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Ergodic properties of equilibrium measures for smooth three
dimensional flows
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Abstract. Let fT t g be a smooth flow with positive speed and positive topological entropy on
a compact smooth three dimensional manifold, and let � be an ergodic measure of maximal
entropy. We show that either fT t g is Bernoulli, or fT t g is isomorphic to the product of a
Bernoulli flow and a rotational flow. Applications are given to Reeb flows.
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1. Introduction and statement of main results

Introduction. In 1973, Ornstein and Weiss proved that the geodesic flow of a
compact smooth surface with constant negative curvature is Bernoulli with respect to
the Liouville measure [36]. Ratner extended this to variable negative curvature [43].
In the case of non-positive and non identically zero curvature, Pesin showed that
some ergodic component of the Liouville measure is open, dense, and Bernoulli
[39], [4, Thm 12.2.13]. It follows from his work that all other ergodic components
(if they exist) have zero entropy. Katok and Burns extended Pesin’s work to Reeb
flows [20]. Burns and Gerber proved that geodesic flows on certain surfaces with
some positive curvature (“Donnay’s examples”) are Bernoulli [11]. Hu, Pesin and
Talitskaya constructed smooth volume-preserving Bernoulli flows on every compact
manifold of dimension at least three [18].

Ratner’s work extends to general Anosov flows equipped with ergodic equilibrium
measures of Hölder continuous potentials [43]. In this case the flow is either
Bernoulli, or isomorphic to a Bernoulli flow times a rotational flow (this happens in
the non-mixing case). Pesin’s work extends to all C 1C" flows preserving an ergodic
hyperbolic measure whose conditional measures on the unstable manifolds are
absolutely continuouswith respect to the inducedRiemannianmeasure [21,27,32,38],
with the same modification in the non-mixing case.
�This work was partially supported by the Brin Fellowship and by the ERC award ERC-2009-StG

no. 239885.
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The measure of maximal entropy does not have absolutely continuous conditional
measures, except in special cases [19]. The purpose of this paper is to determine
the ergodic theoretic structure of this measure in the context of general smooth three
dimensional flows with positive topological entropy. Our methods also apply to
ergodic equilibrium measures of Hölder potentials with positive entropy.

Basic definitions. Let .X;B; �/ be a Lebesgue probability space.

Measurable flow: A quadruple T D .X;B; �; fT tg/ such that .t; x/ 7! T t .x/ is
measurable, and the time–t map .X;B; �; T t / is probability preserving, 8t 2 R.

Eigenfunction: A non-constant measurable function f is an eigenfunction of T
(with eigenvalue ei˛) if for a.e. x 2 X , f .T tx/ D ei˛tf .x/ for all t 2 R. T is called
ergodic if 1 is not an eigenvalue, and weak-mixing if it has no eigenfunctions at all.

Entropy: The entropy of T is the entropy of the time–1 map T 1.

Rotational flow: Given c > 0, the rotational flow is T t .x/ WD xC t=c (mod 1) on
R=Z equipped with the Haar measure. c is called the period, and it is an invariant of
the flow since c D minft > 0 W T t D Idg.

Bernoulli flow: T is called Bernoulli if T 1 is a Bernoulli automorphism. T is
called Bernoulli up to a period if T is Bernoulli, or if T is isomorphic to the product
of a Bernoulli flow and a rotational flow.

If T is a Bernoulli flow then T t is a Bernoulli automorphism, 8t ¤ 0 [33].
Entropy is a complete set of invariants for Bernoulli flows [34], and entropy and
period (if it exists) are a complete set of invariants for Bernoulli up to a period flows
since the Bernoulli term is determined by the entropy and the rotational term is the
Pinsker factor, see [52, Prop. 4.4].

Main results. Let M be a three dimensional compact C1 Riemannian manifold
without boundary, let B be its Borel �–algebra, letX WM ! TM be a C 1C" vector
field onM such that Xp ¤ 0, 8p 2M , let T be the flow onM generated by X , and
let � be a T–invariant probability measure.

Equilibrium measure: � is an equilibrium measure of a potential F W M ! R if
h�.T

1/C
R
M
Fd� D supfh�.T 1/C

R
M
Fd�g, where sup ranges over all T–invariant

probability measures �. If F D 0, then � is called a measure of maximal entropy.

Equilibrium measures always exist if X is C1 and F is continuous [29].

Theorem 1.1. Under the above assumptions onM;X; T, every equilibrium measure
of a Hölder continuous potential has at most countably many ergodic components
with positive entropy. Each of them is Bernoulli up to a period.
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Periods can exist (e.g. for the constant suspension of an Anosov diffeomorphism),
but sometimes they can be discounted. Let fT tg be a Reeb flow on a compact smooth
three dimensional contact manifoldM (see Section 7 for definitions). For example,
fT tg could be the geodesic flow of a surface, or the Hamiltonian flow of a systemwith
two degrees of freedom on a regular energy surface [1]. Katok and Burns showed
that every ergodic absolutely continuous invariant measure with positive entropy is
Bernoulli [20]. The following result covers other measures of interest, such as the
measures of maximal entropy.

Theorem 1.2. If T is a three dimensional Reeb flow, then every equilibrium measure
of a Hölder continuous potential has at most countably many ergodic components
with positive entropy. Each of them is Bernoulli.

Corollary 1.3. Let S be a compact smooth orientable surface without boundary,
with nonpositive and non-identically zero curvature. Then the geodesic flow of S is
Bernoulli with respect to its (unique) measure of maximal entropy.

Proof. Let m be the invariant Liouville measure. By the curvature assumptions, m
has positive metric entropy, see for example [40, Corollary 3]. Hence the geodesic
flow has positive topological entropy. Also by the curvature assumptions, S is a rank
one manifold [3], therefore there is a unique measure of maximal entropy [24]. By
uniqueness, it is ergodic. By Theorem 1.2, it is Bernoulli.

The “geometric potential” J.x/ WD � d
ds
jsD0 log kdT sjEu.x/k and its scalar

multiples (see [8] and Section 8) are not directly covered by Theorems 1.1 and 1.2,
because they are not necessarily Hölder continuous or even globally defined onM .
But our methods do apply to them and give the following:

Theorem 1.4. Under the assumptions of Theorem 1.1, every equilibrium measure
of tJ .t 2 R/ has at most countably many ergodic components with positive entropy.
Each is Bernoulli up to a period. If T is a Reeb flow, each is Bernoulli.

Corollary 1.5. ([39, Thm 9.7]) LetS be a compact smooth orientable surface without
boundary, with nonpositive and non-identically zero curvature. Then the geodesic
flow of S is Bernoulli with respect to every positive entropy ergodic component of the
invariant Liouville measure. There are at most countably many such components.

Proof. The invariant Liouville measure is an equilibrium measure for the geometric
potential J.x/, by the Pesin Entropy Formula and the Ruelle Entropy Inequality. It
has positive metric entropy, as shown in the proof of Corollary 1.3.

Methodology. Our approach is similar to that of [43, 44]: First we code the flow as
a topological Markov flow (Hölder suspension of a topological Markov shift), and
then we analyze equilibrium measures for the symbolic model. The first step was
done in [28]. The second step is the subject of the present work.
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The ergodic behavior of equilibrium measures on topological Markov flows
depends on the height function r . If r is cohomologous to a function taking values in
a discrete subgroup, then one can choose a coding with constant height function, and
deduce that the flow is isomorphic to the product of a Bernoulli flow and a rotational
flow. If r is not cohomologous to a function taking values in a discrete subgroup, then
one can exhibit a generating sequence of very weak Bernoulli partitions as in [36,43],
and conclude that the flow is Bernoulli. An important step in the proof of the very
weak Bernoulli property is to prove the K property. This is done using the method
of Gurevič [17].

In Ratner’s case the flow is Anosov, and the symbolic flow is a suspension over
a topological Markov shift with finite alphabet [42]. In our case the flow is a
generalC 1C" flow on a three dimensional manifold, and the topological Markov shift
has countable alphabet [28]. The thermodynamic formalism for countable Markov
shifts [12] provides us with the local product structure we need to implement the
ideas of [17, 36, 43, 44].

The paper is divided into two parts. The first contains the analysis of topological
Markov flows. The second contains the application to smooth flows, and in particular
to Reeb flows and geodesic flows.

Part I. Topological Markov flows

2. Topological Markov flows

Topological Markov shifts (TMS). Let G be a directed graph with countable set of
vertices V . We write v ! w if there is an edge from v to w. We assume throughout
that for every v there are u;w such that u! v; v ! w, and that G is not a cycle.

TopologicalMarkov shift (TMS):The topologicalMarkov shift (TMS) associated
to G is the discrete-time topological dynamical system � W †! † where

† D †.G / WD fpaths on G g D ffvigi2Z W vi ! viC1;8i 2 Zg;

and � W fvigi2Z 7! fviC1gi2Z is the left shift.

Points in † will be denoted by x D fxigi2Z. The topology of † is given by
the metric d.x; y/ WD expŒ�minfjnj W xn ¤ yng�. The Borel � -algebra B.†/ is
generated by the cylinders

mŒa0; : : : ; an�1� WD fx 2 † W xiCm D ai for all i D 0; : : : ; n � 1g:

The index m denotes the left-most coordinate of the constraint. If it is zero, we will
simply write Œa� WD 0Œa�. The parameter n is called the length of the cylinder, also
denoted by jaj. A cylinder is non-empty iff a0 ! � � � ! an�1 is a path on G . In this
case we call the word a admissible.
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For x 2 † and i < j in Z, let xji WD .xi ; : : : ; xj /, x1i WD .xi ; xiC1; : : :/, and
xi�1 WD .: : : ; xi�1; xi /.

A TMS is topologically transitive iff for every u; v 2 V there is a finite path on G
from u to v. It is topologically mixing iff for every u; v 2 V there is N D N.u; v/

such that for every n � N.u; v/ there is a path of length n on G from u to v.
Every ergodic �–invariant probability measure on† is carried by a topologically

transitive TMS inside †. If the measure is mixing, then the TMS is topologically
mixing.

Every topologically transitive TMS has a spectral decomposition † D
Up�1
iD0 †i

where each †i is the union of cylinders of length one at the zeroth position,
�p W †i ! †i is topologically conjugate to a topologically mixing TMS for every i ,
and �.†i / D †iC1(mod p/ [23].

TopologicalMarkovflows (TMF). Let r W †! RC beHölder continuous, bounded
away from zero and infinity, and let †r WD f.x; t/ W x 2 †; 0 � t < r.x/g.

Topological Markov flow (TMF): The topological Markov flow (TMF) with roof
function r and basis � W † ! † is the flow f� �r g on †r which increases the t
coordinate at unit speed subject to the identifications .x; r.x// � .�.x/; 0/.

Formally, � �r is defined as � �r .x; t/ WD .�n.x/; t C � � rn.x// for the unique
n 2 Z such that 0 � t C � � rn.x/ < r.�n.x// where rn is the n–th Birkhoff sum.
Recall that rn WD r C r ı � C � � �C r ı �n�1 for n � 1, and that there is a unique way
to extend the definition to n � 0 so that the cocycle identity rmCn D rn C rm ı �

n

holds for all m; n 2 Z. It is given by r0 WD 0 and rn WD �rjnj ı ��jnj for n < 0. The
cocycle identity guarantees that � �1C�2r D �

�1
r ı �

�2
r for all �1; �2 2 R.

A TMF is topologically transitive iff its basis is a topologically transitive
TMS, but the same is not true for topological mixing. For instance, if the roof
function is constant then the TMF is never topologically mixing. By the spectral
decomposition [23], every TMF whose basis is a topologically transitive TMS can be
recoded as a TMF whose basis is a topologically mixing TMS. Just replace † by †0
and r by rp . Let � be a �r–invariant probability measure on †r .

Induced measure: The induced measure of � is the unique �–invariant probability
measure � on † such that � D 1R

† rd�

R
†

R r.x/
0

ı.x;t/dtd�.x/:

Above, ı denotes the Dirac measure. A �r–invariant measure is ergodic iff its
induced measure is. Every ergodic �r–invariant measure on †r is carried by a TMF
whose basis is a topologically transitive TMS.

Bowen–Walters Metric [9]. This is a metric which makes �r W †r ! †r
continuous. Suppose first that r � 1 (constant suspension).
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Let  W †1 ! †1 be the suspension flow, and introduce the following
terminology:
ı Horizontal segments: Ordered pairs Œz; w�h 2 †1 � †1 where z D .x; t/ and
w D .y; t/ have the same height 0 � t < 1. The length of a horizontal segment
Œz; w�h is defined as `.Œz; w�h/ WD .1 � t /d.x; y/C td.�.x/; �.y//:
ı Vertical segments: Ordered pairs Œz; w�v 2 †1 � †1 where w D  t .z/ for

some t . The length of a vertical segment Œz; w�v is `.Œz; w�v/ WD minfjt j > 0 W
w D  t .z/g.

ı Basic paths from z tow: 
 WD .z0 D z
t0
�! z1

t1
�! � � �

tn�2
���! zn�1

tn�1
���! zn D w/

with ti 2 fh; vg such that Œzi�1; zi �ti�1 is a horizontal segment if ti�1 D h, and
a vertical segment if ti�1 D v. Define `.
/ WD

Pn�1
iD0 `.Œzi ; ziC1�ti /.

