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Abstract. In this paper we show that flat (m � 1)-dimensional tori give nontrivial rational
homology cycles in congruence covers of the locally symmetric space SLm ZnSLm R=SO.m/:
We also show that the dimension of the subspace of Hm�1.� n SLm R=SO.m/IQ/ spanned
by flat .m � 1/-tori grows as one goes up in congruence covers.
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1. Introduction

Let M be a finite volume, nonpositively curved, locally symmetric manifold. It is
usually difficult to determine the homology of such a manifold. However, totally
geodesic submanifolds N are natural candidates for non-trivial homology cycles.
In this paper we study the case where N is a maximal periodic torus of M . That
is N is a compact, totally geodesic, immersed torus whose dimension is equal to
the geometric (i.e. real) rank of M . Prasad and Raghunathan have shown [5] that
a locally symmetric space always contains such tori, while Pettet and Souto have
shown that these tori are “stuck” in the thick part of the locally symmetric space and
cannot be homotoped out to the end [6]. This leads one to suspect that such tori
might be homologically nontrivial in a strong sense. The main goal of this paper is
to justify such suspicions in the special case when � < SLm Z is a finite index
torsionfree subgroup and M D �nSLmR=SO.m/ is the corresponding locally
symmetric space. In this case, maximal periodic tori can be obtained in the following
concrete way.

Let � 2 SLmQ be an element whose characteristic polynomial is irreducible and
has m distinct real eigenvalues. The minset1 of � acting on H WD SLmR=SO.m/
is a totally geodesic (m � 1)-dimensional flat X whose image in the quotient space
SLm Z n SLmR=SO.m/ is an isometrically immersed (m � 1)-dimensional torus.

1The element � is a semisimple isometry of the symmetric space H WD SL.Rm/=SO.Rm/. The
minset of � is the set of points fx 2 H j dH .x; �x/ � dH .y; �y/ for all y 2 Hg that are moved the
least by � .
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We show that such tori yield interesting homology cycles in finite volume quotients
of H .

Theorem 1.1. Let X be an .m � 1/-dimensional flat whose image in M WD

SLm ZnSLmR=SO.m/ is compact. Then, there is a finite cover M 0 of M such
that the image of X in M 0 is a non-trivial homology cycle in Hm�1.M 0IQ/:

The key ideas of the proof of this theorem are the following.

1) First we find a totally geodesic copy Y of .SLm�1R=SO.m � 1// � R in H
which is defined over Q and intersects the flatX transversally (not necessarily
orthogonally) in a single point. This reduces to showing that the boundaries
at infinity of X and Y are linked.

2) Then we find a finite index subgroup � � SLm Z such that the images of X
and Y are embedded orientable submanifolds X and Y of � nSLmR=SO.m/
intersecting transversally, with all intersection points having the same sign.

This means the signed intersection number X \ Y is non-zero. Since this number
does not change when we replace the cycle X by a homologous cycle2, we
conclude that X is a non-trivial homology cycle in Hm�1.� n SLmR=SO.m/IQ/.
Similarly, Y is a non-trivial cycle in homology with closed supports H cl

m.m�1/=2
.� n

SLmR=SO.m/IQ/.
Let � be a finite index torsion free subgroup of SLm Z and �.pn/ WD � \

ker.SLm Z ! SLm.Z=pn// the pn congruence subgroup. The argument sketched
above can be generalized to one that uses multiple flats. We prove the following
theorem. It shows that the subspace of homology generated by flat tori grows as one
goes up in congruence covers.

Theorem 1.2. Given a prime p and an integer N , there is n0 such that for n � n0,
the dimension of the subspace ofHm�1.�.pn/nH IQ/ spanned by flat cycles is� N:

Remark 1.3. This also implies nonvanishing for homology in dimensions other
than m � 1. For instance, if m D 3 then �.pn/ n H is homotopy equivalent to
a 3-complex, b1.�.pn// D 0 by the normal subgroup theorem and �.�.pn// D 0;

hence b3.�.pn// D 1C b2.�.pn// grows as one goes up in congruence covers.

Related work. There is a large and fruitful literature on homology of locally
symmetric spaces obtained from totally geodesic submanifolds. Examples are
[2–4,7,8]. The idea of eliminating unwanted intersections by passing to congruence
covers appears in some form in all these works. However, as far as we can tell, the
homology studied in those papers comes from cycles which are the fixed point sets
of a finite order rational isometry � . These cycles are called special cycles. One
finds another finite order rational isometry � 0 commuting with � and then intersects
the fixed point sets. The resulting fixed point sets intersect orthogonally.

2More formally, transverse intersections between compact cycles and closed cycles make sense on the

level of homology and give a mapHm�1 �H
cl
m.m�1/=2

\
!H0:
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The flat Tm�1-cycles considered in this paper are not of this type. They are
not fixed by any finite order isometry. (The flat X D Rm�1 in the universal cover
is the fixed set of an abelian group of involutions .Z=2/m; but these involutions
are not rational and do not descend to a finite cover.) Further, our complementary
subspaces Y do not need to intersect X orthogonally. This gives flexibility in the
choice of Y and allows us to find appropriate intersection patterns in the universal
cover via a density argument.

The rationally defined subspaces Y which we intersect with the flats X are more
familiar. For instance, rational copies of H2 �R in SL3R=SO.3/ have been studied
by Lee and Schwermer in [2].

Acknowledgements. We would like to thank Juan Souto for asking the first
author whether maximal periodic flats in locally symmetric spaces give interesting
homology and for suggesting that intersections might be resolved by passing to finite
covers, Wouter van Limbeek for pointing out that GL2R is not the same thing as
SL2R�R (making the paper significantly longer), and Cesar Lozano for explaining
complex enumerative geometry (which motivated Proposition 4.1).

2. The SL3 case

In this section we we describe some intersections in the symmetric space SL3R=SO.3/
in terms of linking on its sphere at infinity and give a “projective plane” description
of when linking occurs. For the formal argument it is not really necessary to
single out the SL3 case from the general SLm case, but in practice the SL3 case
is easier to visualize, so we do it separately and illustrate the argument with some
pictures. We will describe the sphere at infinity in terms of flag-eigenvalue pairs
in R3 (Section 2.13.8 in [1]). This will allow us to compute intersections of totally
geodesic submanifolds X and Y in SL3R=SO.3/ purely in terms of the sphere at
infinity.

