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1. Introduction

1.1. Hofer growth of cyclic subgroups. Let .M 2n; !/ be a closed symplectic
manifold. We denote by Ham .M/ the group of Hamiltonian diffeomorphisms and
byAHam .M/ its universal cover. For elements inAHam .M/ we use Greek letters and
for elements inHam .M/Roman letters. For instance, we will write � 2AHam .M/ or
Œfftgt2Œ0;1�� 2AHam .M/, where fftg � Ham .M/ is a smooth path of Hamiltonian
diffeomorphisms with f0 D 1, and Œfftgt2Œ0;1�� stands for the homotopy class with
fixed end points. When we write f with no subscript we are referring to the time-1-
map f D f1.

The Hofer metric on Ham .M/ is defined by

d.g; f / D inf
�Z 1

0

max jHt jdt
�
;

where the infimum is taken over all Hamiltonian functions H which generate fg�1
as their time-1-map.

We denote the lift of the Hofer metric to AHam .M/ also by d , i.e.

d. ; �/ D inf
�Z 1

0

max jHt jdt
�
;

where the infimum is taken over all Hamiltonian functions H whose Hamiltonian
flow is in class � �1.
�Partially supported by European Research Council advanced grant 338809.
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Let ff ngn2Z � Ham .M/ be a cyclic subgroup. We say that ff ngn2Z is
undistorted if

lim
n!1

d.1; f n/

n
> 0:

Note that the limit always exists because d.1; f n/ is a subadditive sequence.
Similarly for a cyclic subgroup f�ngn2Z � AHam .M/ , we say that f�ngn2Z is
undistorted if

lim
n!1

d.1; �n/

n
> 0:

The distortion of subgroups ofAHam .M/ has been studied on various occasions in
connection toHamiltonian dynamics and ergodic theory, see e.g. [10, Chapters 8, 11].

In the autonomous case, it has been proved that there exists a C 0-open and
C1-dense subset A of the set of autonomous normalized Hamiltonian functions
such that for every F 2 A, the cyclic subgroup generated by the Hamiltonian flow
of F is undistorted (see [11, Chapter 6]).

In this article we give a similar statement for aC 1-generic time dependent element
inAHam .M/. When we sayC 1-genericwemean that the set of elements inAHam .M/

that generate undistorted cyclic subgroups has a C 1-open and dense subset.
Let us recall the definition of the C 1 topology onAHam .M/. It is known (see [8])

that Ham .M/ is locally simply connected. Fix a basis fUig of simply connected
C 1-neighborhoods of1 inHam .M/. Let QUi be the lift ofUi toAHam .M/ that contains
1 2AHam .M/. By definition, the sets f� QUig form a basis of C 1-neighborhoods of
� 2AHam .M/.

Digression on Chern classes. H i .M IQ/ contains a lattice H i .M IZ/=torsion
whose elements are called integral classes. The Chern classes with rational
coefficients are by definition integral. In what follows we abbreviate H i .M/ WD

H i .M IQ/.
Before we state the main results of this paper, let us give the following definitions.

Definition 1.1. Let
˛ 2 H�.M/ WD ˚iH

i .M/:

When we write deg.˛/ we mean the maximal k such that the projection of ˛ to
H 2k.M/ is non-zero.
Definition 1.2. LetM 2n be a closed symplectic manifold. Let c.M/ 2 H�.M/ be
the full Chern class of TM . We say that there exists an even factorization of c.M/

if we can write
c.M/ D ˛ˇ;

where
deg.˛/C deg.ˇ/ � n; 0 < deg.˛/ < n;

the classes ˛ and ˇ are integral classes, and ˛ has only terms of even degree.
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In this case we say that c.M/ D ˛ˇ is an even factorization. When we say that ˛ has
only terms of even degree we mean that the projection of ˛ to H 2k.M/ is zero for
odd k.

Our motivation for the above definition is that symplectic manifolds with an
even factorization cannot admit partially hyperbolic Hamiltonian diffeomorphisms
(see Section 3). This has been announced by Bennequin and is detailed in
[2, pp. 137–138].

We are now ready to state the main theorem.
Theorem 1.3. LetM be a closed symplectic manifold with H 1.M/ D 0. If the top
Chern class cn.M/ ¤ 0 and there is no even factorization of the full Chern class,
then the set of elements in AHam .M/ that generate undistorted cyclic subgroups is
C 1-generic.

The following theorem is a corollary (for its proofs see Example 6.2).
Theorem 1.4. Let M 4 be a four dimensional closed symplectic manifold with
H 1.M/ D 0 and c2.M/ ¤ 0. Then the set of elements in AHam .M/ that generate
undistorted cyclic subgroups is C 1-generic.