Bowen–Walters Metric on †1: d1.z; w/ WD inff`.
/g where 
 ranges over all
basic paths from z to w.

Next we consider the general case r 6� 1. The idea is to use a canonical bijection
from †r to †1 and declare it to be an isometry.

Bowen–Waltersmetric on†r : dr.z; w/ WD d1.#r.z/; #r.w//, where#r W†r!†1
is given by #r.x; t/ WD .x; t=r.x//.
Lemma 2.1 ( [9, 28]). dr is a metric, and � tr W †r ! †r is continuous with respect
to dr . Moreover, .t; x/ 7! � tr .x/ is Hölder continuous on Œ�1; 1� �†.

Roof functions independent of the past or future. We say that r W † ! R is
independent of the past if r.x/ D f .x0; x1; : : :/ for some function f , and it is
independent of the future if r.x/ D g.: : : ; x�1; x0/ for some function g (note that
we allow dependence on the zeroth coordinate). The next lemma is an adaptation
of [43, Lemma 2]. Let �r W †r ! †r be a TMF and � be an ergodic �r–invariant
probability measure.
Lemma 2.2. .†r ; �r ; �/ is isomorphic to a TMF with roof function independent of
the past, and to a TMF with roof function independent of the future.

Proof. Let us prove the first statement (the second is proved similarly). If � is
supported on a periodic orbit, then every function is independent of the past on the
support of �. Henceforth we assume that � does not sit on a periodic orbit.

It is well known that there is a bounded continuous function hs W † ! R such
that rs WD r�hsChs ı� is bounded, Hölder continuous and independent of the past.
Proofs for † D †.G / with G finite can be found in [6, 51]. As noted in [14], these
proofs extend without much difficulty to the case where G is countable. Since the rs
produced by the proofs may take negative values, we now explain how to change r
and hs to have rs > 0.

Claim. It is possible to change r; hs such that 0 < hs < 1
2
r . In particular rs > 0.
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Proof. Since hs is bounded, we can add a large constant to get a new hs that is
positive. The other inequality is more complicated. Let c D sup.hs/ <1, and take
n0 2 N with c < 1

2
n0 inf.r/. Let � be the induced measure of �. Since � is ergodic

and does not sit on a periodic orbit, � is non-atomic, hence there is a cylinder Œb�
such that 0 < �Œb� < 1

n0
. Let 'b.x/ D inffn � 1 W �n.x/ 2 Œb�g. By the Kac

formula, 1
�Œb�

R
Œb�
'bd� > n0: Thus there exists an admissible word a D b � b such

that �Œa� > 0 and 'b �Œa�> n0.
Recode the flow using the Poincaré section Œa� � f0g to obtain a suspension flow

with basis �'a W Œa� ! Œa� and roof function R D r'a , where 'a.x/ D inffn � 1 W
�n.x/ 2 Œa�g. The map �'a W Œa�! Œa� admits a countable Markov partition

S WD fŒa; �; a� W 'a �Œa;�;a�D jaj C j�jg n f¿g:

Coding with S , �'a W Œa�! Œa� becomes a TMS, therefore the suspension flow is a
TMF. Under this new coding, Rs WD R � hs C hs ı �'a is independent of the past
and Hölder continuous. Note that 'a � 'b > n0 ) infR > n0 inf.r/ > 2c )

hs < 1
2
R.

Henceforth we assume, without loss of generality, that 0 < hs < 1
2
r for the

original flow. Then rs is bounded, positive and uniformly bounded away from zero.
This allows us form the TMF �rs W †rs ! †rs . This TMF is isomorphic to
�r W †r ! †r via the conjugacy

#s.x; �/ D

(
.x; � � hs.x// ; if � � hs.x/
.��1.x/; � C r.��1.x// � hs.��1.x/// ; if 0 � � < hs.x/;

which recodes †r using the Poincaré section f.x; hs.x// W x 2 †g.

Strong manifolds and the Bowen-Marcus Cocycles [7]. The strong stable and
strong unstable manifolds of .x; t/ are:
ı W ss.x; t/ WD f.y; s/ W dr.�

�
r .x; t/; �

�
r .y; s// ����!�!1

0g.

ı W su.x; t/ WD f.y; s/ W dr.�
��
r .x; t/; ���r .y; s// ����!

�!1
0g.

These are not manifolds, but they play the same role as their smooth analogues in
hyperbolic dynamics.

To calculate W ss; W su we make the following definitions. Assume x is not
pre-periodic (i.e. there are nom; n such that x1m or xn�1 is a periodic sequence). Let

W ws.x/ WD fy 2 † W 9m; n such that y1m D x
1
n g

and define P s.x; �/ W W ws.x/! R by

P s.x; y/ WD lim
k!1

ŒrmCk.y/ � rnCk.x/�

for some (every) m, n such that y1m D x1n .
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Similarly, let

W wu.x/ WD fy 2 † W9m; n such that ym�1 D x
n
�1g;

and set P u.x; �/ WW wu.x/! R by

P u.x; y/ WD lim
k!�1

ŒrmCk.y/ � rnCk.x/�

for some (every) m, n such that ym�1 D xn�1.
These definitions are independent of the choice of m; n, because in the non-pre-

periodic case any two possible pairs .m; n/; .m0; n0/ satisfym0 D mCk0; n0 D nCk0
for some k0 2 Z. The limits which define P � .�; �/ exist because they are the limits of
the partial sums of the series

rm.y/ � rn.x/C

1X
kD0

Œr.�mCk.y// � r.�nCk.x//� .� D s/

or rm.y/ � rn.x/ �

1X
kD1

Œr.�m�k.y// � r.�n�k.x//� .� D u/:

Since r is Hölder continuous, the summands decay exponentially fast, and these
series converge. Define W sloc.x/ D fy 2 † W y01 D x01g and W uloc.x/ D
fy 2 † W y�10 D x�10g.
Lemma 2.3 ([7]). Suppose x is not pre-periodic, then for � D s; u it holds:
.1/ Bowen-Marcus condition: .y; s/ 2 W s� .x; t/ iff y 2 W w� .x/ and s� t D

P � .x; y/.
.2/ Shift identity: P � .�x; �y/ � P � .x; y/ D r.x/ � r.y/ wherever defined.
.3/ Cocycle equation: For all y; z 2 W w� .x/, P � .x; y/ C P � .y; z/ D

P � .x; z/: In particular, P � .x; x/ D 0 and P � .x; y/ D �P � .y; x/.
.4/ Hölder property: There are C > 0, 0 < ˛ < 1 such that jP � .x; y/j �

Cd.x; y/˛ for all y 2 W �
loc.x/.

P s.�; �/; P u.�; �/ are called the Bowen-Marcus cocycles.

3. Equilibrium measures for topological Markov flows

Equilibrium measures. Let �r W †r ! †r be a TMF, and let ˆ W †r ! R be
bounded and continuous. The (variational) topological pressure of ˆ is

Ptop.ˆ/ WD sup
�
h�.�

1
r /C

Z
ˆd� W � is �r–invariant Borel probability measure

�
:

Equilibrium measure: � is called an equilibrium measure (for the potential ˆ and
the flow f�rg) if h�.�1r /C

R
ˆd� D Ptop.ˆ/.
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In this section, we will describe the equilibriummeasures when† is topologically
mixing, ˆ is bounded and Hölder continuous, and Ptop.ˆ/ < 1. Instead of
describing themdirectly, we describe the one-sided version of their inducedmeasures.
Let � be a �r–invariant probability measure, and let � be its induced measure, a
�–invariant. � is a �–invariant probability measure on †.

One-sided TMS: Let �s W x 2 † 7! .x0; x1; : : :/. The one-sided TMS is the
discrete-time topological dynamical system �s W †

s ! †s where

†s D f�s.x/ W x 2 †g

and �s W fxigi�0 7! fxiC1gi�0 is the one-sided left shift.

One-sided version of �: The one-sided version of � is the probability measure
�s WD � ı ��1s . It is a �s–invariant probability measure on †s .

The probability measure �s determines � since � ı��1 D �, and � determines �.
Here is the description of �s .

Theorem 3.1. Let �r W †r ! †r be a topologically transitive TMF andˆ W †r ! R
be bounded and Hölder continuous with Ptop.ˆ/ < 1. Let � be an equilibrium
measure for ˆ, and � its induced measure. Then the one-sided version of � has the
form �s D hs�s , where:

.1/ hs is a positive function on †s , and �s is a positive measure on †s .

.2/ There is �s W †s ! R bounded Hölder continuous with Ptop.�
s/ < 1 such

that Lhs D �hs and L��s D ��s , where � D expŒPtop.�
s/� and L is the

Ruelle operator of �s , .Lf /.x10 / D
P
�s.y

1
0
/Dx1

0
expŒ�s.y10 /�f .y

1
0 / for

all f W †s ! R.

.3/ hs.x/ D lim
n!1

1
�s Œa�

ł�n.Ln1Œa�/.x/ for every cylinder Œa� and x 2 †s .

.4/ log hs is uniformly Hölder continuous on cylinders of length one at the zeroth
position.

.5/ �s is ergodic.

Proof. Bowen and Ruelle proved the theorem in [8] for TMF built from finite
graphs, using Ruelle’s Perron–Frobenius Theorem [6,25,48]. Since Ruelle’s Perron–
Frobenius Theorem is false for general infinite graphs, we sketch the modifications
needed to treat our case.

Claim 1. � is an equilibrium measure for �.x/ WD
R r.x/
0

ˆ.x; t/dt � Ptop.ˆ/r.x/:

The function � W †! R is bounded Hölder continuous with Ptop.�/ D 0.
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Proof of Claim 1. This is proved exactly as in [8]. The function � is clearly bounded
and Hölder continuous. By the Abramov entropy formula [2], h�.�r/ D 1R

rd�
h�.�/.

Hence
h�.�/C

R
†

R r.x/
0

ˆ.x; t/dtd�.x/R
rd�

� Ptop.ˆ/;

with equality iff � is an equilibrium measure for ˆ. This can be rewritten as
h�.�/ C

R
†
�.x/d�.x/ � 0, with equality iff � is an equilibrium measure for �.

Therefore Ptop.�/ D 0, and � is an equilibrium measure for ˆ iff its induced
measure � is an equilibrium measure for �.

Claim 2. The measure � is an equilibrium measure for a bounded Hölder continuous
potential that is independent of the past and has zero pressure.

Proof of Claim 2. By [6, 14, 51] there is a bounded Hölder continuous function v W
†! R such that �Cv�v ı� is independent of the past. Since

R
.v�v ı�/dm D 0

for every �–invariant probability measurem, Ptop.�C v � v ı �/ D Ptop.�/ D 0.

Now we proceed to the proof of Theorem 3.1. By Claims 1–2, there is
�s W †s ! R bounded Hölder continuous such that �s ı �s D � C v � v ı � ,
� is an equilibrium measure for �s ı�s , and Ptop.�

s ı�s/ D 0. We want to conclude
that �s is an equilibrium measure for �s , and that Ptop.�

s/ D 0.
If � is a �–invariant probability measure then .†; �; �/ is the natural extension

of .†s; �s; �s/. Conversely, if �s is a �s–invariant probability measure then it is the
one-sided version of some �–invariant probability measure � (its natural extension).
Since natural extensions preserve entropy, Ptop.�

s/ D Ptop.�
s ı�s/ D 0, and � is an

equilibrium measure for �s ı �s iff �s is an equilibrium measure for �s .
The structure of equilibrium measures for Hölder continuous potentials on one-

sided TMS was determined in [12]. There it is shown that if †s is topologically
mixing (a consequence of the topological mixing of †), then �s is positive recurrent
in the sense of [49], and parts (1)–(3) of the theorem hold. Also, if the equilibrium
measure exists then it is unique [12, Thm 1.1], and this gives part (5). Part (4) follows
from part (3) and the boundedness and Hölder continuity of �s .

Corollary 3.2. Suppose †r is a topologically transitive TMF, and ˆ is a bounded
Hölder continuous potential with finite pressure. Thenˆ has at most one equilibrium
measure and if this measure exists then it is ergodic.

Proof. By Theorem 3.1, �s is ergodic. Therefore its natural extension � is ergodic.
If the induced measure is ergodic, then the original measure is ergodic. It follows that
every equilibrium measure is ergodic. This implies that the equilibrium measure is
unique: if there were two equilibrium measures, then their average would have been
a non-ergodic equilibrium measure.



Vol. 91 (2016) 75

Conditional measures of the induced measure. Theorem 3.1 can be used to
construct the conditional measures �.�jx10 / for all, rather than almost all, x 2 †s .
The basic tool is the g–function of �. This is the function g W †s ! R given by

g WD
e�
s
hs

�hs ı �
D

d�s

d.�s ı �s/
�

The reader can check that g > 0 and
P
�s.y

1
0
/Dx1

0
g.y10 / D 1, whence 0 < g � 1.

Thus g is a g–function in the sense of [22]. The function logg is bounded and
uniformly Hölder continuous on cylinders of length two, since �s , log hs are bounded
and uniformly Hölder continuous on cylinders of length one at the zeroth position.
Theorem 3.3 ([26]). Let �, �s , L as in Theorem 3.1.
.1/ If f 2 L1.�s/ then E�s .f jx11 / D

P
�s.y

1
0
/Dx1

1
g.y10 /f .y

1
0 / �

s–a.e.

