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Abstract. In Gromov’s treatise (Partial differential relations, volume 9 of Ergebnisse der
Mathematik und ihrer Grenzgebiete (3), 1986), a continuous map between Riemannian
manifolds is called isometric if it preserves the length of rectifiable curves. In this note we
develop a method using the Baire category theorem for constructing such isometries. We show
that a typical 1-Lipschitz map is isometric in canonically formulated extension and restriction
problems.
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1. Introduction

Since the fundamental works of Nash [16] and Kuiper [13] it is well known that
isometric maps with low regularity can be surprisingly flexible objects. In particular,
any short immersion of an n-dimensional Riemannian manifold with continuous
metric into RnC1 can be uniformly approximated by isometric immersions of
class C 1. One of the main ideas introduced by Nash, and revisited by Kuiper, is
an iterative scheme, whereby in each stage the short map is perturbed by a rapidly



762 B. Kirchheim, E. Spadaro and L. Székelyhidi Jr. CMH

oscillating “corrugation” (or “spiral” in higher codimensions) such that the resulting
maps converge in C 1 to an isometric immersion.

On the contrary, in the equidimensional case, that is, for maps from a n-dimensio-
nal manifold into Rn, isometries of class C 1 are rigid. Namely, if f W Rn ! Rn
is a C 1 map with Df 2 O.n/ for every x 2 Rn, then f is globally orientation
preserving or reversing and, by a classical Liouville theorem, is an affine map, i.e. a
rigid motion.

Therefore, in order to see some flexibility, one needs to relax the C 1 condition.
A natural choice is to consider Lipschitz maps instead. To fix ideas consider maps
f W Rn ! Rn. There are several ways in which one can define what it means to
be an isometry: either look at changes in the metric under f (a local condition), or
look at the effect on the length of curves (a global condition). For f 2 C 1 the two
conditions lead to the same notion - this can be seen as a simple example of the local-
to-global principle in geometry. If f is merely Lipschitz, by Rademacher’s theorem
the derivative Df.x/ exists for almost every x 2 Rn, hence a weak preservation of
the metric amounts to the condition

.Df /T Df D Id Ln- a.e. in Rn: (1.1)

Here we denote by Ln the Lebesgue measure on Rn. We will call such maps weak
isometries. As pointed out by Gromov on p. 218 of his treatise [9], such maps
might collapse whole submanifolds to a single point and thus are very far from a
truly geometric notion of isometry. For instance, it is possible to solve the Dirichlet
problem Df T Df D Id a.e. in � D Œ0; 1�n and f j@� D 0 — see e.g. [5, 6]. By
extending f periodically on the whole Rn, one can then find a solutions to (1.1) such
that f .Rn�1 � f0g/ D f0g.

The more geometric definition of isometry therefore is the following: a Lipschitz
map between Riemannian manifolds f W M ! N is isometric if it preserves the
length of any rectifiable curve (c.f. [9, §2.4.10]):

`M .
/ D `N .f ı 
/ for every 
 W Œ0; 1�!M rectifiable: (1.2)

It is not difficult to see that any isometry is a weak isometry, but the converse is in
general false. To compare with (1.1), notice that an isometric map f W Rn ! Rn
satisfies

.DMf /T DMf D Id Hm-a.e. on M; (1.3)

for every m-dimensional submanifold M � Rn, m D 1; : : : ; n, where DM

denotes the tangential derivative and Hm is the m-dimensional Hausdorff measure.
Actually, it is not difficult to see that in condition (1.3) it suffices to check the lowest
dimensional case m D 1, i.e.

jr�f j D 1 H1-a.e. on 
 (1.4)

for every rectifiable curve 
 � Rn, where r�f denotes the tangential derivative.
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For constructing isometries one might imagine a “folding up” pattern as the
analogous perturbations to corrugations in an iterative scheme à la Nash and prove
results similar in spirit to the Nash–Kuiper theorem. Indeed, in [9] Gromov shows
that every strictly short map between Riemannian manifolds admits an arbitrarily
close uniform approximation by isometries. More generally, Gromov’s convex
integration is a powerful generalization of the Nash technique, that applies to a
large class of differential relations. A version for differential inclusions of Lipschitz
maps has been developed in [14, 15], where also the system (1.1) is treated as a
particular case.

On the other hand it was noticed by several authors [4, 6, 10], that the Baire
category method, introduced in [3, 7] for ordinary differential inclusions, can be
applied to problems such as (1.1) (which can be written as the differential inclusion
Du.x/ 2 O.n/ a.e. x). Indeed Baire category methods have been used for many
existence proofs in analysis and geometry, also for the construction of topological
embeddings (but since the literature is vast and scattered we do not add any specific
reference). In the question considered, this approach leads not only to the density of
weak isometries but also to genericity in the sense of Baire category.

Our contribution in this paper is twofold. First of all we develop a version of the
Baire category method for isometric maps satisfying (1.2) in the sense considered
by Gromov and prove several residuality results. Our method allows one to reduce
the problem of Baire-residuality to the density of certain approximate isometries,
see §3 below.

Secondly, we give a self-contained proof of the density of (approximate) isome-
tries that follows the general philosophy of Baire category techniques for differential
inclusions. To explain this, recall that the density of Lipschitz isometries between
Riemannian manifolds follows from Gromov’s result [9, §2.4.11] concerning the fine
approximability of isometries. Alternatively, in Rn one can use the following result
of Brehm [2] concerning the extension of isometries:

Theorem 1.1 (Brehm [2]). Let H � Rn be a finite set and f W H ! Rm be a short
map, with n � m. Then, there exists an extension of f to a piecewise affine isometric
map of the whole Rn.

Both Gromov’s and Brehm’s proof rely on the (global) geometric property of
being an isometry, in particular special piecewise affine isometries (called normally
folded maps in [9]) are used as the basic building block and it is not clear how
to generalize this notion to other differential inclusions. In contrast, our approach
is to treat isometries as solutions to a fine differential inclusion as in (1.3), where
the tangential derivative on lower-dimensional objects is prescribed. As in the
usual Baire category method, we use an explicit oscillating perturbation to show
the perturbation property for the (tangential) gradient of the map f . The new key
point however is to use a calibration to control the underlying curves. We expect



764 B. Kirchheim, E. Spadaro and L. Székelyhidi Jr. CMH

our method to find applicability in a more general class of such fine differential
inclusions.

To conclude this introduction we mention that there is yet another, stronger
notion of isometry. In [9, §2.4.10] a map f W M ! N between Riemannian
manifolds is called a strong isometry if for any x; y 2M

distM .x; y/ D lim
"!0

inf
nk�1X
iD0

distN .f .xi /; f .xiC1//
o
;

where the infimum is taken over all "-chains between x and y, that is, sequence of
points x0 D x; x1; : : : ; xk D y with distM .xi ; xiC1/ � ". The same notion is
called an intrinsic isometry in [17]. It is not difficult to see that a strong isometry is
an isometry. Moreover, strong isometries preserve the length of any curve (not just
rectifiable). Now, using Gromov’s theorem (or our Theorem 2.2 below) it is possible
to construct an isometry f W R2 ! R2, which maps the Koch curve (or any purely
unrectifiable curve) to a single point. Such a map will obviously not be a strong
isometry. We note in passing that in [9, §2.4.10] this construction is described with a
curve C with the property that dimH .C \C0/ < 1 for all rectifiable curves C0. This
property is stronger than being purely unrectifiable, and in fact it turns out that such
a curve C does not exist — see [1]. Our main results and techniques in this paper, in
particular in §5, do not extend to strong isometries.

Acknowledgements. We would like to express our thanks to Giovanni Alberti, to
whom we are indebted for many fruitful and inspiring discussions concerning this
work.

2. Statement of the main results

We first consider the problem of extending a map defined on an arbitrary compact
set K � Rn. This is a generalization of the Dirichlet problem on a bounded domain
� � Rn, if we take K D @�.

It is clear that an isometric extension need not always exist. For example,
consider the following map: K D @Œ0; 1�2 � R2 and f W K ! R2 given by
f .x; y/ D .x; 0/. Clearly, f is a short map admitting a unique 1-Lipschitz extension
to Œ0; 1�2 (namely f .x; y/ D .x; 0/), which is not an isometric map because, for
instance, vertical line segments are mapped to single points.

In order to deal with this issue, we need to characterize the set C.f;K/ where
the map f has a unique 1-Lipschitz extension. It is clear that f extends uniquely as
a 1-Lipschitz map on the set

C.f;K/ WD
[
H2S

conv.H/;

where S WD fH � K W f jH is an affine isometryg.
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As seen in the example above, if the unique 1-Lipschitz extension on C.f;K/ is not
isometric, there is no chance to solve the extension problem. On the other hand,
if C.f;K/ D K, the map f does admit extensions which are locally strictly short
outside K. This is the content of the following proposition. In the sequel we use the
following standard terminology:

� in a topological space a subset is called residual if it contains the intersection
of countably many dense open sets;

� a property is typical (or the typical element satisfies a property) if that property
holds in a residual set.

Proposition 2.1. A function f W K ! Rn admits an 1-Lipschitz extension
h W Rn ! Rn such that

� hjK D f ;
� Lip.hjA/ < 1 for every A �� Rn nK

if and only if
C.f;K/ D K: (2.1)

Moreover, the typical 1-Lipschitz map f W K ! Rn satisfies (2.1).

The proof of Proposition 2.1 (restated as Proposition 4.4 and 7.1) is contained
in Sections 4 and 7. As a consequence, we prove that the solutions to the Dirichlet
problem which are isometric in Rn n C.f;K/ are in fact residual:

Theorem 2.2 (Typical extension). LetK � Rn be a compact set and f W K ! Rn a
short map. Then, the typical 1-Lipschitz extension of f to the whole Rn is isometric
on Rn n C.f;K/.

We then consider the problem of Dirichlet data f W K ! Rn which extend to a
global isometric map F W Rn ! Rn (not just of Rn n C.f;K/). We prove that also
this is a generic property.

Theorem 2.3 (Typical restriction). Let K � Rn be a compact set. The typical short
map f W K ! Rn is the restriction of an isometric map of the whole Rn.

Finally, we address the problem of isometric maps from a Riemannian mani-
fold M n into Rn. We show that such maps are residual in the space of short maps.

