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On the rank one abelian Gross–Stark conjecture

Kevin Ventullo

Abstract. Let F be a totally real number field, p a rational prime, and χ a finite order totally odd
abelian character of Gal(F/F ) such that χ(p) = 1 for some p|p. Motivated by a conjecture of
Stark, Gross conjectured a relation between the derivative of the p-adic L-function associated
to χ at its exceptional zero and the p-adic logarithm of a p-unit in the χ component of F×χ . In a
recent work, Dasgupta, Darmon, and Pollack have proven this conjecture in the rank one setting
assuming two conditions: that Leopoldt’s conjecture holds for F and p, and that if there is only
one prime of F lying above p, a certain relation holds between the L -invariants of χ and χ−1.
The main result of this paper removes both of these conditions, thus giving an unconditional
proof of the rank one conjecture.
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1. Introduction

Let F be a totally real field of degree g > 1. Fix a prime p and embeddings Qp ←↩
Q ↪→ C. Let χ : Gal(F/F )→ Q× be a totally odd character of conductor n, andFχ
the cyclic extension of F cut out by χ. Let ω : Gal(Q(µ2p)/Q) → (Z/2pZ)×

denote the Teichmüller character. Let S be any finite set of primes of F including all
archimedean primes. Associated to χ and S is a complex analytic function LS(χ, s)
defined for Re(s) > 1 by

LS(χ, s) =
∑

(a,S)=1

χ(a)N(a)−s =
∏
p6∈S

(1− χ(p)Np−s)−1,

that has a holomorphic continuation to all of C. By Siegel’s rationality theorem,
LS(χ, 1 − k) ∈ Q for k ≥ 1. Using the functional equation and the fact that χ is
odd, one can show that the order of vanishing of LS(χ, s) at s = 0 is equal to the
number of v ∈ S such that χ(v) = 1.

Let us now assume the set S contains all places above p. Let F∞ be the
cyclotomic Zp-extension of F , and Γ = Gal(F∞/F ), which is canonically
isomorphic to a subgroup of 1+2pZp. For use later, we fix a topological generator u
of Γ, which gives an isomorphism Zp[[Γ]] ∼= Zp[[T ]] =: Λ via u 7→ 1 + T . We
will identify u with its image in 1 + 2pZp. A character of Gal(F/F ) is said to
be of type S, resp. type W , if the extension it cuts out is disjoint from F∞, resp.
contained in F∞. Since Γ is a direct summand of Gal(F ab/F ), any character can be
decomposed as a product of a type S character and a type W character, which we
write as χ = χSχW .

By work of Deligne and Ribet [5], there is a pseudo-measure LS,χω ∈
Frac(Zp[[Γ]]) that interpolates classical L-values via the formula

χkcycω
−kψ(LS,χω) = LS(ψχω1−k, 1− k).

where ψ is any character of type W . We also use LS,χω to denote the corresponding
element of FΛ := Frac(Λ) via the isomorphism above. Then the previous formula
can be written

LS,χω(ζuk − 1) = LS(ψχω1−k, 1− k),

where ζ = ψ(u). Taking ζ = 1, we get a p-adic analytic function

Lp,S(χω) : Zp → Qp

s 7→ LS,χω(u1−s − 1).

This is usually referred to as the p-adic L-function of the even character χω. We see
from the above properties that it satisfies

Lp,S(χω,−n) = LS(χω−n,−n) for all n ≥ 0.



Vol. 90 (2015) On the rank one abelian Gross–Stark conjecture 941

It follows that if LS(χ, s) vanishes at s = 0, then so does Lp,S(χω, s). In this
setting, Gross has formulated a conjecture that one can think of as comparing the
p-adic derivative of the left hand side with the archimedean derivative of the right
hand side. Suppose that ords=0LS(χ, s) = 1. Then there is a unique p ∈ S such
that χ(p) = 1. If p - p, there is a simple relation between the respective derivatives
coming from the relation between Lp,S\{p}(χω, s) and LS\{p}(χω, s). If p|p, a
more sophisticated construction is required.