In particular, for M D CP2, C 1-generic elements generate undistorted cyclic
subgroups. In fact for CPn we can upgrade the theorem and formulate it with respect
to cyclic subgroups of Ham .M/.
Theorem 1.5. The set of Hamiltonian diffeomorphisms in Ham .CPn/ that generate
undistorted cyclic subgroups of Ham .CPn/ has a C 1-open and dense subset.

1.2. Idea of the proof. Consider the set

� D f� 2AHam .M/ W �.�/ ¤ 0g;

where � is an asymptotic spectral invariant (see Section 1.4 for the definition). We
will show that� is a subset of the set of elements inAHam .M/ that generate undistorted
cyclic subgroups (see Proposition 2.1), and that in certain manifolds � is a C 1-open
and dense set in AHam .M/.

In Section 2 we prove that � is C 1-open.
In our proof that � is C 1-dense we restrict to the case where the set of elements

in AHam .M/ that have an elliptic periodic point is C 1-dense. In Section 3 we give
a method to check that this is the case by examining the full Chern class of TM .
We show that if there is no even factorization then the set of elements in AHam .M/

that have an elliptic periodic point is C 1-dense. First we follow Bennequin (see [2])
and show that if there is no even factorization then there are no partially hyperbolic
symplectomorphisms. Next we use a result by Saghin and Xia [12] which states that
a C 1-generic symplectomorphism which is not partially hyperbolic has an elliptic
periodic point. (The definitions of elliptic periodic points and partially hyperbolic
symplectomorphisms are given in the next subsection.)
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In Section 4 we deal with the last step of the proof, which is to show that
for every � 2 AHam .M/ with an elliptic periodic point, we can C 1-perturb � to
Q� 2 eHam.M/ with Q� 2 �. For the main part of the construction of the perturbation
we follow Bonnati, Crovisier, Vago and Wilkinson [1]. This shows that if the set
of elements in AHam .M/ that have an elliptic periodic point is C 1-dense, then � is
C 1-dense in AHam .M/.

In Section 5 we discuss whether our results can be applied to Ham .M/, that is
whether a C 1-generic element inHam .M/ generates an undistorted cyclic subgroup
with respect to the Hofer metric.

In Section 6 we give examples of manifolds that satisfy the requirements on the
full Chern class. For these manifolds a C 1-generic element in AHam .M/ generates
an undistorted cyclic subgroup.

1.3. Partially hyperbolic maps and elliptic periodic points. LetM 2n be a closed
symplectic manifold such that H 1.M/ D 0, and let f 2 Ham.M/. In this section
and also throughout the paper we assume that an auxiliary Riemannian metric has
been chosen.

A point p 2 M is called an elliptic l-periodic point if f l.p/ D p and all of the
eigenvalues of dp.f l/ are simple, not real and of norm 1.

A continuous splitting of the tangent bundle TM D A˚ B is called invariant if
it is invariant under df . For an invariant splitting we say that A dominates B if there
exists m > 0 such that for every x 2 M and any two unit vectors u 2 Ax; v 2 Bx ,
the following inequality holds

kdxf
m.u/k � 2kdxf

m.v/k:

A diffeomorphism f is called partially hyperbolic if the following conditions
hold:

(1) There is an invariant splitting TM D Eu˚Ec˚Es with at least two of them
non-trivial.

(2) Eu is uniformly expanding, i.e. there exist ˛ > 1 and a > 0 such that
kdf k.v/k � a˛kkvk for all v 2 Eu; k 2 N.

(3) Es is uniformly contracting, i.e. there exist ˇ > 1 and b > 0 such that
kdf �k.u/k � bˇkkuk for all u 2 Es; k 2 N.

(4) Eu dominates Ec , and Ec dominates Es .

If f is a partially hyperbolic symplectomorphism, then one can choose the
splitting so that rank.Eu/ D rank.Es/ (see [12, Lemma 8]).
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Let Symp1.M/ be the set of all C 1 symplectomorphisms, and

Symp.M/ � Symp1.M/

be the set of all C1 symplectomorphisms. A result by Saghin and Xia states that
there exists a C 1-open and dense U � Symp1.M/ such that every f 2 U is either
partially hyperbolic or has an elliptic periodic point, see [12]. See also [6] for a
similar and independent result by Horita and Tahzibi.