A description of the sphere at infinity S4 D @.SL3R=SO.3//. The points at
infinity correspond to geodesic rays etZ where Z is a trace zero, symmetric matrix
of length one. That is, the eigenvalues �1 � �2 � �3 arranged in descending order
satisfy

�1 C �2 C �3 D 0;

�21 C �
2
2 C �

2
3 D 1:

Let Ei D fv 2 R3 j Zv D �ivg be the �i -eigenspace of Z. Then, the eigenvalues
together with the flag

0 � E1 � E1 CE2 � R3
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provide enough information to recover the symmetric matrix Z: This description of
the sphere S4 at infinity naturally subdivides it into three pieces.

� A four dimensional piece �1 > �2 > �3 and 0 � E1 � E1 C E2 � R3
isomorphic P3 � .1=

p
6; 2=
p
6/;

� a two dimensional piece �1 D 2=
p
6; �2 D �3 D �1=

p
6; and 0 � E1 � R3

isomorphic to the real3 projective plane P21 of lines through the origin in R3;
and

� a two-dimensional piece �1 D �2 D 1=
p
6; �3 D �2=

p
6; and 0 � E1 C

E2 � R3 isomorphic to the projective plane P22 of planes through the origin
in R3.

The circle S1 � S4 corresponding to a flat R2 � SL3R=SO.3/. A two-
dimensional flat corresponds to a transverse collection of one-dimensional subspaces
A;B;C � R3: Running through the possible eigenvalues gives the circle.

Subgroups SL2R � R � SL3R. A subgroup SL2R � R � SL3R corresponds to
a pair .L; P / where L is a one-dimensional subspace of R3, P is a two-dimensional
subspace of R3; and L and P are transverse to each other. The flags associated to
.L; P / are those that occur on the sphere at infinity of the corresponding SL2R�R:
The possible 1-dimensional subspaces in such a flag are L or a one-dimensional
subspace L0 � P: The possible 2-dimensional subspaces are P or any two-
dimensional subspace P0 containing L. The possible flags are nested sequences
of these.

Suppose that we have two such subgroups corresponding to pairs .L; P / and
.L0; P 0/; and denote the corresponding two-spheres at infinity by S and S 0 in S4.
We describe the points of intersection S \ S 0:

The intersection S \ S 0 in S4. We say that the pairs .L; P / and .L0; P 0/ are in
general position if L 6D L0; P 6D P 0; L t P 0; L0 t P; and .P \ P 0/ t .LC L0/:

Proposition 2.1. If the pairs .L; P / and .L0; P 0/ are in general position, then the
corresponding spheres S and S 0 intersect twice. They have no intersections in P3 �
.1=
p
6; 2=
p
6/, intersect once at P \ P 0 2 P21 and once at LC L0 2 P22:

Proof. Since .L; P / and .L0; P 0/ are in general position, the only flags they share
are 0 � P \ P 0 � R3 and 0 � LC L0 � R3:

Transverse intersections. Let p be a point of intersection of S and S 0 in S4.
Denote by L.p; S/; L.p; S 0/; and L.p; S4/ the links of p in S; S 0 and S4,
respectively. If the circles L.p; S/ and L.p; S 0/ link in the three-sphere L.p; S4/;
then we say that the intersection of S and S 0 at p is transverse.

3All projective spaces in this paper are real.
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Some real projective geometry. Think of A;B;C and L as points in P21 and P
a projective line in P21: We explain the criterion for determining whether the flat X
corresponding to .A;B; C / intersects the copy Y of H2�R corresponding to .L; P /:
For two distinct points, say A and B , we denote by AB the projective line passing
through A and B . In Figures 1, 2, and 3, we draw the projective plane as a disk with
antipodal boundary points identified.

Proposition 2.2. Suppose that .A;B; C / and .L; P / are in general position. Then
P21 nfAB;AC ;BC g is a union of four open triangles. The spacesX and Y intersect
if and only if the triangle containing the point L does not meet the line P . The
intersection is necessarily transverse.

Figure 1.

Proof. Suppose that P passes through the triangle containing L. For one of the
vertices of the triangle (without loss of generality, the vertex A) the pair of points
fB;C g do not link the pair of points fLA\BC;P \BC g on the projective lineBC:
We rephrase this in the following way: Let Y 0 be the copy H2 � R corresponding to
.A;BC/: Then @Y \ @Y 0 D fLA;P \BC g and the non-linking statement becomes
the statement that @X does not link @Y \ @Y 0 in @Y 0: Thus @X does not link @Y in
the sphere at infinity S4, i.e. X and Y are disjoint. This is depicted in Figure 1.

Conversely, suppose that P does not pass through the triangle containing L. The
argument in the previous paragraph shows that @X links @Y \@Y 0 in the sphere @Y 0:
To conclude that @X links @Y in the sphere at infinity S4 we need an additional
argument. Namely, we need to show that the intersection of the two-spheres @Y
and @Y 0 at the point P \ BC is transverse.
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Figure 2.

To show this, we look at the two-sphere at infinity @Y 00 of the symmetric space Y 00

corresponding to the pair .P\BC;LA/:A neighborhood of the point P\BC in S4

can be identified with a neighborhood of .P \BC/� .P \BC/ in P21 � @Y 00: Now,
P21\@Y is the lineP together with the pointLwhile P21\@Y 0 is the lineBC together
with the point A. The lines P and BC cross at P \ BC: On the other hand S1 WD
@Y 00 \ @Y is the boundary of the flat corresponding to .L;AL\P;P \BC/ while
S2 WD @Y

00\@Y 0 is the boundary of the flat corresponding to .A;AL\BC;P\BC/:
The circles S1 and S2 in @Y 00 cross at P \BC because the points fL;AL\P g link
the points fA;AL \ BC g on the projective line AL: Since P and BC cross in P21
and S1 and S2 cross in @Y 00 we see that the intersection of @Y with @Y 0 at the point
P \BC is transverse. This second part of the argument is illustrated in Figure 2.
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Remark 2.3. Corresponding to an open geodesic simplex � in P21 we can define its
dual simplex�� in the dual projective plane P22 (with the edges of�� corresponding
to the outside angles of the simplex �). Recall that the points A;B and C subdivide
P21 into four simplices �1; �2; �3 and �4. Then, one can show that Proposition 2.2
implies the sphere corresponding to .L; P / links the circle corresponding to
.A;B; C / if and only if .L; P / 2 [4iD1�i � �

�
i � P21 � P22. Since we do not

use this description, we will not give a proof of this (but the reader is invited to draw
some pictures and convince themselves of it).