.2/ �s.x0jx1; x2; : : :/ WD lim
k!1

�.Œx0�j1Œx1; : : : ; xk�/ D g.x
1
0 / �

s–a.e.

.3/ lim
k!1

�.�nŒx�n; : : : ; x�1�j0Œx0; : : : ; xk�/ is equal �–a.e. to

�.x�n; : : : ; x�1jx
1
0 / WD gn.x

1
�n/ WD g.x

1
�n/g.x

1
�nC1/ � � �g.x

1
�1/: (3.1)

Proof. Part (1) follows from the equations �s D hs�s , Lhs D �hs , L��s D ��s

as in [26]. Part (2) follows from part (1) and the martingale convergence theorem.
Part (3) follows from part (2) and the invariance of �.

One should view (3.1) as a consistent set of equations which determine the
conditional probability measure �.�jx10 / onW

s
loc.x/, by specifying the weights these

measures give to cylinders. Consistency follows from
P
�s.y

1
0
/Dx1

0
g.y10 / D 1.

Henceforth, we define �.�jx10 / as follows.

Measure �.�jx10 /: �.�jx
1
0 / is the unique probability measure on W s

loc.x/ such that
�.ajx10 / WD gn.ax

1
0 / for all admissible words a of length n.

Lemma 3.4. Let � be as in Theorem 3.1. If †r is topologically transitive and †r is
not a union of cycles, then �.�jx10 / is non-atomic for �–a.e. x 2 †.

Proof. Since †r is topologically transitive and †r is not a union of cycles, the same
is true for †. In particular there is a state b with in-degree at least two. Fix one such
edge a ! b. Since

P
�s.z

1
0
/Dy1

0
g.z10 / D 1, we have g.z/ < 1 for every z 2 †s

such that .z0; z1/ D .a; b/. By the Hölder continuity of logg, we can find a word
w WD .a; b; b2; : : : ; bn/ such that g �Œw�< 1. By (3.1), �.fzgjx10 / D 0 whenever
z 2 Z WD fz 2 † W z

nCjwj�1
n D w for infinitely many n < 0g: The conclusion is

that �.�jx10 / is non-atomic for every x10 such that �.Zjx10 / D 1.
Let us show that this last condition is true �–a.e. By Theorem 3.1, � is ergodic

and positive on cylinders, hence �.Z/ D 1, i.e.
R
�.Zjx10 /d�.x/ D �.Z/ D 1, so

�.Zjx10 / D 1 for �–a.e. x 2 †.
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Local product structure of the induced measure. Let � W †! † be a TMS. The
following definitions are motivated by smooth ergodic theory, see e.g. [4]:

ı W s.x/ WD fy 2 † W d.�n.x/; �n.y// ����!
n!1

0g

D fy 2 † W 9n such that y1n D x1n g:

ı W u.x/ WD fy 2 † W d.�n.x/; �n.y// �����!
n!�1

0g

D fy 2 † W 9n such that yn�1 D xn�1g.

ı W s
loc.x/ WD fy 2 † W y

1
0 D x

1
0 g.

ı W u
loc.x/ WD fy 2 † W y

0
�1 D x

0
�1g.

Smale bracket of points: Let x; y 2 † with x0 D y0. The Smale bracket of x; y
is Œx; y� WD z where zi D xi for i � 0 and zi D yi for i � 0.

If x0 D y0 D v, then

ŒW s
loc.x/;W

u
loc.y/� D fŒx

0; y0� W x0 2 W s
loc.x/; y

0
2 W u

loc.y/g

D Œv� D fz 2 † W z0 D vg:

We can also consider the Smale products of measures. Let ˛sx , ˇuy be finite measures
on W s

loc.x/, W u
loc.y/, respectively.

Smale bracket of measures: The Smale bracket of ˛sx; ˇuy is a finite measure on
ŒW s

loc.x/;W
u
loc.y/� D Œv� defined by

.˛sx ? ˇ
u
y/.E/ WD

Z
W u

loc.y/

Z
W s

loc.x/

1E .Œx
0; y0�/d˛sx.x

0/dˇuy.y
0/; .E Borel measurable/:

The Smale product produces measures on† out of measures onW s
loc.x/;W

u
loc.y/.

We can also produce measures on W s
loc.x/;W

u
loc.y/ from measures on †. Let:

ı psx W Œx0�! W s
loc.x/, psx.�/ D Œ�; x�.

ı pux W Œx0�! W u
loc.x/, pux.�/ D Œx; ��.

Projection measures: The projections of � on W s
loc.x/;W

u
loc.y/ are(

�sx WD � ı .p
s
x/
�1; a measure on W s

loc.x/;

�uy WD � ı .p
u
y/
�1; a measure on W u

loc.y/:
(3.2)

Note that for � D u; s:

ı ��x D �
�
y iff W �

loc.x/ D W
�
loc.y/.

ı ��x D .�
�
y ı p

�
y/ �W �

loc.x/
whenever x0 D y0.
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Local product structure: � is said to have local product structure if for every
x; y 2 † such that x0 D y0 D v we have �sx ? �uy � � �Œv�.

Theorem 3.5. Let � be an equilibrium measure of a bounded Hölder continuous
potential with finite pressure on a topologically transitive TMF, and let � be its
induced measure. Then � is globally supported, and � has local product structure.

Proof. Let � W † ! † be the associated TMS, and let G be a directed graph
associated to †. Since the TMF is topologically transitive, � W † ! † is
topologically transitive, hence any two vertices on G can be joined by a path.

Claim. Every non-empty cylinder on † has positive �–measure, and for every
edge v ! w there is a constant Cvw > 1 such that if m < 0; n > 0 and
mŒvm; : : : ; vn� ¤ ¿, then

C�1v0v1 �
�.mŒvm; : : : ; vn�/

�.mŒvm; : : : ; v0�/�.0Œv0; : : : ; vn�/
� Cv0v1 :

Proof of the claim. Let �s be the one-sided version of �. Theorem 3.1 implies, as
in [50, Corollary 3.2], the existence of constants Kv;Dvw > 0 such that

(a) K�1an�1 �
�s.Œa0; : : : ; an�1; b0; : : : ; bk�1�/

�s.Œa0; : : : ; an�1�/�s.Œb0; : : : ; bk�1�/
� Kan�1 for all a; b such that

Œa; b� ¤ ¿,

(b) D�1an�1b0 �
�s.Œb0; : : : ; bk�1�/

�s.Œan�1; b0; : : : ; bk�1�/
� Dan�1b0 whenever Œan�1; b� ¤ ¿.

By (a)–(b), there are constants Cvw such that for all a; b with Œa; b� ¤ ¿ we have:

C�1an�1b0 �
�s.Œa0; : : : ; an�1; b0; : : : ; bk�1�/

�s.Œa0; : : : ; an�1�/�s.Œan�1; b0; : : : ; bk�1�/
� Can�1b0 :

Substituting a D .vm; : : : ; v0/; b D .v1; : : : ; vn/ gives the claim.

By the claim, if E is a cylinder contained in Œv; w� and x; y 2 Œv� then:

C�1vw � .�
s
x ? �

u
y /.E/ � �.E/ � Cvw � .�

s
x ? �

u
y /.E/: (3.3)

The collection of cylinders E � Œv; w� satisfying (3.3) is closed under increasing
unions and decreasing intersections. By the monotone class theorem, (3.3) holds for
every Borel set E � Œv; w�, whence �sx ? �uy � � �Œv�.

Corollary 3.6. Let � be as in the previous theorem. IfE � † is Borel and �.E/ D 0,
then �sx.E/ D �

u
x .E/ D 0 for �–a.e. x.
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Proof. Let �v WD fx 2 † W x0 D v and �sx.E/ > 0g, and assume by contradiction
that �.�v/ > 0 for some v. Since � has local product structure, if x; y 2 Œv� then:Z

W u
loc.y/

Z
W s

loc.x/
1�v .Œx

0; y0�/d�sx.x
0/d�uy .y

0/ > 0:

Note that Œx0; y0� 2 �v , �s
Œx0;y0�

.E/ > 0
Š
, �sy0.E/ > 0 , y0 2 �v (

Š
, is

because �s
Œx0;y0�

D �sy0). Hence 1�v .Œx0; y0�/ D 1�v .y
0/. Calculating the double

integral, we find that �uy Œ�v��sxŒW s
loc.x/� > 0 ) �uy Œ�v� > 0. We use this to get a

contradiction.

Let y0 2 �v . Using that �sy0 D .�
s
x ı p

s
x/ �W s

loc.y
0/, we have

0 < �sy0.E/ D .�
s
x ı p

s
x/ŒE \W

s
loc.y

0/� D �sxfx
0
2 W s

loc.x/ W Œx
0; y0� 2 Eg

D

Z
W s

loc.x/
1E .Œx

0; y0�/d�sx.x
0/:

Since �uy0 Œ�v� > 0, if we integrate this inequality we obtainZ
W u

loc.y/

 Z
W s

loc.x/
1E .Œx

0; y0�/d�sx.x
0/

!
d�uy .y

0/ > 0;

thus .�sx ?�uy /.E/ > 0. Since � has local product structure, this gives that �.E/ > 0,
a contradiction. We have just proved that �Œ�v� D 0 for every vertex v, whence
�sx.E/ D 0 for �–a.e. x. By symmetry, �ux .E/ D 0 for �–a.e. x.

4. The Pinsker factor of a topological Markov flow

Review of general theory. Let .X;B; �; T / be an automorphism, i.e. .X;B; �/

is a non-atomic Lebesgue probability space and T is an invertible transformation
preserving �. Given E 2B, let ˛E D fE;X nEg.

Pinsker factor: E 2 B is called a Pinsker set if h�.T; ˛E / D 0. The Pinsker
�–algebra is P.T / WD fE 2 B W E is a Pinsker setg. .X;P.T /; �; T / is called
the Pinsker factor of .X;B; �; T /.

The �–algebra P.T / is T –invariant [41], hence .X;P.T /; �; T / is indeed a
factor. .X;P.T /; �; T / has zero entropy, and if A � B such that .X;A ; �; T / is
a factor of zero entropy then A �P.T / modulo �. Therefore .X;P.T /; �; T / is
the largest factor of .X;B; �; T / with zero entropy.

Completely positive entropy: .X;B; �; T / is said to have completely positive
entropy if it has a trivial Pinsker factor, i.e. if P.T / D f¿; Xg modulo �.
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Note that .X;B; �; T / has completely positive entropy iff all of its non-trivial
factors have positive entropy.

Tail �–algebra: Given a �–algebra A �B with T �1A � A , the tail �–algebra
of A is Tail.A / WD

T
n�0 T

�nA .

K property: .X;B; �; T / has the K property if there is a �–algebra A � B such
that:

(a) T �1A � A ,

(b)
1W
iD0

T iA DB modulo �,

(c) Tail.A / D f¿; Xg modulo �.

Theorem 4.1 (Rokhlin & Sinai [46]). .X;B; �; T / has the K property iff it has
completely positive entropy.

The K property is stronger than mixing. It implies continuous Lebesgue
spectrum [45], and the mixing property below, called K-mixing, see [13, §10.8].
Write ı–a.e. when a property holds for a set of atoms with total measure � 1 � ı.

Theorem 4.2. Let .X;B; �; T / be an automorphism with the K property, B 2 B,
and ˇ a finite measurable partition of X . Then for every ı > 0 there is N0 D
N0.B; ı/ such that for all N 0 > N � N0 and ı–a.e. A 2

WN 0

kDN T
kˇ it holds

j�.BjA/ � �.B/j < ı.

Now let T D .X;B; �; fT tg/ be a flow. It is known that h�.T t / D jt jh�.T 1/
and P.T t / D P.T 1/, 8t ¤ 0 [2, 17]. The Pinsker �–algebra of T is defined as
P.T 1/. T is said to have completely positive entropy if its Pinsker factor is trivial
iff 9t ¤ 0 such that .X;B; �; T t / is an automorphism with completely positive
entropy. T is said to have the K property if .X;B; �; T 1/ is an automorphism with
the K property iff 9t ¤ 0 such that .X;B; �; T t / is an automorphism with the K
property. T has the K property iff it has completely positive entropy, and is in this
case K-mixing [13]. The next theorem is a tool for proving the K property. Given
a �–algebra A with T �tA � A , 8t > 0, let Tail.A / WD

T
t>0

T �tA be the tail

�–algebra of A .

Theorem 4.3 (Rokhlin & Sinai [46]). Let T D .X;B; �; fT tg/ be a flow, and let
A �B be a �–algebra such that:

(a) T �tA � A , 8t > 0,

(b)
W
t>0

T tA DB modulo �.

Then P.T / � Tail.A / modulo �.
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Anupper bound for the Pinsker factor of aTMF . Wenow construct �–algebras as
in Theorem 4.3 for a topologically transitive TMF. The construction follows [17,44].

Let �r W †r ! †r be a topologically transitive TMF. By Lemma 2.2,
�r W †r ! †r is isomorphic to a TMF �rs W †rs ! †rs such that rs is independent
of the past. Let #s W †r ! †rs be the isomorphism, #s ı � tr D � trs ı #s , 8t 2 R.
Points in †rs will be decorated by over bars as in .x; �/.

