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Abstract. We prove the vanishing of many Welschinger invariants of real symplectic 4-
manifolds. In some particular instances, we also determine their sign and show that they are
divisible by a large power of 2. Those results are a consequence of several relations among
Welschinger invariants obtained by a real version of symplectic sum formula. In particular, this
note contains proofs of results announced in [4].
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1. Introduction

A real symplectic manifold .X; !; �/ is a symplectic manifold .X; !/ equipped with
an antisymplectic involution � . The real part of .X; !; �/, denoted by RX , is by
definition the fixed point set of � . We say that an almost complex structure J tamed
by ! is � -compatible if � is J -antiholomorphic, i.e. J ı d� D �d� ı J .

Let XR D .X; !; �/ be a real symplectic manifold of dimension 4. Let C
be an immersed real rational J -holomorphic curve in X for some � -compatible
almost complex structure J , and denote by L the connected component of RX
containing the 1-dimensional part eRC of RC . Fix also a � -invariant class F in
H2.X nLIZ=2Z/. Any half of C neRC defines a class C inH2.X;LIZ=2Z/ whose
intersection number modulo 2 with F , denoted by C �F , is well defined and does not
depend on the chosen half. We further denote by m.C/ the number of nodes of C
in L with two � -conjugated branches, and we define the F -mass of C as

mL;F .C / D m.C/C C � F:
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Choose a connected component L of RX , a class d 2 H2.X IZ/, and r; s 2 Z�0
such that

c1.X/ � d � 1 D r C 2s:

Choose a configuration x made of r points in L and s pairs of � -conjugated
points in X n RX . Given a � -compatible almost complex structure J , we denote
by C.d; x; J / the set of real rational J -holomorphic curves inX realizing the class d ,
passing through x, and such that L contains eRC . For a generic choice of J , the set
C.d; x; J / is finite, and the integer

WXR;L;F .d; s/ D
X

C2C.d;x;J /

.�1/mL;F .C/

depends neither on x, J , nor on the deformation class of XR (see [14, 25])1. We call
these numbers the Welschinger invariants of XR. When F D ŒRX n L�, we simply
denoteWXR;L.d; s/ instead ofWXR;L;ŒRXnL�.d; s/. Note that Welschinger invariants
are non-trivial to compute only in the case of rational manifolds.

A real Lagrangian sphere of XR is a Lagrangian sphere globally invariant
under � . Two disjoint surfaces S and S 0 in X are said to be connected by a chain
of real Lagrangian spheres if there exists real Lagrangian spheres S1; : : : ; Sk in X
such that Si \ Sj D ; if ji � j j � 2, and Si and SiC1 intersect transversely in a
single point, as well as S and S0, and S 0 and Sk .

The next two theorems are the main results of this note.

Theorem 1.1. Let XR be a real symplectic 4-manifold, and suppose that F has a
� -invariant representative connected to L by a chain of real Lagrangian spheres.

(1) If r � 2, then
WXR;L;F .d; s/ D 0:

(2) If r D 1 and c1.X/ � d � 2, then

2
c1.X/�d�4

2 j WXR;L;F .d; s/:

If in addition F D ŒRX n L�, then

.�1/
d2�c1.X/�dC2

2 WXR;L.d; s/ � 0:

1Welschinger originally considered in [25] only the case whenF D ŒRXnL�. In this casemL;F .C/
is the number of solitary nodes of RC . Later, Itenberg, Kharlamov, and Shustin observed in [14] that
Welschinger’s proof extends literally to arbitrary � -invariant classes in H2.X nLIZ=2Z/. See also [9]
for a related discussion.

Note that our convention differs slightly from [14], where the sign of a curve in C.d; x; J / depends
on the parity ofm.C/CC � .F C ŒRX nL�/ instead ofm.C/CC � .F /.
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Theorem 1.1 is an immediate consequence of Theorem 2.3 and Corollary 2.6
respectively given in Sections 2.3 and 2.4. The invariant WXR;L;0.d; s/ does not
seem to satisfy a vanishing statement analogous to Theorem 1.1.1/ (see [5, 11, 14]),
implying that the set C.d; x; J / is usually non-empty. Theorem 1.1.2/ partially
generalizes [24, Theorems 1.1, 2.1, 2.2, and 2.3] and [5, Proposition 8.2].

Theorem 1.1 can be specialized to real algebraic rational surfaces, whose
classification is well known (see [17, 21] for example). A real algebraic rational
surface is always implicitly assumed to be equipped with some Kähler form.

Let G be the subgroup of the � -invariant classes in H2.X n LIZ=2Z/ generated
by the kernel of the natural map H2.X n LIZ=2Z/ ! H2.X IZ=2Z/, and by the
classes realized by smooth real symplectic curves with either positive genus or self-
intersection at least �1. We show in Propositions 4.2 and 4.3 that WXR;L;F and
WXR;L;F 0 are equal in absolute value if F � F 0 2 G. We denote by H.XR; L/

the group of � -invariant classes in H2.X n LIZ=2Z/ quotiented by G. All groups
H.XR; L/ are computed in the case of real algebraic rational surfaces in Section 4.
In particular, we prove in Proposition 4.8 that they only depend on a minimal model
of XR and on the choice of L.

Theorem 1.2. Let XR be a real symplectic 4-manifold equal, up to deformation and
equivariant symplectomorphism, to a real algebraic rational surface, and suppose
that F is non-zero in H.XR; L/. Then the conclusions of Theorem 1.1 hold in the
following cases:

� XR is obtained from a minimal model by blowing up pairs of complex
conjugated points and real points on at most two connected components of
RX , one of them being L;

� XR is a Del Pezzo surface;

� F D ŒRX n L�.

Remark. In a burst of enthusiasm, we forgot in [4, Proposition 3.3] the assumption
that XR has to be symplectomorphic/deformation equivalent to a real algebraic
rational surface.

Theorem 1.2 follows from the classification of real algebraic rational surfaces
and Theorem 1.1, which in its turn is a direct consequence of Theorem 2.3 and
Corollary 2.6 below. Our strategy to prove these latters is to degenerate XR into a
reducible real symplectic manifold X];R, and to relate enumeration of curves in X];R
and in XR. This degeneration can be thought as a degeneration of XR to a real nodal
symplectic manifold, and can be described by the contraction of a real Lagrangian
sphere SV by stretching the neck of a � -compatible almost complex structure in a
neighborhood of SV (see [8, 24]). In this note we use an equivalent description in
terms of symplectic sum ( [10, 15]), see section 2.2 for more details.
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In particular, Corollary 2.6 follows from Theorem 2.5, which can be seen
as a real version of the Abramovich–Bertram–Vakil formula [1, Theorem 3.1.1],
[23, Theorem 4.5]. Another but related treatment of contraction of Lagrangian
spheres contained in RX has previously been proposed by Welschinger in [24].

The paper is organized as follows. We state Theorems 2.3 and 2.5 in Section 2,
and give their proof in Section 3 using a real version of the symplectic sum formula.
We end this paper by explicit computations in the case of real algebraic rational
surfaces in Section 4.

Acknowledgements. We are grateful to Simone Diverio, Penka Georgieva, Um-
berto Hryniewicz, Ilia Itenberg, Viatcheslav Kharlamov, Leonardo Macarini, Frédéric
Mangolte, Brett Parker, Christian Peskine, Patrick Popescu, Jean-Yves Welschinger,
and Aleksey Zinger for many useful conversations. We are also indebted to the
anonymous referee for many valuable comments on the first version of this paper.

2. Auxiliary results

2.1. Preliminaries. In the whole text, we denote by X0 D CP 1 � CP 1, by !FS
the Fubini–Study form on CP n, and by l1 and l2 respectively the homology classes
ŒCP 1�f0g� and Œf0g�CP 1� inH2.X0IZ/. Recall thatH2.X0IZ/ is the free abelian
group generated by l1 and l2. Up to conjugation by an automorphism, there exist
four different real structures on .CP 1 �CP 1; !FS ˚ !FS /, and the class l1 C l2 is
invariant for exactly three of them, see for example [17, 21]. These latter are given
in coordinate by:

� �hy.z; w/ D .z; w/, RXhy D S1 � S1;
� �el.z; w/ D .w; z/, RXel D S2;
� �em.z; w/ D .�

1
z
;� 1

w
/, RXem D ;.

Note that �hy and �em act trivially on H2.X0IZ=2Z/, while �el exchanges the
classes l1 and l2. Note also, with the convention that �.;/ D 0, that

�.RXhy/ D �.RXem/ D 0; and �.RXel/ D 2:

Lemma 2.1. Let E be a smooth symplectic curve in .X0; !FS ˚ !FS / realizing
the class l1 C l2 in H2.X0IZ/. The group H2.X0 n EIZ=2Z/ is isomorphic to
Z=2Z, and is generated by any representative disjoint from E of the class l1 C l2 in
H2.X0IZ=2Z/.

Proof. The first Chern class of .X0; !FS ˚!FS / is dual to l1C l2. Hence it follows
from the adjunction formula [19, Chapter 2] that E is an embedded sphere. The
lemma can be proved exactly as Lemma 4.1, nevertheless we provide an alternate
proof.
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Let J be an almost complex structure onX0 tamed by !FS˚!FS such thatE is
J -holomorphic. Since both classes l1 and l2 have the same symplectic area, a class
al1Cbl2 has positive symplectic area if and only if aCb > 0. As a consequence, any
J -holomorphic curve realizing the class l1 is an embedded sphere. The Gromov–
Witten invariant of .X0; !FS ˚ !FS / for the class l1 is equal to 1, and l21 D 0, so
there exists a unique J -holomorphic sphere realizing the class l1 and passing through
any given point of X0. Recall that any intersection of two distinct J -holomorphic
curves is positive. Since ŒE� � l1 D 1, we deduce a S2-fibration X0 ! E whose fiber
over a point p 2 E is the J -holomorphic sphere realizing the class l1 and passing
through p. In its turn, this induces a R2-fibration X0 n E ! E, and so X0 n E has
the same homotopy type than E. This proves that H2.X0 nEIZ=2Z/ ' Z=2Z.