Theorem 2.4 (Typical isometries). LetM be a n-dimensional Riemannian manifold
with continuous metric. Then, the isometric maps of M into Rn are residual in the
space of short maps.

3. Approximate isometric maps

In what follows M is a connected n-dimensional smooth manifold with or without
boundary. We assume that M is endowed with a continuous Riemannian metric g;
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we denote by dM and j � jg the induced Riemannian distance on M and the norm on
each tangent space TxM , respectively. In the case of subsets of Rn, we use the usual
notation jxj and x � y for the norm and the scalar product of vectors, respectively.

Given a path-connected subset S �M we introduce the following notation.

(a) The space of short maps from M into Rn is denoted by Lip1.M;Rn/, i. e.

Lip1.M;Rn/ WD
˚
f WM ! Rn W Lipg.f / � 1

	
;

where

Lipg.f / WD sup
x¤y2M

jf .x/ � f .y/j

dM .x; y/
:

(b) �S .x; y/ is the set of rectifiable curves from x to y contained in S :

�S .x; y/ WD
˚

 W Œ0; 1�! S W 
 rectifiable; 
.0/ D x; 
.1/ D y

	
:

We denote by dS the induced metric, i.e.

dS .x; y/ WD inf

2�S .x;y/

`g.
/:

(c) We denote by I.S/ the set of all short maps f 2 Lip1.M;Rn/ which
are isometric in S , i. e. `.f ı 
/ D `g.
/ for every rectifiable curve

 W Œ0; 1�! S , where

`.f ı 
/ D

Z 1

0

j.f ı 
/0.t/j dt and `g.
/ D

Z 1

0

j
 0.t/jg.
.t// dt:

Equivalently, f 2 I.S/ if for every 
 as above

j.f ı 
/0.t/j D j
 0.t/jg.
.t// for a.e. t 2 Œ0; 1�:

(d) For every " > 0 and x; y 2 S , we denote by F".x; y; S/ � Lip1.M;Rn/ the
mappings satisfying

F".x; y; S/ WD
n
f 2 Lip1.M;Rn/ W `.f ı
/C" `g.
/ > .1�"/ dS .x; y/

8
 2 �S .x; y/
o
:

Note that in general the maps in Lip1.M;Rn/ are not bounded (except whenM itself
is bounded). For this reason, we use the following metric on Lip1.M;Rn/:

D.f; g/ WD sup
x2M

min
˚
1; jf .x/ � g.x/j

	
D min

�
1; sup
x2M

jf .x/ � g.x/j

�
:
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It is easy to verify that .Lip1.M;Rn/;D/ is a complete metric space and that D
induces the uniform convergence, i.e.

lim
l!C1

D.fl ; f / D 0 ” lim
l!C1

kfl � f kC0.M/ D 0:

Definition 3.1. Let S � M be path-connected. We define the set of "-approximate
isometric maps in S by:

I".S/ WD
\

x¤y2S

F".x; y; S/: (3.1)

The name is justified by the following result.

Lemma 3.2. Let S �M be path-connected. Then\
">0

I".S/ D I.S/: (3.2)

Proof. Note first that I.S/ � F".x; y; S/ for every " > 0 and x ¤ y 2 S . Indeed,
every f 2 I.S/ satisfies

`.f ı 
/C " `g.
/ D .1C "/ `g.
/ > .1 � "/ dM .x; y/ 8 
 2 �S .x; y/:

In order to prove the converse inclusion, assume f 2 I".S/ for every " > 0 and
let 
 W Œ0; 1� ! S be a rectifiable curve. Then, for every partition 0 D t0 < � � � <

tm D 1, setting 
j WD 
 jŒtj ;tjC1�, we have

`.f ı 
/ D

m�1X
jD0

`.f ı 
j / �

m�1X
jD0

dM .
.tj /; 
.tjC1//:

Since this holds for any partition, `.f ı 
/ � `g.
/ and, hence, f 2 I.S/.

3.1. Separability. We show next that it suffices to take a countable intersection in
order to obtain a subset of approximate isometric maps.

Lemma 3.3. Let S be path-connected and S0 � S be a countable dense subset for
the induced metric dS . Then,\

x¤y2S0

F".x; y; S/ � I2 ".S/:

Proof. We may assume without loss of generality that " < 1=2, otherwise the
statement is trivial. Let f 2 F".x0; y0; S/ for all x0; y0 2 S0. For x; y 2 S ,
we choose � > 0 and x0; y0 2 S0 such that

� <
"

4
dS .x; y/;
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and
dS .x; x0/C dS .y; y0/ < �:

We can find two curves 
1 2 �S .x0; x/ and 
2 2 �S .y; y0/ such that

`g.
1/C `g.
2/ � dS .x; x0/C dS .y; y0/C �:

Observe that

.1 � 2"/dS .x; y/ � .1 � "/dS .x0; y0/ � "dS .x; y/C .1 � "/�

� .1 � "/dS .x0; y0/ � 2�.1C "/;

since
.3C "/� � "dS .x; y/:

Then we consider the concatenation Q
 WD 
2 � 
 � 
1 (i.e., the curve obtained by
joining, in the order, the curves 
1, 
 and 
2), and note that Q
 2 �S .x0; y0/. Using
that

`g. Q
/ � `g.
/C 2�

and that f 2 F".x0; y0; S/, we obtain

`.f ı 
/ � `.f ı Q
/ � 2 �

> .1 � "/ dS .x0; y0/ � ".`g.
/C 2�/ � 2 �

� .1 � 2"/ dS .x; y/ � "`g.
/

> .1 � 2 "/ dS .x; y/ � 2"`g.
/:

This shows that f 2 F2".x; y; S/. Since this holds for every x; y 2 S , we conclude
f 2 I2".S/.

3.2. Closedness. The following lemma shows that the sets of approximate isomet-
ric maps are Gı sets.

Lemma 3.4. Let S � M be compact. Then, for every x; y 2 S and " > 0,
F".x; y; S/ is open in Lip1.M;Rn/.

Proof. We show that Lip1.M;Rn/ n F".x; y; S/ is closed under the uniform
convergence induced byD. To this aim, assume that fk 2 Lip1.M;Rn/nF".x; y; S/
converges to f uniformly in M . By assumption, there exist 
k 2 �S .x; y/ with

`.fk ı 
k/C " `g.
k/ � .1 � "/ dS .x; y/:

In particular, the lengths `g.
k/ are uniformly bounded. Therefore, since we are
considering curves in the compact set S , we may extract a subsequence such that

kj ! 
 2 �S .x; y/ uniformly. This implies that also fkj ı 
kj converges
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uniformly to f ı 
 . Now, since the length is lower semicontinuous under uniform
convergence, we deduce that

`.f ı 
/C " `g.
/ � .1 � "/ dS .x; y/:

This implies that f 2 Lip1.M;Rn/ n F".x; y; S/, hence Lip1.M;Rn/ n F".x; y; S/
is closed.

3.3. Locality. The notion of isometric map is local in the following sense.

Lemma 3.5. Let fU˛g˛2A be an open covering of M such that every U˛ is path-
connected. Let f 2 Lip1.M;Rn/ be such that f jU˛ 2 I.U˛/. Then f 2 I.M/.

Proof. We need to prove that, for a given curve 
 W Œ0; 1�!M ,

`.f ı 
/ D `g.
/:

Since 
.Œ0; 1�/ is compact, we begin fixing a finite covering of 
.Œ0; 1�/ by sets U˛j ,
j D 1; : : : ; m. Using the uniform continuity of 
 , we infer the existence of � > 0

such that

8 t 2 Œ0; 1� 9 j 2 f1; : : : ; mg such that 
.Œt; t C ��/ � U˛j :

We then choose any partition 0 D t0 � � � � � tm D 1 such that jti � tiC1j � �. By
the choice of �, for every i D 1; : : : m � 1 there exists j.i/ such that 
.Œti ; tiC1�/ �
U˛j.i/ . Therefore, from f jU˛ 2 I.U˛/ we deduce that

`.f ı 
 jŒti ;tiC1�/ D `g.
 jŒti ;tiC1�/ 8 i D 1; : : : ; m � 1;

and therefore

`.f ı 
/ D

m�1X
iD0

`.f ı 
 jŒti ;tiC1�/ D

m�1X
iD0

`g.
Œti ;tiC1�/ D `g.
/:

4. Locally strictly short extensions

As mentioned in the introduction, given a short map f W K � Rn ! Rn on a
compact setK, f will have a unique 1-Lipschitz extension Nf to a possibly larger set
containing K, namely

C.f;K/ WD
[
H2S

conv.H/;

where S WD fH � K W f jH is an affine isometryg. Here "f jH affine" is understood
in the sense that f jH .x/ D Ax C b for some A 2 O.n/ and b 2 Rn. Note that it is
easily verified either by elementary geometry or by a calculation analogous to the one
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in (4.1)–(4.3) that “f jH affine isometry” is equivalent to being (globally) distance
preserving in H in the sense that jf .x/ � f .y/j D jx � yj for all x; y 2 H . Then,
by the triangle inequality, f extends uniquely as a 1-Lipschitz map on C.f;K/ and
in particularK � C.f;K/. In the following lemmas we prove two simple properties
of C.f;K/, namely its compactness and a hull-type property.
Lemma 4.1. For every K � Rn compact and f W K ! Rn short, C.f;K/ � Rn is
compact.

Proof. We notice first that C.f;K/ is a bounded set. Therefore, we need only to
show that it is closed. Assume that zl 2 conv.Hl/ ! z. Using Carathéodory’s
Theorem, we may assume without loss of generality that Hl D fyl0; : : : ; y

l
ng and

zl D

nX
iD0

�liy
l
i ; with

nX
iD0

�li D 1; �
l
i � 0:

By compactness (up to extracting subsequences which are not relabelled) we may
infer that there exist yi 2 Rn and �i 2 Œ0; 1� for i D 0; : : : ; n such that

lim
l!C1

yli D yi and lim
l!C1

�li D �i :

Then, z 2 conv.H/ for H WD fy0; : : : ; yng. Moreover, H 2 S because

jg.yi / � g.yj /j D lim
l!C1

jg.yli / � g.y
l
j /j D lim

l!C1
jyli � y

l
j j D jyi � yj j 8 i; j:

This shows that z 2 C.f;K/, i.e. C.f;K/ is closed.