Given .x; �/ 2 †r , let .x; �/ WD #s.x; �/ and define

W ss
loc .x; �/ WD #

�1
s f.y; �/ 2 †rs W y

1
0 D x

1
0 g:

Any two such sets are either equal or disjoint, hence fW ss
loc .x; �/g is a partition

of †r . Let W ss
loc be the �–algebra generated by fW ss

loc .x; �/g. W ss
loc is generated by

the countable collection of sets #�1s f.y; �/ 2 †rs W y
N�1
0 D a; � 2 .˛; ˇ/g where

N 2 N, a is an admissible word of length N , and ˛; ˇ 2 Q.
Using that rs is independent of the past and that #s ı � tr D � trs ı #s , one shows:
(a) ��tr ŒW ss

loc � � W ss
loc , 8t > 0.

(b)
W
t>0 �

t
r ŒW

ss
loc � DB modulo �.

Let W ss WD Tail.W ss
loc /. By Theorem 4.3, P.�r/ � W ss modulo �.

Next we work with an isomorphism #u W †r ! †ru where ru is independent
of the future and #u ı � tr D � tru ı #u, 8t 2 R. Denoting points in †ru also as
.x; �/ WD #u.x; �/, we can define for each .x; �/ 2 †r the set

W su
loc .x; �/ WD #

�1
u f.y; �/ W y

0
�1 D x

0
�1g

and W su
loc as the �–algebra generated by the partition fW su

loc .x; �/g. Similarly,
� tr ŒW

su
loc � � W su

loc , 8t > 0, and
W
t>0 �

�t
r ŒW

su
loc � D B modulo �. Let W su WD

Tail.W su
loc /. Applying Theorem 4.3 to the inverse flow f��tr g and using that it has

the same Pinsker �–algebra as f� tr g, we find that P.�r/ � W su modulo �. We just
proved:
Theorem 4.4 ([17, 44]). Let �r W †r ! †r be a TMF, and let � be an ergodic
�r–invariant probability measure, not supported on a single orbit. Then P.�r/ �

W ss \W su modulo �.

Corollary 4.5. Let �r W †r ! †r be a TMF, and let � be an ergodic �r–invariant
probability measure, not supported on a single orbit. If f W †r ! R is
P.�r/–measurable, then there is a set X of full �–measure such that for every
.x; �/; .y; �/ 2 X :

.1/ If .y; �/ 2 W ss.x; �/ then f .x; �/ D f .y; �/.

.2/ If .y; �/ 2 W su.x; �/ then f .x; �/ D f .y; �/.

Proof. Recall the definitions ofW ss.x; �/ andW su.x; �/ on page 71. We prove (1),
and leave (2) to the reader. It is enough to prove this for f D 1E where E 2P.�r/.
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Since P.�r/ � W ss D Tail.W ss
loc /, there is a sequence of sets Ei 2 ��ir .W ss

loc / such
that�.E4Ei / D 0. The setX WD †r n Œ.[i�1E4Ei /[f.x; �/ W x is pre-periodicg�
has full �–measure.

If .x; �/; .y; �/ 2 X with .y; �/ 2 W ss.x; �/, then � tr .y; �/ 2 W ss
loc .�

t
r .x; �// for t

large enough. In particular, this holds for some t D i 2 N. We want to show that
.x; �/ 2 E , .y; �/ 2 E. By symmetry, it is enough that .x; �/ 2 E ) .y; �/ 2 E.

Let .x; �/2E. Then .x; �/ 62E4Ei ) .x; �/2Ei ) � ir .x; �/2�
i
r .Ei /2W ss

loc .
The atom of W ss

loc which contains � ir .x; �/ is W ss
loc ..�

i
r .x; �//, so � ir .y; �/ 2

W ss
loc ..�

i
r .x; �// � � ir .Ei / ) .y; �/ 2 Ei

Š
) .y; �/ 2 E (

Š
) is because

.y; �/ 2 X ).

The Pinsker factor in the non-arithmetic case. Let � W † ! † be a TMS. A
Hölder continuous r W † ! R is called arithmetic, if there are � 2 R, � ¤ 0, and
h W †! S1 Hölder continuous such that ei� r D h=h ı � [16].

Theorem 4.6. Let �r W †r ! †r be a topologically transitive TMF, and let � be an
equilibrium measure of a bounded Hölder continuous function with finite pressure.
The following are equivalent:

.1/ r is not arithmetic.

.2/ � is weak mixing.

.3/ � is mixing.

.4/ � has the K property, whence a trivial Pinsker factor.

In particular, if one equilibrium measure of a bounded Hölder continuous function
with finite pressure satisfies one of .2/–.4/, then all equilibrium measures of bounded
Hölder continuous functions with finite pressure satisfy all of .2/–.4/.

If † is a subshift of finite type, then the equivalences of (2)–(4) are due to
Ratner [44] (a special case was done before by Gurevich [17]), and .1/, .2/ is due
to Parry and Pollicott [37, Prop. 6.2].

Proof. .4/) .3/ by general theory, and .3/) .2/ is obvious. .2/) .1/ because
if ei� r D h=h ı � for some � ¤ 0 and h W † ! S1 continuous, then F.x; �/ WD
e�i��h.x/ satisfies F ı � tr D e�i� tF , 8t 2 R. By the weak mixing assumption, F
is constant �–a.e., whence everywhere (equilibrium measures of Hölder potentials
on a topologically transitive TMF are globally supported). Thus � D 0.

It remains to show that (1)) (4). We prove that if the Pinsker �–algebra is not
trivial then r is arithmetic. Assume that P.�r/ is not trivial, and fix a bounded
Pinsker-measurable function F that is not constant �–a.e. Let Fı WD 1

ı

R ı
0
F ı � trdt .

Note that Fı
L1

����!
ı!0C

F , thus Fı is not constant �–a.e for any ı small enough. Fix

one such ı and letH WD Fı . H is a bounded Pinsker-measurable function that is not
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constant �–a.e. for which the map t 7! .H ı � tr /.x; �/ is continuous, 8.x; �/ 2 †r .
We will use H to prove that r is arithmetic. Let � be the induced measure of �.
Recall the definition of the cocycles P s; P u (see Lemma 2.3) and the measures �sx
on W s

loc.x/ defined in (3.2).

Claim 1. There is a Borel set E � † of full �–measure such that:

.1/ E is �–invariant and contains no pre-periodic points.

.2/ For every .x; �/; .y; �/ such that x; y 2 E:

.2:1/ If .y; �/ 2 W ss.x; �/ thenH.y; �/ D H.x; �/.

.2:2/ If .y; �/ 2 W su.x; �/ thenH.y; �/ D H.x; �/.

.3/ For every x 2 E, �sx.E
c/ D �ux .E

c/ D 0.

Proof of Claim 1. Let E0 WD fx 2 † W x is not pre-periodicg. E0 has full
�–measure, since � is ergodic and globally supported. By Corollary 4.5, there is
X � †r of full �–measure such that (2) holds for all .x; �/; .y; �/ 2 X . Since � is
equivalent to � � d� ,

E1 WD fx 2 E0 W .x; �/ 2 X for Lebesgue a.e. � 2 Œ0; r.x//g

has full �–measure. We claim that E1 satisfies (2).
We prove (2.1) and leave (2.2) to the reader. Since x; y 2 E1, there is an open

neighborhoodU � R of 0 such that .x; �Ct /; .y; �Ct / 2 X for Lebesgue a.e. t 2 U .
Find tk ����!

k!1
0 such that .x; �Ctk/; .y; �Ctk/ 2 X . ByLemma2.3(1), .y; �Ctk/ 2

W ss.x; �Ctk/, therefore by the definition ofX we haveH.x; �Ctk/ D H.y; �Ctk/.
Passing to the limit, and using that t 7! .H ı � tr /.x; �/ and t 7! .H ı � tr /.y; �/ are
continuous, we conclude thatH.x; �/ D H.y; �/.

Now consider E2 WD
T
n2Z �

n.E1/. The set E2 has full �–measure and satisfies
(1)–(2) but not necessarily (3). We define E3; E4; : : : by induction as

En WD fx 2 En�1 W �
s
�k.x/

.Ecn�1/ D �
u
�k.x/

.Ecn�1/ D 0;8k 2 Zg:

fEng is a decreasing sequence of �–invariant sets of full �–measure each, by
Corollary 3.6, thus E WD

T1
nD4En is �–invariant set of full �–measure. The set E

satisfies (1)–(2) of the claim, sinceE � E0\E1. To see that it also satisfies (3), just
note that if x 2 E and � D s; u then ��x.Ec/ D ��x.

S
n�3E

c
n/ D lim ��x.Ecn/ D 0.

Construction of the holonomy group: Recall the weak stable and weak unstable
manifolds of x 2 †:
ı W ws.x/ WD fy W 9m; n such that x1m D y1n g.

ı W wu.x/ WD fy W 9m; n such that xm�1 D yn�1g.
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The following constructions are motivated by [10]:

ı su–path: A finite sequence of points 
 D hx0; : : : ; xni in E such that xi 2
W w�i .xi�1/ for some �i 2 fs; ug. If x0 D xn D x, then 
 is called an su–loop
at x.

ı Lift of su–path: Suppose 0 � � < r.x0/. The lift of 
 D hx0; : : : ; xni
at z0 WD .x0; �/ is hz0; : : : ; zni � †r where zi D �

�Cti
r .xi ; 0/, and

zi 2 W
s�i .zi�1/, i D 1; : : : ; n. The parameters ti are uniquely determined

by the Bowen-Marcus condition, see Lemma 2.3(1): t0 WD 0, ti D ti�1 C

P �i .xi�1; xi /.

ı Weight of su–loop: P.
/ WD tn D
Pn
iD1 P

�i .xi�1; xi /:

For x 2 E, let G0x WD fP.
/ W 
 is an su–loop at xg. We will show that there is
a closed subgroup G � R such that Gx WD G0x D G, 8x 2 E.

Holonomy group: It is the closed subgroup G � R such that Gx D G for some
(all) x 2 E.

We first show that Gx D cZ for some c ¤ 0 independent of x 2 E, and then use
this to prove that expŒ2�i

c
r� is a multiplicative coboundary.

Claim 2. There exists c ¤ 0 such that Gx D cZ, 8x 2 E.

Proof of Claim 2. We divide the proof into few steps. Fix x 2 E.

Step 1. G0x; Gx are additive subgroups of R, and G0
�.x/
D G0x , G�.x/ D Gx .

Proof. It is enough to prove the claims for G0x . G0x is an additive group:

ı G0x C G
0
x � G0x , because P.
1/ C P.
2/ D P.
1 _ 
2/ where 
1 _ 
2 is the

concatenation of 
1 and 
2.

ı G0x 3 0, because P.hx; xi/ D 0.

ı G0x D �G
0
x , because P.hxn; : : : ; x0i/ D �P.hx0; : : : ; xni/.

Now we show that G0
�.x/
D G0x . Let 
 D hx0; : : : ; xni be an su–loop at x, and

let �.
/ WD h�.x0/; : : : ; �.xn/i. By Lemma 2.3(2),

P �i .�.xi�1/; �.xi // � P �i .xi�1; xi / D r.xi�1/ � r.xi /:

Summing this over i gives P.�.
// � P.
/ D r.xn/ � r.x0/ D 0.

Step 2. There is a closed subgroup G � R such that Gx D G, 8x 2 E.
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Proof. We claim that x 7! Gx is constant on E \ Œv�, for every state v. Take
x; y 2 E \ Œv�, and define �xy W W s

loc.x/ ! W s
loc.y/ by �xy.�/ D Œ�; y�. �xy is

measure-preserving:

�sx ı �
�1
xy D � ı .p

s
x/
�1
ı ��1xy D � ı .�xy ı p

s
x/
�1
D � ı .psy/

�1
D �sy :

E has full �sx–measure inW s
loc.x/. Since�xy ismeasure-preserving,�xy ŒE \W s

loc.x/�

has full �sy–measure in W s
loc.y/. Thus �xy ŒE \ W s

loc.x/� \ E ¤ ¿, therefore
9z 2 E \ W s

loc.x/ such that w WD Œz; y� 2 E \ W s
loc.y/. By the definition of

the Smale product, W u
loc.z/ D W u

loc.w/. In summary, we found z 2 W s
loc.x/ \ E,

w 2 W s
loc.y/ \E such that W u

loc.z/ D W
u
loc.w/.

Every element of G0x equals P.
/ for some su–loop 
 at x. Consider the
concatenation 
 0 WD hy;w; z; xi _ 
 _ hx; z; w; yi: This is an su–loop at y with
P.
 0/ D P.hy;w; z; x; z; w; yi/ C P.
/ D P.
/. Since 
 is arbitrary, this gives
the inclusion Gx � Gy . By symmetry, Gx D Gy .

We see that for every v, there is a group Gv such that Gx D Gv , 8x 2 E \ Œv�.
Fix some state v0. Since � W †! † is topologically transitive, for any state v there is
an admissible path v0 D a0 ! � � � ! an D v. The measure � is globally supported,
thus we can take z 2 E\ Œa�. By Step 1,Gv0 D Gz D G�.z/ D � � � D G�n.z/ D Gv ,
whence Gv D Gv0 for all vertices v. This proves Step 2.

Step 3. G equals cZ for some c 2 R.

Proof. G is a closed additive subgroup of R, so either G D R or G D cZ for some
c 2 R. We will show that if G D R thenH is constant �–a.e., a contradiction.