Let E be a finite extension of Qp containing all values of χS and χW . Let P
be a prime of Fχ lying over p. By our assumptions on χ and S, the subspace Uχ
of O×Fχ,S ⊗ E on which Gal(Fχ/F ) acts by χ−1 is one-dimensional over E. Let
0 6= uχ ∈ Uχ. Define

Lalg(χ) :=
((logp ◦NormFχ,P/Qp)⊗ id)(uχ)

(ordP ⊗ id)(uχ)
∈ E.

In [6], Gross conjectures, and proves for F = Q, the following
Conjecture 1. Let F be a totally real number field, p a prime, χ a totally odd finite
order character of F such that χ(p) = 1 for some p|p, S the set of primes of F
dividing cond(χ)p∞, and R = S \ {p}. Then

i. If LR(χ, 0) = 0, then L′p,S(χω, 0) = 0.
ii. If LR(χ, 0) 6= 0, then L′p,S(χω, 0) = Lalg(χ)LR(χ, 0).
The first part of this conjecture follows from the stronger statement that the

order of vanishing of the p-adic L-function at an exceptional zero is greater than or
equal to that of the archimedean L-function (it is widely believed that these orders
of vanishing are equal). In [4, Lemma 1.2], this stronger statement is shown to
follow from the Iwasawa Main Conjecture for the character χ (they assume χ is of
type S, but this is actually not necessary; see Lemma 1 below). Unfortunately, the
proof of the Main Conjecture is not quite complete when p = 2 (see [13, §11]).
However, the inequality between orders of vanishing has recently been shown for
all p by Speiss [11] and Charollois–Dasgupta [2], by entirely different methods.
Thus, Conjecture 1.i is known in all cases.

In [4], Conjecture 1.ii is proven under the following assumptions:
• Leopoldt’s Conjecture is true for F and p.
• If p is the unique prime above p, then

ordk=1(Lan(χ, k) + Lan(χ−1, k)) = ordk=1Lan(χ−1, k),

where

Lan(χ, k) :=
−Lp,S(χω, 1− k)

LR(χ, 0)

Lan(χ) :=
d

dk
Lan(χ, k)|k=1.
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In this paper we prove

Theorem 1. Conjecture 1 is true unconditionally.

In the above notation, Gross’s conjecture can be stated as Lan(χ) = Lalg(χ).
Let dχ denote the order of vanishing of Lan(χ, k) at k = 1, and similarly
for dχ−1 . Then Dasgupta–Darmon–Pollack’s second condition is equivalent to
assuming dχ ≥ dχ−1 , and if they are equal, the leading terms of Lan(χ, k) and
Lan(χ−1, k) at k = 1 shouldn’t cancel.

To remove Leopoldt’s conjecture, we construct in Section 4 a certain ordinary
family of parallel weight Hilbert modular forms with weight zero specialization
equal to the constant form 1 (see Theorem 2). In Section 2, we recall the conditional
proof of Conjecture 1 given in loc. cit., but assuming the existence of this family so
as to remove Leopoldt from the hypotheses. In Section 3, we remove the condition
on L -invariants by breaking into two cases: first assuming dχ < dχ−1 , and second
assuming dχ = dχ−1 and the leading terms cancel. At the end of Section 4, we use
Theorem 2 to give a simplified proof of the “Leopoldt” part of the Iwasawa Main
Conjecture.

Acknowledgements. I am grateful to Samit Dasgupta, Henri Darmon, and Rob
Pollack for their beautifully written paper to which this paper owes its existence. I
am especially grateful to Samit for several helpful conversations, encouragement,
and for suggesting the method by which we construct the Λ-adic form in Section 4.

I am also grateful to Haruzo Hida for answering my questions and providing
helpful comments.

Finally, I want to thank Chandrashekhar Khare for his guidance and support, as
well as suggesting a careful reading of Dasgupta–Darmon–Pollack’s work.