Lemma 4.2. Let f W K ! Rn be a short map, with K � Rn compact and let
Nf W C.f;K/! Rn be the unique 1-Lipschitz extension of f to C.f;K/. Then,

C. Nf ; C.f;K// D C.f;K/:

Proof. It is enough to show that, for every x; y 2 C.f;K/ such that j Nf .x/� Nf .y/j D
jx � yj, it holds

Œx; y� WD
˚
�x C .1 � �/ y W � 2 Œ0; 1�

	
� C.f;K/:

Without loss of generality, we may assume that

y D Nf .y/ D 0: (4.1)

Set H WD
˚
x0; : : : ; xl

	
� K, l � n, such that f jH is an affine isometry and

x D
P
i ˛i xi for positive ˛i with

P
i ˛i D 1. Note that in general l may be

different from n, because we assumed that ˛i > 0 for every i . Since f jH is affine
and (4.1) holds, we have ˇ̌̌̌

ˇX
i

˛i xi

ˇ̌̌̌
ˇ D

ˇ̌̌̌
ˇX
i

˛i f .xi /

ˇ̌̌̌
ˇ :
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Squaring we getX
i

˛2i jxi j
2
C

X
i¤j

˛i ˛j xi �xj D
X
i

˛2i jf .xi /j
2
C

X
i¤j

˛i ˛j f .xi / �f .xj /: (4.2)

From (4.1) and Lip. Nf / � 1, it follows that jf .z/j � jzj for every z 2 K. Recalling
that jf .xi / � f .xj /j D jxi � xj j for xi ; xj 2 H , this implies

f .xi / � f .xj / D
1

2

�
jf .xi /j

2
C jf .xj /j

2
� jf .xi / � f .xj /j

2
�

�
1

2

�
jxi j

2
C jxj j

2
� jxi � xj j

2
�

D xi � xj : (4.3)

Using (4.2) and (4.3) together (recall that jf .z/j � jzj for every z 2 K), we deduce
that jf .xi /j D jxi j for every xi 2 H . In particular, f0g [H 2 S and by definition

Œ0; x� � conv
�
f0g [H

�
� C.f;K/:

We now turn to the proof of Proposition 2.1. We start with a definition.

Definition 4.3 (LSSE). LetK � Rn be a compact set and f W K ! Rn a short map.
We say that f is locally strict short extendable, or briefly f is LSSE, if there exists
h 2 Lip1.Rn;Rn/ such that hjK D f and Lip.hjA/ < 1 for every A �� Rn nK.

Clearly, if f W K ! Rn is LSSE, then C.f;K/ D K, because, for every
1-Lipschitz extension h of f it holds hjC.f;K/ D Nf jC.f;K/, where Nf is the unique
1-Lipschitz extension of f to C.f;K/, and Lip. Nf jC.f;K/\B".x// � 1 for every
x 2 C.f;K/ and every " > 0, while h is locally strictly short outside of K. We
show that this is also a sufficient condition for f to be LSSE.

Proposition 4.4. For a short function f W K ! Rn the following are equivalent

(a) f is LSSE;

(b) for every x … K there exists px 2 Rn such that

jpx � f .y/j < jx � yj 8 y 2 KI (4.4)

(c) for every x … K, there exist at least two different 1-Lipschitz extensions f1,
f2 of f to K [ fxg.

(d)
x; y 2 K W jf .x/ � f .y/j D jx � yj ) Œx; y� � K: (4.5)

In particular, f is LSSE if and only if C.f;K/ D K.
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Proof. To prove the equivalence between (a) and (b), assume that h is a locally
strictly short extension of f . Then, it follows from Definition 4.3 that px WD h.x/

fulfills (4.4). Conversely, if (4.4) holds, for every x … K there exists ıx > 0 such
that

jpx � f .y/j < jz � yj 8 y 2 K and 8 z 2 Bıx .x/ � Rn nK: (4.6)

For every x … K, we define the functions fx by

fx.w/ WD

(
f .w/ if w 2 K;
px if w 2 Bıx .x/;

and consider Fx an arbitrary 1-Lipschitz extensions to the whole Rn given by
Kirszbraun’s Theorem [8, §2.10.43]. Since Rn n K is locally compact, there exist
countably many xi such that

Rn nK D
1[
iD1

Bıxi .xi /:

Setting h WD
P
i 2
�iFxi , it is immediate to verify from (4.6) that h is a locally

strictly short extension of g.
To show the equivalence between (b) and (c), note that, if the maps x 7! q and

x 7! q0 are two different extensions to K [ fxg, then px WD qCq0

2
satisfies (4.4).

Vice versa, if (4.4) holds, then the continuous function

ˆ.y/ WD
jpx � f .y/j

jx � yj

satisfies maxK ˆ D 1 � � for some � > 0. Then, for every z 2 Bı.px/ with
ı � �

2
dist.x;K/, the extension of f given by x 7! z is a 1-Lipschitz extension

of f :

jz � f .y/j

jx � yj
�
jpx � f .y/j C ı

jx � yj
� 1 � �C

ı

jx � yj
< 1 8 y 2 K:

Note that, we have actually proven that (b) fails in a point x if and only if (c) fails in
the same point x.

So far we have proved the equivalence of (a), (b) and (c). Next, it is clear that (b)
implies (d).

To show the converse, we argue by contradiction and assume that (d) holds but (c)
not, i.e. there exists x … K such that f admits a unique extension Nf W K[fxg ! Rn.
Let Nf .x/ D px and set

H WD fy 2 K W jf .y/ � pxj D jy � xjg:
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Note thatH is compact and, by the failure of (b) in x,H ¤ ;. Two cases can occur:

(i) px … conv.f .H//;

(ii) px 2 conv.f .H//.

In case (i), since conv.f .H// is compact, there exists "; � > 0, and � 2 Sn�1 such
that

px � � > 2 "C f .y/ � � 8 y 2 H� \K;

where H� denotes an open � -neighborhood of H . Moreover, by compactness of
K nH� , there exists a ı > 0 such that

jf .y/ � pxj C ı � jx � yj 8 y 2 K nH� :

An elementary computation shows that x 7! qx WD px � � � is a new 1-Lipschitz
extension of f to K [ fxg if � is chosen accordingly. Indeed, we have

jf .y/ � px C � �j
2
D jf .y/ � pxj

2
C �2 C 2 � .f .y/ � px/ � �

� jf .y/ � pxj
2
C �2 � 4 � "

� jy � xj2 C �2 � 4 � " 8 y 2 H� \K;

and
jf .y/ � px C � �j � jx � yj � ı C � 8 y … H� :

Hence, it suffices to choose
� < max

˚
ı; 4 "

	
:

This contradicts the assumption that Nf is the only 1-Lipschitz extension to K [ fxg
and gives the desired conclusion in case (i).

In case (ii), let l 2 N be the minimum integer with the following property: there
exist l points fy1; : : : ; ylg DW H 0 � H such that px � conv.f .H 0//. We claim that

jf .yi / � f .yj /j < jyi � yj j 8 yi ; yj 2 H
0: (4.7)

Indeed, assume this is not the case, e.g. jf .y1/ � f .y2/j D jy1 � y2j. Then, since
px D

P
i ˛i f .yi / for positive ˛i with

P
i ˛i D 1 and f jŒy1;y2� is affine, we can set

z WD
˛1 y1 C ˛2 y2

˛1 C ˛2
:

By (4.5), Œy1; y2� � K, thus implying in particular that z 2 K. Moreover, by
comparing the congruent triangles fy1; y2; xg and ff .y1/; f .y2/; pxg we deduce
that z 2 H . Since it is moreover easy to see that px 2 conv.f .fz; y3; : : : ; ylg//, we
obtain a contradiction with the assumption that l was the least number satisfying the
above property.

To conclude we note that (4.7) implies that there exists a strictly short extension
of f jH 0 to H 0 [ fxg, denoted by F W H 0 [ fxg ! Rn. Clearly, F.x/ ¤ px by the
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definition of H . This leads to a contradiction and concludes the proof. Indeed, set
F.x/ DW qx and � WD qx�px

jqx�px j
. Since px 2 conv.f .H 0//, there exists y 2 H 0 such

that
px � � � f .y/ � �;

which in turns implies

jf .y/ � qxj � jf .y/ � pxj D jy � xj;

against Lip.F / < 1.

5. Density

In this section we set, referring to the notation of Section 3,

M D Rn;

and define, for every x; y 2 K and " > 0, E".x; y;K/ to be the restriction of maps
from F".x; y;K/ to K, i.e.

E".x; y;K/ WD fh 2 Lip1.K;Rn/ W 9 f 2 F".x; y;K/ s.t. f jK D hg:

Our aim is to prove the following density result.
Proposition 5.1. Let K � Rn be a compact set. Then, for every x; y 2 K and
" > 0, the set E".x; y;K/ is dense in Lip1.K;Rn/.

5.1. Single lamination. In this section we show the basic lamination construction
which will be used to increase distances in one direction. We consider functions of
the following form:

w.x/ D Ax C � h.x � �/;

where A 2 Rn�n, �; � 2 Rn and h W R ! R is the 1-periodic extension of the
following piecewise linear function with slopes �1 < 0 < �2,

h.t/ D

(
�1 t for 0 � t � �2

�2��1
;

�2 .t � 1/ for �2
�2��1

< t � 1:
(5.1)

Note that w is Lipschitz and piecewise affine in parallel strips, with

rw.x/ D

(
AC �1 � ˝ � for k < x � � < k C �2

�2��1
;

AC �2 � ˝ � for k C �2
�2��1

< x � � < k C 1;
for all k 2 Z:

(5.2)
In what follows, a simplex is defined to be the closed convex hull of nC1 affinely

independent points in Rn, T WD cofx0; : : : ; xng, and its barycenter is the point Nx WD
1
nC1

Pn
jD0 xj .

Proposition 5.2. Let T be a simplex and u be a strictly short affine map on T , with
ru � A and ATA � .1 � �0/ I for some 0 < �0 < 1. Then, for every 0 < � < �0
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and � > 0, there exists v 2 Lip.T;Rn/ such that:

(i) v D u on @T ;

(ii) ku � vkC0.T / � �;

(iii) Lip.v/ � 1 � �
4

;

(iv) .1�2�/
R 1
0
j P
.t/ �e1jdt � `.vı
/ for every rectifiable 
 W Œ0; 1�! T� , where

T� is the .1 � �/-rescaled simplex with the same barycenter as T .