Since ŒE�2 D 2 in X0, there exists a representative F of the class l1 C l2
in H2.X0IZ=2Z/ disjoint from E. The class ŒF � is obviously non-zero in
H2.X0 nEIZ=2Z/, and so generates the group.

Lemma 2.2. Suppose that E is a smooth real symplectic curve in .X0; !FS ˚
!FS ; �el/ realizing the class l1 C l2 in H2.X0IZ/, and that D is an embedded
�el -invariant disk with @D � E. Then the group H2.X0; EIZ=2Z/ is isomorphic to
Z=2Z and generated by D.

Proof. Recall that E is an embedded sphere. The long exact sequence of pairs gives
the exact sequence

H2.EIZ=2Z/
i
�! H2.X0IZ=2Z/

j
�! H2.X0; EIZ=2Z/ �! 0:

The map i is clearly injective, so H2.X0; EIZ=2Z/ is isomorphic to Z=2Z and
generated by j.l1/ D j.l2/.

Denote by D1 and D2 the two halves of E n @D. Since E is a real symplectic
curve, the involution �el exchanges D1 and D2. The surface Di [D realizes a class
in H2.X0IZ=2Z/, and we have

l1 C l2 D ŒD1 [D2� D ŒD1 [D�C ŒD2 [D� in H2.X0IZ=2Z/:

Since �el exchanges the classes ŒD1 [D� and ŒD2 [D�, both of them are non-null,
i.e. ŒD1[D� D li and ŒD2[D� D l3�i . Hence by the long exact sequence of pairs,
the class realized by D1 [ D in H2.X0; EIZ=2Z/, which equals the class realized
by D, generates the group.

Example. In the case whenX0nE is the affine quadric with equation x2Cy2Cz2D1
in C3, the sphere X0 \ R3 is an example of generator of H2.X0 n EIZ=2Z/, and
the disk X0\ .iR� iR�R>0/ is an example of generator ofH2.X0; EIZ=2Z/, see
Figure 2c.
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2.2. Vanishing Lagrangian spheres. Let XR D .X; !; �/ be a real symplectic
manifold of dimension 4. A class V in H2.X IZ=2Z/ is called a real vanishing
cycle if it can be represented by a real Lagrangian sphere SV . By stretching the
neck of a � -compatible almost complex structure in a neighborhood of SV , one
decomposes X into the union of X n SV and T �SV . This operation can be thought
as a degeneration of XR to a real nodal symplectic manifold for which V is precisely
the vanishing cycle. Equivalently, the class V is a real vanishing cycle if and only
if, up to deformation, XR can be represented as the real symplectic sum of two real
symplectic manifolds .X1; !1; �1/ and .X0; !FS ˚ !FS ; �0/ along an embedded
symplectic sphereE of self-intersection�2 inX1 (hence of self-intersection 2 inX0)
where:

� E is real and realizes the class l1 C l2 in H2.X0IZ/;
� V is represented by the deformation in X of a representative of the non-trivial

class in H2.X0 nEIZ=2Z/.
By abuse, we still denote by V the non-trivial class in H2.X0 nEIZ=2Z/. We refer
to Section 3.2 for more details about the symplectic sum operation. We denote byX]
the union of .X1; !1; �1/ and .X0; !FS ˚!FS ; �0/ along E, by L] the degeneration
of L as XR degenerates to X], and by Li the intersection L] \ Xi . Note that by
construction we have @Li � RE.

RX0

SV

RX0

RX0

SV

SV D RX0 SV

a) �0 D �hy b) �0 D �el and RE ¤ ; c) �0 D �el and RE D ; d) �0 D �em

Figure 1. Possibilities for .X0; �0/ and SV

Recall that T �S2 is equivariantly symplectomorphic to the complement of a
smooth real hyperplane sectionE of a smooth real quadric in CP 3. This real quadric
is precisely the summand .X0; !FS ˚ !FS ; �0/ of X]. We depicted in Figure 1
all possibilities for RX0 and SV . Choose a diffeomorphism ‰ between T �S2

and the line bundle OCP 1.�2/ of degree �2 over E D CP 1, which restricts to
a symplectomorphism between the complements of the zero sections (note that ‰
does not preserve the fibration). The summand .X1; !1; �1/ of X] is obtained by
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removing from X a small tubular neighborhood of SV , and by gluing back via ‰
a small neighborhood of the zero section of OCP 1.�2/. The homology groups
H2.X1IZ/ and H2.X IZ/ are canonically identified, the class ŒE� being identified
with the class ‰�1� .ŒE�/. We implicitly use this identification throughout the text.

Let F be a � -invariant class in H2.X] n L]IZ=2Z/ having a � -invariant
representative F , and define Fi D F \ Xi . Note that by construction we have
@Fi � E. Throughout the text, we always assume that F satisfies the following
conditions:

� either F \ RE D ;, or there exists a neighborhood U of RE in X] such that
F \ U � RX] (i.e. F is either disjoint from RE, or is locally contained in
RX] around RE);

� one of the two following assumptions hold:

.H1/ F0 [ L0 is a cycle representing a multiple of V in H2.X0IZ=2Z/;

.H2/ �0 D �el , and F0 [ L0 D D or F0 [ L0 D D [ SV , where D is a
� -invariant embedded disk with @D � E (all possibilities are depicted
in Figure 2).

D D L0

RX0 nD

SV

D � F0

RX0 nD

SV

D � F0

SV D RX0

a)RE ¤ ; and F0 � SV b)RE ¤ ; and L0 D ; c) RE D ; and L0 D ;

Figure 2. Possibilities for F0 [ L0 under the assumption .H2/

2.3. Vanishing Welschinger invariants. Next theorem is a key ingredient in the
proof of Theorem 1.1, and will be proved in Section 3.4.

Theorem 2.3. Suppose that F0 [ L0 satisfies assumption .H1/ and contains RX0,
and that L0 is a disk.

(1) If r � 2, then
WXR;L;F .d; s/ D 0:
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(2) If r D 1 and c1.X/ � d � 1 � 2, then

2
c1.X/�d�4

2 j WXR;L;F .d; s/ and .�1/
d2�c1.X/�dC2

2 WXR;L.d; s/ � 0:

Note that the assumptions of Theorem 2.3 imply that �0 D �el and RE ¤ ;.
In the Lagrangian sphere contraction presentation, the condition that L0 is a disk
translates to the condition that L \ SV is reduced to a single intersection point.

2.4. From X1 to X . Here we reduce the computation of Welschinger invari-
ants of XR to enumeration of real J -holomorphic curves in .X1; !1; �1/ for a
�1-compatible almost complex structure J for which E is J -holomorphic.

Definition 2.4. Let J be a �1-compatible almost complex structure on .X1; !1; �1/
for which the curve E is J -holomorphic, and let C1 be an immersed real rational
J -holomorphic curve intersecting E transversely. We denote by a the number of
points in RC1 \ RE, by b the number of pairs of �1-conjugated points in C1 \ E,
and by mL1;F1.C1/ the number of intersection points of a half of C1 n RC1 with
L1 [F1. Finally, let k � 0 be an integer.

(1) If F0 satisfies assumption .H1/, then we define

�0L];F0;k.C1/ D .�1/
mL1;F1 .C1/C
.aCb/

X
kDakC2bk

 
a

ak

! 
b

bk

!
and

�2L];F0;k.C1/ D

�
.�1/mL1;F1 .C1/C
b 2b if a D 0 and k D bI
0 otherwise:

;

where 
 D 0; 1 is such that ŒF0 [ L0� D 
V in H2.X0IZ=2Z/.
(2) If F0 satisfies assumption .H2/, then we define

�L];F0;k.C1/ D

�
.�1/mL1;F1 .C1/ if k D a D b D 0I
0 otherwise

As above let d 2 H2.X IZ/ and r; s 2 Z�0 such that

c1.X/ � d � 1 D r C 2s:

Choose a configuration x made of r points in L1 and s pairs of � -conjugated points
in X1 n RX1. Let J be a �1-compatible almost complex structure for which E is
J -holomorphic.

For each integer k � 0, we denote by C1;k.d; x; J / the set of all irreducible
rational real J -holomorphic curves in .X1; !1; �1/ passing through all points in x,
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realizing the class d � kŒE�, and such that L1 contains the 1-dimensional part
of RC1. For a generic choice of J satisfying the above conditions, it follows from
Lemma 3.1 and Proposition 3.3 that the set C1;k.d; x; J / is finite, and that any curve
in C1;k.d; x; J / is nodal and intersects E transversely. Moreover C1;k.d; x; J / is
non-empty only for finitely many values of k.

We prove next theorem in Section 3.3. Recall that notations have been introduced
in Section 2.2.

Theorem 2.5. Suppose that L1 ¤ ; if r > 0. Then for a generic choice of J , the
two following claims hold.

(1) If F0 satisfies assumption .H1/, then, with the convention that �.;/ D 0, one
has

WXR;L;F .d; s/ D
X
k�0

X
C12C1;k.d;x;J /

�
�.RX0/
L];F0;k

.C1/:

(2) If F0 satisfies assumption .H2/, then one has

WXR;L;F .d; s/ D
X

C12C1;0.d;x;J /

�L];F0;0.C1/:

Applying Theorem 2.5.1/ with F D ŒRX n L�, one obtains [4, Theorem 2.2].
Some instances of Theorem 2.5.1/ when RX0 D S1 � S1 have been known for
sometimes, e.g. [6, 7, 16, 20]. Since the publication of [4], an algebro-geometric
proof of Theorem 2.5.1/ appeared in [5] and in [11] in the particular cases when X
is a Del Pezzo surface of degree two or more. Theorem 2.5.2/ immediately implies
the following corollary.

Corollary 2.6. Suppose that V 2 H2.X n LIZ=2Z/ and that F0 satisfies
assumption .H2/. Then

WXR;L;F .d; s/ D WXR;L;FCV .d; s/:

2.5. Applications of Theorem 2.5.1/. We do not explicitly use Theorem 2.5.1/ in
the proof of Theorem 1.1, nevertheless its proof is almost contained in the proof of
Theorem 2.5.2/. Theorem 2.5.1/ has many interesting applications, in particular in
explicit computations of Welschinger invariants, see [5, 11]. We present two other
consequences.