2. Dasgupta–Darmon–Pollack’s Proof

2.1. Conjecture 1.i. We begin by showing the Iwasawa Main Conjecture implies
part i. of Conjecture 1.

Lemma 1. Let χ be a finite order character of F . If IMC holds for (χS, p) (e.g. if
p > 2) then

ords=0Lp,S(χω, s) ≥ ords=0LS(χ, s).

Proof. We may assume S is minimal, i.e. consists only of the primes dividing
cond(χ)p∞. Let d = ords=0LS(χ, s); by minimality of S, this is just the number
of primes p|p in F for which χ(p) = 1. Let ζ = χW (u). Then

ords=0Lp,S(χω, s) = ordT=u−1Lχω = ordT=ζu−1LχSω.
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Let Fχ,∞− be the maximal anticyclotomic Zp-extension of Fχ, and Fχ,∞−,ur the
maximal subextension that becomes unramified overFχ,∞ := FχF∞. The following
fact seems to be well known, but we include a proof here for completeness:

dimE(Gal(Fχ,∞−,ur/Fχ)⊗Zp E)χ
−1

= d. (1)

To see this, note that by class field theory,

(Gal(Fχ,∞−/Fχ)⊗Zp E)χ
−1 ∼=

∏
OF⊃p|p

 ∏
OFχ⊃P|p

UP ⊗Zp E

χ−1

,

where UP denotes the units in the P-adic completion of OFχ , and the superscript
denotes the χ−1 component of this space as a Gal(Fχ/F )-module. The maximal
quotient of this group that becomes unramified over Fχ,∞ is obtained by taking the
quotient of each UP by the kernel of the norm map to Z×p . We can write this as

∏
OF⊃p|p

 ∏
OFχ⊃P|p

E

χ−1

,

where Gal(Fχ/F ) acts by permuting the factors inside the parentheses for each p.
Since χ−1 is by definition a faithful character of Gal(Fχ/F ), it will appear as
a constituent of the expression inside the parentheses precisely when p splits
completely in Fχ/F , i.e. χ(p) = 1. This proves equation (1).

Now let L∞ be the maximal unramified abelian pro-p extension of Fχ,∞, X =

Gal(L∞/Fχ,∞), and V = X ⊗Zp E. Let V (χ−1
S ) be the eigenspace for the action

of Gal(Fχ,∞/F∞) ∼= Gal(FχS/F ) by χ−1
S . Since Fχ,∞−,ur is certainly a subfield

ofL∞, it follows that (Gal(Fχ,∞−,urFχ,∞/Fχ,∞)⊗ZpE)χ
−1

is a quotient of V (χ−1
S ).

Furthermore, Gal(Fχ,∞/FχS) ∼= Gal(F∞/F ) acts on this quotient by χ−1
W , i.e. by

u 7→ ζ−1.
Thus, if fχ−1

S
(T ) denotes the characteristic polynomial of u−1 acting on V (χ−1

S ),
we have by equation (1),

ordT=ζ−1−1fχ−1
S

(T ) ≥ d.

Finally, if GχSω(T ) denotes the power series defined in [13, Section 1], we have
that

d ≤ ordT=ζ−1−1GχSω(u(1 + T )−1 − 1) = ordT=ζu−1GχSω(T )

= ordT=ζu−1LχSω,

where the inequality follows from the previous inequality and [13, Theorem 1.2], the
first equality is formal, and the second equality essentially follows from the definition
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ofGχSω(T ) in loc. cit. and the fact thatHχSω(T ) never has a pole or zero at ζu−1.
Putting everything together, we have

ords=0Lp,S(χω, s) ≥ d = ords=0LS(χ, s),

as desired.

2.2. Classical and Λ-adic Hilbert Modular Forms. Fix F, p, n as above. Let d be
the different of F . Let UF denote the units of OF , and U+

F the totally positive units.
Let c be a representative of a strict ideal class in OF , and c+ the cone of positive
elements. Let ϕ : (OF/n)× → Q× be a character.