For the proof of the proposition we need the following elementary linear algebra
lemma.

Lemma 5.3. Let A 2 Rn�n and � > 0 be such that ATA � .1 � �/ I . Then, there
exists � 2 Rn such that

.1 � �/ j� � e1j
2
�
�
ATAC � ˝ �

�
� � � � .1 � �/ j�j2 8 � 2 Rn: (5.3)

Proof. Let B D .1� �/I �ATA, so that, by assumption, B � 0. First consider the
case B11 > 0 and set � WD 1p

B11
Be1. We claim that

.B � � ˝ �/e1 D 0; (5.4)

.B � � ˝ �/w � w � 0 8 w 2 Rn: (5.5)

Indeed, (5.4) follows directly from the definition of � . To see (5.5), notice thatB � 0
implies, for any t 2 R and any w 2 Rn,

B.w C te1/ � .w C te1/ D t
2.Be1 � e1/C 2 t .Be1 � w/C .Bw � w/ � 0: (5.6)

The fact that the above quadratic expression in t is nonnegative is equivalent to

.Bw � w/.Be1 � e1/ � .Be1 � w/
2
� 0:

On the other hand, by direct calculation

.B � � ˝ �/w � w D B�111
�
.Bw � w/.Be1 � e1/ � .Be1 � w/

2
�
;

thus leading to (5.5). Similarly, if B11 D 0, we set � D 0. Then, (5.4) and (5.5)
still hold: indeed, the latter is trivially true by the assumption on A and the former
follows from (5.6) being w and t arbitrary.

To conclude the proof of the lemma, note that (5.4) and (5.5) are equivalent to�
ATAC � ˝ �

�
e1 D .1 � �/ e1;�

ATAC � ˝ �
�
w � w � .1 � �/ jwj2 8 w 2 Rn:

Therefore, for a general � D t e1 C w with w ? e1, (5.3) follows:

.1��/ t2 �
�
ATAC�˝�

�
��� D .1��/ t2C

�
ATAC�˝�

�
w�w � .1��/ .t2Cjwj2/:
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Proof of Proposition 5.2. We show that a suitable truncation of a single lamination
satisfies the conclusion of the proposition. Fix 0 < � < �0 and � > 0, and note
that ATA � .1 � �/ I . We split into two cases, depending on whether detA D 0 or
detA ¤ 0.

The case detA ¤ 0. Let � be the vector given by Lemma 5.3 and consider � 2 Rn
and �1 < 0 < �2 such that

� D A�T � and 2 �i C �
2
i j�j

2
D 1; if detA ¤ 0;

Choose a cut-off function  W T ! Œ0; 1�,  2 C1c .T /, such that  � 1 on T�
and fix a periodic piecewise affine functions h with slopes �1 and �2 as in (5.1). We
claim that, for � large enough, the map

v.x/ D u.x/C
�

�
h.�x � �/  .x/

satisfies the conclusions of the lemma.
Clearly, (i) follows from  2 C1c .T /. Moreover, since ku � vkC0 �

khk
C0
j� j

�
,

choosing � >
khk

C0
j� j

�
, also (ii) follows. Next, notice that, by the choice of �, for

almost every x 2 T ,

rv.x/T rv.x/ D ATAC
�
h0.� x � �/  .x/

�
AT � ˝ � C

�
h0.� x � �/  .x/

�
� ˝ AT �

C
�
h0.� x � �/  .x/

�2
j�j2 � ˝ � CE�.x/

D ATAC
�
2 h0.� x � �/  .x/C

�
h0.� x � �/  .x/ j�j

�2�
� ˝ �

CE�.x/;

whereE�.x/ is an error satisfying kE�kC0 �
C0
�

, for someC0 depending on h; ; �.
Hence, since h0 D �i and 0 �  � 1,

2 h0.� x � �/  .x/C
�
h0.� x � �/  .x/ j�j

�2
� 1 for a.e. x 2 T:

Then, for C0
�
< �=2, (iii) follows from the convexity of T , since

Lip.v/2 D ess sup
x2T

sup
j�jD1

jrv.x/ �j2 D ess sup
x2T

sup
j�jD1

�
rv.x/Trv.x/ � � �

�
� sup
j�jD1

�
.ATAC � ˝ �/� � �

�
C sup
x2T

jE�.x/j � 1 � � C
C0

�
< 1 �

�

2

�

�
1 �

�

4

�2
:
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To prove (iv), let 
 W Œ0; 1�! T� be a rectifiable curve and let

0 D t0 < t1 < � � � < tN D 1

be any partition of the interval Œ0; 1�. By adding more points if necessary, since v is
a single lamination in T� , we may assume that the restriction of v onto each interval�

.tj /; 
.tjC1/

�
is affine. Moreover, by the explicit formula (5.2),

v.
.tjC1// � v.
.tj // D
�
AC �i � ˝ �

��

.tjC1/ � 
.tj /

�
;

where �i is chosen depending on which strip the segment lies in and, in case the
segment lies on the boundary of a strip, i.e. � �

�

.tjC1/� 
.tj /

�
D 0, any value can

be taken. Therefore, in both cases, using (5.3) and

.AC �i � ˝ �/
T .AC �i � ˝ �/ D A

TAC �i A
T � ˝ � C �i � ˝ A

T �

C �2i j�j
2 � ˝ �

D ATAC � ˝ �;

we have ˇ̌
v.
.tjC1// � v.
.tj //

ˇ̌
�
p
1 � �

ˇ̌
.
.tjC1/ � 
.tj // � e1

ˇ̌
� .1 � 2 �/

ˇ̌
.
.tjC1/ � 
.tj // � e1

ˇ̌
:

Summing and refining the partition ad infinitum, since the integral in (iv) is the total
variation of the curve 
 � e1, we conclude the proof in the case detA ¤ 0.

The case detA D 0. In this case we consider

� 2 Ker.AT/ and � –1 D –2 D j“j D 1:

Then, for h,  and v as above, we have for almost every x 2 T ,

rv.x/T rv.x/ D ATAC
�
h0.� x � �/  .x/

�
AT � ˝ � C

�
h0.� x � �/  .x/

�
� ˝ AT �

C
�
h0.� x � �/  .x/

�2
j�j2 � ˝ � CE�.x/

D ATAC  .x/2 � ˝ � CE�.x/;

where E�.x/ is again an error satisfying kE�kC0 �
C0
�

, for some C0 depending on
h; ; �. Since 0 �  � 1 and  � 1 in T� , the estimates (i)–(iv) follows in the same
way as before.
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5.2. Triangulation and approximation of short maps. In this subsection we
construct a calibration in order to obtain sufficient control on curves in �K.x; y/.
We start by proving an elementary result on piecewise affine approximations on
triangulations.

Let T D cofx0; : : : ; xng be a simplex and Nx its barycenter. Given u W T ! Rn,
the affine interpolation of u in T is the function

Nu.x/ D u.x0/C A .x � x0/;

where A 2 Rn is such that Nu.xi / D u.xi / for every i (A always exists and is
unique because the points xi are affinely independent). Note that not every affine
interpolation of a short map is short. Consider, for example, the map u W R2 ! R2,
u.x/ D .jxj; 0/, and the simplex T of vertices x0 D 0, x1 D

.1;
p
3/

2
and x2 D

.1;�
p
3/

2
. It turns out that the affine interpolation of u in T is given by

Nu.x/ D

�
2 0

0 0

�
x;

so that Lip. Nu/ D 2, although u is short.
The following lemma provides a bound for the Lipschitz constant of u � Nu.

Lemma 5.4. Let T be a simplex and r1; r2 > 0 be such that Br1. Nx/ � T � Br2. Nx/.
For every u 2 C 2.T;Rn/, the affine interpolation Nu in T satisfies

Lip.u � Nu/ �
4 r22
r1
kr

2ukC0.T /; (5.7)

where

kr
2ukC0.T / D max

x2T

vuut nX
i;j;lD1

�
@2ul

@xi@xj
.x/

�2
:

Proof. Let A D r Nu. For every B 2 Rn�n, denote by LB the linear map given by
LB.x/ D B x and denote by jBj D maxj�jD1 jB �j the operator norm. We claim
that

jB � Aj �
2 r2

r1
Lip.u � LB/: (5.8)

Indeed, let � 2 Sn�1 be such that jB � Aj D .B � A/ � and consider the line
l� D f Nx C t � W t 2 Rg. Clearly, by the convexity of T , l� intersects @T in two
points,

p D
X
i

�i xi and q D
X
i

�i xi ;
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with �i ; �i � 0 and
P
i �i D

P
i �i D 1. Then, since jp�qj � 2 r1, it follows that

jB � Aj D
j.B � A/ .p � q/j

jp � qj
�
j
P
i .�i � �i / .B � A/.xi � x0/j

2 r1

D
j
P
i .�i � �i /

˚
.B xi � u.xi // � .B x0 � u.x0/

	
j

2 r1

�
Lip.u � LB/

P
i .�i C �i /jxi � x0j

2 r1
�
2Lip.u � LB/ diam.T /

2 r1

�
2 r2

r1
Lip.u � LB/:

By convexity, for every f 2 C 1.T;Rn/,

Lip.f / D max
x2T
jrf .x/j: (5.9)

Set B D ru.y/ such that

Lip.u � Nu/ D max
x2T
jr.u � Nu/j D jB � Aj:

From (5.9) and (5.8), we deduce (5.7):

Lip.u � Nu/ D jB � Aj
(5.8)
�

2 r2

r1
Lip.u � LB/

(5.9)
�

2 r2

r1
max
x2T
jru.x/ � ru.y/j

�
2 r2

r1
kr

2ukC0.T / max
x2T
jx � yj �

4 r22
r1
kr

2ukC0.T /:

Remark 5.5. Actually, increasing the angle in x0 in the example given above shows
that estimate (5.8) is optimal up to a multiplicative constant.

In what follows, a triangulation T D fTigi2N of Rn is defined as a family of
simplices such that[iTi D Rn and, for every i ¤ j , Ti\Tj is a common face when
not empty. We call a triangulation periodic if there exist finitely many simplices
T1; : : : ; TN such that T D [NiD1fTi C v W v 2 Zng.