We first relate some tropical Welschinger invariants to genuine Welschinger
invariants of the quadric ellipsoid. We refer to [13] for the definition of tropical
Welschinger invariants. The only homology classes of .X0; !FS˚!FS ; �el/ realized
by real curves are of the form d.l1C l2/ with d 2 Z>0. We say that a tropical curve
in R2 is of class .a; b/ in the tropical second Hirzebruch surface TF2 if its Newton
polygon has vertices .0; 0/, .0; a/, .b; a/, and .2a C b; 0/. We denote by WTF2.d/

the irreducible tropical Welschinger invariant of TF2 for curves of class .d; 0/.
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Proposition 2.7. For any d 2 Z>0, we have

WX0;el ;S2.d l1 C dl2; 0/ D WTF2.d/:

Proof. We consider the second Hirzebruch surface F2 equipped with its real
structure induced by the blow up at the origin of the real quadratic cone with equation
x2 C y2 � z2 D 0. We denote respectively by h and f the class in H2.F2IZ/ of
a hyperplane section and of a fiber. According to [18], if xT is a tropically generic
configuration of 4d � 1 points in R2, then any rational tropical curve in TF2 of
class .d � k; 2k/ and containing xT has 4d unbounded edges of weight 1. Still
by [18], this implies the existence of a generic configuration x of 4d � 1 points
in RF2 such that any real algebraic rational curve in F2 of class .d �k/hC 2kf and
containing x intersect the .�2/-curve only in real points. Now the corollary follows
from Theorem 2.5.1/ applied with RX0 D S2.

It is proved in [12] that given a real toric Del Pezzo surface X equipped with its
tautological real toric structure and a class d 2 H2.X IZ/, we have

WXR;RX .d; 0/ � WXR;RX .d; 1/:

The same idea we used in the proof of Proposition 2.7 combined with Theorem 2.5
and [5, Theorem 3.12] provide a natural generalization of this formula in the
particular cases when X is a Del Pezzo surface of degree at least three.
Proposition 2.8. Let .X; !/ be a symplectic 4-manifold symplectomorphic/deformation
equivalent to a Del Pezzo surface of degree at least three. If XR D .X; !; �1/ and
X 0R D .X; !; �2/ are two real structures on .X; !/, then for any d 2 H2.X IZ/ one
has

WXR;L1.d; 0/ � WX 0R;L2.d; 0/ � 0 if �.RX/ � �.RX 0/:

Proof. We first prove the proposition in the case when .X; !/ is deformation
equivalent to CP 2 blown up at six points. We consider CP 2 and its blown up
equipped with the standard complex structure Jst . Let us denote by CP 26 .�/ the
blow up of CP 2 in 6 � 2� real points and � pairs of conjugated points, such that
these 6 blown-up points do not lye on a conic, and no 3 of them lye on the same line.
We further denote by eCP 26.�/ the blow up of CP 2 in 6�2� real points and � pairs of
conjugated points, such that this 6 blown-up points lye on a smooth real conic with a
non-empty real part, but no 3 of them lye on the same line. We denote byE the strict
transform of this conic in eCP 26.�/. We also denote by CP 26 .4/ the real structure on
the blow up CP 2 in 6 points with a disconnected real part (see [17, 21]). We have

�.RP 26 .�// D �5C 2� for all � 2 f0; 1; 2; 3; 4g:

Note that CP 26 .�/ contains no complex algebraic curves C with C 2 � �2, and that
the curve E and its multiples are the only algebraic curves in eCP 26.�/ with self-
intersection strictly less that �1. Hence it follows from [19, Lemma 3.3.1] that Jst
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is generic enough for our purposes, as long as we consider generic configuration
of points in eCP 26.�/. Theorem 2.5.1/ applied to E in X1 D eCP 26.�/ allows one
to compute WCP 2

6
.�/;L1

.d; s/ (when RX0 D S1 � S1) and WCP 2
6
.�C1/;L2

.d; s/

(when RX0 D S2) out of the sets C1;k.d; x; Jst /. When s D 0, it follows from
[5, Theorem 3.12] that there exists a configuration of real points x in eCP 26.�/ such
that for any k � 0, any curve in C1;k.d; x; Jst / intersects E only in real points
(i.e. b D 0), and X

C12C1;k.d;x;Jst /

.�1/mL1;RX1nL1 .C1/ � 0:

Hence by Theorem 2.5.1/ we obtain

WCP 2
6
.�/;L1

.d; 0/ �WCP 2
6
.�C1/;L2

.d; 0/ D
X
k�1

 
d � ŒE�

k

! X
C12

C1;k.d;x;Jst /

.�1/mL1;RX1nL1 .C1/

� 0:

The proof in the case of CP 1�CP 1 is analogous using floor diagrams from [3].

Note that Proposition 2.8 does not generalize immediately to any symplectic 4-
manifold. Indeed, according to [2, Section 7.3] one has

WCP 2;RP 2.9; 12/ < WCP 2;RP 2.9; 13/;

i.e. Proposition 2.8 does not hold in the case of CP 2 blown up in 26 points.

3. Real symplectic sums and enumeration of real curves

This section is devoted to the proof of Theorems 2.3 and 2.5. We start by performing
some preliminary computations in Section 3.1. We recall the symplectic sum
construction in Section 3.2, as well as a basic application to complex enumerative
problems. We prove Theorems 2.3 and 2.5 in Sections 3.3 and 3.4, by adapting
results from Section 3.2 to the real setting.

An isomorphism between two J -holomorphic maps f1 W C1 ! X and
f2 W C2 ! X is a biholomorphism � W C1 ! C2 such that f1 D f2 ı �. Maps
are always considered up to isomorphisms.

Given ˛ D .˛i /i�1 2 Z1�0, we use the following notation:

j˛j D

C1X
iD1

˛i ; and I˛ D

C1X
iD1

i˛i :

The vector in Z1�0 whose all coordinates are equal to 0, except the i th one which is
equal to 1, is denoted by ei .
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3.1. Curves with tangency conditions. Let .X; !/ be a compact and connected 4-
dimensional symplectic manifold, and let E � X be an embedded symplectic curve
in X . Let d 2 H2.X IZ/ and ˛; ˇ 2 Z1�0 such that

I˛ C Iˇ D d � ŒE�:

Choose a configuration x D xı t xE of points in X , with xı a configuration of
c1.X/ � d � 1 � d � ŒE� C jˇj points in X n E, and xE D fpi;j g0<j�˛i ;i�1 a
configuration of j˛j points in E. Given J an almost complex structure on X tamed
by ! and for which E is J -holomorphic, we denote by C˛;ˇ .d; x; J / the set of
rational J -holomorphic maps f W CP 1 ! X such that

� f�ŒCP 1� D d ;
� x � f .CP 1/;
� E does not contain f .CP 1/;
� f .CP 1/ has order of contact i with E at each points pi;j ;
� f .CP 1/ has order of contact i with E at exactly ˇi distinct points on E nxE .

For a generic choice of J , the set of simple maps in C˛;ˇ .d; x; J / is 0-dimensional.
However C˛;ˇ .d; x; J / might contain components of positive dimension corre-
sponding to non-simple maps.

Lemma 3.1. Suppose that ˇ D .d � ŒE�/ and ˛ D 0, or ˇ D .d � ŒE� � 1/ and
˛ D .1/. Then for a generic choice of J , the set C˛;ˇ .d; x; J / only contains simple
maps.

Proof. Suppose on the contrary that C˛;ˇ .d; x; J / contains a non-simple map which
factors through a non-trivial ramified covering of degree ı of a simple map f0 W
CP 1 ! X . Let d0 denotes the homology class .f0/�ŒCP 1�. Since f0.CP 1/ passes
through ıc1.X/ � d0 � 1 points, we have

c1.X/ � d0 � 1 � ıc1.X/ � d0 � 1 � 0;

which is impossible.

Next proposition shows that the set of images of non-simple maps in C˛;ˇ .d; x; J /
is 0-dimensional.

Proposition 3.2. Suppose that C˛;ˇ .d; x; J / contains a non-simple map f which
factors through a non-trivial ramified covering of a simple map f0 W CP 1 ! X .
Denote by d0 the homology class .f0/�ŒCP 1�, and let ˛0; ˇ0 2 Z1�0 such that
f0 2 C˛0;ˇ 0.d0; x; J /. Then for a generic choice of J , we have

c1.X/ � d0 � 1 � d0 � ŒE�C jˇ
0
j D jxıj D k1 and j˛0j D k2

with .k1; k2/ D .1; 0/; .0; 1/; or .0; 0/. Moreover in the first two cases, the set of
such ramified coverings f is finite, and j˛0j C jˇ0j � 2.
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Proof. Let ı � 2 be the degree of the covering map through which f factors. In
particular we have d D ıd0. By Riemann–Hurwitz Formula, we have

ı.j˛0j C jˇ0j/ � j˛j � jˇj � 2ı � 2:

Combining the latter identity with j˛0j D j˛j, we get

jˇj � jˇ0j � .ı � 1/.j˛0j C jˇ0j � 2/: (3.1)

Since f0.CP 1/ contains all points in xı, we have

c1.X/ � d0 � 1 � d0 � ŒE�C jˇ
0
j � jxıj D ıc1.X/ � d0 � 1 � ıd0 � ŒE�C jˇj;

and so
.ı � 1/.d0 � ŒE� � c1.X/ � d0/ � jˇj � jˇ

0
j:

Combining this identity with .3:1/, we obtain

0 � .ı � 1/.c1.X/ � d0 � d0 � ŒE�C j˛
0
j C jˇ0j � 2/:

Since we have

ı � 2; c1.X/ � d0 � d0 � ŒE�C jˇ
0
j � 1 � 0; and j˛0j � 0;

we deduce that

c1.X/ � d0 � 1 � d0 � ŒE�C jˇ
0
j D k1 and j˛0j D k2

with .k1; k2/ D .1; 0/; .0; 1/; or .0; 0/. Moreover in the first two cases, all
inequalities above are in fact equalities. In particular there exists finitely many
coverings � W CP 1 ! CP 1 of degree ı such that f0 ı � 2 C˛;ˇ .d; x; J /. Since
jˇj � jˇ0j � 0, we also deduce from .3:1/ that j˛0j C jˇ0j � 2.