Figure 3.

2.1. An arrangement of intersections. Using Proposition 2.2 it is easy to construct
a pattern X1; : : : ; XN ; Y1; : : : ; YN of flats Xi and copies of H2 � R denoted Yi , for
which Xi intersects Yj if and only if i � j: One such pattern (with N D 4) is
indicated in Figure 3. The right picture is obtained from the left picture via rotations
by a fixed amount. To get the required pattern for a general N one starts with a
sufficiently thin triangle .A;B; C / and uses a small enough rotation.

3. The sphere at infinity of SLm

In this section we describe the sphere at infinity in terms of flag-eigenvalue pairs in
Rm (Section 2.13.8 in [1]). Points on the sphere at infinity correspond to geodesic
rays etZ where Z is a trace zero, symmetric matrix of length one. That is, the
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eigenvalues �1 � � � � � �m of Z arranged in descending order satisfy

�1 C � � � C �m D 0;

�21 C � � � C �
2
m D 1:

Let Ei WD fv 2 Rm j Zv D �ivg be the �i -eigenspace of Z. The eigenvalues
together with the flag

0 � E1 � E1 CE2 � � � � � E1 C � � � CEm�1 � Rm

provide enough information to recover the symmetric matrix Z. Thus, the points
on the sphere at infinity are parametrized by flag-eigenvalue pairs. The flags are
best thought of as nested arrangements of points, lines, planes etc in real projective
space Pm�1:

The sphere of a direct sum decomposition. Suppose we are given a direct sum
decomposition Rm D U1 ˚ � � � ˚ Ur : Up to finite index, the subgroup of GL.Rm/
preserving this decomposition is GL.U1/�� � ��GL.Ur/ and the subgroup of SL.Rm/
preserving the decomposition is Rr�1 � SL.U1/ � � � � � SL.Ur/: This group acts on
SL.Rm/=SO.Rm/ preserving a totally geodesic symmetric subspace

Rr�1 � SL.U1/=SO.U1/ � � � � � SL.Ur/=SO.Ur/: (3.1)

We denote the sphere at infinity of this symmetric subspace by S.U1; : : : ; Ur/: We
note that S.R/ D ; because SL.R/ is a point. Generally, if U is an n-dimensional
vector space then S.U / D Sn.nC1/=2�2: The product decomposition (3.1) gives a
join decomposition

S.U1; : : : ; Ur/ D S
r�2 ? S.U1/ ? � � � ? S.Ur/ (3.2)

for the sphere at infinity. Next, we describe the flags that occur on this sphere.

The sphere S.U1; : : : ; Ur/ as the fix set of an element in SL.Rm/. Let � 2
SL.Rm/ be a diagonalizable element whose eigenspace decomposition is Rm D
U1˚� � �˚Um: The minset4 of � is the symmetric subspace Rr�1�SL.U1/=SO.U1/�
� � � � SL.Ur/=SO.Ur/. The action of � extends to the sphere at infinity S.Rm/ and
its fixed set is precisely the sphere S.U1; : : : ; Ur/: The action of � on the sphere at
infinity does not change the eigenvalues and sends a flag F1 � � � � � Fk to the flag
�F1 � � � � � �Fk (see 2.13.8 of [1].) A standard linear algebra argument shows
that the subspaces V � Rm that are preserved by � are precisely those spanned by
the eigenvectors of � . We will call these the subspaces associated to the eigenspace

4The element � is a semisimple isometry of the symmetric space H WD SL.Rm/=SO.Rm/. The
minset of � is the set of points fx 2 H j dH .x; �x/ � dH .y; �y/ for all y 2 Hg that are moved the
least by � .
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decomposition .U1; : : : ; Ur/. We will say that a flag F1 � � � � � Fk is associated
to the eigenspace decomposition .U1; : : : ; Ur/ if each of the subspaces Fi in the flag
is spanned by � -eigenvectors. These are precisely the flags that are preserved by � .
Thus

� The sphere at infinity S.U1; : : : ; Ur/ consists of those flag-eigenvalue pairs
whose flag is associated to .U1; : : : ; Ur/.

Projective space description. Here is a slightly more geometric description. Let
Pm�1 be the projective space of lines through the origin in Rm. The subspaces Ui
form a transverse arrangement .U1; : : : ; Ur/ of projective subspaces in Pm�1: A
k-dimensional subspace V � Rm defines a .k � 1/-dimensional projective subspace
V Š Pk�1 � Pm�1. It is spanned by the eigenvectors of � precisely when there
are k points in the union [riD1Ui � Pm�1 that span V .

General position. Suppose that L1; : : : ; Lm; L are points in Pm�1 and P is an
.m � 2/-dimensional projective subspace Š Pm�2. We say that .L1; : : : ; Lm/ and
.L; P / are in general position in Pm�1 if

(1) none of the points is contained in P ,

(2) any m points span an .m � 1/-simplex in Pm�1, and

(3)
LiLj \ P 6D LiLj \ LL1 : : : OLi : : : OLj : : : Lm:

Here, we denote by LiLj the projective line passing through the points Li
and Lj and by LL1 : : : OLi : : : OLj : : : Lm the projective hyperplane passing
through all the points except for Li and Lj . In words, this third condition
says that the intersection of the line passing through the points Li and Lj
with the hyperplane P is not equal to the intersection of that line with the
hyperplane passing through the remaining points.