Note that since U is open, U\Symp.M/ isC 1-dense in Symp.M/. We get that
in a C 1-dense subset, a C1 symplectomorphism which is not partially hyperbolic
has an elliptic periodic point. In the case where H 1.M/ D 0, the result is also
true for a C 1-dense subset of the set of Hamiltonian diffeomorphisms. This is a
simple consequence of the fact that the group of symplectomorphisms is locally path
connected and the subgroup of Hamiltonian diffeomorphisms is exactly the connected
component of the identity. Since � WAHam .M/! Ham .M/ is open and continuous,
we get the following
Theorem 1.6. The set�

Œfftg� 2AHam .M/ W
f1 is partially hyperbolic, or
f1 has an elliptic periodic point

�
is C 1-dense in AHam .M/.

1.4. Asymptotic spectral invariants.
Definition 1.7. Let .U 2n; !/ be an open symplectic manifold. Let � 2 AHam .U /
be an element such that there is a representative generated by a compactly supported
Hamiltonian function fFtgt2Œ0;1�. We define the Calabi invariant of � to be

Cal .�/ D
Z 1

0

Z
U

Ft!
n dt:

It is known that the Calabi invariant is well defined and it defines a homomorphism
from AHam .U / to R (see [8]).
Definition 1.8. A function c W AHam .M/ ! R is called a subadditive spectral
invariant if
(1) (conjugation invariance) 8�; 2AHam .M/; c.� ��1/ D c. /.
(2) (subadditivity) c.� / � c.�/C c. /.
(3) (stability)

R 1
0
min.Ft � Gt /dt � c.�/ � c. / �

R 1
0
max.Ft � Gt /dt; where

� and  have representatives that are generated by compactly supported
Hamiltonian functions F and G respectively.

(4) (spectrality) c.�/ 2 spec.�/ for all non-degenerate � 2AHam .M/.
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Recall that an element Œfftg� 2AHam .M/ is called non-degenerate if the graph
of f1 inM �M is transverse to the diagonal. The action spectrum spec.Œfftg�/ is
the set of all actions AF .y;D/, where F is a compactly supported Hamiltonian that
generates fftg and y is a fixed point of f1.

It is known that for every closed symplectic manifold there exists a subadditive
spectral invariant.

For a subadditive spectral invariant c we can define the asymptotic spectral
invariant as

�.�/ D lim
k!1

c.�k/

k
:

Every asymptotic spectral invariant is homogeneous and the stability property holds.
For an open displaceable set U �M , and an element � 2AHam .M/ supported in U
we have

�.�/ D �V �1 � Cal .�/;

where V D
R
M
!n and Cal .�/ is the Calabi invariant of � if we regard it as an

element of AHam .U /.
Denote

I.�;  / WD j�.� / � �.�/ � �. /j:

It is known that
I � min.q.�/; q. //;

where q.�/ D c.�/C c.��1/. It is also known that for a displaceable set U , one has

sup q.�/ <1;

where the supremum runs over all � 2AHam .M/ supported in U . We denote this
value by

w.U / D sup q.�/:

For the proofs of these facts and for a further discussion on spectral invariants
see [11].

Proposition 1.9. Let �; 2 AHam .M/. Assume that � D  � and that � is
supported in a displaceable set U �M . Then I.�;  / D 0.

Proof.

�.� / D
�.�k k/

k
D
k�.�/C k�. /C C.k/

k
;

where C.k/ is a constant depending on k with jC.k/j � w.U /. We get that

�.� / D �.�/C �. /C
C.k/

k

k!1
����! �.�/C �. /:
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2. Proof that � is open

LetM be a closed symplectic manifold withH 1.M/ D 0.
Proposition 2.1. For � 2AHam .M/, if �.�/ ¤ 0 then f�ngn2Z is undistorted.

Proof. It is known that (see [11])

d.1; �/ � j�.�/j:

The claim thus follows in view of the homogeneity of � .

Put
� D f� 2AHam .M/ W �.�/ ¤ 0g:

Theorem 2.2. The set � �AHam .M/ is C 1-open.

This is an easy consequence of the following.
Theorem 2.3. The function � WAHam .M/! R is C 1-continuous.

Proof. From the stability property of � together with the bi-invariance of the Hofer
metric, we get that it is enough to show that for every � > 0 if � isC 1-close enough to
the identity then there exists a Hamiltonian functionH that generates a representative
such that

max.jHt j/ < �

for each t .
Let us recall some facts about symplectomorphisms which are C 1-close to

the identity. Let � � .M � M;�! ˚ !/ be the diagonal. There is a
symplectomorphism ‰ from a neighborhood of the diagonal

N.�/ �M �M

to a neighborhood of the zero section

N.M0/ � T
�M

with the symplectic form d�can defined on T �M . For a C 1-small Hamiltonian
diffeomorphism f , the image ‰.graph.f // is the graph of an exact 1-form dF

(see [8]).
For a smooth path of exact 1-forms dGt such that for each t , dGt is close enough

to the zero section and G0 D 0, there exist a Hamiltonian isotopy fgtg such that
graph.gt / D ‰�1.graph.dGt //. In addition, every loop of exact 1-forms dGt is
homotopic to the zero section by the homotopy

fd.s �Gt /gs2Œ0;1�:



28 A. Kislev CMH

This proves the following

Proposition 2.4. Let ft and gt be two paths of Hamiltonian diffeomorphisms with
f0 D g0 D 1 and f1 D g1 that are C 1-close enough to the identity. Then they are
homotopic with fixed end points.