Remark. The three cases from Proposition 3.2 show up, even in simple situations.
Let us consider for example X to be CP 2 blown up at a point q. Denote by l the
homology class of a line, by lexc the class of the exceptional divisor, and by E
the pull back of a conic not passing through q. Then for any choice of J , the sets
C0;2eı .ı.l � lexc/; fpg; J /, Ceı ;eı .ı.l � lexc/;;; J /, and C0;e2ı .ı.l � lexc/;;; J /
with ı � 2 contain a non-trivial ramified covering of a line, the third set being of
dimension ı � 1.

Proposition 3.3. Suppose thatE is an embedded symplectic sphere with ŒE�2 � �2,
and that jˇj � ŒE� � d � 1. Then for a generic choice of J , the set C˛;ˇ .d; x; J /
contains finitely many simple maps. As a consequence, the set

C˛;ˇ� .d; x; J / D
n
f .CP 1/ j .f W CP 1 ! X/ 2 C˛;ˇ .d; x; J /

o
is also finite.
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Proof. Suppose that C˛;ˇ .d; x; J / contains infinitely many simple maps. By
Gromov compactness Theorem, there exists a sequence .fn/n�0 of simple maps
in C˛;ˇ .d; x; J / which converges to some J -holomorphic map f W C ! X . By
genericity of J , the set of simple maps in C˛;ˇ .d; x; J / is discrete. Hence either C
is reducible, or f is non-simple. Let C 1; : : : ; Cm; C

0

1; : : : ; C
0

m0 be the irreducible
components of C , labeled in such a way that

� f .C i / 6� E;

� f .C
0

i / � E, and f �ŒC
0

i � D ki ŒE�.

Define k D
Pm0

iD1 ki . The restriction of f to
Sm
iD1 C i is subject to

c1.X/ � d � 1 � d � ŒE�C jˇj

points conditions, so we have

c1.X/ � .d � kŒE�/ �m � c1.X/ � d � 1 � d � ŒE�C jˇj:

Since E is an embedded sphere, the adjunction formula implies that c1.X/ � ŒE� D
ŒE�2 C 2. Hence we get

c1.X/ � d � 2k � kŒE�
2
�m � c1.X/ � d � 1 � d � ŒE�C jˇj;

that is
0 � �d � ŒE�C jˇj Cm � 1C 2k C kŒE�2:

Since d � ŒE� � jˇj, we are in one of the following situations:

(1) d � ŒE� D jˇj (in particular ˛ D 0):

(a) k D 0, and m D 1;

(b) ŒE�2 D �2, k > 0, and m D 1;

(2) d � ŒE� D jˇj C 1 (in particular either ˇ D .d � ŒE� � 1/ and ˛ D .1/, or
ˇ D .d � ŒE� � 2; 1/):

(a) k D 0, and m D 1;

(b) k D 0, and m D 2;

(c) ŒE�2 D 1, k D 1, and m D 1;

(d) ŒE�2 D �2, k > 0, and m D 1;

(e) ŒE�2 D �2, k > 0, and m D 2.

We end the proof of the proposition by ruling out all these cases one by one.
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(1)(a) d � ŒE� D jˇj, k D 0, and m D 1:

As explained above, the map f has to factorize through a non-trivial ramified
covering of a simple map f0 W CP 1 ! X . But then f0 is subject to more point
constraints that the dimension of its space of deformation, which provides a
contradiction.

(1)(b) d � ŒE� D jˇj, ŒE�2 D �2, k > 0, and m D 1:

By genericity, the curve f .C 1/ is fixed by the c1.X/ � d � 1 point constraints
and intersectE transversely. Any intersection point off .C 1n.C

0

1[ : : :[ C
0

m0//

and E deforms to an intersection point of fn.CP 1/ and E for n >> 1. Since
.d�kŒE�/�ŒE� D d �ŒE�C2k, at least d �ŒE�Ck intersection points of f .C 1/
and E deform to an intersection point of fn.CP 1/ and E for n >> 1. But
this contradicts the fact that two J -holomorphic curves intersect positively.

(2)(a) d � ŒE� D jˇj C 1, k D 0, and m D 1:

Since f is a non-simple map, it factorizes through a non-trivial ramified
covering of degree ı � 2 of a simple map f0 W CP 1 ! X . If
d0 D .f0/�ŒCP 1�, the adjunction formula implies that the image of f0 has

d20 � c1.X/ � d0 C 2

2

nodes. Each of this node deforms to 2ı intersection point of fn.CP 1/ and
f0.CP 1/ for n >> 1. Since x � fn.CP 1/ \ f0.CP 1/, we get

d �d0 � 2ı
d20 � c1.X/ � d0 C 2

2
C c1.X/ �d �2 D d �d0C2.ı�1/ > d �d0

which is a contradiction.

(2)(b) d � ŒE� D jˇj C 1, k D 0, and m D 2:

By genericity, the curve f .C 1 [ C 2/ is fixed by the c1.X/ � d � 2 point
constraints, and intersect E transversely at non-prescribed points. This
contradicts the fact that either ˛ ¤ 0 or ˇ2 ¤ 0.

(2)(c) d � ŒE� D jˇj C 1, ŒE�2 D 1, k D 1, and m D 1:

By genericity, the curve f .C 1/ is fixed by the c1.X/ �d �2 point constraints,
and intersect E transversely in d � ŒE� C 1 non-prescribed points. Any such
intersection point distinct from f .C 1 \ C

0

1/ deforms to an intersection point
of fn.CP 1/ and E for n >> 1. Moreover since all intersection points of
f .C 1/ and E are transverse and non-prescribed, the component C

0

1 contains
the limit of the point corresponding to the extra constraint ˛1 or ˇ2. Therefore
fn.CP 1/ and E for n >> 1 must have at least d � ŒE�C 1 intersection points
for n >> 1, which is a contradiction.
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(2)(d) d � ŒE� D jˇj C 1, ŒE�2 D �2, k > 0, and m D 1:

Suppose first that f
jC1

factorizes through a non-trivial ramified covering of
degree ı � 2 of a simple map f0 W CP 1 ! X . Since f0.CP 1/ satisfies
c1.X/ � d � 2 point conditions, we have that

c1.X/ � d0 � 1 � c1.X/ � d � 2 D ıc1.X/ � d0 � 2 � 0;

where d0 D .f0/�ŒCP 1�. Hence we obtain that c1.X/ � d0 D 1 and ı D 2. In
particular the curve f0.CP 1/ is rigid, and intersect E at smooth points. Now
the same arguments used in the case (2)(a) provide a contradiction.

Hence f
jC1

is a simple map. Since f
jC1

satisfies c1.X/ � d � 2 point
constraints, it has at most one tangency point with E. The same argument
used in the case (1)(b) implies that k D 1 and f .C 1/ is tangent to E

at f .C 1 \ C
0

1/. Hence f
jC1

is fixed by this tangency condition and the

c1.X/ � d � 2 other point conditions, and the component C
0

1 contains the
limit of the point corresponding to the extra constraint ˛1 or ˇ2. Thus we
obtain again a contradiction with the positivity of intersection points of E and
fn.CP 1/ for n >> 1.

(2)(e) d � ŒE� D jˇj C 1, ŒE�2 D �2, k > 0, and m D 2:

By genericity, the curve f .C 1 [ C 2/ is fixed by the c1.X/ � d � 2 point
constraints, and intersect E transversely at non-prescribed points. Hence
the same argument used in the case (1)(b) implies that k D 1. Thus the
component C

0

1 contains the limit of the point corresponding to the extra
constraint ˛1 or ˇ2, which gives a contradiction as in the case (2)(d).

The finiteness of the set C˛;ˇ� .d; x; J / follows from Proposition 3.2 and the
finiteness of simple maps in C˛0;ˇ 0.d0; x; J / for all possible ˛0; ˇ0; and d0 with
d D ıd0.

In the case when X D CP 1 � CP 1, ŒE� D l1 C l2, and jxıj � 1, the set
C˛;ˇ .d; x; J / is always finite and made of simple maps.

Proposition 3.4. Suppose that X D CP 1 � CP 1 and ŒE� D l1 C l2. Then the
set C˛;ˇ .d; x; J / with jxıj � 1 is empty for a generic choice of J , except in the
following situations where it contains a unique element:

� Ce1;0.li ;;; J /, i D 1; 2;

� C0;e1.li ; fpg; J /, i D 1; 2;

� C2e1;0.l1 C l2; fpg; J /;
� Ce2;0.l1 C l2; fpg; J /.

Moreover, this unique element is an embedding.
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Proof. The first Chern class of X is dual to 2.l1 C l2/, so

c1.X/ � .al1 C bl2/ � 1 � .al1 C bl2/ � ŒE�C jˇj D aC b � 1C jˇj:

Suppose that a C b � 1 C jˇj D 0 and that C˛;ˇ .al1 C bl2;;; J / ¤ ;. Since
.al1 C bl2/ � ŒE� D a C b � jˇj, and since two J -holomorphic curves intersect
positively, we obtain a C b D 1 and jˇj D 0. By genericity of J , we have that
.al1 C bl2/

2 � �1, i.e. 2ab � �1. From aC b D 1, we deduce that a D 0 or 1.
In the case a C b � 1 C jˇj D 1 and C˛;ˇ .al1 C bl2; fpg; J / ¤ ;, we prove

analogously that we are in one of the following situations:

� .a; b/ D .1; 0/ or .0; 1/, and jˇj D 1;

� .a; b/ D .1; 1/; .2; 0/, or .0; 2/, and jˇj D 0.