Intersecting spheres at infinity. Suppose we have two direct sum decompositions

L1 ˚ � � � ˚ Lm Š Rm Š L˚ P

whereL;L1; : : : ; Lm are points andP is a hyperplane in Pm�1. If .L1; : : : ; Lm/ and
.L; P / are in general position, then the first two general position conditions imply
that the only subspaces associated to both .L1; : : : ; Lm�2; Lm�1Lm/ and .L; P /
are the point L0 WD P \ Lm�1Lm and the hyperplane Q WD LL1 � � �Lm�2:5

The third general position condition implies that the line L0 is not contained in

5Since P doesn’t contain any of the points Li , the only subspace contained in P that is associated
to .L1; : : : ;Lm�2;Lm�1Lm/ is L0 WD P \ Lm�1Lm. If the subspace is not contained in P , then
it must contain L, and by general position Q is the smallest dimensional such subspace associated to
.L1; : : : ;Lm�2;Lm�1Lm/. Finally, it is easy to see that it is the only such subspace.
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the hyperplane Q. Thus, the spheres at infinity S.L1; : : : ; Lm�2; Lm�1Lm/ and
S.L;P / intersect at exactly two points L0 and Q in S.Rm/.

A neighborhood of Q. The singleton codimension one flags form a projective
space Pm�1m�2 in the sphere at infinity S.Rm/: This projective space has a regular
neighborhood N.Pm�1m�2/ in S.Rm/ which is a bundle whose fibre over a point
V 2 Pm�1m�2 can be identified with the cone Cone.S.V // of the sphere at infinity
of V .

4. The linking lemma

In this section we explain how to compute intersections of totally geodesic sub-
manifolds in the symmetric space SLmR=SO.m/ in terms of linking on the sphere
at infinity. We then describe how to determine linking at infinity in terms of the
geometry of real projective space. This description turns out to be convenient for
constructing and perturbing intersection patterns in the universal cover.

Suppose thatX Š Rm�1 is a flat obtained as the minset of an element � 2 SLmR
with m distinct real eigenvalues, while Y is a copy of .SLm�1R=SO.m � 1// � R
which is the minset of an involution � 2 GLmR with eigenvalues .�1; : : : ;�1; 1/:
Let .L1; : : : ; Lm/ be the eigenspaces of � and .L; P / be the line-hyperplane pair
of eigenspaces of �: Suppose that .L1; : : : ; Lm/ and .L; P / are in general position.
Then the spheres at infinity @X D S.L1; : : : ; Lm/ and @Y D S.L;P / are disjoint.
Using geodesic projection through a point to the sphere at infinity S.Rm/ one sees
that X and Y intersect if and only if the spheres @X and @Y link in S.Rm/. If there
is an intersection, then it is necessarily transverse because the spheres @X and @Y
link.

We give a geometric criterion for determining when the spheres @X and @Y link.

Proposition 4.1. Suppose that .L1; : : : ; Lm/ and .L; P / are in general position.
Denote by Vi the hyperplane which passes through all the points L1; : : : ; Lm 2
Pm�1 except Li : The hyperplanes V1; : : : ; Vm subdivide Pm�1 into open .m � 1/-
simplices. The spheres S.L1; : : : ; Lm/ and S.L;P / link if and only if the .m � 1/-
simplex � containing L does not meet P .

Proof. We do an inductive argument. The base case m D 2 is easy. In this case the
proposition is simply identifying the projective line P1 with the circle at infinity @H2:

Now, we suppose that the Proposition is known for m � 1 and prove it for m.
Note that either P does not meet the simplex � , or it intersects at least one edge of
the simplex. So, without loss of generality we will make the following assumption
for the rest of the proof.

� If P meets � then it intersects the edge E of the simplex � lying on the line
Lm�1Lm.
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Remark 4.2. So the projective line Lm�1Lm Š P1 get broken up into two
components: the edge E and its complement.

If P does not meet � at all, then it intersects the line Lm�1Lm outside the
edge E. Let Q WD LL1 � � �Lm�2 be the hyperplane passing through the points
L;L1; : : : ; Lm�2: Since L is contained inside the simplex � , the hyperplane Q
intersects the edge E. Thus,

� The hyperplane P meets � if and only if on the line Lm�1Lm the pair of
points fLm�1; Lmg link with the points fP \ Lm�1Lm;Q \ Lm�1Lmg

The pair of points fLm�1; Lmg D S.Lm�1; Lm/ D S0 lies inside the circle
S.Lm�1Lm/ D S

1: It links the points fP \Lm�1Lm;Q\Lm�1Lmg in this circle if
and only if the suspension S.L1; : : : ; Lm/ D Sm�3 ? S.Lm�1; Lm/ links the points
fP \ Lm�1Lm;Q \ Lm�1Lmg in the suspension S.L1; : : : ; Lm�2; Lm�1Lm/ D
Sm�3 ? S.Lm�1Lm/: This is the same as linking the points fP \Lm�1Lm;Qg be-
cause the flagsQ andQ\Lm�1Lm are “adjacent”: the segment on the sphere at in-
finity corresponding to the flagQ\Lm�1Lm � Q connects them and does not meet
S.L1; : : : ; Lm/ so they lie in the same component of S.L1; : : : ; Lm�2; Lm�1Lm/ n
S.L1; : : : ; Lm/. In summary,

(?) The hyperplane P meets � if and only if the sphere S.L1; : : : ; Lm/ does not
link the pair of points fP \Lm�1Lm;Qg inside S.L1; : : : ; Lm�2; Lm�1Lm/.

To unburden notation slightly, we will from now on denote the sphere S.L1; : : : ; Lm/
by the letter S WD S.L1; : : : ; Lm/. Since .L1; : : : ; Lm/ and .L; P / are in general
position, the spheres at infinity S.L;P / and S.L1; : : : ; Lm�2; Lm�1Lm/ intersect
in precisely the two points P \ Lm�1Lm and Q: If P meets the simplex � then (?)
shows one of the two connected components of S.L1; : : : ; Lm�2; Lm�1Lm/ n S is
a ball which is bounded by S and does not intersect S.L;P /: This means that the
sphere S does not link the sphere S.L;P / which is half of what we needed to show.

Now, suppose that P does not meet the simplex �: It remains to show that in
this case the sphere S links the sphere S.L;P /: By (?), in this situation one of
the components of S.L1; : : : ; Lm�2; Lm�1Lm/ n S contains Q but does not contain
P \ Lm�1Lm: We call this component D. It is a ball with boundary @D D S: The
sphere S.L;P / does not meet S and intersects the ball D in a single point Q. To
show that S and S.L;P / link, it is enough to show that the intersection at Q is
transverse. Note that

� The link ofQ in the entire sphere at infinity S.Rm/ is the joinLk.Q;Pm�1m�2/?