We implement the classical Hopf argument. The key observation is that H is
constant on the intersection of the strong (un)stable manifolds of �r with E, thanks
to Claim 1(2). Suppose 
 D hx0; : : : ; xni is an su–path, fix some 0 � � < r.x0/,
and let hz0; : : : ; zni � †r be the lift of 
 at z0 WD .x0; �/. Since xi 2 E, we have
H.z0/ D H.z1/ D � � � D H.zn/. In particular, if x 2 E and 
 is an su–loop at x,
thenH.x; �/ D .H ı �P.
/r /.x; �/.

If G D R then the set of weights P.
/ is dense in R. Since t 7! .H ı � tr /.x; �/

is continuous,H.x; �/ D .H ı� tr /.x; �/ for all t 2 R. This proves thatH ı� tr D H
on f.x; �/ 2 †r W x 2 Eg. Using that � is ergodic (Corollary 3.2), we conclude
thatH is constant �–a.e., a contradiction. Thus G D cZ for some c 2 R.

Step 4. c ¤ 0.

Proof. Suppose by contradiction that G D f0g. We will show that r D U ı � � U

for some U W †! R continuous, and derive a contradiction. Recall the definitions
of W ws.x/;W s

loc.x/ on page 71. Fix x 2 E and define eU on W ws.x/ \ E byeU.y/ D P s.y; x/. By Lemma 2.3(3),eU.�.y// � eU.y/ D P s.�.y/; x/C P s.x; y/ D P s.�.y/; y/ D r.y/:
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Our plan is to show thatW ws.x/\E is dense in†, and eU is uniformly continuous on
W ws.x/\E. Thus the unique continuous extension to† satisfiesU ı� �U D r .

Proof that W ws.x/ \E is dense in †. Let C WD �nŒv�n; : : : ; vn� be a non-empty
cylinder in †. Since � W † ! † is topologically transitive, there is an admissible
path vn ! vnC1 ! � � � ! vnCk ! x0. Now proceed as follows:

ı Pick some w 2 C , and define y by yn�1 D wn�1, ynCknC1 D .vnC1; : : : ; vnCk/,
y1
nCkC1

D x10 . Then y 2 W ws.x/ \ C , and there are integers `;m > n such
that �m.y/ 2 W s

loc.�
`.x// \ �m.C /, whence �m.C / \ Œx`� ¤ ¿.

ı Necessarily �s
�`.x/

.�mC/ D �Œ.ps
�`.x/

/�1.�mC/� D �.�m.C / \ Œx`�/. Since
� is globally supported, �s

�`.x/
.�mC/ > 0.

ı Since E is �–invariant and x 2 E, �`.x/ 2 E and �s
�`.x/

.�m.C / \E/ ¤ 0.

ı �s
�`.x/

is supported on W s
loc.�

`.x//, thus W s
loc.�

`.x// \ �m.C / \E ¤ ¿.

ı Therefore W ws.x/ \E \ C � ��mŒW s
loc.�

`.x// \ �m.C / \E� ¤ ¿:
We see that W ws.x/ \E intersects every non-empty cylinder C in †.

Proof that eU is uniformly continuous on W ws.x/ \E. Fix y; z 2 W ws.x/ \ E

such that y ¤ z and y0 D z0. We construct y1 2 W s
loc.y/ \E such that

(i) z1 WD Œy1; z� 2 W ws.x/ \E,

(ii) d.z; z1/ � d.y; z/ and d.z1; y1/ � d.z; y/,

(iii) d.y; y1/ � 3d.y; z/.

y y1

zz1

x
W ws.x/

Figure 1.

Here is how to do this. First, find z1 2 W s
loc.z/ \ E arbitrarily close to z such that

y1 WD Œz1; y� 2 W s
loc.y/ \ E. Such points exist because �sz.Ec/ D 0, �sy.Ec/ D 0,

�sz has full support in W s
loc.z/, and �sz D �sy ı �zy for �zy.�/ D Œ�; y�. Automatically

z1 D Œy1; z�, and if z1 is close enough to z, then d.z1; z/ < d.z; y/ and d.z1; y/ D
d.z; y/ (the first place where z1; y disagree is the first place where z; y disagree).
Since y1 D Œz1; y�, d.z1; y1/ � d.z1; y/ D d.z; y/, proving (ii). Part (iii) follows
from (ii) and the triangle inequality.
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Let 
 D hy; z1; y1; yi. Using that y 2 E and G D f0g, we have

P s.y; z1/C P u.z1; y1/C P s.y1; y/ D 0: (4.1)

By Lemma 2.3(3), jeU.y/ � eU.z1/j D jP s.y; z1/j � jP u.z1; y1/j C jP s.y1; y/j:
Since y1 2 W u

loc.z
1/, jP u.z1; y1/j � Cd.y; z/˛ , where C; ˛ are given by

Lemma 2.3(4). Similarly, jP s.y1; y/j � 3˛Cd.y; z/˛ . Thus jeU.y/ � eU.z1/j �
4Cd.y; z/˛ . Also by the cocycle equation, jeU.z/ � eU.z1/j D jP s.z; z1/j �
Cd.y; z/˛ . It follows that jeU.y/�eU.z/j < 5Cd.y; z/˛ , proving that eU is uniformly
continuous on W ws.x/ \E.

Therefore eU extends continuously to a functionU W †! R. Since r D eU ı��eU
on W ws.x/ \ E, r D U ı � � U on †. This cannot happen as it implies, by the
Poincaré recurrence theorem, that lim inf rn D lim infŒU ı�n�U � <1 a.e., whereas
we know that inf r > 0, so lim inf rn D1. Thus G ¤ f0g.

Claim3. There existsh W †! S1Hölder continuous such that expŒ2�i
c
r� D h=hı� .

Let � WD 2�
c
, fix x 2 E and let eh W W ws.x/ \ E ! S1 by eh.y/ WD

expŒ�i�P s.y; x/�. By Lemma 2.3(3), eh=eh ı � D expŒi� r� on W ws.x/ \ E. The
idea is to show thateh is Hölder continuous onW ws.x/\E and then deduce as in the
previous proof that it extends Hölder continuously to a function h W † ! S1. The
proof is the same as in the last step of Claim 2, except that one needs to replace (4.1)
by

expŒi�.P s.y; z1/C P u.z1; y1/C P s.y1; y//� D 1:

As before, this implies that

eh.y/eh.z1/ D ei"1 with j"1j � 4C j� jd.y; z/˛;

and
eh.z1/eh.z/ D ei"2 with j"2j � C j� jd.y; z/˛:

So eh.y/eh.z/ D ei" with j"j � 5C j� jd.y; z/˛;

whence the Hölder continuity ofeh W W ws.x/ \E ! S1.

Claim 3 completes the proof that if the Pinsker �–algebra of �r is not trivial
then r is arithmetic. Equivalently, (1)) (4) in the statement of Theorem 4.6, and
this completes the proof of the theorem.
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The Pinsker factor in the arithmetic case. In the last section we saw that if the
roof function is arithmetic, then the Pinsker factor of every equilibrium measure of
a bounded Hölder continuous potential with finite pressure is non-trivial. In this
section we show that in this case the Pinsker factor is isomorphic to a rotational flow.
In fact we will show more, that the flow is isomorphic to the direct product of a
Bernoulli flow and a rotational flow.

Theorem 4.7. Let �r W †r ! †r be a topologically transitive TMF such that
ei� r D h

hı�
for some � ¤ 0 and h W † ! R continuous. There exists p 2 N such

that for every equilibrium measure � of a bounded Hölder continuous potential with
finite pressure, the following hold:

.1/ .†r ; �r ; �/ is isomorphic to a topologically transitive TMF with constant roof
function equal to 2�=� .

.2/ .†r ; �r ; �/ is isomorphic to the product of a Bernoulli flow and a rotational
flow with period 2�p=� .

.3/ The Pinsker factor of .†r ; �r ; �/ is isomorphic to a rotation with period
2�p=� .

Before the proof of the theorem, let us prove that constant suspensions over
Bernoulli automorphisms are the same as the product of a Bernoulli flow and a
rotational flow.

Lemma 4.8. Let T D .X; �; fT tg/ be a measurable flow. The following are
equivalent:

.1/ T is isomorphic to a constant suspension over a Bernoulli automorphism.

.2/ T is isomorphic to the product of a Bernoulli flow and a rotational flow.

Proof. (1) ) (2). Assume that the roof function is � 1. Then we can write
T D .†1; �; fT tg/, T t .x; s/ D .SbtCsc.x/; t C s � bt C sc/, where:

ı .†; �; S/ is a Bernoulli automorphism.

ı †1 is the suspension space over † with roof function� 1.

ı � D
R
†

R 1
0
ıtdtd�.x/.

By Ornstein Theory, .†; �; S/ embeds into a Bernoulli flow .†; �; fS tg/, see [33].
Let fRtg be the rotational flow with period 1. We claim that T is isomorphic to
.†�T; ��dt; fS t �Rtg/, the product of a Bernoulli flow and a rotational flow. The
conjugacy is the bijection � W †1 ! †�T, �.x; s/ D .S s.x/; s (mod 1)/. First note
that � is well-defined since �.x; 1/ D .S1.x/; 0/ D .Sx; 0/ D �.Sx; 0/. Also:

.� ı T t /.x; s/ D �.SbtCsc.x/; t C s � bt C sc/ D .S tCs.x/; t C s (mod 1)/
D .S t �Rt /.S s.x/; s (mod 1)/ D Œ.S t �Rt / ı ��.x; s/:
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For all measurableA � † and interval I � T not containing zero, .�ı��1/.A�I / D
�.A � I / D �.A/ � jI j, hence � ı ��1 D � � dt , which completes the proof that �
is a conjugacy between T and fS t �Rtg.

(2) ) (1). With the same notation as above, assume that T D .† � T; � � dt;
fS t �Rtg/. Then T is isomorphic to the suspension flow .†1; �; fT

tg/, where the
basis dynamics is the Bernoulli automorphism .†; �; S1/. The conjugacy is the
same � as above, and the proof is analogous to (1)) (2).

Proof of Theorem 4.7. Part (1) is the content of [28, Theorem 7.2]. Denote this TMF
by �Qr W e†Qr ! e†Qr , wither � 2�=� .

Let p denote the period of e†. Recall from page 69 that, using the
spectral decomposition of e† [23], �Qr W e†Qr ! e†Qr is topologically conjugate
to a TMF � Or W b† Or ! b† Or where � W b† ! b† is topologically mixing, andbr Derp D 2�p=� DW ˛.

Letb� be the measure on b† Or corresponding to�, and letb� be the induced measure
of b�. b� is an equilibrium measure of a bounded Hölder continuous potential on b†
with finite pressure. Since � W b† ! b† is topologically mixing and b† is not a
singleton, � W b† ! b† is Bernoulli [5, 50]. By Lemma 4.8, � Or W b† Or ! b† Or is
isomorphic to the product of a Bernoulli flow and a rotational flow with period ˛.

Since the Pinsker factor of a direct product is isomorphic to the direct product
of the Pinsker factors [52, Prop. 4.4], and since Bernoulli flows have trivial Pinsker
factor, it follows that the Pinsker factor of .†r ; �r ; �/ is isomorphic to P.Rt / D

P.R1/ D R1, a rotation with period 2�p=� .

5. The Bernoulli property

We have proved so far that if �r W †r ! †r is a topologically transitive TMF
and � is an equilibrium measure of a bounded Hölder continuous potential with
finite pressure, then .†r ; �r ; �/ is isomorphic to a Bernoulli flow times a rotational
flow when r is arithmetic, and .†r ; �r ; �/ is a K flow when r is not arithmetic. The
purpose of this section is to complete the picture and prove the following result.

Theorem 5.1. Let �r W †r ! †r be a topologically transitive TMF. If r is not
arithmetic, then for every equilibrium measure � of a bounded Hölder continuous
function with finite pressure .†r ; �r ; �/ is a Bernoulli flow.

The theorem above strengthens Theorem 4.6 by saying that for equilibrium measures
of bounded Hölder potentials with finite pressure, weak mixing is equivalent to the
Bernoulli property.
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Review of general theory. Let .X;B; �/ be a non-atomic Lebesgue probability
space, and let ˛ D hA1; : : : ; AN i and ˇ D hB1; : : : ; BN i be ordered partitions of
.X;B; �/. Given x 2 X , define ˛.x/ WD i if x 2 Ai .

Partition distance: d.˛; ˇ/ WD
PN
iD1 �.Ai4Bi / D 2

Z
1Œ˛.x/ 6Dˇ.x/�d�.x/.

Let f˛ign1 be a finite sequence of ordered partitions of .X;B; �/, and let fˇign1 be
a finite sequence of ordered partitions of another non-atomic Lebesgue probability
space .Y;C ; �/. Suppose that each partition hasN elements, say ˛i D hAi1; : : : ; A

i
N i

and ˇi D hB i1; : : : ; B
i
N i.