If X is equipped with the symplectic form !FS ˚!FS and its standard complex
structure Jst , it is easy to check that the sets Ce1;0.li ;;; Jst /, C0;e1.li ; fpg; Jst /,
C2e1;0.l1 C l2; fpg; Jst /, and Ce2;0.l1 C l2; fpg; Jst / consists of a unique element.
This implies that when we vary both ! and J , the corresponding sets still contain
at least one element. Moreover they cannot contain more than one element, since
the imposed constraints imply that two distinct curves would have an intersection
number strictly bigger than the one imposed by their homology class. Finally, all
J -holomorphic maps under consideration are embeddings thanks to the adjunction
formula.

Suppose now that C˛;0.2li ; fpg; J / contains an element f W CP 1 ! X . We
proved in the previous paragraph that there exists a map f0 W CP 1 ! X in
C0;e1.li ; fpg; J /. Since we have f�ŒCP 1� � .f0/�ŒCP 1� D 2l2i D 0, we deduce
that f factors through f0 and a degree 2 ramified covering of CP 1. This contradicts
Proposition 3.2.

3.2. Symplectic sums. Here we describe a very particular case of the symplectic
sum formula from [15]. Recall that .X1; !1/ is a compact and connected sym-
plectic manifold of dimension 4, containing an embedded symplectic sphere E
with ŒE�2 D �2. We furthermore assume the existence of a symplectomor-
phism � from E to a symplectic curve realizing the class l1 C l2 in .X0; !0/ D
.CP 1 � CP 1; !FS ˚ !FS /. By abuse, we still denote by E the image �.E/ in X0.
Since the self-intersection of E in X0 and X1 are opposite, there exists a symplectic
bundle isomorphism  between the normal bundle of E in X0 and the dual of the
normal bundle of E in X1. Out of these data, one produces a family of symplectic
4-manifolds .Yt ; !t / parametrized by a small complex number t in C�, see [10].
All those manifolds are deformation equivalent, and are called symplectic sums of
.X0; !0/ and .X1; !1/ along E. Next theorem says that this family can be seen
as a symplectic deformation of the singular symplectic manifold X] D X0 [E X1
obtained by gluing .X0; !0/ and .X1; !1/ along E.
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Proposition 3.5 ([15, Theorem 2.1]). There exists a symplectic 6-manifold .Y; !Y /
and a symplectic fibration � W Y ! D over a diskD � C such that the central fiber
��1.0/ is the singular symplectic manifold X], and ��1.t/ D .Yt ; !t / for t ¤ 0.

Topologically, Yt is obtained by removing a tubular neighborhood of E in X1,
and gluing back X0 n E via  . Note that the symplectomorphism � induces
a diffeomorphism ‰ from the normal bundle of E in X1 and X0 n E. Hence
the homology groups H2.X1IZ/ and H2.Yt IZ/ are identified, the class ŒE� being
identified with the class ‰�ŒE�. Without loss of generality we may assume that
‰�ŒE� D l1 � l2 in H2.X0IZ/.

Let d 2 H2.Yt IZ/, and choose x.t/ a set of c1.X/ � d � 1 symplectic sections
D ! Y such that x.0/ \ E D ;. Choose an almost complex structure J on Y
tamed by !Y , which restrict to an almost complex structure Jt tamed by !t on each
fiber Yt , and generic with respect to all choices we made.

Define C.d; x.0/; J0/ to be the set
n
f W C ! X]

o
of limits, as stable maps,

of maps in C.d; x.t/; Jt / as t goes to 0. Recall (see [15, Section 3]) that C is a
connected nodal rational curve such that:

� x.0/ � f .C /;

� any point p 2 f
�1
.E/ is a node of C which is the intersection of two

irreducible componentsC
0
andC

00
ofC , with f .C

0
/ � X0 and f .C

00
/ � X1;

� if in addition neither f .C
0
/ nor f .C

00
/ is entirely mapped to E, then the

multiplicity of intersection of both f .C
0
/ and f .C

00
/ with E are equal.

Given an element f W C ! X] of C.d; x.0/; J0/, we denote by Ci the union of
the irreducible components of C mapped to Xi .

Lemma 3.6. Given an element f W C ! X] of C.d; x.0/; J0/, there exists k 2 Z�0
such that

f �ŒC1� D d � kŒE� and f �ŒC0� D kl1 C .d � ŒE�C k/l2:

Moreover c1.X1/ � f �ŒC1� D c1.Yt / � d .

Proof. Let k such that f�ŒC1� D d � kŒE�, and let f�ŒC0� D al1 C bl2. Using the
above identification of H2.X1IZ/ and H2.Yt IZ/, we have

d � ŒE� D f �ŒC0� � .l1 � l2/ D b � a:

On the other hand, by considering a representative of E in X1 and another in X0, we
obtain

aC b D f �ŒC0� � .l1 C l2/ D .d � kŒE�/ � ŒE� D d � ŒE�C 2k;

which gives a D k and b D d � ŒE�C k.
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By [15, Lemma 2.2], we have

c1.Yt / � d D c1.X1/ � f �ŒC1�C c1.X0/ � f �ŒC0� � 2f �ŒC0� � ŒE�:

Since c1.X0/ is dual to 2.l1C l2/, we deduce that c1.X1/ �f �ŒC1� D c1.Yt / �d .

Proposition 3.7. Assume that the set x.0/\X0 contains at most one point, and that
x.0/ \ X1 ¤ ; if x.0/ \ X0 ¤ ;. Then for a generic J0, the set C.d; x.0/; J0/
is finite, and only depends on x.0/ and J0. Given f W C ! X] an element of
C.d; x.0/; J0/, the restriction of f to any component of C is a simple map, and no
irreducible component of C is entirely mapped to E. Moreover the following are
true.

(1) If x.0/ \ X0 D ;, then the curve C1 is irreducible, and the image of any
irreducible component of C0 realizes a class li . The map f is the limit of a
unique element of C.d; x.t/; Jt / as t goes to 0.

(2) If x.0/ \ X0 D fp0g, then the image of the irreducible component C
0

of C0
whose image contains p0 realizes either a class li or the class l1 C l2, while
any other irreducible component of C0 realizes a class li .

(a) If f .C
0
/ realizes the class li , then the curve C1 is irreducible and f jC1

is an element of Ce1;.d �ŒE�C2k�1/e1.d � kŒE�; x.0/ [ xE ; J0/, where
xE D f .C

0
/ \ E. The map f is the limit of a unique element of

C.d; x.t/; Jt / as t goes to 0.

(b) If f .C
0
/ realizes the class l1 C l2, then f

jC
0 is an element of

C˛;0.l1 C l2; fp0g [ xE ; J0/, where xE � f .C1/ \ E, and ˛ D 2e1
or ˛ D e2. In the former case, the curve C1 has two irreducible
components, and f is the limit of a unique element of C.d; x.t/; Jt /
as t goes to 0; in the latter case, the curve C1 is irreducible, and f is
the limit of exactly two elements of C.d; x.t/; Jt / as t goes to 0.

Proof. The fact that no component of C is entirely mapped to E follows from
[15, Example 11.4 and Lemma 14.6]. By assumption we have ŒE�2 D �2 in X1, so
the adjunction formula implies that c1.X1/ � ŒE� D 0. Since the curve f .C1/ passes
through all the points in x.0/\X1 and realizes the class d �kŒE� inH2.X1IZ/, the
following hold.

(1) If x.0/ \ X0 D ;, then the map f jC1 is constrained by c1.X/ � d � 1 D
c1.X1/ � .d � kŒE�/ � 1 points in X1. Hence the curve C1 is irreducible,
the map f jC1 is simple, and f .C1/ intersects E transversely in d � ŒE�C 2k
distinct points. The curve C is rational, and any J0-holomorphic curve in X0
intersectsE, so we deduce that the curveC0 has exactly d �ŒE�C2k irreducible
components. Furthermore the image of any of them realizes a class li .
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(2) If x.0/\X0 D fp0g, then the map f jC1 is constrained by c1.X1/ � .d � kŒE�/
�2 points in X1. Hence we are in one of the following situations.

(a) The curve C1 is irreducible, and f
�1
.E/ consists in d � ŒE� C 2k

distinct points. As above, the curve C0 must have exactly d � ŒE�C 2k
irreducible components, and the image of any of them realizes a class li .
Since f .C

0
/ contains p0, the map f jC1 is also constrained by the point

f .C
0
/ \E. Hence f jC1 is a simple map by Lemma 3.1.

(b) The curve C1 has two connected components, the map f jC1 is simple
and fixed by x.0/ \ X1, and f .C1/ intersects E transversely in
d � ŒE� C 2k distinct points. Hence the curve C0 must have exactly
d � ŒE�C 2k � 1 irreducible components, one of them, say C

00
, inter-

secting the two components of C1. The curve f .C
00
/ has to realize the

class l1 C l2, and the image of any other irreducible component of C0
realizes a class li . Since all these latter components are constrained by
f .C1/ \E, we deduce that C

0
D C

00
.

(c) The curve C1 is irreducible, and f
�1
.E/ consists in d � ŒE�C 2k � 1

distinct points. Again, the curve C0 must have exactly d � ŒE�C 2k � 1
irreducible components, the image of one of them being tangent to E.
As in the case (2)(b), we deduce that this component must be C

0
, that

its image must realize the class l1 C l2, and that the image of any other
irreducible component of C0 realizes a class li .
Suppose that f restricts to a non-simple map on C1, and let � W CP 1 !
CP 1 be the ramified covering through which f jC1 factors. Since
x.0/ \X1 ¤ ;, Proposition 3.2 implies that at least two ramification
points of � should be mapped to E. Hence there should exist an
irreducible component C

00
of C0 distinct from C

0
and intersecting E

non-transversely. This contradicts the fact that f �ŒC
00
� D li .