S.Q/.
� The link ofQ inD is Lk.Q;Pm�1m�2\D/?S.L1; : : : ; Lm�2;Q\Lm�1Lm/.
� The link of Q in S.L;P / is Lk.Q;Pm�1m�2 \ S.L;P // ? S.L;Q \ P /.

We will show that

(1) Lk.Q;Pm�1m�2\D/ and Lk.Q;Pm�1m�2\S.L;P // link inside of Lk.Q;Pm�1m�2/.
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(2) S.L1; : : : ; Lm�2;Q \ Lm�1Lm/ and S.L;Q \ P / link inside S.Q/.

which implies that Lk.Q;D/ and Lk.Q; S.L;P // link inside Lk.Q; S.Rm//, and
hence the intersection of D and S.L;P / at Q is transverse. This will complete the
proof of the Proposition.

(1) Near Q, the intersection Pm�1m�2 \ D is a projective line in Pm�1m�2 (the line of
all projective hyperplanes in Pm�11 passing through the pointsL1; : : : ; Lm�2),
while Pm�1m�2 \ S.L;P / is a projective hyperplane in Pm�1m�2 (the hyperplane of
all hyperplanes passing through L in Pm�11 ). By general position, the line and
hyperplane intersect transversally at Q, which shows that Lk.Q;Pm�1m�2 \D/

and Lk.Q;Pm�1m�2 \ S.L;P // link inside of Lk.Q;Pm�1m�2/.

(2) Second, recall that L is contained in the .m� 1/-simplex �; the hyperplane P
does not meet �; and the hyperplane Q D LL1 � � �Lm�2 passes through the
points L;L1; : : : ; Lm�2: Now, we intersect with the hyperplane Q Š Pm�2:
Notice that L is contained in the .m � 2/-simplex Q \ � and the hyperplane
Q \ P in Q does not meet Q \ �: Further, the simplex Q \ � has vertices
L1; : : : ; Lm�2;Q\Lm�1Lm:Moreover, .L1; : : : ; Lm�2;Q\Lm�1Lm/ and
.L;Q \ P / are in general position in Q Š Pm�2.6 Thus, we can apply the
inductive hypothesis to conclude the spheres S.L1; : : : ; Lm�2;Q\Lm�1Lm/
and S.L;Q \ P / link in S.Q/:

Figure 4.

6The third general position condition is a consequence of the fact that L is contained in the .m� 2/-
simplexQ \ � while the hyperplaneQ \P does not meet the simplexQ \ � .
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4.1. An arrangement of intersections. Using Proposition 4.1 it is easy to construct
a patternX1; : : : ; XN ; Y1; : : : ; YN of flatsXi and copies of .SLm�1R=SO.m�1//�
R denoted Yi , for which Xi intersects Yj if and only if i � j: One such pattern (with
N D 4) is indicated in Figure 1. We draw the ball model of projective space Pm�1,
with points on the boundary of the ball identified via the antipodal map. The right
picture is obtained from the left picture via rotations by a fixed amount. To get the
required pattern for a general N one starts with a sufficiently thin geodesic .m� 1/-
simplex A?Simp and uses a small enough rotation.

5. Elements defined over Q

Everything we’ve done so far has been in the symmetric space SLmR=SO.m/: The
rational structure has not yet entered the picture. It starts to play a role when one
tries to understand how the spaces X and Y project to arithmetic quotients of the
symmetric space.

Rational flats. Let � 2 SLmQ be an element with m distinct real eigenvalues, and
denote its minset by X . It is a totally geodesic submanifold of H . The centralizer
C� .R/ Š .R�/m�1 acts transitively on the minset by orientation preserving
isometries. The group of all isometries preserving the minset SX .R/ WD fg 2
SLmR j gX D Xg is the semidirect product C� .R/ o Sm of the centralizer with
the symmetric group on m letters (the symmetric group permutes the eigenspaces
of �:) Let � < SLm Z be a finite index torsionfree subgroup and denote by
�X WD � \ SX .R/ the group of all isometries in � preserving the flat X: The
following lemma shows that after passing to a deep enough congruence subgroup
we can assume that all isometries of �X commute with �:

Lemma 5.1. Fix a prime p: Then �X .pn/ � C� .R/ for sufficiently large n.

Proof. Let �1; : : : ; �m be the eigenvalues of � and K WD Q.�1; : : : ; �m/ the field
obtained by adjoining those eigenvalues. The group SX .K/ is SLmK-conjugate to
.K�/m�1 o Sm; where the .K�/m�1 consists of determinant one diagonal matrices
and the symmetric group Sm is represented by permutation matrices. From this it
follows that SX .K/ decomposes into C� .K/-cosets

SX .K/ D C� .K/ [ C� .K/
1 [ � � � [ C� .K/
r ;

with the matrices 
i being conjugates of the permutation matrices, i.e. lying in
SLmK: Let Kp WD Qp.�1; : : : ; �m/ be the p-adic completion. Note that the non-
identity cosets lie in the closed subset

r[
iD1

fx 2 SLmKp j Œx
�1i ; � � D 1g;
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of SLmKp: This subset does not contain 1 since Œ
�1i ; � � 6D 1; so there is a
small p-adic neighborhood of the identity U.pn/ where all elements from SX .K/

commute with � i.e.