Same distribution: We say that f˛ign1; fˇig
n
1 have the same distribution, and write

f˛ig
n
1 � fˇig

n
1 , if

�ŒA1i1 \ � � � \ A
n
in
� D �ŒB1i1 \ � � � \ B

n
in
�; 8.i1; : : : ; in/ 2 f1; : : : ; N g

n:

This is equivalent to the existence of a measure preserving map

� W .X;B; �/! .Y;C ; �/

such that
�ŒA1i1 \ � � � \ A

n
in
� D B1i1 \ � � � \ B

n
in

modulo �,8.i1; : : : ; in/ 2 f1; : : : ; N gn. This notion can beweakened in the following
way.

d–bar distance: The d–bar distance between f˛ign1; fˇig
n
1 is

d.f˛ig
n
1; fˇig

n
1/ WD inf

(
1

n

nX
iD1

d.˛i ; ˇi / W
f˛ig

n
1 are ordered partitions of

.Y;C ; �/ such that f˛ign1 � f˛ig
n
1

)
:

To understand how the d–bar distance weakens the notion of same distribution,
we first weaken the notion of measure preserving maps.

"–measure preserving map: An invertible measurable map � W .X;B; �/ !

.Y;C ; �/ is called "–measure preserving if 9E 2 B, �.E/ < ", such thatˇ̌̌
�.�.A//
�.A/

� 1
ˇ̌̌
� " for all A � X nE measurable.

Lemma 5.2 ([36]). If � W .X;B; �/! .Y;C ; �/ is "–measure preserving such that

1

n

nX
iD1

1Œ˛i .x/¤ˇi .�.x//� � "

on a set of measure � 1 � ", then d.f˛ign1; fˇig
n
1/ � 16".
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In other words, f˛ign1; fˇig
n
1 are close in d–bar distance if there exists an

"–measure preserving map � that matches ˛i .x/ and ˇi .�.x// on the average, for
most points. That is why the d–bar distance weakens the notion of same distribution.

We now explain the property we will use to prove an automorphism is
Bernoulli. Let .X;B; �; T / be an automorphism. Given A 2 B with
�.A/ > 0, let .A;BA; �A/ be the induced non-atomic Lebesgue probability space,
i.e. BA WD fB \ A W B 2Bg and �A.�/ D �.�jA/. Every partition ˛ of .X;B; �/

defines a conditional partition ˛jA D fC \ A W C 2 ˛g of .A;BA; �A/. Write
“"–a.e. A 2 ˛” when refering to a property that holds for a collection of atoms of ˛
whose union has measure � 1 � ".

Very weak Bernoulli property1: ˛ is called very weak Bernoulli (VWB) if for
every " > 0 there is N0 D N0."/ such that for all n � 0 and N 0 � N � N0 it holds

d
�
fT �i˛gn1; fT

�i˛jAgn1
�
< " for "–a.e. A 2

N 0_
kDN

T k˛:

_ denotes the joining of partitions. TakingA 2
WN 0

kDN T
k˛ means that we are fixing

the far past of T .
Theorem 5.3 ( [30, 33, 36]). Let T D .X;B; �; fT tg/ be a probability preserving
measurable flow. If for some t , .X;B; �; T t / has an increasing sequence of VWB
partitions which generates B, then T is a Bernoulli flow.

Construction of VWB partitions for equilibrium measures [36, 43]. Let
�r W †r ! †r be a topologically transitive TMF. Throughout this section we assume
that r is not arithmetic, and independent of the past (which we can assume because
of Lemma 2.2). Fix an equilibrium measure � of a bounded Hölder continuous
potential with finite pressure, and let � be the induced measure of �, i.e.

� D
1R

†
rd�

Z
†

Z r.x/

0

ı.x;t/dtd�.x/:

Let �1; �2 W †r ! † be the projections on the first and second coordinates,
respectively. We now define three �–algebras:
ı ˛ D partition of† into cylinders of length one at the zeroth position.

W1
iD0 �

�i˛

is the �–algebra with information on the coordinates x10 of x 2 †.
ı F�n WD ��11 .

W1
iD�n �

�i˛/, the �–algebra with information on x1�n of
.x; t/ 2 †r .
ı H WD ��12 ŒB.R/�, where B.R/ is the Borel �–algebra of R. H is the
�–algebra with information on t of .x; t/ 2 †r .

1This is the formulation in [36] and it implies the definition in [35]. The two definitions are equivalent
for Bernoulli automorphisms, since in this case every partition is VWB.
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We will abuse notation and write E�.�jx1�n; t / instead of E�.�jF�n _H /.x; t/

and �.Ejx1�n; t / instead of E�.1E jF�n _H /.x; t/. Since r is independent of past
coordinates, it can be easily checked that for all n � 0:

�.�jx1�n; t / D 1Œr.x10 />t�.x; t/ � Œ�.�jx
1
�n/ � ıt � for �–a.e. .x; t/. (5.1)

Actually, there is a way to make sense of the right-hand-side for every .x; t/: use
(3.1) to define �.�jx10 / for all x, and the identity � ı ��n D � to extend to other n:

�.Ejx1�n/ WD �.�
�n.E/j��n.x/10 /: (5.2)

Given an admissible word a, let �.a/ WD inffr.x/ W xn�n D ag. Let 0 < ı < 1,
n � 0. Consider the following definitions.

.n; ı/–cube: A set C D f.x; t/ W xn�n D a; t 2 Œ�; � C ı/g, where a is an admissible
word of length 2nC 1 and � � 0 such that Œ�; � C ı/ � Œ0; �.a//.

Canonical partition into .n; ı/–cubes: A finite or countable partition whose
atoms are .n; ı/–cubes, with the exception of an atom of the form f.x; t/ W �.xn�n/ �
t < r.x/g with measure � ı.

Pseudo-canonical partition into .n; ı/–cubes: A finite partition that can be
refined to a canonical partition into .n; ı/–cubes.
Lemma 5.4 ([43]). If n0 � 0 and 0 < t0 < inf.r/, then every pseudo-canonical
partition into .n0; ı0/–cubes is very weak Bernoulli for .†r ; �

t0
r ; �/.

Proof. This was proved (with different terminology and notation) in [36] for geodesic
flows, and in [43] for TMF built on subshifts of finite type. What follows is a detailed
exposition of the argument in [43], with some missing details added, and one (minor)
point clarified.

Let 
 be a pseudo-canonical partition into .n0; ı0/–cubes, and take N 0 � N >
n0
t0

sup.r/. Every A 2
WN 0

kDN �
t0k
r 
 is a countable union of sets of the form

f.x; t/ W x 2 Di ; ai .x/ � t < bi .x/g;

whereDi are cylinders in
Wn2.i/

jDn1.i/
� i˛ withj

t0N
sup.r/

k
� n0 � 1 � n1.i/ � n2.i/ �

l
t0N
0

inf.r/

m
C n0 C 1; (5.3)

and ai ; bi are independent of the past coordinates.
Fix " > 0, and let n � 0; ı 2 .0; 1/ to be determined later. Partition †r into

finitely many .n; ı/–cubes Cn;ı WD fC1; : : : ; Cmg plus an additional “error set” with
measure � ı.

Step 1. 9N0 D N0.n; ı/ > 0 such that for all C 2 Cn;ı , for all N 0 � N � N0, and
for ı–a.e. A 2

WN 0

nDN �
t0n
r 
 , it holds

ˇ̌̌
�.A\C/
�.A/�.C/

� 1
ˇ̌̌
< ı.
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Proof. Since r is not arithmetic, .†r ; � t0r ; �/ is a K automorphism (Theorem 4.6).
Now use Theorem 4.2 and the finiteness of Cn;ı .

Step 2. For allA;C as in step 1, there is .z; s/ 2 A\C such that�.A\C jz1�n; s/ > 0
and �.�jz1�n; s/ is non-atomic. We choose one such pair for each A;C and write
.z; s/ WD .z.A; C /; s.A; C //.

Proof. By Lemma 3.4 and (5.2), �.�jz1�n/ is non-atomic for �–a.e. z, so
�.�jz1�n; s/ D 1Œr.x1

0
/>s�Œ�.�jz

1
�n/ � ıs� is non-atomic for �–a.e. .z; s/ 2 A \ C .

Also
ˇ̌
�.A\C/
�.A/�.C/

� 1
ˇ̌
< ı < 1 ) �.A \ C/ > 0 ) �.A \ C jz1�n; s/ > 0 for a

subset .z; s/ 2 A \ C of positive �–measure. Therefore there is .z; s/ 2 A \ C
satisfying step 2.

Given ı > 0, let us write a D e˙ı whenever e�ı � a � eı .

Step 3. Given ı > 0, the following holds for all n large enough. If .x; t/; .z; s/ 2
C 2 Cn;ı , then the map ‚z;sx;t W .C; �.�jx1�n; t // ! .C; �.�jz1�n; s//, ‚

z;s
x;t .y; t/ D

.#.y/; s/, where #.y/ D .y�n�1�1 ; z1�n/, has Radon-Nikodym derivative equal to e˙ı .

Proof. Write C D B � I , where B D�n Œb�n; : : : ; bn� contains x; z and I is an
interval of length ı containing t; s. The Radon-Nikodym derivative of ‚z;sx;t equals
the Radon-Nikodym derivative of # W .B; �.�jx1�n// ! .B; �.�jz1�n//. To estimate
this latter derivative, let B 0 WD�.nCm/ Œb�.nCm/; : : : ; bn� � B be a cylinder, and let
"n WD

P
k�n

vark.logg/. By (3.1) and (5.2),

�.B 0jx1�n/

�.#.B 0/jz1�n/
D
gm.b

n
�.nCm/

; x1nC1/

gm.b
n
�.nCm/

; z1nC1/
D e˙"n ;

thus �.B 0jx1�n/ D e˙"n�.#.B 0/jz1�n/ for every cylinderB 0 � B . Since the cylinders
generate the �–algebra of Borel sets of B , �.Ejx1�n/ D e˙"n�.#.E/jz1�n/ for all
Borel sets E � B , hence the Radon-Nikodym derivative of # equals e˙"n . Since
logg is Hölder continuous, "n ����!

n!1
0, thus "n < ı for all n large enough.

Step 4. For all A;C; .z; s/ as in steps 1–2, there is an invertible bi-measurable
map ‰ W .C; �.�jz1�n; s// ! .A \ C;�.�jz1�n; s// with constant Radon-Nikodym
derivative. Call the constantD.A;C /.

Proof. Any two non-atomic Lebesgue probability spaces are measure theoretically
isomorphic. .C; �.�jz1�n; s// and .A \ C;�.�jz1�n; s// are non-atomic Lebesgue
measure spaces, so instead of an isomorphism there is an invertible bi-measurable
map ‰ W .C; �.�jz1�n; s// ! .A \ C;�.�jz1�n; s// with constant Radon-Nikodym
derivative equal toD.A;C / WD �.A\C jz1�n;s/

�.C jz1�n;s/
.
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Let � WD
Sm
iD1 Ci , �.�/ > 1 � ı.

Step 5. If ı is sufficiently small, n is sufficiently large, and N0 D N0.n; ı/ as in
Step 1, then for all N 0 � N � N0, for ı–a.e. A 2

WN 0

kDN �
t0k
r 
 , there is a map

„ W .†r ; �/! .A; �.�jA// such that:

.1/ „.x; t/ D .y; t/ with y1�n D x
1
�n for .x; t/ 2 �,

.2/ „ is invertible and bi-measurable,

.3/ „ is 5ı–measure preserving.

Proof. For each A;C; .z; s/ as in steps 1–2, define „ �C W C ! A \ C by

„.x; t/ D .‚x;tz;s ı‰ ı‚
z;s
x;t /.x; t/:

Now define„ on †r n� to take values on A n� via a bijective measure preserving
map. Thus (1) holds2.

To prove (2), first note that C 2 F�n _H , hence we can write

� �CD const
Z
C

�.�jx1�n; t /d�.x; t/:

By Steps 3–4, „ �C W .C; �.�jx1�n; t // ! .A \ C;�.�jx1�n; t // is an absolutely
continuous bijection, thus „ �C W .C; �/ ! .A \ C;�/ is bijective a.e., which
gives (2).

Let us now prove (3). By steps 3–4, „ �C W .C; �.�jx1�n; t // ! .A \ C;

�.�jx1�n; t // has Radon-Nikodym derivative e˙2ıD.A;C /, thus if E � C is
measurable then

�.„.E// D const
Z
C

�.„.E/jx1�n; t /d�.x; t/

D const e˙2ıD.A;C /
Z
C

�.Ejx1�n; t /d�.x; t/

D const e˙2ıD.A;C /�.E/:

Therefore „ W C ! A \ C is absolutely continuous with Radon-Nikodym
derivative equal to e˙2ıK for some constant K D K.A;C /. Since „ is a
bijection a.e., K D e˙2ı �.A\C/

�.C/
. If ı is so small that 1 � ı > e�2ı , Step 1 gives

that K D e˙4ı�.A/: Since C 2 Cn;ı is arbitrary, „ ��W .�;�/! .A \�;�/ has
Radon-Nikodym derivative equal to e˙4ı�.A/. After normalizing the measure of
A, we find that the Radon-Nikodym derivative of„ W .†r ; �/!

�
A;�.�jA/

�
equals

e˙4ı on �. If ı is so small that e4ı < 1C 5ı, we conclude that „ is 5ı–measure
preserving.

2Our construction of „ differs from [43], since it is not clear to us that her construction leads to a
measurable map. Instead, we follow the construction used in [36].
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Step 6. If ı is sufficiently small and n is sufficiently large, then for all m � 0, for all
N 0 � N � N0.n; ı/, and for ı–a.e. A 2

WN 0

iDN �
it0
r 
 ,

1

m
#f1 � i � m W � it0r .x; t/; � it0r .„.x; t// are in different 
–atomsg < "

holds for a set .x; t/ 2 †r of measure � 1 � ı.