Let fgtg be a representative of � 2AHam .M/which is C 1-close to 1. We get that
‰.graph.gt // D graph.dGt / for some Gt W M ! R. Denote F D G1. There
is a Hamiltonian isotopy fftg, such that ‰.graph.ft // D graph.d.t � F //. From
Proposition 2.4, we get that fftg is a representative of �.

Claim. k@ft
@t
k ! 0 in C 0 as fftg ! 1 in C 1.

Before proving the claim, we use it to complete the proof of Theorem 2.3. By
the claim, there exists a normalized Hamiltonian H that generates fftg which is a
representative of �, such that ksgradHtk is arbitrarily small. SinceM is compact,
there exists a constant K such that

jHt .x/j < K � sup
y2M

ksgradHt .y/k for all x 2M and t 2 Œ0; 1�:

This proves Theorem 2.3.

Proof of the claim. Since ‰.graph.ft // D graph.d.tF //, there exists a path of
diffeomorphisms ht WM !M such that

‰ ı grft D d.t � F / ı ht ;

where grft WM !M �M is defined by

grft .x/ D .x; ft .x//:

Denote by �1; �2 W M � M ! M the projections to the first and second factor
respectively. We get that

1 D �1 ı‰
�1
ı d.tF / ı ht ;

ft D �2 ı‰
�1
ı d.tF / ı ht :

By differentiating both identities in t , one sees that k@ft
@t
k is the sum of terms that tend

to 0 in C 0 as fftg ! 1 in C 1 and F ! 0 in C 0. (Note that for v 2 Tgraph.ft /,
k�1�vk�k�2�vk

kvk
is arbitrarily small.)
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3. Obstruction to the existence of a partially hyperbolic symplectomorphism

The next theorem provides an obstruction to the existence of a partially hyperbolic
symplectomorphism. It will enable us to give examples of manifolds that do not
admit partially hyperbolic symplectomorphisms. From Theorem 1.6 we get that for
these manifolds the set of elements whose time-1-map have elliptic periodic points
is C 1-dense in AHam .M/.

The idea of the obstruction has been announced by Bennequin (oral communica-
tion) and is presented in [2].

Theorem3.1. LetM 2n be a closed symplecticmanifoldwith non vanishing topChern
class, andf 2 Symp.M/ a partially hyperbolicHamiltonian diffeomorphism. Then
there exists an even factorization c.M/ D ˛ˇ of the full Chern class ofM .

Theorem 3.2. Let M 2n be a closed symplectic manifold and suppose that there is
an isotropic subbundle L, i.e. L � L! , and rank.L/ D i . Then there exists a
factorization of the full Chern class c.M/ D ˛ˇ where ˛ and ˇ are integral classes,
˛ has only terms of even degree, deg.˛/ � i and deg.ˇ/ � n � i .

Proof that Theorem 3.2 implies Theorem 3.1. There exists a constant Q > 0 such
that for all v1; v2 2 TM ,

!.v1; v2/ � Qkv1kkv2k:

For x 2M and u1; u2 2 Esx ,

j!.u1; u2/j D j!.dxf
k.u1/; dxf

k.u2//j � Qkdxf
k.u1/kkdxf

k.u2/k

� b2ˇ�2kQku1kku2k
k!1
����! 0:

We get that !.u1; u2/ D 0, so Es � .Es/! . Hence Es is an isotropic subbundle,
and so there exists a factorization c.M/ D ˛ˇ, where ˛ and ˇ are integral classes
and ˛ has only terms of even degree. Let us prove that deg.˛/ cannot be zero or n.
This will show that c.M/ D ˛ˇ is an even factoriztion.

Since f is symplectic, we can assume that rank.Eu/ D rank.Es/ > 0. Denote
rank.Es/ D i . Note that on the one hand deg.c.M// D n because cn.M/ ¤ 0. On
the other hand,

deg.c.M// � deg.˛/C deg.ˇ/ � i C .n � i/ D n:

Hence all inequalities are actually equalities and deg.˛/ D i > 0.
If deg.˛/ D n, we get that rank.Es/ D rank.Eu/ D n. Hence rank.Ec/ D 0.