�X .p
n/ D �X \ U.p

n/ � SX .K/ \ U.p
n/ � C� .R/:

Since � is a matrix with entries in Q, the image of X in H=� is an isometrically
immersed (m � 1)-dimensional flat. (See Theorem D in [8] for a proof of this.) Let
p� .t/ D det.t � �/ be the characteristic polynomial. The following is a special case
of a theorem of Prasad and Raghunathan in [5]:
Proposition 5.2. Suppose � 2 SLmQ has m distinct real eigenvalues and
irreducible characteristic polynomial. Then X=�X is compact and finitely covered
by a (m � 1)-dimensional torus Tm�1:

Rational copies of .SLm�1R=SO.m � 1// � R. Now, let � 2 GLmQ be
a diagonalizeable matrix with eigenvalues .�1; : : : ;�1; 1/: Then the centralizer
C�.R/ Š GLm�1R acts on the minset Y Š SLm�1R=SO.m�1//�R of �, and the
quotient Y=�Y is a properly immersed submanifold ofH=�: (Theorem D in [8].) In
this case the group SY .R/ of isometries preserving Y is just the centralizer C�.R/:
Note that C�.R/ Š GLm�1R has two components. If m is even, then the entire
centralizer preserves the orientation of Y , but if m is odd, then the elements not
in the identity component do not preserve the orientation of Y . The eigenspaces
of � are a (rational!) line L and a hyperplane P . Whether or not an element
preserves orientation can be determined by its action on the line L. (This is noted
in the discussion after Corollary 2.4 of [2].) Let 
 2 C�.Z/ be an element in the
centralizer with integer entries. Then 1 D det.
/ D det.
 jL/ det.
 jP / and since 

has integer entries we must have 
 jLD ˙1: Further, the element 
 preserves
orientations precisely when we have C signs, i.e. det 
 jPD det 
 jLD 1: Let
0 6D v 2 LZ � Zm � Qm be a non-zero vector with integer entries. Then, 
v D ˙v:
For sufficiently large n we have v 6D �v in the quotient LZ=pn � .Z=pn/m so that
the subgroup �Y .pn/ which acts trivially on LZ=pn must preserve the orientation
of Y .

Embeddings vs immersions. A result of Raghunathan (Theorem E in [8]) shows
that we can always find a positive integer K0 such that for K � K0 the maps
X=�X .K/! H=�.K/ and Y=�Y .K/! H=�.K/ are embeddings. Thus, we can
replace the group � by the congruence subgroup �.pn/; pn � K0 to make sure that
the quotients X=�X .pn/ and Y=�Y .pn/ are embedded in the quotient H=�.pn/.
We remark that this is the same as saying that �.pn/X is a disjoint union of copies
of X in H , and �.pn/Y is a disjoint union of copies of Y in H .

We summarize the conclusions of this section in the following proposition, and
add an extra bullet. The notations are the same as the ones used throughout the
section.
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Proposition 5.3. Let p be a prime. Then for sufficiently large n,

� �.pn/X is a disjoint union of copies of X and �.pn/Y is a disjoint union of
copies of Y .

� The subgroup �X .pn/ centralizes � and the subgroup �Y .pn/ centralizes �:

� There are �.pn/-invariant orientations on �.pn/X and �.pn/Y .

Proof. Everything except for the third point has already been proved in the section
above. Further, we’ve shown that �Y .pn/ preserves an orientation on Y for large
enough n. For such n we can—starting with an orientation Y C of Y—define a
�.pn/-invariant orientation on �.pn/Y by .
Y /C D 
Y C for 
 2 �Y .pn/.

For large enough n, the group �X .pn/ is contained in the centralizer C� .R/; and
this centralizer preserves an orientation on X . Hence, we can define an invariant
orientation on �.pn/X in the same way as for Y:

6. Rational intersection patterns

In Subsection 4.1 we described a certain intersection pattern fXi ; YigNiD1 involving
finitely many flats and copies .SLm�1R=SO.m�1//�R. In this section we explain
how to get the same intersection pattern using using rational flats that are compact in
the quotient, and copies of .SLm�1R=SO.m � 1// � R that are defined over Q:

Intersection patterns are preserved by small perturbations. From the descrip-
tion of intersections between Xi and Yi given Proposition 4.1, it is clear that an
intersection pattern does not change whenXi is perturbed to a nearby flatX 0i ; (so the
m-tuple of eigenspaces is perturbed slightly). Similarly, the intersection pattern does
not change when Yi is perturbed to a nearby Y 0i (so the line-hyperplane pair .L; P /
is perturbed slightly).

Small rational perturbations of X and Y exist. Note that the SLmQ-orbit of
transversem-tuple .L1; : : : ; Lm/ is dense in the space of all such triples. In particular
let � be an element with m distinct real eigenvalues and irreducible characteristic
polynomial. The orbit of the m-tuple of eigenspaces of � is dense. Thus, any flat X
has arbitrarily small perturbations whose quotients are compact .m�1/-dimensional
tori. Similarly, the rational line-hyperplane pairs are dense in the space of all
such pairs, so Y has arbitrarily small perturbations whose quotients are properly
immersed.

Putting these two observations together with the intersection pattern described in
Subsection 4.1, we get the following

Proposition 6.1. There are rational flats fXigNiD1 whose quotients Xi=�Xi
are

compact and rational copies of .SLm�1R=SO.m� 1//�R denoted fYigNiD1 whose
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quotients Yi=�Yi
are properly immersed in H=� such that Xi intersects Yj if and

only if i � j . Further, all the intersections of the Xi and the Yj are transverse.

7. Pushing intersection patterns down to a congruence cover

The goal of this section is to show that the intersection pattern described in
Proposition 6.1 can be pushed down to appropriate congruence covers. Once this is
done, we will be able to conclude that the submanifolds involved in the intersection
pattern give nontrivial homology cycles in those congruence covers. Our method is
to “make intersections more similar to each other” by passing to congruence covers.

Theorem 7.1. Let p be a prime. Suppose that � 2 SLmQ is a matrix withm distinct
real eigenvalues and irreducible characteristic polynomial, while � 2 GLmQ is a
diagonalizable matrix with eigenvalues .�1; : : : ;�1; 1/: LetX and Y be the minsets
of � and �; respectively. Suppose further that we have the following “genericity”
condition

(t ) The only solutions to the system of equations �x D x�; �x D x� are the
scalar matrices7.

Then

(1) If X and Y intersect transversely in a single point z 2 H; then for sufficiently
large n the quotients X=�X .pn/ and Y=�Y .pn/ are embedded, orientable
submanifolds, all their intersections inH=�.pn/ are transverse and have the
same sign.