Proof. This follows, as in [36,43], from the fact that„.x; t/ D .y; t/withy1�n D x1�n
for .x; t/ 2 �. Let us recall the argument.

Let b
 denote the (countable) canonical partition into .n0; ı0/–cubes which
refines 
 , and assume that n > n0. If � it0r .x; t/; �

it0
r .y; s/ belong to different


–atoms, then they belong to different b
–atoms. At least one of these atoms is an
.n0; ı0/–cube of the form C WD B � Œa; aC ı0/ with B 2

Wn0
jD�n0

�j˛. Using that
n > n0, that r is independent of the past, and that x1�n D y1�n, we get that �

it0
r .x; t/

belongs to @ı.C / WD
S
j� j<ı �

�
r .B � fa; a C ı0g/. Let @ı.b
/ be the union of all

@ı.C /, C as above.
Defining Zm.x; t/ WD 1

m
#f1 � i � m W � it0r .x; t/; �

it0
r .„.x; t// are in different


–atomsg and Ym.x; t/ WD
Pm
iD1 1@ı.b
/.� it0r .x; t//, the previous paragraph and the

Markov inequality imply that

�ŒZm � "� � �ŒYm � "m� �
1

"m

Z
Ymd� � "

�1�Œ@ı.b
/�:
If we choose ı so small that �Œ@ı.b
/� < "2, then �ŒZm � "� < " as required.
Completion of the proof of Lemma 5.4. Given " > 0, let ı be sufficiently small
and n sufficiently large such that steps 1–6 hold, and 100ı < ". By Lemma 5.2, for
all m � 0, for all N 0 � N � N0.n; ı/, and for ı–a.e. A 2

WN 0

kDN �
kt0
r 
 it holds

d.f�
�it0
r 
gm1 ; f�

�it0
r 
 jAgm1 / < 16�5ı < ": Since " > 0 is arbitrary, 
 is VWB.

Proof of Theorem 5.1. Fix t0 ¤ 0, and construct an increasing sequence of pseudo-
canonical partitions into .nk; ık/–cubes, with nk !1 and ık ! 0. This sequence
of partitions generates the full �–algebra of†r . Since each of these pseudo-canonical
partitions is VWB for � t0r (Lemma 5.4), it follows from Ornstein Theory [30,33,36]
that .†r ; �r ; �/ is a Bernoulli flow. �

Part II. Smooth flows in three dimensions

6. Proof of Theorem 1.1

LetM be a three dimensional compactC1 Riemannianmanifold, letX WM ! TM

be a non-vanishing C 1C" vector field, and let fT tg be the flow on M generated
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by X . Let F W M ! R be a bounded Hölder continuous function, and let � be
an equilibrium measure of F . Our task is to show that � has at most countably
many ergodic components �i with positive entropy, and that fT tg is Bernoulli up to
a possible period with respect to each �i .

That � has at most countably many ergodic components with positive entropy
was proved in [28] in the special case F � 0. The same proof works for general
bounded Hölder continuous F almost verbatim. Let us recap the idea. For a
fixed � > 0, we prove that F has at most countably many �–hyperbolic3 ergodic
equilibrium measures. This happens because every ergodic equilibrium measure on
a TMS is carried by a topologically transitive TMS. If there were uncountably many
�–hyperbolic equilibrium measures for F , then some convex combination would
generate a �–hyperbolic equilibrium measure on a TMS with uncountably many
ergodic components. Taking the union over �n D 1=n gives countability.

It remains to show that if � is ergodic with positive entropy, then � is Bernoulli
up to a possible period. Given a TMF �r W †r ! †r , let

†#
r WD f.x; t/ 2 †r W fxigi>0, fxigi<0 have constant subsequencesg:

By the Poincaré recurrence theorem, †#
r has full measure for every �r–invariant

probability measure.
Apply [28, Theorem 1.2] to the flow .M; �; fT tg/ to get a TMF �r W †r ! †r

and a Hölder continuous map �r W †r !M such that:
(1) �r ı � tr D T t ı �r , 8t 2 R.
(2) �r Œ†#

r � has full �–measure.
(3) �r W †#

r !M is finite-to-one.
Notice that ˆ WD F ı �r is a bounded Hölder continuous function. Arguing as

in [28, Theorem 6.2], one can prove that ˆ has an ergodic equilibrium measure �
such that � ı ��1r D �. By ergodicity, � is carried by a topologically transitive
TMF of †r . By Theorems 4.7 and 5.1, � is Bernoulli up to a period. Therefore
.M; �; fT tg/ is a finite-to-one factor of a flow which is Bernoulli up to a period, so it
is enough to prove the lemma below.
Lemma 6.1. If a measurable flow is Bernoulli up to a period, then so are its finite-
to-one factors.

Proof. Suppose � W X ! Y is a finite-to-one factor map between T D .X; �; fT tg/
and S D .Y; �; fS tg/. Suppose T is Bernoulli up to a period.

If T is Bernoulli, then T 1 is Bernoulli. Since factors of Bernoulli automorphisms
are Bernoulli automorphisms [31], S1 is a Bernoulli automorphism. By [33], S is a
Bernoulli flow.

Assume that T is isomorphic to a Bernoulli flow times a rotational flow. By
Lemma 4.8, it is enough to prove the claim below.

3� is �–hyperbolic if �–a.e. point has one Lyapunov exponent > � and another < ��.
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Claim. If T is a constant suspension over a Bernoulli automorphism, then S is a
constant suspension over a Bernoulli automorphism.

Proof. Assume without loss of generality that the roof function of T is � 1,
i.e. T D .†1; �; fT

tg/ where T t .x; s/ D .�btCsc.x/; t C s � bt C sc/,
� D

R
†

R 1
0
ı.x;t/dtd�0.x/, and .†;�0; �/ is a Bernoulli automorphism.

Let Y0 WD �.† � f0g/. We claim that Y0 is a Poincaré section for S. For each
y 2 �.†1/, let Iy WD ft > 0 W S t .y/ 2 Y0g.

ı Iy ¤ ¿: y D �.x; s/) 1 � s 2 Iy .

ı Iy \ .0; 1/ is finite: if S tn.y/ D �.xn; 0/ for infinitely many tn; xn, then y has
infinitely many pre-images .��1.xn/; 1 � tn/.

ı Iy is infinite: y D �.x; t/) Sn�t .y/ D �.�n.x/; 0/) n � t 2 Iy , 8n > 0.

By symmetry, ft < 0 W S t .y/ 2 Y0g is non-empty, infinite, and has no accumulation
points. Therefore Y0 is a Poincaré section for S.

r.y/ WD minft > 0 W S t .y/ 2 Y0g is well-defined and positive �–a.e. Using
that � commutes T and S, we have r ı S1 D r , thus r is constant �–a.e. Let
U W Y0 ! Y0, U.y/ D S r.y/.y/, and let �0 WD .�0 � ı0/ ı �

�1. S is a constant
suspension over .Y0; �0; U /. But .Y0; �0; U / is a factor of .†;�0; �/, hence it is a
Bernoulli automorphism.

7. Reeb flows

Let M be a compact three dimensional smooth Riemannian manifold without
boundary, equipped with the following objects [15]:

A Contact form: A smooth 1–form ˛ on M such that ! WD ˛ ^ d˛ is a volume
form. In this case, ker.d˛/x WD fv 2 TxM W d˛.v; �/ � 0g is one-dimensional for
all x 2M .

The Reeb vector field (of ˛): The unique vector field X such that Xx 2 ker.d˛/x
and ˛.Xx/ D 1 for all x 2M . Necessarily iX! D d˛.

The Reeb flow (of ˛): The flow fT tg generated by the Reeb vector field of ˛. This
is a smooth flow with positive speed. fT tg preserves ˛, i.e. ˛.dT tv/ D ˛.v/ for
all v, since d

dt
.T t /�˛ D .T t /�LX˛ D .T

t /�Œd iX˛C iX .d˛/� D .T
t /�Œ0C0� D 0.

This setup covers geodesic flows of surfaces, and Hamiltonian flows of a system with
two degrees of freedom restricted to regular energy surfaces [1].

We now add the assumption that fT tg has positive topological entropy. Let � be
an ergodic equilibriummeasure of a Hölder continuous potential with positive metric
entropy. By Theorem 1.1, T D .M;�; fT tg/ is Bernoulli up to a period. We will
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show that T is Bernoulli. A similar result for absolutely continuous measures is due
to Katok [20, Theorem 3.6].

In dimension three, every ergodic invariant probability measure with positive
metric entropy is non-uniformly hyperbolic [47], hence there is a T–invariant set
M0 � M of full �–measure such that for all x 2 M0 we have TxM D Eu.x/ ˚

Es.x/ ˚ span.X.x// where Eu.x/; Es.x/ are one-dimensional linear subspaces
satisfying:
ı lim
t!˙1

1
t
log kdT txvk < 0 for all non-zero v 2 Es.x/,

ı lim
t!˙1

1
t
log kdT �tx vk < 0 for all non-zero v 2 Eu.x/,

ı dT txE
s.x/ D Es.T t .x// and dT txEu.x/ D Eu.T t .x//, 8t 2 R,

ı There is an immersed smooth curve W s.x/ 3 x such that TyW s.x/ D Es.y/

and d.T t .x/; T t .y// ���!
t!1

0, 8y 2 W s.x/. An analogous result holds
for W u.x/.

See [4, §8.2].

Quadrilateral: A quadrilateral is a closed embedded curve 
 W Œ0; 1�! M such
that there are four distinct points x0; x1; x2; x3 2M0 with:
ı xiC1 2 W

�i .xi / for some �i 2 fs; ug (here x4 D x0),
ı If 
.ti / D xi , then 
 �.ti ;tiC1/ is smoothwith 
 0.t/ 2 E�i .
.t//,8t 2 .ti ; tiC1/.
Quadrilaterals are the four-legged geometrical version of su–loops considered

in page 83. Call x0; : : : ; x3 the vertices of the quadrilateral. The next lemma is
standard.
Lemma 7.1. Let T D .M;�; fT tg/ be as above. Then Es.x/˚ Eu.x/ D ker.˛x/,
8x 2M0. In particular, if 
 is a quadrilateral then

R


˛ D 0.

Proof. Let v 2 Es.x/. By the T–invariance of ˛, ˛.v/ D limt!C1 ˛.dT tv/ D 0,
hence Es.x/ � ker.˛x/. Since contact forms are non-degenerate, dim ker.˛x/ D 2

whence Es.x/˚ Eu.x/ D ker.˛x/. If 
 is a quadrilateral then 
 0.t/ 2 Es.
.t//˚
Eu.
.t// except at the vertices, therefore

R


˛ D

R 1
0
˛.
 0.t//dt D 0.

Proof of Theorem 1.2. Using the same notation of Section 6, there is a TMF �r W
†r ! †r and a Hölder continuous map �r W †r !M such that:

(1) �r ı � tr D T t ı �r , 8t 2 R,
(2) �r Œ†#

r � has full �–measure,
(3) �r W †#

r !M is finite-to-one,
(4) .†r ; � ı ��1r ; �r/ is Bernoulli up to a period, and it has a period iff r

is arithmetic, iff the holonomy group equals cZ for some c > 0 (see
Theorem 4.6).
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Assume by way of contradiction that there is a period.
Let � be the induced measure of � ı ��1r , then � is globally supported on † and

has local product structure (Theorem 3.5). Let �sx; �ux be the projection measures
of �, as in (3.2). These are globally supported measures on W s

loc.x/;W
u
loc.x/.

Let E be the set constructed on page 82, then the holonomy group equals the
closure of the set of weights of su–loops with vertices in E. The assumption that T
has a period translates to the holonomy group being equal to cZ with c > 0.

The Bowen-Marcus cocycle P � .�; �/ is Hölder continuous (Lemma 2.3(4)),
therefore 9ı > 0 such that d.x; y/ < ı ) P � .x; y/ < c=5 wherever defined.
We claim there exist four distinct points w0; : : : ; w3 2 E such that d.wi ; wj / < ı

for all i; j and 
0 D hw0; w1; w2; w3; w0i is a su–loop with P.
0/ D 0. This can
be done as follows:
ı Fix x; y 2 E such that d.x; y/ < ı and y … W s

loc.x/.

ı By Claim 1 of Theorem 4.6, �sx.Ec/ D �sy.Ec/ D 0, hence fw 2 E \W s
loc.x/ W

Œw; y� 2 Eg has full �sx–measure.

ı �sx is globally supported on W s
loc.x/, thus there exist w0; w1 2 fw 2 E \

W s
loc.x/ W Œw; y� 2 Eg with d.w0; w1/ < ı. Take w2 D Œw1; y�, w3 D Œw0; y�.

ı 
0 D hw0; w1; w2; w3; w0i is a su–loopwith jP.
0/j < 4c
5
< c ) P.
0/ D 0.

Letb
0 be the lifted su–path of 
0, and 
 WD �r.b
0/. Since �r W †#
r ! M is finite-

to-one and �sx; �ux have global support, we can choose w0; w1 so that diam.
/ < ı.
We claim that if ı; " are small enough, then for every jt j < ", the quadrilateral

T t
 is the boundary of a piecewise smooth immersed surface T tU such that:
ı T tU is the union of compact smooth embedded surfaces T tUi , i D 0; 1; 2; 3.