Given a simplex T D cofx0; : : : ; xng, we consider the .n � 1/-dimensional
supporting linear subspaces of its faces defined as follows: for ˛ D .˛1; : : : ; ˛n/

with 0 � ˛1 < � � � < ˛n � n, the corresponding supporting hyperplane is given by

V T˛ D Spanfx˛2 � x˛1 ; : : : ; x˛n � x˛1g:

We denote by NT the set of all unit normals to the supporting hyperplanes of
simplices T in T ,

NT D
˚
� 2 Sn�1 W � ? V T˛ for some ˛ and T 2 T

	
:
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Proposition 5.6. For every � > 0, there exist 0 < ı < 1, a periodic triangulation T
and a function ' 2 C1.Rn/ such that:

'.l; Nx/ D l 8 Nx 2 Rn�1; 8 l 2 ZI (5.10)

0 �
@'

@xj
.x/ � � 8 x 2 Rn; j ¤ 1I (5.11)

0 �
@'

@x1
.x/ �

1

1 � �
8 x 2 Rn and

@'

@x1
.x/ D 0 8 x 2 Fı ; (5.12)

where F D [T2T @T is the union of the faces of the simplices of T and Fı denotes
its open ı-neighborhood.

Proof. Step 1: The existence of a transversal triangulation. We start showing the
existence of a periodic triangulation S such that every orthogonal vector � 2 NS
satisfies � � e1 ¤ 0, i.e. such that e1 is transversal to any supporting hyperplane.

To this aim, consider fT1; : : : ; TM g, a triangulation of Œ0; 1=2�n which can be
extended to the whole Rn by periodicity (that such triangulation does exist is a simple
exercise), and set

R D
M[
jD1

fTj C v=2 W v 2 Zng D fRigi2N:

For w 2 Rn with w � e1 D 0, let fw W Rn ! Rn be the piecewise affine map given
by, for every x D .x1; Nx/ 2 R � Rn�1,

fw.x/ D x C h.x1/ w;

where h W R! R is the 1-periodic extension of

h.t/ D

(
t if 0 � t � 1

2
;

1 � t if 1
2
< t < 1:

Note that, fw jRi is linear for every simplex Ri of R, so that Si D fw.Ri / are also
simplices. Moreover, sincew�e1 D 0, fw W Rn ! Rn is a periodic homeomorphism:
for every integer vector v 2 Zn, fw.x C v/ D fw.x/C v. Hence, fw.Ri C v/ D
fw.Ri /C v implies that S D fSigi2N is a periodic triangulation of Rn as well.

We claim that there exists w ? e1 such that S is transversal to e1. Indeed, for
every simplex Ri , r.fw jRi / D L˙w , where L˙wv D v˙.v � e1/ w and the sign is
chosen depending on the sign of h0.x1/ for x 2 Ri . By simple linear algebra, using
L�1w D L�w as w ? e1, we infer that

NS D
˚
LT˙w�

0
W �0 2 NR

	
:
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Hence, � 2 NS is orthogonal to e1 if and only if there exists �0 2 NR such that

0 D
˝
LT˙w�

0; e1
˛
D
˝
�0; L˙we1

˛
D
˝
�0; e1

˛
˙
˝
�0; w

˛
: (5.13)

Now notice that, for a fixed �0 either the solutions w ? e1 satisfying (5.13) are
affine .n � 2/-dimensional subspaces or, in the case �0 D e1, there are no solution.
Hence, relying on the fact that NR is finite, R being periodic, one infers that for
Hn�1-a.e. w ? e1 no � 2 NS is orthogonal to e1.

Step 2: Construction of a calibration. From now on we fix a periodic transversal
triangulation S D fSigi2N. For every 
 > 0, we denote by F
 the open 
 -
neighborhood of union of all faces of S . Consider the C1 function g W Rn ! Œ0; 1�,

g D �
=2 � �.RnnF3
=2/;

where � 2 C1c .B1/ is such that � � 0,
R
� D 1 and, as usual �r D r�n�.x

r
/. Note

that, since F is periodic, also g is periodic and

g � 0 on F
 and g � 1 on Rn nF2
 :

Set, for x D .x1; Nx/ 2 R � Rn�1,

f .x1; Nx/ WD

Z x1

0

g.t; Nx/ dt:

Clearly f is smooth and, by the periodicity of g, for t 2 Œ0; 1/ and l 2 Z, (below the
computation for l 2 N, the other case being analogous), we have

f .t C l; Nx/ D

Z tCl

0

g.s; Nx/ ds D

l�1X
iD0

Z iC1

i

g.s; Nx/ ds C

Z tCl

l

g.s; Nx/ ds

D l f .1; Nx/C f .t; Nx/: (5.14)

For every Nx 2 Rn�1, setting l Nx D f.t; Nx/ W 0 � t � 1g, it holds

f .1; Nx/ � 1 �H1.l Nx \F2
 /: (5.15)

Since no � 2 NS is orthogonal to e1, each l Nx intersects transversally a bounded
number of faces, so that there exists a constant C > 0 such that H1.l Nx\F2
 / � C

for every 
 > 0. By (5.15), for 
 small enough, the function

 .x1; Nx/ WD
f .x1; Nx/

f .1; Nx/

is well defined and smooth. From (5.14) it follows that

 .l C t; Nx/ D l C  .t; Nx/:
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In particular,  .l; Nx/ D l and r is Zn-periodic with @ 
@x1
.x/ D f .1; Nx/�1g.x/.

Therefore, from the choice of g, we have

0 �
@ 

@x1
�

1

1 � C 

8 x 2 Rn and

@ 

@x1
.x/ D 0 for x 2 F
 : (5.16)

Now, for every k 2 N, consider the horizontal rescaling �k W Rn ! Rn given by
�k.x1; Nx/ D

�
x1
k
; Nx
�
. We claim that, for sufficiently large k,

'.x/ WD k�1 .k x1; Nx/ and T D fTig; with Ti WD �k.Si /;

satisfy the conclusions of the proposition for a suitable ı. Indeed, T is clearly
periodic and '.l; Nx/ D k�1 .k l; Nx/ D l , thus proving (5.12). Setting F 0 D [i@Ti ,
from (5.16) we deduce that @'

@x1
.x/ D @ 

@x1
.k x1; Nx/ satisfy

0 �
@'

@x1
�

1

1 � C 

8 x 2 Rn and

@'

@x1
.x/ D 0 for x 2 F 0
=k D �k.F
 /:

(5.17)
Moreover, using the periodicity of r ,ˇ̌̌̌

@'

@xj

ˇ̌̌̌
� k�1kr kC0 ; 8 j ¤ 1: (5.18)

Given now � > 0, we can choose 
 , k and ı in the following way:


 �
�

C
; k �

kr kC0

�
and ı �




k
;

so that, from (5.17) and (5.18), the lemma follows.

Remark 5.7. We note here that, given T and ' as in Proposition 5.6, for every
k 2 N, the following functions and triangulations,

'k.x/ WD k
�1'.kx/ and T k D fT ki gi2N;

where T ki D k�1Ti , satisfy the same conclusions as in Proposition 5.6 with ık D
ı=k:

'k.l; Nx/ D l 8 Nx 2 Rn�1; 8 l 2 ZI (5.19)ˇ̌̌̌
@'k

@xj

ˇ̌̌̌
� � 8 x 2 Rn; j ¤ 1I (5.20)

0 �
@'k

@x1
.x/ �

1

1 � �
8 x 2 Rn and

@'k

@x1
.x/ D 0 8 x 2 Fık : (5.21)
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5.3. Proof of Proposition 5.1. In light of the Kirszbraun extension theorem, it
suffices to show that, given a short map f W Rn ! Rn and � > 0, there exists
h 2 F".x; y;K/ such that kf � hkC0.K/ � �.

There is no loss of generality in assuming that x D 0, y D e1 and K � BR for
some R > 0. We construct h as the result of successive approximations.

Step 1: Mollification. We consider first the map f1 D .1 � 2 �/ �� � f , where
� > 0 is a real number to be fixed later. Clearly,

f1 2 C
1.Rn/; Lip.f1/ � 1 � 2 �;

and

kf � f1kC0.B2R/ � kf � �� � f kC0.Rn/ C 2 � k�� � f kC0.B2R/

� �
�
1C 2 kf kC0.B2RC� /

�
: (5.22)

Step 2: Piecewise affine approximation. Next, we approximate f1 uniformly by
a piecewise affine map f2. To this aim, consider the periodic triangulation T given
by Proposition 5.6. Note that, by periodicity, there exist �; r > 0 such that, for every
Ti 2 T ,

Br. Nxi / � Ti � B�r. Nxi /; with Nxi barycenter of Ti :

Choose k 2 N such that

4 r �2 kr2f1kC0.B2R/

k
< � and

4 r �

k
� �; (5.23)

and consider f2 the piecewise affine approximation of f1 subordinated to the
rescaled triangulation T k in Remark 5.7. From Lemma 5.4, it follows that f2jT k

i

is short for every T ki � B2R because

Lip.f2jT k
i
/ � Lip.f1/C Lip..f2 � f1/jT k

i
/ � 1 � 2 � C

4 r �2 kr2f1kC0.B2R/

k
(5.23)
� 1 � �:

Moreover, always for T ki � B2R,

kf2 � f1kC0.T k
i
/ �

�
Lip.f2/C Lip.f1/

�
diam.T ki / �

4 r �

k

(5.23)
� �: (5.24)
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Step 3: Laminations. Finally, in every T ki � B2R we replace f2 by the single
lamination construction in Proposition 5.2. Since the boundary data for each simplex
is the same of f2, gluing all the constructions together, we obtain a short map f3
defined on the union of the T ki � B2R. Moreover, we take � small enough in order
to assure that the boundary of the rescaled simplices T k

i�
by a factor .1 � �/ and

with the same barycenter of T ki belongs to the ık-neighborhood of the faces of T k ,
i.e. (notation as in Remark 5.7)

@T ki� � Fık :

With this assumption, by Proposition 5.2, the function f3 satisfies:

kf3�f2kC0.BR/ � �; Lip.f3/ � 1�
�

2
and .1��/

Z 1

0

j P
1.t/jdt � `.f3ı
/;

(5.25)
for every rectifiable 
 D .
1; : : : ; 
n/ W Œ0; 1�! Rn nFık .