(2) If X and Y are disjoint then for sufficiently large n the quotients X=�X .pn/
and Y=�Y .pn/ are disjoint in H=�.pn/:

8. Proof of theorem 7.1

Proposition 5.3 shows that, replacing � by a sufficiently deep congruence subgroup
�.pn/ if necessary, we may assume �X is a disjoint union of copies X , equipped
with a �-invariant orientation (so that if XC is the oriented flat then .
X/C D 
XC

for all 
 2 �) and �X � C� .R/; i.e. all elements of � preserving the flatX commute
with the element �: Similarly for the subspace Y . Then, the quotient X=�X is a
compact oriented submanifold of H=� and Y=�Y is a closed oriented submanifold
of H=� . The intersection of these two submanifolds has finitely many components,
and each of these components corresponds to a �Y -orbit of components in �X \ Y .
Our goal in this proof will be to show that if we replace � by a sufficiently deep

7Note that this is a linear system of equations with rational coefficients, so it is equivalent over R;Q
or Qp .
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congruence subgroup �.pn/, then all the intersections �.pn/X \ Y have a very
special type.

Claim. There is n (depending only on the pair of elements �; � 2 SLmQ and the
prime p) such that for any 
 2 �.pn/; either

� 
X and Y don’t intersect, or

� 
 factors as a product 
 D ab where a 2 C�.Q/ preserves Y and the
orientation on Y and b 2 C� .Q/ preserves X and the orientation on X .

Given this claim, we get


XC \ Y C D abXC \ Y C D aXC \ Y C D a.XC \ a�1Y C/ D a.XC \ Y C/:

This means all the intersections are transverse and have the same sign as the
intersection XC \ Y C (since a.XC \ Y C/ is a shifted version of the transverse
intersection XC \ Y C and the shift a 2 SLmQ preserves the orientation of the
entire symmetric space H .) This implies the first part of the theorem. Further, it
means that if X and Y do not intersect, then 
X and Y do not intersect. This gives
the second part of the theorem.

We prove the claim in four steps.

(1) (Reduction to p-adic centralizers) There is an n (depending on the pair �; �
and the prime p) such that for any 
 2 �.pn/ if 
X and Y intersect then 

can be expressed as a product 
 D a0b0 where a0 2 C�.Zp/ and b0 2 C� .Zp/.

(2) (A linear algebraic lemma) There are rational matrices a; b 2 GLmQ and a
scalar c 2 Qp such that a D ca0 and b D c�1b0.

(3) (Product lemma) The product of centralizers C�.Zp/C� .Zp/ is finitely cov-
ered by the Cartesian product C�.Zp/ � C� .Zp/.

(4) If n was taken to be sufficiently large (again, depending only on �; � and p)
then for any 
 2 �.pn/ there are rational matrices of determinant one a 2
C�.Q/ and b 2 C� .Q/, such that 
 D ab, a preserves the orientation of Y
and b preserves the orientation of X .

Recall that the quotient X=�X is compact (by Proposition 5.2), so the intersection
of X=�X and Y=�Y in H=� has finitely many components. Consequently, the flats
in �X that intersect Y break up into finitely many �Y -orbits which we will denote
by f�Y 
iXgkiD0; 
i 2 SLm Z:

Step 1. We begin with several remarks about the p-adic centralizers C�.Zp/ and
C� .Zp/. Roughly, one can think of these centralizers as the “p-adically closed
versions of �Y and �X”, respectively.
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� The centralizers C� .Zp/ and C� .Zp/ are compact in the p-adic topology, so
their product C�.Zp/C� .Zp/ is also compact. Moreover, the groups �X and
�Y consist of integer matrices that commute with � and �, respectively, so
�Y�X is contained in C�.Zp/C� .Zp/.

� If an element 
 2 SLm Z is not contained in the closed set C�.Zp/C� .Zp/
then a small enough p-adic neighborhood of 
 misses this closed set, and
hence also misses the product �Y�X . In other words, �.pn/
 \ �Y�X D ;
for large enough n.

Lemma 8.1. If �.pn/
\�Y�X D ; then none of the flats �Y 
X occur in �.pn/X .

Proof. Suppose there are elements a 2 �Y and c 2 �.pn/ such that a
X D cX .
Then a.a�1c�1a/
X D X which means a.a�1c�1a/
 DW b is an element of �X .
The equation .a�1c�1a/
 D a�1b shows that �.pn/
 \ �Y�X 6D ;, which is a
contradiction.

Now, pick an n so that for every 
i … C�.Zp/C� .Zp/we have �.pn/
i\�Y�X D ;.
If 
 2 �.pn/ and the flat 
X intersects Y , then it must have the form a
iX with
a 2 �Y and 
i 2 C�.Zp/C� .Zp/. So 
 D a
ib for some b 2 �X , which implies
that 
 is in the product of centralizers C�.Zp/C� .Zp/. This completes the proof of
Step 1.
Remark 8.2. It is easy to check that �.pn/
 \ �Y�X D ; ” �.pn/ \

�Y 
�X D ;. So we get the following interpretation: If the double coset �Y 
�X
misses a p-adic neighborhood of the identity �.pn/, then the flats �Y 
X do not
appear in �.pn/X . We will use this later in Step 4.

Above in Figure 5 is a (very) heuristic p-adic picture illustrating Step 1.
The double cosets fC�.Zp/
iC� .Zp/gkiD0 are all compact and locally look like
products8. A small enough p-adic neighborhood of the identity �.pn/ intersects
C�.Zp/C� .Zp/ and does not meet any of the other (finitely many) non-identity
double cosets.

Step 2. The following linear algebraic lemma lets us go from matrices over Zp back
to ordinary rational matrices (over Q), at the expense of allowing the determinants
to vary.
Lemma 8.3. If 
 D a0b0 where a0 2 C�.Zp/ and b0 2 C� .Zp/ then there are
rational matrices a; b 2 GLmQ and a scalar c 2 Qp such that a D ca0; b D c�1b0.

Proof. The element a0 satisfies the equations Œa0; � � D Œ
; �� and Œa0; �� D 1: These
equations can be rewritten as

a0� D Œ
; ���a0; (8.1)

a0� D �a0: (8.2)

8We will prove this local product structure in Step 3 and use it in Step 4.
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Figure 5.

These equations are linear homogeneous in the matrix entries of a0 and are defined
over Q (since 
; �; and � are defined over Q). If they have a p-adic solution a0 of
determinant one, then they also have a rational solution a with non-zero determinant.
Moreover, it is easy to check that a�1a0 commutes with both � and � , so by the
genericity condition (t ) it is a scalar matrix9, which means a D ca0 for some constant
c 2 Qp . Take b D a�1
:

Step 3. In this step we relate the product of centralizers to their Cartesian product.
This will make it a bit easier to separate a double coset �Y 
i�X from a small p-adic
neighborhood of the identity in the next (last) step.