Definition. A complex c-Hilbert modular form of weight k, level n, and character ψ
is a holomorphic function f on the product of g upper half planes, indexed by the
embeddings of F into R, such that for every element of

Γc(n) :=

{(
a b
c d

)
∈ GL2(F )|a, d ∈ O, b ∈ c−1d−1, c ∈ ncd, ad− bc ∈ U+

F

}
,

(2)
we have

(ad− bc)k/2(cz + d)−kf(
az + b

cz + d
) = ϕ(a)f(z).

Here we are using the same shorthand as in [10, §1]. The modularity condition
implies that f has a Fourier expansion

f(z) = a(0) +
∑
b∈c+

a(b)qb

where qb = e2πiTrF/Q(bz).

The space of such forms is finite dimensional; we denote this space by
Mk,c,ψ(n,C). More generally, for any ring R ⊂ C, let Mk,c,ϕ(n, R) denote
the subset of forms with Fourier coefficients in R. Shimura has shown that
Mk,c,ϕ(n,Q) ⊗ C = Mk,c,ϕ(n,C); using the embedding Q ↪→ Qp fixed at the
beginning, we can define Mk,c,ϕ(n, R) for any subring of Qp.

We define a Hilbert modular form (without the c) of weight k and level n to
be a |Cl+(F )|-tuple of c-Hilbert modular forms, where c ranges over a set of
representatives of the strict ideal classes. We will usually write this as f = (fc)c.
For a ray class character χ of conductor dividing n, we will say f has character χ if
S(a)f = χ(a) for almost all prime ideals a of F (see [10, p. 648]). We denote the
space of such forms by Mk(n, χ).

Given a Hilbert modular form f in the latter sense, the normalized Fourier
expansion is defined as follows: for each nonzero integral ideal m, there is a unique c
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in our choice of strict ideal class representatives that we can write as mc = (b) for
some totally positive b ∈ c. Then we let

c(m, f) = ac(b)Nc−k/2.

where ac(b) is the coefficient of qb in fc. For each λ ∈ Cl+(F ), we also set

cλ(0, f) = ac(0)Nc−k/2.

As the notation suggests, neither of these expressions depend on our choice of b.
For each prime ` - n, and each prime q|n, there are Hecke operators T` and

Uq that act on the spaces Mk(n, χ). Fix a rational prime p and suppose p|n for all
p|p. If R is a complete subring of Qp, then we say f is ordinary if ef = f , where
e := limn

∏
p|p U

n!
p .

Let mΛ be the maximal ideal of Λ, Λ(0) its localization at the prime ideal (T ),
and FΛ its field of fractions. For E a finite extension of Qp, let ΛE = E ⊗Zp Λ.
Fix an integral ideal n, and an odd ray class character χ of conductor dividing n.
Following Wiles, we define M ord

Λ (n, χ), the space of level n ordinary Λ-adic forms
of character χ, to be a collection of coefficients

{cλ(0,F )}, {c(m,F )} ∈ Λ

where λ runs over Cl+(F ) and m runs over the nonzero integral ideals of OF , such
that for almost all pairs k ≥ 2, ζ ∈ µp∞ , the reduction of this system modulo the
ideal Pζ,k = (T + 1− ζuk) gives the normalized Fourier coefficients of an ordinary
parallel weight k Hilbert modular form of level n := lcm(p·ord(ζ), n) and character
ψζχω

1−k. We call the reduction mod Pk := P1,k the weight k specialization. For
any subalgebra Λ ⊂ R ⊂ FΛ, we define M ord

R (n, χ) = M ord
Λ (n, χ)⊗ΛR. We also

let S ord
Λ (n, χ),S ord

FΛ
(n, χ), etc. denote the corresponding spaces of cusp forms.