The statement about the number of elements of C.d; x.t/; Jt / converging to f as t
goes to 0 follows from [15]. Let us recall briefly the behavior, close to a smoothing of
an intersection point p of C1 and C0, of an elements ft ICt ! Yt of C.d; x.t/; Jt /
converging to f . In local coordinates .t; x; y/ at f .p/, the manifold Y is given
by the equation xy D t , the manifold X0 (resp. X1) being locally given by
ft D 0 and y D 0g (resp. ft D 0 and x D 0g). If the order of intersection of f C0
and E at f .p/ is equal to s, then the maps f C0 and f C1 have expansions

x.z/ D azs C o.zs/ and y.w/ D bws C o.ws/;

where z and w are local coordinates at p of C0 and C1 respectively.
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For 0 < jt j << 1, there exists a solution �.t/ 2 C� of

�.t/s D
t

ab
;

such that the smoothing of C at p is locally given by zw D �.t/, and the map ft is
approximated by the map

fzw D �.t/g � C2 7! .t; azs; bws/

close to the smoothing of p (see [15, Section 6], and also [22, Section 6.2] for
details). Furthermore, such maps ft 2 C.d; x.t/; Jt / converging to f are in one
to one correspondence with a choice of such �.t/ for each point of C0 \ C1.

Next Corollary generalizes Abramovich–Bertram–Vakil formula.

Corollary 3.8. Suppose that x.0/ \X0 D ;, and let f W C ! X] be an element of
C.d; x.0/; J0/. Define Cf to be the set of elements f

0
W C
0
! X] in C.d; x.0/; J0/

such that f jC1 D f
0

jC 0
1
. If f �ŒC1� D d � kŒE�, then Cf has exactly

�
d �ŒE�C2k

k

�
elements.

Proof. It follows from Proposition 3.7 and Lemma 3.6 that f �ŒC1� D d � kŒE� if
and only if the image of exactly k irreducible components of C0 realize the class l1.
Since .d � kŒE�/ � ŒE� D d � ŒE�C 2k, the result follows.

3.3. Proof of Theorem 2.5. Theorems 2.3 and 2.5 are obtained by considering a
real version of the symplectic sum described in Section 3.2. We first provide the
proof of Theorem 2.5 since it is a immediate adaptation of Proposition 3.7 to the
real setting. We equip the disc D from Proposition 3.5 with the standard complex
conjugation, the symplectic manifold .Xi ; !i / with a real structure �i , and .Y; !Y /
with a real structure �Y such that the map � W Y ! D is real. Furthermore we choose
the set of sections x W D ! Y to be real. Note that each fiber Yt comes naturally
equipped with a real structure �t when t 2 R. If F \RE D ;, then by perturbing F
if necessary, we may assume that f .C / \F \E D ; for all f 2 C.d; x.0/; J0/.

Theorem 2.5 is obtained by choosing x such that x.0/ \X0 D ;.

Proof of Theorem 2.5(1). Assume that x.0/\X0 D ; and x.0/\RX1 � L1, and let
us choose a real element f W C ! X] of C.d; x.0/; J0/. Denote by a (resp. b) the
number of real (resp. pairs of �0-conjugated) points of intersections of E and f .C /.
The map f W C ! X is real, and by Corollary 3.8 the set Cf has exactly

�
P
kDaiC2bi

�
a
ai

��
b
bi

�
real elements if �0 acts trivially on H2.X0IZ/;

� 2k if a D 0 and b D k, and 0 otherwise, real elements if �0 exchanges l1
and l2.
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By assumption .H1/, we have thatF0[L0 represents a cycle 
V inH2.X0IZ=2Z/
with 
 D 0; 1, so in both cases above we have mL];F0.f .C // D mL1;F].f jC1/C


.a C b/. By Proposition 3.7, any element f of C.d; x.0/; J0/ is the limit of a
unique element of C.d; x.t/; Jt /, so this latter has to be real when f is real and
t 2 R�. Hence to end the proof of Theorem 2.5(1), it remains to show that no
node appears in a neighborhood of E \ f .C / when deforming f . This follows
from the description provided at the end of the proof of Proposition 3.7 of the local
deformation of f (since s D 1 in the present case). An alternative proof is to observe
that f .C / has as many nodes as any of its deformation:

.d � kŒE�/2 � c1.X1/ � .d � kŒE�/C 2

2
C k.d � ŒE�C k/ D

d2 � c1.Yt / � d C 2

2

since ŒE�2 D �2 and c1.X1/ � ŒE� D 0.

Proof of Theorem 2.5(2). Assume again that x.0/\X0 D ; and x.0/ \ RX1 � L1.
Recall that by assumption .H2/ we have �0 D �el , which implies in particular
that a D 0. Suppose that b ¤ 0, and choose a pair fp; �0.p/g of �0-conjugated
intersection points of E with f .C /. Let f

0
W C

0
! X] be an element of Cf ,

and denote by Cp (resp. C �0.p/) the irreducible component of C0 whose image
contains p (resp. �0.p/). Define the map f

00
W C
0
! X] as follows: f

00
.x/ D f

0
.x/

if x … Cp [ C �0.p/, and f
00
.x/ D �0 ı f

0
.x/ if x 2 Cp [ C �0.p/. The

map f
00

is also an element of Cf , and it follows from Lemma 3.9 below that

mL];F].f
0
.C
0
// D �mL];F].f

00
.C
0
//. HenceX

f
0
2C
f

mL;F].f
0
.C
0
// D 0;

and Theorem 2.5(2) is proved.

Given a point p 2 E, we denote by Cp the (unique) J0jX0-holomorphic curve in
the class l1 passing through p.

Lemma 3.9. Let D � CP 1�CP 1 be an embedded �el -invariant disk with @D � E.
Then if p 2 E n @D, the parity of the number of intersection points of D with Cp
and C�el .p/ are different.

Proof. Denote by D1 and D2 the two halves of E n @D. According to the proof of
Lemma 2.2, up to exchangingD1 andD2 we have ŒD1[D� D l1 and ŒD2[D� D l2
inH2.CP 1�CP 1IZ=2Z/. Any J0jX0-holomorphic curve in the class li intersectsE
in exactly one point, so the result follows from the fact that both Cp and C�el .p/
intersect D1 [D in an even number of points.
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3.4. Proof of Theorem 2.3. We prove Theorem 2.3 by choosing the set of
sections x so that x.0/\X0 is reduced to a single point. In this case, it follows from
Proposition 3.7 that an element f of C.d; x.0/; J0/might be the limit of two distinct
elements of C.d; x.t/; Jt /. Next proposition is a real version of Proposition 3.7 in
this case.

Proposition 3.10. Suppose that x.0/ \ X0 D fp0g and x.0/ \ RX1 ¤ ;. Let
f W C ! X] be a real element of C.d; x.0/; J0/, with a point p 2 C1 such that
f .C1/ has a tangency with E at f .p/. Given t ¤ 0, let f1 W CP 1 ! Yt and
f2 W CP 1 ! Yt be the two deformations of f in C.d; x.t/; Jt / (see Proposition 3.7).

Then p is a real point of C , and both f1.CP 1/ and f2.CP 1/ have a unique
node q arising from the smoothing of C at p. Moreover, there exists " D ˙1 such
that neither f1 nor f2 are real when "t < 0, and both f1 and f2 are real when
"t > 0. In this latter case, up to exchanging f1 and f2, we have (see Figure 3):

� f �11 .q/ 2 RP 1;

� f �12 .q/ … RP 1 and f2.RP 1/\U D ;, where U is the connected component
that contains q of the intersection of Yt with a small neighborhood in RY of
f .p/.

f1.RP 1/

q

f2.RP 1/

q

"t < 0, no real deformation "t > 0, two real deformations

Figure 3. Real deformations of a real map f W C ! X] which is the limit of two maps

Proof. It follows from Proposition 3.7 that the point p is unique, and hence real.
Since f .C / has one node less that any of its deformation, we deduce that both
f1.CP 1/ and f2.CP 1/ have a unique node q arising from the smoothing of C at p.
Since q is unique, it has to be real if the deformation is real.

Recall from the end of the proof of Proposition 3.7 how looks like a deformation
of f in a neighborhood of the smoothing of p. The manifold Y is given in local
coordinates .t; x; y/ at f .p/ by the equation xy D t , the manifold X0 (resp. X1)
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being locally given by ft D 0 and y D 0g (resp. ft D 0 and x D 0g). Furthermore
the maps f C0 and f C1 have expansions

x.z/ D az2 C o.z2/ and y.w/ D bw2 C o.w2/;

where a; b 2 R�, and z and w are local coordinates at p of C0 and C1 respectively.
For 0 < jt j << 1, the two maps f1 and f2 correspond to the two solutions�.t/ 2 C�
of

�.t/2 D
t

ab
:

For each solution, the smoothing of C at p is locally given by zw D �.t/, and the
corresponding deformation is approximated by the map

gt W fzw D �.t/g � C2 7! .t; az2; bw2/

close to the smoothing of p.
If tab < 0, then the two solutions of �.t/2 D t

ab
are complex conjugated, and

neither f1 nor f2 are real. On the opposite, if tab > 0, then the two solutions of
�.t/2 D t

ab
are real, and both f1 and f2 are real. Moreover the arcs of RC0 n fpg

and RC1 nfpg are glued in a different way for f1 and f2 (see Figure 4). In particular
one of them, say f1, satisfies f �11 .q/ 2 RP 1, while f2 satisfies f �12 .q/ … RP 1.

Approximation by gt

Figure 4. Real deformations of f W C ! X], intermediate step

Let U be the connected component that contains q of the intersection of Yt with
a small neighborhood in RY of f .p/. We have to prove that f2.RP 1/ \ U D ;.
Suppose that this is not the case, and let S � Yt be a topological surface passing
through q, and locally a cylinder in the variable t at q. Then the set f �12 .S/

would contain four points in a neighborhood of a smoothing of p. However the
set g�1t .S/ has only two points in fzw D �.t/g, which contradicts the fact that f2 is
approximated by gt close to the smoothing of p.

Now we are ready to prove Theorem 2.3. Recall that by assumption L0 is a disk,
which in particular implies that �0 D �el .
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Proof of Theorem 2.3(1). Suppose that x.0/ \ X0 D fp0g, and x.0/ \ RX1 is
non-empty and contained in L1. Without loss of generality, we may assume that
x.t/ \ RYt � L when t > 0 (and so x.t/\RYt 6� L when t < 0, since L0 contains
the deformation of p0). A schematic picture of the degeneration of RYt to RX] is
provided in Figure 5. Denote by L the connected component of RX1 containing L1.
Since L0 is a disk, we necessarily have L0 ¤ L, and L n RE is disconnected.
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Figure 5. Degeneration of RYt to RX]

Let f W C ! X] be a real element of C.d; x.0/; J0/. Recall that C
0

denotes the
irreducible component of C0 whose image passes through the point p0.