On the other hand f is isotopic to 1, so rank.Ec/ > 0 (see [13]) and this is a
contradiction. We get that 0 < deg.˛/ < n. This completes the proof.
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Proof of Theorem 3.2. Let J be a compatible almost complex structure. The
subbundle L˚ JL is symplectic and L; JL are Lagrangian subbundles of L˚ JL.
The subbundle L ˚ JL is also isomorphic to the complexification of L. From
[9, Chapter 15] we get that in H�.M IZ/ the odd Chern classes of L ˚ JL are of
order 2. Hence when passing to rational coefficients the odd Chern classes vanish.
We get that c.L˚ JL/ has only terms of even degree. We can write

TM D .L˚ JL/˚ .TM=.L˚ JL//;

where the subbundle .TM=.L ˚ JL// is also symplectic. Put ˛ D c.L ˚ JL/

and ˇ D c.TM=.L ˚ JL//. Recall that Chern classes are integral classes. This
completes the proof.

4. C 1-generic elements generate undistorted cyclic subgroups

LetM be a closed symplectic manifold withH 1.M/ D 0, and let � be an asymptotic
spectral invariant.

The following theorem shows that if the manifold has the property that a
C 1-generic Hamiltonian diffeomorphism has an elliptic periodic point, then the
set � is C 1-dense in AHam .M/.
Theorem 4.1. Let M be a closed symplectic manifold with H 1.M/ D 0, and
� 2AHam .M/ such that its time-1-map has an elliptic periodic point. Then for every
C 1-open neighborhood U �AHam .M/ of �, there exists 2 U such that �. / ¤ 0.

Proof of Theorem 1.3. Theorem 2.2 and Theorem 4.1 show that if a C 1-generic
element has the property that its time-1-map has an elliptic periodic point then the
set � is C 1-open and dense in AHam .M/. From Proposition 2.1 we get that

� � f� 2AHam .M/ W f�ngn2Z is undistortedg:

Finally, from Theorem 3.1 we get that if cn.M/ ¤ 0 and there is no even
factorization then there are no partially hyperbolic symplectomorphisms and hence,
by Theorem 1.6, a C 1-generic Hamiltonian diffeomorphism has an elliptic periodic
point.

The rest of this section is dedicated to the proof of Theorem 4.1, in which we
follow the construction in [1].

The idea of the proof is to first construct an element Œfgtg� 2AHam .M/ which
is C 1-close to � and such that there exists a small open set U � M and an integer
k 2 N such that gkjU D 1 and gj .U / \ U D ; for all j < k.

The second step is to perturb g inside U in order to change the value of the
asymptotic spectral invariant.
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We start with the following lemma.

Lemma 4.2. Let Œfftg� 2AHam .M/, and denote f D f1. Let p 2 M be an elliptic
l-periodic point of f . Then for any C 1-open neighborhood U of Œfftg� and any
open neighborhood V � M of p, there exists an element Œfgtg� 2 AHam .M/ and
ı1 > ı2 > 0 such that Bı1.p/ lies in a Darboux chart around p and

(1) Œfgtg� 2 U .

(2) Bı1.p/ � V .

(3) g agrees with f on the orbit of p, i.e. gi .p/ D f i .p/;8i 2 f1; : : : ; lg.

(4) g agrees with f outside the length l-orbit of Bı1.p/, i.e.

gjMn[l
iD1

f i .Bı1 .p//
D f jMn[l

iD1
f i .Bı1 .p//

:

(5) gl jBı2 .p/ D T , where T is linear with simple, non real eigenvalues of the

form e˛j 2�
p
�1 with ˛j rational. In this case we say that T has eigenvalues

with rational angles.

Proof. The idea of the proof is to perturb the generating function of f . We divide
the proof into three steps. The first step is to construct a symplectomorphism that
would be arbitrarily C 1-close to f and such that all the properties asked for the
time-1-map g hold, except possibly that its eigenvalues are not rational angles. The
second step is to do another perturbation to get a symplectomorphism g that satisfies
all the conditions of the time-1-map g in the lemma. The last step will be to define a
Hamiltonian isotopy from f to g, and define Œfgtg� to be the juxtaposition of Œfftg�
and this Hamiltonian isotopy.