We set h WD f3jK . Clearly, from (5.22), (5.24) and (5.25), it follows that

k Nh � Nf kC0.K/ � �.3C 2 k
Nf kC0.B2RC� //: (5.26)

So, up to choosing � suitably small, we need only to show that h 2 F".x; y;K/. Let

 2 �K.x; y/. We start noticing that there exist finitely many pairwise disjoint open
intervals Il ; Jm � Œ0; 1� such that


.Il/ � Rn nFık and 
.Jm/ � Fık ;

and X
l

`.
 jIl /C
X
m

`.
 jJm/ � `.
/ � �: (5.27)

Therefore, we can estimate the length of h ı 
 as follows: letting 'k be the function
in Remark 5.7,

`
�
h ı 


�
�

X
l

`
�
h ı 
 jIl

� (5.25)
� .1 � �/

X
l

Z
Il

j
 01j
(5.21)
� .1 � �/2

X
l

Z
Il

ˇ̌̌̌
@'k

@x1
.
/ 
 01

ˇ̌̌̌
(5.21)
D .1 � �/2

X
l

Z
Il

ˇ̌̌̌
@'k

@x1
.
/ 
 01

ˇ̌̌̌
C .1 � �/2

X
m

Z
Jm

ˇ̌̌̌
@'k

@x1
.
/ 
 01

ˇ̌̌̌
(5.21)C(5.27)
� .1 � �/2

Z 1

0

ˇ̌̌̌
@'k

@x1
.
/ 
 01

ˇ̌̌̌
� � .1 � �/

� .1 � �/2
Z 1

0

24j.'k ı 
/0j � nX
jD2

ˇ̌̌̌
@'k

@xj
.
/ 
 0j

ˇ̌̌̌35 � � .1 � �/
(5.20)
� .1 � �/2

�
'k.
.1// � 'k.
.0//

�
� .n � 1/ `.
/ � .1 � �/2 � � .1 � �/

D .1 � �/2 � � .1 � �/
�
.n � 1/ `.
/ .1 � �/C 1

�
: (5.28)
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Therefore, from (5.28) we deduce that there exists � D �."/ > 0 such that `.hı
/ �
.1� "/ if `.
/ � "�1. Since the condition defining F".x; y;K/ is always satisfied if
`.
/ > "�1, this implies that h 2 F".x; y;K/ and finishes the proof.

6. Typical extensions

In this section we prove Theorem 2.2 which we restate for convenience.
Theorem 6.1. Let f W K ! Rn be a short map, with K � Rn compact. Set

Xf WD
˚
F 2 Lip1.Rn;Rn/ W F jC.f;K/ D Nf

	
;

where Nf denotes the unique short extension of f to C.f;K/. Then

Xf \ I.Rn n C.f;K// is residual in Xf .

Proof. Let fBigi2N be a countable family of closed balls Bi � Rn nC.f;K/ whose
interiors cover Rn n C.f;K/. By Lemmas 3.2, 3.3 and 3.5, we have that

I.Rn n C.f;K// \Xf �
\
k2N

\
i2N

\
x;y2Bi\Qn

F1=k.x; y; Bi / \Xf :

Therefore, in view of Lemma 3.4, it is enough to prove that Xf \ F1=k.x; y; Bi / is
dense in Xf . For simplicity of notation we drop the subscript i , Bi D B and show
that, for every F 2 Xf , � > 0 and " > 0, there exists a map G 2 Xf \ F".x; y; B/
such that

kF �GkC0.Rn/ � �: (6.1)

We divide the proof in several steps.

Step 1: local strictly short approximation. By Lemma 4.2 and Proposition 4.4 we
can fix a locally strictly short extension h W Rn ! Rn of Nf . Let R > 0 be such that
C.f;K/ [ B � BR and �1 > 0 to be fixed later.

If F jB2R � 0, set F1 WD F . Otherwise, assuming that F jB2R 6� 0, fix t > 0

arbitrary such that
t <

�1

khkC0.B2R/ C kF kC0.B2R/
;

and define the function F1 W B2R ! Rn given by F1 D .1 � t /F C t h: clearly in
either case

F1jC.f;K/ D Nf ; (6.2)

kF � F1kC0.B2R/ � �1; (6.3)

Lip.F1jB/ � .1 � t /Lip.F /C t Lip.hjB/ � 1 � ˛; (6.4)

for some 0 < ˛ < 1, because h is strictly short in B .
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Step 2: global extension. Next we extend F1 to the entire Rn keeping close to F .
To this aim, consider the function F 0 W Rn n B2R ! Rn given by

F 0.x/ WD F

�
x

�
1 �

�

1C jxj

��
;

for some � > 0 to be fixed momentarily. It is simple to verify that

kF � F 0kC0.RnnB2R/ � �: (6.5)

Moreover, F 0 is locally strictly short: indeed,

jF 0.x/ � F 0.y/j �

ˇ̌̌̌
x

�
1 �

�

1C jxj

�
� y

�
1 �

�

1C jyj

�ˇ̌̌̌
D

ˇ̌̌̌
ˇ.x � y/

 
1 �

�
�
1C jxj

��
1C jxj

��
1C jyj

�!C � x
�
jxj � jyj

��
1C jxj

��
1C jyj

� ˇ̌̌̌ˇ
� jx � yj

 
1 �

�
�
1C jxj

��
1C jxj

��
1C jyj

�!C jx � yj � jxj�
1C jxj

��
1C jyj

�
D jx � yj

 
1 �

��
1C jxj

��
1C jyj

�! < jx � yj:
Next, consider the map given by

F 00 WD

(
F1 in B2R� 2�R

1C2R
;

F 0 in Rn n B2R:

We claim that F 00 is locally strictly short outside C.f;K/. Since F1 and F 0 are
locally strictly short, it is enough to consider z 2 @B2R� 2� R

1C2R
and w 2 @B2R and

estimate jF 00.z/�F 00.w/j. To this aim, we set Qw WD w
jwj
.2R� 2 � R

1C2R
/ and note that

there exists ˇ.�;R/ > 0 such that

jz � Qwj

jz � wj
� 1 � ˇ 8 z 2 @B2R� 2� R

1C2R
; 8 w 2 @B2R: (6.6)

Indeed, for every fixed w 2 @B2R, one can consider the function ˆ.z/ WD jz� Qwj
jz�wj

and
notice that ˆ is continuous on @B2R� 2� R

1C2R
and ˆ.z/ < 1 for every z. Therefore,

by compactness of the sphere, ˆ has a maximum which is strictly less then 1 and
is independent of w because of rotational invariance. We can, hence, estimate as
follows:

jF 00.z/ � F 00.w/j � jF1.z/ � F1. Qw/j C jF1. Qw/ � F
0.w/j

D jF1.z/ � F1. Qw/j C jF1. Qw/ � F. Qw/j
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(6.3)
� jz � Qwj C �1

(6.6)
�

�
1 �

ˇ

2

�
jz � wj;

provided �1 �
ˇ � R
1C2R

. In particular, this implies that there exists � > 0 such that

Lip
�
F 00j.B3RnB2R/[B2R� 2�R

1C2R

�
� 1 � �:

Using the Kirszbraun extension theorem, we can hence extend F 00 to a strictly short
map F 000 on B3R, and finally set

F2 WD

(
F 000 in B3R;
F 0 in Rn n B3R:

Observe that, by construction,

Lip
�
F2jB3R

�
� 1 � �: (6.7)

Moreover, for every z 2 B2R n B2R� 2�R
1C2R

, setting Qz WD z
jzj
.2R � 2 � R

1C2R
/, we have

jF2.z/�F1.z/j � jF2.z/�F2. Qz/jC jF1. Qz/�F1.z/j � 2 jz� Qzj �
4 � R

1C 2R
< 2 �:

It follows, then, that

kF2 � F kC0.Rn/ D max
˚
2 � C kF1 � F kC0.B2R/; kF

0
� F kC0.RnnB2R/

	
� 2 � C �1: (6.8)

6.1. Step 3: almost isometric approximation. Using Proposition 5.1, we find
F iv 2 Lip1.B2R;Rn/ \ F".x; y; B/ such that

kF iv � F2kC0.B2R/ � � �2; (6.9)

for some �2 > 0 to be fixed soon. For now we merely assume that �2 satisfies the
following: setting B D Br.x/, we require B 0 D BrC�2.x/ � B2R n C.f;K/.

Next, we verify that the map

F v WD

(
F iv in B;
F2 in B2R n B 0;
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is Lipschitz continuous with Lip.F v/ � 1. Indeed, arguing as before, it is enough to
consider the case of z 2 B and w 2 B2R n B 0 and estimate as follows:

jF v.z/ � F v.w/j � jF2.z/ � F2.w/j C jF2.z/ � F
iv.z/j

(6.7)C(6.9)
� .1 � �/ jw � zj C � �2

� .1 � �/ jw � zj C � jw � zj � jw � zj:

Using Kirszbraun’s Theorem, we extend F v to a short map F3 on the whole Rn. As
before, for every z 2 B 0 n B , taking w 2 @B 0 with jw � zj � �2, we get

jF3.z/ � F2.z/j � jF3.z/ � F3.w/j C jF2.w/ � F2.z/j � 2 jw � zj � 2 �2:

It follows, then, from (6.9) that

kF2 � F3kC0.Rn/ D max
˚
kF iv � F2kC0.B/; 2 �2

	
� 2 �2: (6.10)

We can now conclude that the function G WD F3 is an approximation for our
initial function F . Indeed, G 2 Xf since by (6.2) GjC.f;K/ D F1jC.f;K/ D Nf

and Lip.G/ � 1. Moreover, G 2 F".x; y; B/ because GjB D F3jB and F3 2
Lip.B2R;Rn/\F".x; y; B/. Finally, putting together (6.8) and (6.10), we conclude
(6.1) by choosing suitably �; �1 and �2 in this order.

For later use we state the following immediate corollary of Theorem 2.2.

Corollary 6.2. Let � � Rn be an open and bounded set, and let h W �! Rn be a
given Lipschitz map with Lip.h/ � L for some L > 0. Then, for every � > 0 and
M > L, there exists a map g W �! Rn such that gj@� D h, kg�hkC0.�/ � � and
every rectifiable curve 
 W Œ0; 1�! � satisfies `.g ı 
/ DM `.
/.

Proof. The proof follows easily applying Theorem 2.2 to K WD @� and f D g=M
(note that from the condition Lip.h/ � L < M it follows that C.f;K/ D K).