Suppose first that f �ŒC
0
� D li . Since �el exchanges l1 and l2, there exists an

irreducible component C
00

of C0 such that �el ıf .C
00
/ D f .C

0
/. However f .C

00
/\

f .C
0
/ D fp0g, which contradicts that J0 is generic.
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Figure 6. f .C / and its two real deformations

Hence f �ŒC
0
� D l1 C l2 for any choice of f . Since �0 D �el and

any other component of C0 realizes a class li , the curve C
0

is the only real
component of C0, and f

�1
.RE/ consists of at most 2 points. Suppose that

f
jC
0 2 C2e1;0.l1 C l2; fp0g [ xE ; J0/. In particular, C1 has two irreducible com-

ponents C 1 and C 2. Since x.0/ \ RX1 ¤ ;, both C 1 and C 2 must be real with
a non-empty real part. Since C has arithmetic genus 0, we deduce that f

�1
.RE/

consists of precisely 2 points, which are the intersection points of C
0
with C1. Hence

both f .RC 1/ and f .RC 2/ intersect RE in exactly one point, where this intersection
is transverse. But this contradicts the fact that L n RE is disconnected.

Hence f
jC
0 2 Ce2;0.l1 C l2; fp0g [ xE ; J0/ for any choice of f , and

Theorem 2.3(1) is now a consequence of Proposition 3.10 (see Figure 6).
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Proof of Theorem 2.3(2).Assume now that that x.0/\X0Dfp0g and x.0/ \ RX1D;.
According to the proof of Theorem 2.3(1), the only maps f 2 C.d; x.0/; J0/ with a
non-trivial contribution toWXR;L;F .d; s/ satisfyf

jC
0 2C2e1;0.l1Cl2; fp0g [ xE ;J0/.

In particular, the curve C1 has two irreducible components, which are exchanged

by the real structure on C . There are 2
c1.X/�d�4

2 ways of distributing the points in
x.0/ \ X1 among these two components, which proves the result about divisibility
of WXR;L;F .d; s/.

Moreover C
0
is the only real irreducible component of C and the map f

jC
0 is an

embedding. The adjunction formula implies that the number of real solitary nodes
of f .C / has the same parity than d2�c1.X/�dC2

2
.

4. Real algebraic rational surfaces

Here we deduce Theorem 1.2 from Theorem 1.1 and the classification of real
rational algebraic surfaces (see for example [17, 21]). The proof goes by explicit
computations of homology groups and direct application of Theorem 1.1. Recall that
any real algebraic minimal rational surface with a non empty real part corresponds
to exactly one of the following cases:

� CP 1 � CP 1 equipped with the real structure �el ;
� CP 2 equipped with the complex conjugation;
� minimal conic bundles;
� covering of degree 2 of CP 2 ramified along a maximal real quartic;
� covering of degree 2 of the quadratic cone in CP 3 ramified along a maximal

real cubic section.

We treat all these cases in Sections 4.2, 4.3, 4.4, and 4.5, and prove Theorem 1.2 in
Section 4.6.

4.1. Generalities. In this section, we fix once for all a real rational symplectic 4-
manifold XR D .X; !; �/ and L a connected component of RX . Since .X; !/ is
diffeomorphic to either CP 1 � CP 1 or to CP 2 blown-up at finitely many points,
all homology groups of X are known, and the intersection form on H2.X IZ=2Z/ is
non-degenerate.

Lemma 4.1. The following hold:

� b2.X n LIZ=2Z/ D b2.X IZ=2Z/C b1.L/C b1.X n L/ � 1I
� the group H1.LIZ=2Z/ is naturally isomorphic to the kernel of the natural

map � W H2.X n LIZ=2Z/! H2.X IZ=2Z/;
� b1.X n L/ D 0 if ŒL� ¤ 0 in H2.X IZ=2Z/, and b1.X n L/ D 1 otherwise.
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Proof. Let U be a tubular neighborhood of L in X (in particular U retracts
to L). Since X is simply connected, the Mayer–Vietoris sequence applied to
X D .X n L/ [ U gives the exact sequence

0 �! H2.U n LIZ=2Z/
.i2;j2/
�����! H2.LIZ=2Z/˚H2.X n LIZ=2Z/ �! H2.X IZ=2Z/

@
�!

@
�! H1.U n LIZ=2Z/

.i1;j1/
�����! H1.LIZ=2Z/˚H1.X n LIZ=2Z/ �! 0: (4.1)

The space U nL retracts to an S1-bundle  WM ! L over L, hence it follows from
Poincaré duality that b2.U nLIZ=2Z/ D b1.U nLIZ=2Z/. Together with the exact
sequence .4:1/, this implies that

b2.X n LIZ=2Z/ D b2.X IZ=2Z/C b1.L/C b1.X n L/ � 1:

Each loop 
 in L produces a surface  �1.
/ in M . By the Gysin sequence,
this induces an injective map � W H1.LIZ=2Z/ ,! H2.M IZ=2Z/, and we have
(intersection numbers are in Z=2Z)

b2.M IZ=2Z/ D b1.LIZ=2Z/C 1 � L2:

The map  � W H2.M IZ=2Z/ ! H2.LIZ=2Z/ admits a section if and only if
L2 D 0. In this case the extra generator of H2.M IZ=2Z/ is precisely given by
the image of such a section. By definition of the Mayer–Vietoris sequence .4:1/, we
obtain that

Ker � ' Ker i2 D Im � ' H1.LIZ=2Z/:

Analogously, the natural map  � W H1.M IZ=2Z/! H1.LIZ=2Z/ is surjective
with kernel generated by the class � realized by a fiber of  , and � D 0 if and only
if L2 D 1. By definition of the Mayer–Vietoris sequence .4:1/, the same holds for
the map i1. We deduce that b1.X n L/ D 1 � rank @. If S is a closed surface in X
intersecting L transversely in finitely many points p1; : : : ; pk , we have

@.ŒS�/ D Œ �1.p1/�C : : :C Œ 
�1.pk/� D .ŒS� � ŒL�/�:

Hence the map @ is null if and only if ŒL� is in the kernel of the intersection form on
H2.X IZ=2Z/. This intersection form in non-degenerate, hence the map @ is null if
and only if ŒL� D 0.

The consideration of the group H.XR; L/ is justified by the next two proposi-
tions.

Proposition 4.2. Let ı be a � -invariant class in H2.X n LIZ=2Z/ realized by a
smooth real symplectic curve E. Assume in addition that ı2 � �1 if E is a sphere.
Then for any d 2 H2.X IZ/, we have

WXR;L;F .d; s/ D .�1/
d �ı
2 WXR;L;FCı.d; s/:
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Proof. Choose a configuration x made of c1.X/ � d � 1� 2s points in L and s pairs
of � -conjugated points inX nRX . Let J0 be a generic � -compatible almost complex
structure on X such that E is J0-holomorphic. By the same arguments used in the
proof of Proposition 3.3, if f W C ! X is a J0-holomorphic map from a nodal
curve of arithmetic genus 0, and such that f�ŒC � D d and x � f .C /, then C is
actually smooth and irreducible. Furthermore all intersection points of f .C / and E
are positive, so the intersectionE\f .C / is made of d �ı distinct points if f .C / 6� E.
If f is in addition real and such that L contains f .RC/, since both curves E and
f .C / are real with disjoint real parts, we have that f .C / � ı D d �ı

2
, and this equality

is preserved modulo 2 under deformation of both f and J0.

Assume now that XR is a real algebraic rational surface. The real part of a real
symplectic curve C in X defines a class lC in H1.X IZ=2Z/. It follows from the
classification of real rational algebraic surfaces that any class in H1.RX IZ=2Z/
is realizable by a real deformation of a real algebraic curve. If two real cycles in X
intersect in finitely many points, the parity of this number only depends on the classes
realized by these cycles in H2.X IZ=2Z/. Moreover the intersection form modulo 2
is non-degenerated on H1.RX IZ=2Z/. Hence the class lC only depends on ŒC � 2
H2.X IZ=2Z/, and we denote it by lŒC �.

Proposition 4.3. Let ı an element of Ker � ' H1.LIZ=2Z/. Then for any d 2
H2.X IZ/, we have

WXR;L;F .d; s/ D .�1/
ı �ld WXR;L;FCı.d; s/:

Proof. Let C be a real symplectic curve in X . Recall that ı can be represented by
the restriction over a loop 
 of the boundary of a tubular neighborhood of L in X .
We denote by 
 0 this representative of ı. Without loss of generality, we may further
assume that 
 intersect RC transversely and in finitely many points. Note that the
tubular neighborhood of L in X can be chosen as small as needed. In particular, all
intersection points of 
 0 and C are located in a neighborhood of RC \ 
 , and each
such point corresponds to a pair of � -conjugated points of 
 0 \ C .

4.2. Surfaces with H.XR; L/ D 0. We start by giving the list of real algebraic
minimal rational surfaces whose group H.XR; L/ vanishes. There are exactly four
of them.

Lemma 4.4. IfXR is either .CP 1�CP 1; �el/, or .CP 2; conj /, or a minimal conic
bundle with a connected real part, then H.XR; L/ D 0.

Proof. One computes easily thatH2..CP 1�CP 1/nS2IZ=2Z/ (resp.H2.CP 2 n RP 2I
Z=2Z/) is generated by the class realized by a real algebraic curve in the class
l1 C l2 (resp. a real conic) with an empty real part. There exist two minimal
conic bundles with a connected real part, namely XR D .CP 1 � CP 1; �hy/,
and a minimal conic bundle with RX D S2. This latter case is covered by
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Section 4.3, so assume that XR D .CP 1 � CP 1; �hy/. By Lemma 4.1, we have that
b2.X n RX IZ=2Z/ D b2.X IZ=2Z/C 2, and that the kernel of the natural map � W
H2.X nRX IZ=2Z/! H2.X IZ=2Z/ is of dimension 2. HenceH2.X nRX IZ=2Z/
is isomorphic to Ker � � H2.X IZ=2Z/. Any class in H2.X IZ=2Z/ is realized by
a non-singular real rational algebraic curve with a non-empty real part, and has
intersection number 1 with some other class in H2.X IZ=2Z/. This implies that
Ker � is the set of �hyp-invariant classes in H2.X n RX IZ=2Z/, and the lemma is
proved.