Let � WD f� 2 Qp j �m D 1g be the group of m-th roots of unity in Qp .
Since these roots of unity have finite order, they all actually lie in Zp . The genericity
condition (t ) says the only matrices that commute with both � and � are the scalar
matrices. These matrices have determinant one precisely if the scalar is anm-th root
of unity. In other words, the intersection of centralizers C�.Zp/ \ C� .Zp/ is the
group �.

Lemma 8.4. The map

C�.Zp/ � C� .Zp/ ! C�.Zp/C� .Zp/;
.x; y/ 7! xy;

is a finite sheeted regular cover with covering group � acting via � � .x; y/ D
.�x; ��1y/.

9In other words, the genericity condition implies the vector space of solutions is one-dimensional.
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Proof. Condition (t ) implies that the map in the statement of the lemma is finite-to-
one and its fibers are the �-orbits. Quotienting out by �, we get a map

.C�.Zp/ � C� .Zp//=�! C�.Zp/C� .Zp/:

This map is a continuous bijection of compact Hausdorff spaces, so it is a
homeomorphism10. On the other hand, the group � acts on the Cartesian product
C�.Zp/ � C� .Zp/ by covering translations11 so C�.Zp/ � C� .Zp/ ! .C�.Zp/ �
C� .Zp//=� is a finite sheeted regular cover.

Step 4. The following lemma completes the proof of the main claim. The main point
of the lemma is to look at how matrices commuting with � act on the 1-eigenspace L
of � and throw away the intersection by passing to a finite cover if L gets rescaled in
a non-trivial way.

Lemma 8.5. For sufficiently large n, all the flats in �.pn/X which intersect Y are
of the form abX where a 2 C�.Q/, b 2 C� .Q/; a preserves the orientation of Y
and b preserves the orientation of X:

Proof. For 
i 2 C�.Zp/C� .Zp/; let 
i D ab D a0b0; and a D ca0 as in linear
algebra lemma, and look at how the rational matrix a acts on the line L: Pick a non-
zero vector 0 6D v 2 LQ and note that av D kv for some k 2 Q: Also, recall that
the group �Y consists of integer matrices preserving the orientation of Y , so that
�Y v D v: Thus

�Y a
0v D �Y ac

�1v D kc�1v:

� If kc�1 … � then �Y a0 \ �U.pn/ D ; for a sufficiently small, p-adic
neighborhood �U.pn/ of the group �. Thus, the product �Y a0 � b0�X
misses the �-invariant neighborhood of the identity �U.pn/ � C� .Zp/ in the
Cartesian product C�.Zp/�C� .Zp/ and consequently its image �Y a0b0�X D
�Y 
i�X misses the neighborhood of the identityU.pn/C� .Zp/ in the product
C�.Zp/C� .Zp/: This means �.pn/ \ �Y 
i�X D ; for sufficiently large n.
For such n, the flats �Y 
iX do not appear in �.pn/X .

� On the other hand, if kc�1 D � for some m-th root of unity � 2 Qp then

a

k
D
ca0

c�
D
a0

�

is a rational matrix with determinant det.a0=�/ D 1. In other words, a=k 2
C�.Q/. Similarly, kb 2 C� .Q/. Moreover a=k preserves the orientation of Y
because .a=k/v D v and kb preserves the orientation of X since it lies in the
centralizer of � .

10But not a group homomorphism. The right hand side isn’t even a group.
11Officially, it acts freely, properly discontinuously.
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In conclusion, since there are only finitely many 
i , we can pick n sufficiently large
so that every flat in �.pn/X that intersects Y is of the form described in the statement
of the Lemma. This completes the proof of the Lemma and thus also the proof of the
main Claim.

Proof of Theorem 1.2

The condition (t ) saying that the only solutions to x� D �x; x� D �x are scalar
matrices is satisfied whenever the collection of eigenspaces .L1; : : : ; Lm/ of � and
the line-hyperplane pair .L; P / of � are in general position.

Let X1; : : : ; XN and Y1; : : : ; YN be the subspaces obtained in Proposition 6.1.
The eigenspaces of Xi and line-hyperplane pairs of Yj are in general position, so
we can apply Theorem 7.1 and find n0 such that for n � n0 the quotients Xi D
Xi=�Xi

.pn/ and Yi D Yi=�Yi
.pn/

� are embedded orientable manifolds,
� Xi and Yi intersect
� all the intersections of Xi and Yi are transverse and have the same sign,
� Xi and Yj do not intersect for i > j:

This means the intersection matrix is upper triangular with non-zero diagonal entries.
Consequently, it is a non-degenerate N � N matrix, which means the flats Xi span
an N -dimensional subspace of Hm�1.H=�.pn/IQ/:

9. Questions

We end the paper by mentioning some questions related to the results of this paper.
� (Other symmetric spaces) Maximal periodic flats can be found in any locally

symmetric space. For which symmetric spaces do they give non-trivial
rational homology classes? An argument analogous to the one presented in
this paper can be performed for Hilbert modular surfaces, and we expect that
there is a common generalization to lattices of the form SLmOK , where K
is a totally real number field. On the other hand, some lattices in complex
hyperbolic (hence real rank one) spaces have Property (T), and for these the
maximal tori are closed geodesics that do not give rationally nontrivial cycles
(since Property (T) implies H1 is torsion.)

� (Uniform lattices in SL3) There are uniform lattices in SL3 (associated to units
of division algebras) for which the only properly immersed totally geodesic
subspaces are flat tori. For these, there are no candidate complementary totally
geodesic subspaces. Do the 2-tori in these lattices give torsion homology
classes?
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� (Rates of growth) How fast does the subspace of (rational) homology
generated by maximal flat tori grow in congruence covers? This question
is especially interesting for Hilbert modular surfaces: in this case, the second
homology grow linearly in the degree of the cover. Does the space of 2-tori
also grow linearly?

� (Peripheral cycles) Do the maximal tori give homology cycles that come from
the end? If one can find complementary compact cycles that intersect these
tori non-trivially in homology, then the answer is no. In Hilbert modular
surfaces, one can intersect with complementary 2-tori, but already for the
lattice SL3 Z this question is open.
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