that
ruCn � r.�

2uCn / D jr.�u
C
n /j

2
� jr�j2.uCn /

2: (A.2)

(Ding–Liu mistakingly have a plus-sign on the right of this equation.) Moreover,
there exists " > 0 such that for sufficiently large n 2 N we have fn � �" on B .
Also bounding e2t � t3 for t � 0 like Ding–Liu, we then obtainZ

B

.jr.�uCn /j
2
C "�2.uCn /

4/d�g0 �

Z
B

.jr�j2.uCn /
2
� k0�

2uCn /d�g0 : (A.3)

Recalling that � D  2 and using Young’s inequality to bound

jr�j2.uCn /
2
D 4jr j2. uCn /

2
� C. uCn /

2
�
1

2
". uCn /

4
CC D

1

2
"�2.uCn /

4
CC

with a constant C D C.";  /, and finally estimating

�k0�
2uCn �

1

2
"�2.uCn /

4
C C;

from (A.3) we obtain the uniform bound kr.�uCn /kL2.B/ � C . By Poincaré’s
inequality (5.3) then follows for large n 2 N. For all remaining n 2 N the bound
(5.3) already is a consequence of Lemma 3.1 and Lemma 4.3.
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