4.3. Minimal conic bundles. Let .X; �/ be a minimal conic bundle whose real part
is made of n � 2 spheres. Up to real deformation, we may assume that X has the
following affine equation in C3:

y2 C z2 D

2nY
iD1

.x � ai /

where a1 < a2 : : : < a2n are distinct real numbers, and � is the restriction of
the complex conjugation on C3. Forgetting the .y; z/-coordinates provides a real
projection � W X ! CP 1. Given i D 1; : : : n, we denote by S2i�1 (resp. S2i ) the
Lagrangian sphere ��1.Œa2i�2I a2i�1�/\R3 (resp. ��1.Œa2i�1I a2i �/\R � .iR/2),
with the obvious convention that a2nC1 D a0, see Figure 7. We also denote by F
a generic fiber, by E2 an irreducible component of the singular fiber ��1.a2/, and
by B a (non-real) section of � which does not intersect the curve E2. The real Picard
group of X is the free abelian group generated by F and c1.X/ (see [17, 21]).

S2i+1S2iS2i-1

x

a2i-2 a2i-1 a2i a2i+1

Figure 7. Real vanishing cycles of Conic bundles

Lemma 4.5. A basis of H.XR; S1/ is given by .ŒS3�; : : : ; ŒS2n�1�/.

Proof. We have the following intersection products in H2.X IZ=2Z/:

ŒSi � � ŒSj � D 0 if ji � j j ¤ 1; ŒSi � � ŒSiC1� D 1;

ŒSi � � ŒE2� D 0 if i ¤ 2; 3; ŒSi � � ŒE2� D 1 if i D 2; 3;

c1.X/ � ŒE2� D 1; c1.X/
2
D ŒB� � c1.X/ D ŒF � � c1.X/ D ŒSi � � c1.X/ D 0;
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and

ŒF �2 D ŒF � � ŒSi � D ŒF � � ŒE2� D ŒB� � ŒE2� D ŒB� � ŒSi � D ŒB�
2
D 0;

ŒE2�
2
D 1; ŒB� � ŒF � D 1:

In particular .c1.X/; ŒB�; ŒF �; ŒE2�; ŒS2� : : : ; ŒS2n�1�/ is a free family ofH2.X IZ=2Z/,
and hence is a basis since b2.X IZ=2Z/ D 2nC 2.

From the intersection ŒS1� � ŒS2� D 1, we deduce that ŒS1� ¤ 0 in H2.X IZ=2Z/,
and Lemma 4.1 implies that b2.X n LIZ=2Z/ D b2.X IZ=2Z/ � 1. A basis of
H2.X n LIZ=2Z/ is then given by

.c1.X/; ŒB�; ŒF �; ŒE2�; ŒS3�; : : : ; ŒS2n�1�/;

since its rank in H2.X IZ=2Z/ is at most its rank in H2.X n LIZ=2Z/. The classes
c1.X/; ŒF �, and ŒSi � are � -invariant, and we have:

��ŒB� D ŒB�C nŒF �C c1.X/; and ��ŒE2� D ŒE2�C F:

It follows that .c1.X/; ŒF �; ŒS3�; : : : ; ŒS2n�1�/ is a basis of the subspace of � -invariant
classes of H2.X n LIZ=2Z/, and the lemma is proved.

4.4. Minimal real Del Pezzo surface of degree 2. LetQ be the real quartic in CP 2
whose real part together its position with respect to a bitangent H is depicted in
Figure 8a. We denote by .X; �/ the real double covering � W X ! CP 2 ramified
along Q, whose real part consists of four spheres. The real Picard group of X is the
free abelian group generated by c1.X/ (see [17, 21]).

H

S1

H

S2

S3 S4
S5

S6

S7

a) b)

Figure 8. Real vanishing cycles of a minimal real Del Pezzo surface of degree 2

There exists a .�1/-curve E such that �.E/ D H . Let S1; S3; S5; and S7 by
the four spheres of RX . By the rigid isotopy classification of real plane quartics,
each pair of real spheres is connected by a � -invariant vanishing Lagrangian sphere.
Let S2 (resp. S4, S6) such a sphere connecting S1 and S3 (resp. S3 and S5, S5
and S7) as depicted in Figure 8b.
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Lemma 4.6. A basis of H.XR; S1/ is given by .ŒS3�; : : : ; ŒS7�/.

Proof. We have the following intersection products in H2.X IZ=2Z/:

ŒSi � � ŒSj � D 0 if ji � j j ¤ 1; ŒSi � � ŒSiC1� D 1; ŒSi � � ŒE� D 0 if i ¤ 2;

ŒS2� � ŒE� D 1;

c1.X/ � ŒE� D 1; c1.X/
2
D ŒSi � � c1.X/ D 0; and ŒE�2 D 1:

In particular .c1.X/; ŒE�; ŒS2�; : : : ; ŒS7�/ is a basis ofH2.X IZ=2Z/, and .c1.X/; ŒE�;
ŒS3�; : : : ; ŒS7�/ is a basis of H2.X n LIZ=2Z/. The classes c1.X/ and ŒSi � are
� -invariant, and ��ŒE� D c1.X/ C ŒE�. Hence .c1.X/; ŒS3�; : : : ; ŒS2n�1�/ is a
basis of the subspace of � -invariant classes of H2.X n LIZ=2Z/, and the lemma
is proved.

4.5. Minimal real Del Pezzo surface of degree 1. Let Q be the real cubic section
of the quadratic cone† in CP 3 whose real part together with its position with respect
to a tritangent hyperplane sectionH is depicted in figure 9a. We denote by .X; �/ the
real double covering � W X ! † ramified along Q whose real part consists of four
spheres and a real projective plane. The real Picard group of X is the free abelian
group generated by c1.X/ (see [17, 21]).

H

S1

H

S2
S3
S4
S5
S6
S7

S8

S9
N

a) b)

Figure 9. Real vanishing cycles of a minimal real Del Pezzo surface of degree 1

There exists a .�1/-curve E such that �.E/ D H . Let S1; S3; S5; S7 and N
be respectively the four spheres and the real projective plane of RX . By the rigid
isotopy classification of real cubic sections of †, there exist � -invariant vanishing
Lagrangian spheres S2; S4; S6; S8; S9 as depicted in Figure 9b. Note that � acts
trivially on H2.X IZ=2Z/.
Lemma 4.7.

A basis of H.XR; S1/ is given by .ŒS3�; : : : ; ŒS7�; ŒS9�; ŒN �/.
A basis of H.XR; S7/ is given by .ŒS1�; : : : ; ŒS5�; ŒS8�; ŒN �/.
A basis of H.XR; N / is given by .ŒS1�; : : : ; ŒS7�/.
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Proof. All intersection products of ŒSi � with ŒSj �, ŒN �, and ŒE�, can be read on
Figure 9b. The other intersection products in H2.X IZ=2Z/ are:

c1.X/
2
D ŒE�2 D ŒN �2 D ŒE� � c1.X/ D ŒN � � c1.X/ D 1; ŒN � � ŒE� D 0:

Hence .c1.X/; ŒS1�; : : : ; ŒS8�/ is a basis of H2.X IZ=2Z/, and we have

ŒN � D c1.C /C ŒS1�C ŒS3�C ŒS5�C ŒS7� and ŒS9� D ŒS8�C ŒS2�C ŒS4�:

The result about H.XR; S1/ and H.XR; S7/ follows immediately.
The generator of Ker � can be represented by B D ��1.A/, where A

is a hyperplane section of †. Hence .ŒB�; ŒE�; ŒS1�; : : : ; ŒS7�/ is a basis of
H2.X nN IZ=2Z/. Since ŒE� C ��ŒE� D B , we get that .ŒB�; ŒS1�; : : : ; ŒS7�/ is
a basis of the subspace of � -invariant classes of H2.X nN IZ=2Z/, and the lemma
is proved.

4.6. Proof of Theorem 1.2. Lemmas 4.4, 4.5, 4.6, and 4.7 and Theorem 1.1 provide
a proof of Theorem 1.2 in the case of minimal real algebraic rational surfaces, and
when F D ŒRX n L�. To end the proof, we start with the following remark:
if .eX;e�/ is a blow up of .X; �/ at a real point or at a pair of � -conjugated points,
and ifeL is the component of ReX corresponding to L, then there is a natural injective
group homomorphism � W H.XR; L/ ! H.eXR;eL/. Theorem 1.2 now follows
immediately from next proposition.

Proposition 4.8. The map � is an isomorphism.

Proof. This is clearly true when .eX;e�/ is a blow up of .X; �/ at a real point in
RX nL or at a pair of � -conjugated points. Hence let us now assume that .eX;e�/ is a
blow up of .X; �/ at a point p 2 L. Since ŒeL� ¤ 0 in H2.X IZ=2Z/, by Lemma 4.1
we have

b2.eX neLIZ=2Z/ D b2.X n LIZ=2Z/C 1
if .X; �/ D .CP 1 � CP 1; �hy/, and

b2.eX neLIZ=2Z/ D b2.X n LIZ=2Z/C 2
otherwise. In both cases, an extra generator of H2.eX n eLIZ=2Z/ is given by the
extra generator ofH1.eLIZ=2Z/. In particular this proves the proposition in the case
.X; �/ D .CP 1 � CP 1; �hy/, and implies

dimH.eXR;eL/ � dimH.XR; L/C 1

otherwise. In this latter case, from the classification of minimal real algebraic
surfaces up to deformation, we may assume that there exists an algebraic curve C
in X such that C \L D fpg and that this intersection is transverse. Hence the strict
transform of C in eX is a second extra generator ofH2.eX neLIZ=2Z/, which is either
not � -invariant or mapped to 0 in H.eXR;eL/.
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