Let Tord denote the ordinary Λ-adic Hecke algebra of level n and character χ, i.e.
the Λ-algebra generated, for ` - np and q|np, by the Hecke operators T`, Uq acting
on M ord

Λ (n, χ). Formulae for this action in terms of q-expansions are given at the
top of page 537 in [12]. The following lemma is probably well known, but as far as
we know has not been written down.

Lemma 2. If the weight k specializations of a collection {cλ(0,F )}, {c(m,F )} ∈
Λ give a classical ordinary form for infinitely many k ≥ 2, then they are classical
for all but finitely many k ≥ 2.

Proof. Fix a weight k and let E be a finite extension of Qp containing all the Hecke
eigenvalues appearing in M ord

k (nS,Qp, χω
1−k). Wiles shows in [12, Thm. 1.4.1]

that the system of Hecke eigenvalues corresponding to any classical eigenform of
weight k can be realized as a quotient of the Λ-adic Hecke algebra Tord/(1 +
T − uk) → E. If m is the corresponding maximal ideal of Tord ⊗ E, the
space M ord

ΛE
(n, χ)/mM ord

ΛE
(n, χ) is nonzero by Nakayama’s lemma. Therefore, any
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classical eigenform can be realized as the weight k specialization of some ΛE-adic
form (i.e. we don’t need to take a finite extension of ΛE ; note that we are not claiming
there is an eigenform defined over ΛE).

We claim that this implies that any ordinary form with coefficients in Qp can be
realized as the specialization of some ΛQp-adic form. Indeed, on the weight k fiber,
we can write the ordinary form as an E-linear combination of eigenforms. Lifting
this linear combination to ΛE gives a form specializing to the one we need, but a
priori only has coefficients in ΛE . However, by averaging over Gal(ΛE/ΛQp), and
observing that specialization intertwines this action with the action of Gal(E/Qp),
we get a ΛQp-adic form with the desired specialization.

The claim implies that the map

M ord
ΛQp

(n, χ)/(1 + T − uk)M ord
ΛQp

(n, χ)→M ord
k (nS,Qp, χω

1−k)

is an isomorphism for almost all k, say k ≥ k0. In particular,

rankΛQp
M ord

ΛQp
(n, χ) = dimQpM

ord
k (n,Qp, χω

1−k)

for almost all k; call this dimension d. We can choose ideals a1, . . . , ad of OF so
that the map

π : M ord
ΛQp

(n, χ)→ (ΛQp)
d

F 7→ (c(ai,F ))i

is injective. After inverting a finite set of primes S of ΛQp , π is an isomorphism.
Therefore, for Pk 6∈ S, we have

πk : M ord
k (n,Qp, χω

1−k) ∼= Qd
p

f 7→ (c(ai, f))i

Now suppose we had a collection of coefficients {cλ(0,H )}, {c(m,H )}
with infinitely many classical specializations. There is a unique element F of
M ord

ΛQp [ 1
S ]

(n, χ) such that c(ai,F ) = c(ai,H ) for all i. Moreover, at each weight

k with Pk /∈ S, k > k0, and where H is classical, the reduction of H must agree
with the reduction of F by the isomorphism πk. Thus, H and F must be equal
since they agree on a Zariski dense set. This proves the lemma.

A typical example of ordinary Λ-adic forms of tame level n and character χ are
the Λ-adic Eisenstein series E (η, ψ) attached to a pair of (not necessarily primitive)
narrow ray class characters η, ψ such that ηψ = χ, cond(η)cond(ψ) = pn,
(p, cond(η)) = 1:

cλ(0,E (η, ψ)) = δη2
−gη−1(cλ)L{np∞},η−1ψω,
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c(m,E (η, ψ)) =
∑
r|m

(r,p)=1

η(
m

r
)ψ(r)〈Nr−1〉(1 + T )

log〈Nr〉
log u .