Let us begin with a simpler case. Let f W R2n ! R2n be a symplectomorphism
with f .0/ D 0. Consider the symplectic matrix df .0/ W R2n ! R2n. We wish to
construct a symplectomorphism g such that for a small ı > 0,

gjBı.0/ D df .0/;

gjR2nnB2ı.0/ D f:

Recall that in a small neighborhood of 0, there exists a generating function for f .
Denote f .p1; q1/ D .p2; q2/. Let S W R2n.q; q0/ ! R be the generating function
of f , i.e.

@S

@q
.q1; q2/ D �p1;

@S

@q0
.q1; q2/ D p2:
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Since f .0/ D 0 we can write

S D hq;M1qi C
˝
q;M2q

0
˛
C
˝
q0;M3q

0
˛
C k.q; q0/;

where M1;M2;M3 are matrices and k.q; q0/ has only terms of order greater than
two. Define a smoothened step function aı W R! R

aı.x/ D

(
0 x < ı

1 x > 2ı:

Write

QS D hq;M1qi C
˝
q;M2q

0
˛
C
˝
q0;M3q

0
˛
C aı.k.q; q

0/k/k.q; q0/:

We can choose ı so small that there exists a symplectomorphism g such that QS is its
generating function in a neighborhood that contains B2ı.0/. Note that

gjBı.0/ D df .0/;

gjR2nnB2ı.0/ D f:

In order for g to be C 1-close to f , we need QS to be C 2-close to S . One can check
that the norm of the difference between the second derivative of QS and the second
derivative of S is O.ı/. So we can choose ı so small that g is arbitrarily C 1-close
to f . Note that this construction fails if we would try to make g be C k-close to f ,
for k > 1.

Let us return to the proof of the lemma. For each 0 � i < l choose
a Darboux chart Ui around f i .p/ such that Ui \ Uj D ;, and f i .p/ is
identified with 0 2 R2n. Take a ball B0 � U0 such that f i .B0/ � Ui , and
f l.B0/ � U0. Since f i .B0/ and f iC1.B0/ are subsets of Darboux charts, we
can treat f jf i .B0/ W f

i .B0/! f iC1.B0/ as a symplectomorphism between subsets
of R2n. From the construction above, we get a symplectomorphism Ng which is a
linear map in a small ball inside f i .B0/ for each i , Ng D f outside a larger ball
inside f i .B0/ for each i , and Ng.0/ D 0 for each i , that is Ngi .p/ D f i .p/ for each i .
Note also that in a small ball B inside B0, Ngl W B ! Ngl.B/ is the product of all
the matrices df i .p/.f jf i .B0//, so it is also linear. Denote this linear map by NT . We
get that the symplectomorphism Ng satisfies almost all the properties asked for the
time-1-map in the lemma. The only property that possibly does not hold is that the
eigenvalues of NT are with rational angles.

Our next task is to find a C1 perturbation g such that gl restricted to a small
enough ball inside B0 is a matrix T whose eigenvalues are with rational angles.
Since p is an elliptic point of f l , we can choose such a symplectic matrix T which
is close to NT . Denote by H1 the Hamiltonian function defined on f l�1.B0/ that
generates df l�1.p/.f jf l�1.B0// as its time-1-map. Let Q be the symplectic matrix
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such that NTQ D T . Let H2 be the Hamiltonian function such that H1 C H2
generates df l�1.p/.f jf l�1.B0//Q as its time-1-map. Choose a cutoff function a
supported in a small ball inside f l�1.B0/, and define the Hamiltonian function of
the perturbed symplectomorphism in f l�1.B0/ to be H1 C a � H2. Denote this
new symplectomorphism by g. Note that outside a small ball inside f l�1.B0/,
g D Ng, hence g is a well defined symplectomorphism ofM . SinceH2 can be chosen
arbitrarily small, we get that g is arbitrarily C1-close to Ng. Recall that

NT D

l�1Y
iD0

df i .p/.f jf i .B0//;

so we get that in a small ball inside B0,

gl D

 
l�2Y
iD0

df i .p/.f jf i .B0//

!
df l�1.p/.f jf l�1.B0//Q D

NTQ D T:

Hencewe can construct a symplectomorphismg such that it is arbitrarilyC 1-close
to f , and it satisfies all the conditions in the lemma.

Since g is C 1-close to f , we can construct a path of symplectomorphisms
from f to g such that all symplectomorphisms in the path are C 1-close to f (see
[8, Theorem 10.1 and its proof]). From the fact that H 1.M/ D 0, we get that this
path is a Hamiltonian isotopy. Define Œfgtg� to be the juxtaposition of fftg and this
Hamiltonian isotopy.