7. Generic restrictions

In this section we prove Theorem 2.3. We start with the following proposition on the
genericity of LSSE maps.

Proposition 7.1. Let K � Rn be a compact set. Then, the typical short map in
Lip1.K;Rn/ admits an extension to the whole Rn, which is locally strictly short on
Rn nK.

Proof. We construct a residual set of LSSE maps in Lip1.K;Rn/. For every " > 0,
let K" denote the open "-neighborhood of K. Let moreover G" � Lip1.K;Rn/ be
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the set of short maps f W K ! Rn with this property: there exists L < 1 and there
exists h W Rn nK" ! Rn such that Lip.h/ � L and

jh.z/ � f .y/j � L jz � yj 8 z 2 Rn nK"; 8 y 2 K: (7.1)

Note that G" is open in Lip1.K;Rn/: indeed, if kf 0 � f kC0.K/ �
.1�L/"
2

, then, for
z … K" and y 2 K, we have

jh.z/ � f 0.y/j � jh.z/ � f .y/j C jf .y/ � f 0.y/j

� L jz � yj C
1 � L

2
" �

1C L

2
jz � yj;

thus implying that f 0 2 G" because 1CL
2

< 1. On the other hand, G" is also dense.
Indeed, as a consequence of Kirszbraun’s theorem all strictly short maps from K

to Rn belong to G", and the set of strictly short maps on a compact set is dense in the
set of short maps (indeed, given f 2 Lip1.K;Rn/, �f with � < 1 is strictly short
and converges uniformly to f as � tends to 1).

We show that the residual set

G WD
\

Q3">0

G"

is made of LSSE maps, thus proving the proposition. Indeed, let g 2 G. By
definition, for every "k D 2�k there exists a function hk W Rn n K"k ! Rn
satisfying (7.1). Let Hk be the Kirszbraun extension (i.e. with optimal Lipschitz
constant) of the map

K [
�
Rn nK"k

�
3 x 7!

(
hk.x/ if x 2

�
Rn nK"k

�
;

g.x/ if x 2 K:

Note that by (7.1) the maps Hk are short. Set

f WD
X
k

2�kHk :

The function f is a locally strictly short extension of g. Indeed, by construction
Lip.f / � 1 and f jK D g. Moreover, for every open set B with B \ K D ;,
Lip.f jB/ < 1 because Lip.hk/ < 1 for every k such that B �

�
Rn nK"k

�
.

Proof of Theorem 2.3. Recall from Section 5 that for every xi ¤ xj 2 Qn
and "; R > 0 the set E".xi ; xj ; NBR/ is defined as

E".xi ; xj ; NBR/ WD fh 2 Lip1.K;Rn/ W 9 f 2 F".xi ; xj ; NBR/ s.t. f jK D hg:

By Lemma 3.4 and the openness of the restriction map (see [12, Theorem 2.2]
or [11]), E".xi ; xj ; NBR/ are open subsets of Lip1.K;Rn/. Moreover, by Proposi-
tion 5.1, these sets are also dense.
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Let L be the set of LSSE maps g W K ! Rn and recall that L is residual in
Lip1.K;Rn/ by Proposition 7.1. We claim that every map in the residual set

F WD L \
\

xi¤xj2Qn

\
Q3">0

\
R2Nnf0g

E".xi ; xj ; NBR/

satisfies the conclusion of the theorem, i.e. is the restriction of an isometric map of
the entire space.

To show this, let f 2 F . In view of Theorem 2.2 and Proposition 4.4, there
exists an extension F W Rn ! Rn of f such that F jRnnK 2 I.Rn nK/. We want to
prove that actually F 2 I.Rn/.

Fix any curve 
 W Œ0; 1� ! Rn. We can assume without loss of generality that 

is parametrized by arc-length. Set

U WD 
�1.Rn nK/ and V WD 
�1.K/:

Since F jRnnK 2 I.Rn nK/, it follows that j.F ı 
/0j D 1 for a.e. t 2 U . We need
only to show that j.F ı 
/0j D 1 for a.e. t 2 V .

We argue by contradiction. Assuming the above claim is false: there exists a
compact set W � V and 0 < � < 1 such that

L1.W / > 2 � and j.F ı 
/0j D j.f ı 
/0j < 1 � 2 � for a.e. t 2 W:

It then follows thatZ 1

0

j.F ı 
/0.t/j dt � 1 � 2 �C .1 � 2 �/ 2 � D 1 � 4 �2: (7.2)

Consider next a partition t0 D 0 < t1 < � � � < tm D 1 such that


.ti / ¤ 
.ti�1/ 8 i 2 f1; : : : ; mg (7.3)
mX
iD1

j
.ti / � 
.ti�1/j > 1 � �
2: (7.4)

Then, by elementary algebra, from (7.2), (7.3) and (7.4) it follows that

min
i2f1;:::;mg

`.F ı 
 jŒti�1;ti �/

j
.ti / � 
.ti�1/j
�

Pm
iD1 `.F ı 
 jŒti�1;ti �/Pm
iD1 j
.ti / � 
.ti�1/j

�
1 � 4 �2

1 � �2
< 1 � 3 �2:

Let j 2 f1; : : : ; mg be such that

`.F ı 
 jŒtj ;tj�1�/

j
.tj / � 
.tj�1/j
< 1 � 3 �2: (7.5)
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Fix next " > 0 satisfying the following conditions:

" � �2j
.tj / � 
.tj�1/j (7.6)

"

�
1C

`.
/C "

jxj � xj�1j

�
� �2: (7.7)

Consider two points xj and xj�1 2 Qn such that

j
.tj / � xj j C j
.tj�1/ � xj�1j � " (7.8)

and, since f 2 F , a function NF 2 F".xj ; xj�1; NBR/ such that NF jK D f . Then,
since NF jK D F jK and j. NF ı 
/0jU j � 1 D j.F ı 
/0jU j, we deduce from (7.5) that

`. NF ı 
 jŒtj�1;tj �/

j
.tj / � 
.tj�1/j
< 1 � 3 �2 (7.9)

Let N
 be the curve obtained concatenating the straight segment from xj�1 to 
.tj�1/,

 jŒtj�1;tj � and the straight segment from 
.tj / to xj , i.e.

N
 WD Œ
.tj�1/; xj�1� � 
 jŒtj�1;tj � � Œxj ; 
.tj /�:

Then we calculate:

`. NF ı N
/

jxj � xj�1j

(7.8)
�

`. NF ı 
 jŒtj�1;tj � C "/

j
.tj / � 
.tj�1/j�"

�

 
`. NF ı 
 jŒtj�1;tj �/

j
.tj / � 
.tj�1/j
C

"

j
.tj / � 
.tj�1/j

!�
j
.tj / � 
.tj�1/j

j
.tj / � 
.tj�1/j � "

�
(7.5)C(7.6)
�
�
1 � 3 �2 C �2

� 1

1 � �2
< 1 � �2

(7.7)
� 1 � "

�
1C

`.
 jŒtj�1;tj �/C "

jxj � xj�1j

�
(7.8)
� 1 � " �

" `. N
/

jxj � xj�1j
: (7.10)

On the other hand (7.10) implies that NF … F".xj ; xj�1; NBR/, which is the desired
contradiction.

8. Isometric embedding of Riemannian manifolds

Now we proceed with the proof of Theorem 2.4. In this section M is a smooth
manifold of dimension n (with or without boundary) and g 2 T 2.M/ is a continuous
Riemannian metric (i.e. a symmetric and positive definite 2-tensor field).
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8.1. Locally strictly short maps. The following general density result is used in
the proof of Theorem 2.4. Denote by Lip<1;loc.M;Rn/ the space of locally strictly
short maps:

Lip<1;loc.M;Rn/ D
˚
f 2 Lip1.M;Rn/ W Lip.f jA/ < 1 8A ��M

	
:

Lemma 8.1. The set of locally strictly short maps Lip<1;loc.M;Rn/ is dense in
Lip1.M;Rn/.

Proof. For every short map f 2 Lip1.M;Rn/ and every " > 0, we show that there
exists h 2 Lip<1;loc.M;Rn/ such that D.f; h/ � ". Fix a point p0 2 M . Without
loss of generality, we may assume that f .p0/ D 0. We claim that the map

h.p/ D f .p/

�
1 �

"

1C dM .p; p0/

�
fulfills the requirements. Observe first that

D.h; f / D sup
p2M

" jf .p/j

1C dM .p; p0/
D sup
p2Mn

" jf .p/ � f .p0/j

1C dM .p; p0/
�

" dM .p; p0/

1C dM .p; p0/
� ":

Therefore, we need only to show that h 2 Lip<1;loc.M;Rn/. To this end, setting for
brevity of notation d.p/ D dM .p; p0/, we notice that for any p; q 2M ,

h.p/ � h.q/ D .f .p/ � f .q//

�
1 �

"

1C d.p/

�
� f .q/

�
"

1C d.p/
�

"

1C d.q/

�
D .f .p/ � f .q//

�
1 �

"

1C d.p/

�
� f .q/

" .d.q/ � d.p//

.1C d.p// .1C d.q//
:

Hence, it follows that

jh.p/ � h.q/j � dM .p; q/

�
1 �

"

1C d.p/
C

" d.q/

.1C d.p// .1C d.q//

�
D dM .p; q/

�
1 �

"

.1C d.p// .1C d.q//

�
: (8.1)

Given any compact set A ��M , there exists C > 0 such that supp2A dM .p; p0/ �
C . It follows from (8.1) applied to p; q 2 A that

Lip.hjA/ � 1 �
"

.1C C/2
< 1

thus implying h 2 Lip<1;loc.M;Rn/.
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8.2. Local bi-Lipschitz approximations. For the proof of Theorem 2.4 we need
also the following simple technical lemma.
Lemma 8.2. Let .B; h/ be a Riemannian manifold with continuous metric tensor h,
where B � Rn denotes either the ball B2 centered at the origin or the half ball
B2 \ fxn � 0g. For every ˇ > 0 there exists r 2 .0; 1/ with this property: for every
p 2 NB1\B there exists a diffeomorphismˆ W Br.p/! U for some convex open set
U � Rn such that ˆ�g0 D h.p/ with g0 the standard flat Euclidean metric of Rn
and ˆ is bi-Lipschitz with