ı T tUi are uniformly transverse to the Reeb vector field.

ı T tUi have piecewise smooth boundaries and
R
T t

D
R
T t .@U /

D
P3
iD0

R
T t .@Ui /

.
Had 
 been a Euclidean rectangle, we could take U to be its interior, and Ui the

four triangles described by the principal diagonals. The general case is similar. It is
enough to treat t D 0, since the case of small t follows from uniform transversality.

Let w0; : : : ; w3 2 �N Œa�N ; : : : ; aN �, where N is large to be chosen later. Let
u0; : : : ; u3 be the vertices of 
 . If ı is small enough, then 
 is covered by a chart
ofM and we can think of Eui WD ui ; E
.t/ WD 
.t/ as vectors inR3. IfN is sufficiently
large, then E
 0.t/ is nearly parallel to Eu.u0/ or Es.u0/ at all points. Therefore E

is made of four curves which are C 1 close to the sides of a parallelogram such that
Eu1� Eu0, Eu2� Eu3 are nearly parallel toEs.u0/ and Eu2� Eu1, Eu3� Eu0 are nearly parallel
to Eu.u0/. There is no loss of generality in assuming that these vectors have norm
in .1

2
; 2/. Let "0 WD C 1 distance between 
 and a parallelogram with sides Eu1 � Eu0

and Eu3 � Eu0. Then "0 ! 0 as N !1.
Let Ez WD 1

4
.Eu0 C � � � C Eu3/, then Ez � 1

2
.Eui C EuiC1/ D

1
2
.Eui�1 � Eui /C O."0/,

where Eui WD Eui (mod 4) (the approximation is an identity for real parallelograms). We



Vol. 91 (2016) 99

define Ui to be the cone with vertex z and base E
i , where E
i W Œ0; 1� ! R3 is the
“leg” of E
 from Eui to EuiC1:

Ui WD fExi .s; t/ WD s E
i .t/C .1 � s/Ez W s; t 2 Œ0; 1�g; i D 0; : : : ; 3:

Ui are embedded, and
R


D
R
@U
D
P3
iD0

R
@Ui

. At Exi .s; t/, Ui is perpendicular to

En D .E
i .t/�Ez/�

0
i .t/ D

�
E
i .t/�

Eui C EuiC1

2

�
� E
 0i .t/C

�
Eui C EuiC1

2
�Ez

�
� E
 0i .t/:

The first summand is O."0j E
 0i .t/j/, being the product of vectors at angle O."0/.
The second summand is of size � jE
 0i .t/j and "0–parallel to Ee

u.u0/ � Ee
s.u0/. By

Lemma 7.1, Ui is almost parallel to ker.˛/, whence uniformly transverse to the Reeb
flow.

Fix t0 > 0 so small thatDi WD
S
t2Œ0;t0�

T tUi is a flow box. So

0 ¤

3X
iD0

Z
Di

! D

3X
iD0

Z t0

0

�Z
T tUi

iX!

�
dt D

3X
iD0

Z t0

0

�Z
T tUi

d˛

�
dt

D

Z t0

0

�Z
T tU

d˛

�
dt:

But by the Stokes Theorem, this equals
R t0
0

�R
T t


˛
�
dt D 0, since the inner integral

is zero by Lemma 7.1. We obtain a contradiction.

8. Equilibrium states for the geometric potential

LetM be a three dimensional compactC1 Riemannianmanifold, letX WM ! TM

be a non-vanishing C 1C" vector field, and let T be the flow on M generated by X .
Throughout this section we assume T has positive topological entropy.

The subsetMhyp �M : p 2Mhyp if there are unit vectors esp; eup 2 TpM such that

lim
t!˙1

1

jt j
log kdT tpe

s
pk < 0 and lim

t!˙1

1

jt j
log kdT tpe

u
pk > 0:

If esp; eup exist, then they are unique up to a sign, henceMhyp is T–invariant. By
the Oseledets theorem and the Ruelle entropy inequality, any T–invariant and ergodic
measure with positive metric entropy is carried byMhyp.

The geometric potential of T [8]: J WMhyp ! R given by

J.p/ D � d
dt

ˇ̌̌
tD0

log kdT tpe
u
pk D � lim

t!0

1
t
log kdT tpe

u
pk:

J is bounded, since fT tg is C 1C".
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Some facts from [28]. We recall some facts from [28, §2]. There exists a Poincaré
section ƒ � M with return map f W ƒ ! ƒ and roof function R W ƒ ! R such
that:

(1) ƒ is the union of disjoint discs transverse to X .

(2) infR > 0 and supR <1.

(3) LetS � ƒ denote the singular set off W ƒ! ƒ, consisting of pointspwhich
do not have a (relative) neighborhood V � ƒ n @ƒ which is diffeomorphic to
a disc, such that f jV ; f �1jV are diffeomorphisms onto their images. There
is a constant C such that R; f; f �1 are differentiable on ƒ0 WD ƒnS with
supp2ƒ0 kdRpk < C, supp2ƒ0 kdfpk < C, supp2ƒ0 k.dfp/�1k < C, and
kf jU kC1C" < C; kf �1jU kC1C" < C for all open and connected U � ƒ0.
See [28, Lemma 2.5].

(4) For all p 2 ƒhyp WD .ƒn
S
n2Z f

n.S// \ Mhyp there are Evsp; Evup 2 Tpƒ
unitary such that

lim
n!˙1

1
jnj

log kdf np Ev
s
pk < 0 and lim

n!˙1

1
jnj

log kdf np Ev
u
pk > 0:

See [28, Lemma 2.6] and its proof.

Suppose � is a hyperbolic T–invariant probability measure on M , and �ƒ, the
“induced measure”, is the measure on ƒ such that

� D
1R

ƒ
Rd�ƒ

Z
ƒ

"Z R.p/

0

ıT tpdt

#
d�ƒ.p/:

Then ƒ can be chosen with the additional properties below.

(5) The induced measure �ƒ on ƒ satisfies:

(5.1) �ƒ.S/ D 0.

(5.2) limn!1 1
n
distƒ.f n.p/;S/ D 0 �ƒ–a.e.

See [28, Thm 2.8].

(6) There are a TMF �r W †r ! †r and Hölder continuous maps � W † ! ƒ

and �r W †r !M such that:

(6.1) � ı � D f ı � , �Œ†#� has full �ƒ–measure, and every x 2 �Œ†#� has
finitely many pre-images in †#.

(6.2) �r.x; t/ D T t�.x/, �r ı �r D T ı �r , �r Œ†#
r � has full �–measure, and

every p 2 �r Œ†r � has finitely many pre-images in †#
r .

See [28, Thm 5.6]. Here†#; †#
r denote the regular parts of†;†r , see [28, §1].
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Finally, if � is ergodic with positive entropy then h�ƒ.f / > 0 and �ƒ.ƒhyp/ D 1.

Geometric potential of f W ƒ! ƒ: J f W ƒhyp ! R, J f .p/ D � log kdfp Evupk.

J f is bounded, since supp2ƒ0 kdfpk < C; supp2ƒ0 k.dfp/�1k < C. Even though
J; J f are not globally defined, we can define their equilibrium measures.

Equilibrium measures of J and J f : � is called an equilibrium measure of J if
h�.T

1/C
R
Jd� D Ptop.J /, where

Ptop.J / WD sup
�
h�.T

1/C

Z
M

Jd� W
� is T–invariant Borel probability

measure with �.Mhyp/ D 1

�
:

Ptop.J / is called the topological pressure of J . Similar definitions hold for J f
with T 1;Mhyp replaced by f;ƒhyp.

Ptop.J /; Ptop.J
f / < 1, since J; J f are bounded. Similar definitions can also be

given for functions of the form aJ; bf , a; b 2 R.
Lemma 8.1. Assume thatƒ; f;R and � satisfy conditions .1/–.6/ above. Then � is
an equilibrium measure of J iff �ƒ is an equilibrium measure of J f � Ptop.J /R.

Proof. Let J W ƒhyp ! R, J .p/ D
R R.p/
0

J.T sp/ds. As in claim 1 of the proof
of Theorem 3.1, � is an equilibrium measure of J iff �ƒ is an equilibrium measure
of J � Ptop.J /R. We will show that

R
ƒ
Jd� D

R
ƒ
J f d� for every f –invariant �

with �.ƒhyp/ D 1, and deduce that � is an equilibrium measure of J iff �ƒ is an
equilibrium measure of J f � Ptop.J /R.

A simple calculation4 shows that

J .p/ D �

Z R.p/

0

d
dt

ˇ̌̌
tD0

log kdT teuT spkds D � log kdT R.p/eupk:

Since f .p/ D T R.p/.p/, we have dfpv D dT
R.p/
p v C hrR.p/; viXf .p/,

8v 2 Tpƒ. Write Evup D ˛.p/eup C ˇ.p/Xp (necessarily ˛.p/ ¤ 0). Then

df Evup D dT
R.p/
Evup C hrR.p/; Ev

u
piXf .p/

D ˛.p/dT R.p/eup C ˇ.p/dT
R.p/Xp C hrR.p/; Ev

u
piXf .p/

D ˙˛.p/kdT R.p/eupke
u
f .p/ C Œˇ.p/C hrR.p/; Ev

u
pi�Xf .p/:

Similarly

df Evup D ˙kdf Ev
u
pkEv

u
f .p/ D ˙.˛.f .p//kdf Ev

u
pke

u
f .p/ C ˇ.f .p//kdf Ev

u
pkXf .p//:

4Let h.t/ WD � log kdT teupk, then h.0/ D 0 and� log kdT teuT spk D h.tCs/�h.s/, therefore

� d
dt

ˇ̌̌
tD0

log kdT teuT spk D
d
dt

ˇ̌̌
tD0

Œh.t C s/ � h.s/� D h0.s/. By the fundamental theorem of

calculus, J.p/ D
RR.p/
0 h0.s/ds D h.R.p// D � log kdTR.p/eupk.
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Comparing the eu
f .p/

components, we get j˛.p/jkdT R.p/eupk D j˛.f .p//jkdf Evupk.
Hence U W ƒhyp ! R, U.p/ WD � log j˛.p/j is a measurable function with

J D J f C U ı f � U:

Weuse this to show that� is an equilibriummeasure for J iff�ƒ is an equilibrium
measure for J f � Ptop.J /R. By (4) and (5), �.Mhyp/ D �ƒ.ƒhyp/. Let � be an
ergodic f –invariant probability measure with �.ƒhyp/ D 1. By the Birkhoff ergodic
theorem, limn!1 1

n
J n D

R
ƒ
Jd� and limn!1 1

n
J
f
n D

R
ƒ
J f d� �–a.e. By the

Poincaré recurrence theorem, lim infn!1 jU.f n.p// � U.p/j < 1 �–a.e., hence
for �–a.e. p 2 ƒ we have

R
ƒ
Jd� D lim infn!1 1

n
J .p/ D lim infn!1 1

n
J f .p/ DR

ƒ
J f d�. By the ergodic decomposition,

R
ƒ
Jd� D

R
ƒ
J f d� for every

f –invariant � such that �.ƒhyp/ D 1. The lemma follows from the discussion
at the beginning of the proof.

Lemma 8.2. ŒJ f �Ptop.J /f �ı� is a Hölder continuous potential on†with respect
to the symbolic metric.

Proof. R ı � W † ! R is Hölder by construction: R ı � D r and roof functions
of TMF are Hölder. J f ı � is Hölder, because df is uniformly Hölder on ƒ0 and
x 2 †! Evu

�.x/
is Hölder by [28, Lemma 5.7].

Proof of Theorem 1.4. Fix � > 0, and let � be a �–hyperbolic5 equilibrium measure
of J with h�.T 1/ > 0. Take ƒ; f;R satisfying .1/–.6/ above. Since � is carried
byMhyp, Lemma 8.1 implies that �ƒ is an equilibrium measure of J f � Ptop.J /R.
Arguing as in [28, Theorem 6.2], the function ŒJ f �Ptop.J /R� ı � W †! R has an
equilibriummeasure c�ƒ such that c�ƒı��1 D �ƒ. The potential ŒJ f �Ptop.J /R�ı�

is Hölder continuous. Since ergodic equilibrium measures of Hölder potentials on a
TMS are carried by topologically transitive TMS, c�ƒ has at most countably many
ergodic components. This shows that J has at most countably many �–hyperbolic
ergodic equilibrium measures: if there were uncountably many, then some convex
combination would generate a �–hyperbolic equilibrium measure with uncountably
many ergodic components.

Assume now that � is also ergodic. We can choose c�ƒ to be ergodic. The
measure c�ƒ is the induced measure of some b� on †r , hence b� ı ��1r D �. By
Theorems 4.7 and 5.1 .†r ;b�; �r/ is Bernoulli up to a period. Sinceb� projects to �,
.M;�; fT tg/ is also Bernoulli up to a period.

If additionally T is a Reeb flow, then it is Bernoulli and so is T.

Acknowledgements. We thank Federico Rodriguez-Hertz for pointing out [20]. We
also thank Jérôme Buzzi, Yakov Pesin, and the referee for suggesting we extend our
results to scalar multiples of the geometric potential.

5� is �–hyperbolic if �–a.e. point has one Lyapunov exponent > � and another < ��.
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