Proof of Theorem 4.1. By Lemma 4.2 we find Œfgtg� 2 AHam .M/ that satisfies all
the conditions in the lemma. If �.Œfgtg�/ ¤ 0 then we are done, so suppose
�.Œfgtg�/ D 0. Since all the eigenvalues of T have rational angles, there is an
integer q (the smallest common multiple of the denominators) such that

gql jBı2 .p/
D 1:

Let k 2 N be the smallest number such that gkjBı2 .p/ D 1. There exists x 2 Bı2.p/
such that gj .x/ ¤ x for all 0 < j < k. By continuity there is a ball B � Bı2.p/
around x, such that

gj .B/ \ B D ;;

for all 0 < j < k. We can choose B such that the open set [kjD1g
j .B/ is

displaceable.
LetH WM ! Œ0;1/ be a non-vanishing time independent Hamiltonian function

supported in B . For � > 0, let fh0�t g be the Hamiltonian isotopy generated by � �H .
Put

h�t .x/ D

(
gj ı h0�t ı g

�j .x/ x 2 gj .B/; j D 0; : : : ; k � 1

x otherwise
:
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Since [kjD1g
j .B/ is displaceable,

�
�
Œfh�t g�

�
D �

1R
M
!n

Cal .h�/ D �
kR

M
!n

Cal .h0�/ < 0:

The important part of this construction is that we get that the time-1-maps commute,
i.e. h�1 ı g1 D g1 ı h�1.

Claim. For a small enough �,

Œfgth
�
t g� D Œfh

�
t gtg�:

Proof of the claim. For small enough �, the path fgth�t g�1t .h�t /
�1g is arbitrarily

C 1-close to 1. From this and from Proposition 2.4 we get that

Œfgth
�
t g
�1
t .h�t /

�1
g� D 1:

This completes the proof of the claim.

From Proposition 1.9 we get that

�.Œfgth
�
t g�/ D �.Œfgtg�/C �.Œfh

�
t g�/ D �.Œfh

�
t g�/ < 0:

We can choose � so small that Œfgt ı h�t g� 2 U . This completes the proof.

5. AHam vs. Ham

Until now we discussed the notion of distortion of cyclic subgroups ofAHam .M/.
One can ask if the same construction works if one considers undistorted cyclic
subgroups of Ham .M/ equipped with Hofer’s metric (also denoted d ).

Let � W AHam .M/ ! Ham .M/ be the projection. Since � is continuous and
open, we get that if a set S � AHam .M/ is open or dense in AHam .M/, then
�.S/ � Ham .M/ is open or dense respectively. In the case where � descends
to Ham .M/ we get that �.�/ � Ham .M/ is a C 1-open and dense subset of the set
of Hamiltonian diffeomorphisms that generate undistorted cyclic subgroups. In the
case where � descends our results thus extend to Ham .M/.
Theorem 5.1. LetM be a closed symplectic manifold such that

(1) H 1.M/ D 0.

(2) The top Chern class does not vanish, cn.M/ ¤ 0.

(3) The full Chern class does not have an even factorization.

(4) There exists an asymptotic spectral invariant that descends to Ham .M/.
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Then the set of elements in Ham .M/ that generate undistorted cyclic subgroups has
a C 1-open and dense subset.

In [7] McDuff gives conditions under which the asymptotic spectral invariants
descend to Ham .M/. In particular, we get that for CPn the asymptotic spectral
invariants descend to Ham .CPn/. In Example 6.3 we show that there is no even
factorization of c.TCPn/ and this proves Theorem 1.5.

6. Examples

In this section we give examples of manifolds that satisfy the requirements of
Theorem 1.3. For these manifolds a C 1-generic element of AHam .M/ generates
an undistorted cyclic subgroup.

Example 6.1. LetM D S2 be the 2-sphere. Note that c1.M/ ¤ 0 andH 1.M/ D 0,
and obviously there is no even factorization of the full Chern class.

Example 6.2 (Proof of Theorem 1.4). LetM 4 be a 4-dimensional closed symplectic
manifold such that H 1.M/ D 0 and M has a non-vanishing top Chern class,
c2.M/ ¤ 0. Suppose that there is an even factorization c.M/ D ˛ˇ. This means
that 0 < deg.˛/ < 2 and ˛ has only terms of even degree, which is impossible. This
proves Theorem 1.4.