Lip.ˆ/ � 1C ˇ and Lip.ˆ�1/ � 1C ˇ: (8.2)

Proof. LetG W B ! Rn�nsym;C be the matrix-field corresponding to the metric tensor h,
where Rn�nsym;C denotes the set of positive definite symmetric n�nmatrices. Namely,
G is such that

h.v;w/ D .G v/ � w

where we recall � is the standard scalar product in Rn. By the continuity of G and
the compactness of NB1 \ B , there exists r 2 .0; 1/ such that

G.y/

.1C ˇ/2
� G.x/ � .1C ˇ/2G.y/ 8 x; y 2 NB1 \ B; dh.x; y/ � 4 r (8.3)

where the above inequalities are meant in the sense of quadratic forms.
Fix now any p 2 NB1 \ B . By the spectral theorem we can find R 2 O.n/ and

D 2 Rn�n a positive definite diagonal matrix such that G.p/ D RTD2R. We can
then define ˆ to be the linear map ˆ.x/ WD L.x � p/ where L D RTD�1. Clearly
U WD ˆ.Br.p// is convex and it is very simple to verify that ˆ�g0 D h.p/: indeed
for every v;w 2 Rn

h.p/
�
Dˆ.p/v;Dˆ.p/w

�
D G.p/RTD�1v �RTD�1w D v � w:

In order to estimate the Lipschitz constant of ˆ, consider two points x; y 2 Br.p/,
0 < � < r arbitrary and 
 2 �.x; y; B/ such that `h.
/ � dh.x; y/C �. Then for
every t 2 Œ0; 1� we have

dh.p; 
.t// � dh.p; 
.0//C dh.
.0/; 
.t// � dh.p; x/C `h.
/

� dh.p; x/C dh.x; y/C � � 4 r:

Hence (8.3) is applicable and implies that h.p/ � .1 C ˇ/2h.
.t// as quadratic
forms, or equivalently g0 � .1C ˇ/2.ˆ�1/�h.
.t//. One can therefore estimate

jˆ.x/ �ˆ.y/j � `g0.ˆ ı 
/ D

Z 1

0

j.ˆ ı 
/0.t/j dt

� .1C ˇ/

Z 1

0

j
 0.t/jh.
.t// dt D .1C ˇ/`h.
/

� .1C ˇ/
�
dh.x; y/C �

�
: (8.4)
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Since � > 0 arbitrary, we conclude that Lip.ˆ/ � 1Cˇ. Vice versa we can consider
two points z; w 2 U and the straight line � W Œ0; 1� ! U connecting z to w (note
�.Œ0; 1�/ � U ). Arguing as before, from (8.3) we have that h.
.t// � .1Cˇ/.ˆ/�g0
from which

dh.z; w/ � `h.ˆ
�1
ı �/ D

Z 1

0

j.ˆ�1 ı �/0.t/jh.ˆ�1ı�.t// dt

� .1C ˇ/

Z 1

0

j� 0.t/j dt D .1C ˇ/jz � wj (8.5)

i.e. Lip.ˆ�1/ � 1C ˇ.

8.3. Proof of Theorem 2.4. We fix a smooth atlas f.Ai ; 'i /gi2N of M with the
following properties:

(a) Ai ��M ;

(b1) 'i .Ai / D B2 � Rn if Ai \ @M D ;;

(b2) 'i .Ai / D B2 \ fxn � 0g � Rn if Ai \ @M ¤ ;;

(c) [i2N'�1i .B1/ DM .

Set Ci D '�1i . NB1/ and note that Ci is compact in M . By Lemmas 3.2, 3.3, 3.4 and
3.5 we have that

IM D
\
i2N

\
k2N

\
x¤y2Di

F 1
k
.x; y; Ci /

where Di D '�1i .Qn \ NB1/. It is then enough to show that F".x; y; Ci / is dense in
Lip1.M;Rn/ for every " > 0 and every x; y 2 Ci . To simplify the notation, since
from now on the subindex i is fixed, we drop it and, moreover, we write B for either
B2 or B2 \ fxn � 0g, according to the case occurring in (b1) or (b2).

We have then fixed the following notation:

A �M; ' W A! B and '�1. NB1 \ B/ D C:

We have to show that, given f 2 Lip1.M;Rn/ and � > 0, there exists F 2
F".x; y; C / such that D.F; f / � �. We divide the proof in different steps.

Step 1: locally strictly short approximation. Recalling that by Lemma 8.1 the
inclusion

Lip<1;loc.M;Rn/ � Lip1.M;Rn/

is dense, we then find f0 2 Lip<1;loc.M;Rn/ such that D.f0; f / �
�
2

. By the
definition of Lip<1;loc.M;Rn/, there exists ˛ > 0 such that Lip.f0jC / � 1 � ˛.
Clearly, there is no loss of generality in assuming that ˛ < ".
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Step 2: local bi-Lipschitz approximations. Let ˇ > 0 be a parameter to be fixed
later and h WD .'�1/�g the pull-back metric. One can then apply Lemma 8.2 to
.B; h/ and find r > 0 which satisfies the conclusion therein. By a simple volume
argument (recall that B is either B2 or the half ball B2 \ fxn � 0g) there exists a
constant N D N.n/ depending only on the dimension n, in particular not on r , such
that we can cover B by N families of pairwise disjoint open balls of radius r . More
precisely, for l D 1; : : : ; N there exists Fl D fBr.pl;i /gm.l/iD1 for somem.l/ 2 N and
pl;i 2 NB1 \ B , such that

Br.pl;i / \ Br.pl;j / D ; 8 i ¤ j and B �

N[
lD1

m.l/[
iD1

Bl;i :

For every pair .l; i/ above we let ˆl;i W Br.pl;i / ! Ul;i � Rn be the bi-Lipschitz
diffeomorphism given in Lemma 8.2, and we set Al;i WD '�1.Br.pl;i //.

Step 3: iterative procedure. We construct the map F W M ! Rn as the result of
an iterative procedure which leads to a sequence of maps f0; f1; : : : ; fN WM ! Rn
(where N is the number of the families of the covering in the previous step) such
that F D fN 2 F".x; y; C /.

We set � D �
2N

and f0 given in Step 1, and construct the functions f1; : : : ; fN
recursively satisfing the following:

Lipg.fk/ � .1C ˇ/
3k.1 � ˛/ (8.6)

D.fk; f0/ � k � (8.7)

`.fk ı 
/ � .1C ˇ/ .1 � ˛/ `g.
/ (8.8)

for every k � 1 and every rectifiable curve 
 W Œ0; 1�! [l�k [i Al;i � C .
Note that (8.6) and (8.7) are clearly satisfied by f0. Given fk�1 satisfying (8.6),

(8.7) and (8.8) (only if k � 1), we construct fk in the following way. We consider
the balls Br.pk;i / of Step 2 and set  k;i W Uk;i ! Rn given by

 k;i D fk�1 ıˆ
�1
k;i :

Using the bound on the Lipschitz constant of ˆ�1
k;i

in (8.2) and (8.6), one can verify
that

Lip. k;i / � .1C ˇ/3k�2.1 � ˛/:

Hence we can use Corollary 6.2 and construct a map �k;i W Uk;i ! Rn such that

Lip.�k;i / � .1C ˇ/Lip. k;i / D .1C ˇ/3k�1.1 � ˛/; (8.9)

�k;i j@Uk;i D  k;i j@Uk;i ; k�k;i �  k;ikC0.Uk;i / � �; (8.10)



796 B. Kirchheim, E. Spadaro and L. Székelyhidi Jr. CMH

and for every rectifiable curve Q
 W Œ0; 1�! Uk;i

`.�k;i ı Q
/ D .1C ˇ/
3k�1.1 � ˛/ `. Q
/: (8.11)

Then, we set fk WM ! Rn,

fk.x/ D

(
fk�1.x/ if x 2M n [m.k/iD1 Ak;i ;

�k;i ıˆl;i .x/ if x 2 Ak;i for some i D 1; : : : ; m.k/:

By (8.10) and the fact that the fAk;igi are disjoint open sets, fk is well-defined
and satisfies (8.7) by triangular inequality. Moreover (8.6) follows from (8.2) and
(8.9) straightforwardly. For what concerns (8.8) we argue as follows. Consider

 W Œ0; 1� ! [l�k [i Al;i rectifiable. Set I D 
�1.[iAk;i /. Since the sets Al;i
are open and disjoint, I is relatively open in Œ0; 1� and we can write I D [iJi
with Ji disjoint relatively open sets such that 
.Ji / � Ak;i for every i . Setting
Q
i D ˆk;i ı 
 jJi , it follows from the definition of fk that

`.fk ı 
 jJi / D `.�i ı Q
i /
(8.11)
D .1C ˇ/3k�1.1 � ˛/ `. Q
i /

(8.2)
� .1C ˇ/3k�2.1 � ˛/ `g.
i /:

On the other hand, let H � Œ0; 1� n I denote the set of points t such that I has
Lebesgue density 0 at t and there exist .fk ı 
/0.t/, .fk�1 ı 
/0.t/ with

j.fk�1 ı 
/
0.t/j � .1C ˇ/.1 � ˛/j
 0.t/jg :

Note thatH has full measure in Œ0; 1�n I thanks to the assumption of (8.8) for fk�1.
Since fk ı 
 jH D fk�1 ı 
 jH , it follows easily that, for every t 2 H ,

j.fk ı 
/
0.t/j D j.fk�1 ı 
/

0.t/j � .1C ˇ/ .1 � ˛/ j
 0.t/jg :

Therefore, (8.8) for fk follows from

`.fk ı 
/ D
X
i

`.fk ı 
 jJi /C

Z
Œ0;1�nI

j.fk ı 
/
0.t/j dt

� .1C ˇ/3k�2 .1 � ˛/
X
i

`g.
i /C .1C ˇ/ .1 � ˛/

Z
H

j
 0.t/jg dt

� .1C ˇ/ .1 � ˛/

 X
i

`g.
i /C

Z
H

j
 0.t/jg dt

!
D .1C ˇ/ .1 � ˛/ `g.
/:

Clearly F D fN concludes the proof for

0 < ˇ <
3N

r
1

1 � ˛
� 1:

Indeed, Step 1, (8.7) and (8.6) imply D.F; f / � � and Lip.F / � 1. Moreover Step
2, ˛ < " and (8.8) lead easily to F 2 F".x; y; C /.
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