Example 6.3 (Proof of Theorem 1.5). LetM D CPn. The full Chern class is

c.M/ D .1C a/nC1 � anC1;

where a is a suitably chosen generator ofH 2.M/ (see [9]). The top Chern class is

cn.M/ D nC 1 ¤ 0:

Write

c.M/ D C

nY
iD1

.a � ai /

where C is a constant and
ai D

1

zinC1 � 1
;

where znC1 is a primitive n C 1-st root of unity. Suppose that there is an even
factorization c.M/ D ˛ˇ. Note that we assume that deg.˛/ C deg.ˇ/ � n so
when calculating the product ˛ˇ the term anC1 will not appear, so in our calculation
we can ignore the relation anC1 D 0, and consider c.M/; ˛; ˇ as elements in the
polynomials ring in the variable a. Because we assume that deg.˛/ > 0, there exists
a root x of the polynomial c.M/ that is a root of ˛. Because ˛ has only terms of even
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degree, we get that �x is also a root of ˛ and hence a root of c.M/. Hence there are
1 � i1, i2 � n such that ai1 D �ai2 , i.e.

1

z
i1
nC1 � 1

D
�1

z
i2
nC1 � 1

z
i1
nC1 C z

i2
nC1 D 2:

Note that jzi1nC1j D 1 and jz
i2
nC1j D 1 but their sum is 2 so we get that both are equal

to 1. This is a contradiction. Hence CPn satisfies the requirements of Theorem 1.3.
This together with Theorem 5.1 proves Theorem 1.5.
Example 6.4. LetM be the 1-point blow-up of CP3. We will show thatM satisfies
the conditions of Theorem 1.3. The cohomology ring of M is generated by 2
generators, the pull-back a 2 H 2.M/ of a generator of H�.CP3/ and the Poincaré
dual b 2 H 2.M/ of the exceptional divisor, with the relations

ab D 0; b3 D a3:

The full Chern class ofM is

c.M/ D 1C 4aC 6a2 C 6a3 � 2b:

To see this let Na be the corresponding generator ofH�.CP3/, and write

c.CP3/ D 1C 4 NaC 6 Na2 C 4 Na3:

One can use this to compute the first and second Chern class ofM by a formula given
in [4, pp. 608–609] and get that

c1.M/ D 4a � 2b;

c2.M/ D 6a2:

We are only left with computing the top Chern class. Since the top Chern class is
equal to the Euler class, in order to calculate it one needs to know the alternating
sum of the Betti numbers. In our situation the odd cohomology groups vanish, so we
only need to count the dimensions of the even cohomology groups. The pull back
of H�.CP3/ contributes four even dimensions (generated by 1; a; a2; a3), and by
performing the blow-up we added an additional two even dimensions (generated by b
and b2). Hence we get that the alternating sum of the Betti numbers is 6, and this
gives us the final formula for the full Chern class. See also [3, Example 15.4.2(c)].

Suppose that c.M/ D ˛ˇ is an even factorization. For a general ˛ 2 H�.M/

with even degrees and a general ˇ 2 H�.M/, one can write

˛ D 1C n1a
2
C n2b

2;

ˇ D 1Cm1aCm2b:
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Calculate

˛ˇ D .1C n1a
2/.1Cm1a/C n2b

2
Cm2b C n2m2b

3
D c.M/:

We get that m2 D �2; n2 D 0. Since the coefficient of b3 is zero,

.1C n1a
2/.1Cm1a/ D 1C 4aC 6a

2
C 6a3 WD q.a/:

We get from the factorization of q above that there exist two roots ai ; aj of q with
ai D �aj . The roots of the polynomial q are

a1 � �0:38839; a2 � �0:30581 � 0:57932
p
�1; a3 � �0:30581C 0:57932

p
�1;

that is q does not have roots such that ai D �aj , a contradiction.
HenceM satisfies the conditions of Theorem 1.3.

Example 6.5. Let M D CP2 � CP2. The cohomology of M is generated by two
generators a; b with the relations a3 D b3 D 0. The full Chern class is

c.M/ D .1C 3aC 3a2/.1C 3b C 3b2/:

Write a general even factorization

c.M/ D ˛ˇ:

Since 0 < deg.˛/ < 4 and it is even, we get that deg.˛/ D 2. From the equation
c.M/ D ˛ˇ we can deduce that deg.˛/ C deg.ˇ/ � 4. From the definition of an
even factorization deg.˛/C deg.ˇ/ � 4 and hence deg.ˇ/ D 2. One can write

˛ D 1C c1a
2
C c2b

2
C c3ab;

ˇ D 1C d1aC d2a
2
C d3b C d4b

2
C d5ab:

Look at the equality c.M/ D ˛ˇ. Each coefficient in c.M/ gives us an equation for
the variables

c1; c2; c3; d1; d2; d3; d4; d5:

Hence, we have 8 equations and 8 variables. One can solve these equations and get
two sets of solutions where each of them has non-integer values. Since ˛ and ˇ
are integral classes, this is a contradiction. Hence c.M/ has no even factorization,
andM satisfies the conditions of Theorem 1.3.
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