Here δη = 1 if cond(η) = 1, and is zero otherwise.
We denote Gζ := L{p|p},1, so that Gζ(u

s − 1) = ζF,p(1 − s). Let G :=
2gG−1

ζ E (1, ω−1), so that the constant term of G at each infinite cusp is identically
one. It follows from a result of Colmez [3] that if Leopoldt’s Conjecture is true for
(F, p) then Gζ has a pole of order one at T = 0. In this case, the form G , which a
priori only lies in M ord

FΛ
(1, ω−1), actually lies in M ord

Λ(0)
(1, ω−1), with specialization

equal to the constant form 1, i.e. cλ(0,G (0)) = 1 and c(m,G (0)) = 0 for all λ,m.
Theorem 2 in Section 4 below shows that even if Leopoldt fails, there is a suitable
cusp form J such that G −J has all of these properties.

2.3. Conjecture 1.ii. We now recall the proof of Conjecture 1.ii given in [4,
Lemma 1.2], making a few of our own cosmetic changes, but also assuming the
existence of the form J in order to remove Leopoldt from their hypotheses. To
prepare for Section 3, we will assume that there is a unique prime p above p in F , as
this will highlight how the L -invariant hypothesis comes into play. When there is
more than one prime above p, the arguments we give showing that one can replace G
by G −J in their proof go through unchanged.

Let F, p, χ, S,R be as in Conjecture 1. The first step in their proof is to obtain a
Galois theoretic interpretation of Lalg.

Let E be an extension of Qp containing the values of all characters of con-
ductor dividing cond(χ)p∞, and E(χ−1) the E[Gal(F/F )]-module that is one-
dimensional over E and that Galois acts on by χ−1. For ease of notation,
let Λ denote ΛE (so p is invertible in Λ). Finally, let H1

p(F,E(χ−1)) be the
subspace of H1(F,E(χ−1)) consisting of elements that are unramified at all primes
away from p, and at p, lie in the E-linear span of κur and κcyc, where κur ∈
H1(Fp, E(χ−1)) = Hom(Gal(Fp/Fp), E) is the unramified (additive!) character
Frobp 7→ 1, and κcyc is the restriction of the global character

Gal(F/F ) � Gal(F∞/F ) ↪→ 1 + pZp
logp→ Zp ↪→ E.

In the sequel, we will also use κcyc to denote the global character.
In [4, §1], it is shown that dimEH

1
p(F,E(χ−1)) = 1, and that the unique class

(up to a scalar) is ramified at p. In other words, if we write its restriction to p as
xκur + yκcyc, then y 6= 0. In fact we have

Proposition 1 (loc. cit., Prop. 1.6).

x

y
= −Lalg(χ).
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The idea now is to use modular forms to explicitly construct a class in
H1

p(F,E(χ−1)) whose restriction to Gp can be shown to be equal (up to a scalar) to
−Lan(χ)κur + κcyc.

Denote by χR the character of conductor R that has the same primitive as χ.
Consider the level R weight one Hilbert modular Eisenstein series E1(1, χR). We
have

cλ(0, E1(1, χR)) = 2−gLR(χ, 0) + δχχ
−1(λ)LR(χ−1, 0),

where δχ = 1 if cond(χ) = 1, and is 0 otherwise. We also have

UpE1(1, χR) = E1(1, χR) + E1(1, χS),

which implies that e = limn(Un!
p ) acts by the identity on this form. Thus, the

ordinary Λ-adic form P0 := e[(G −J )E1(1, χR)] has weight one specialization
equal to E1(1, χR). Moreover, its constant terms satisfy

cλ(0,P0) = 2−gLR(χ, 0) + δχχ
−1(λ)LR(χ−1, 0)

independent of the weight, since this is clearly true before taking the ordinary
projection, and the only Eisenstein series contributing to these cusps at the classical
higher weight specializations are already ordinary.

Over FΛ, we can decompose P0 into a linear combination of a cusp form and
ordinary Eisenstein series. The coefficients a(1, χ) and a(χ, 1) of the Eisenstein
families E (1, χ) and E (χ, 1) in this decomposition are computed in loc. cit. §2,
using knowledge of the constant terms of e[GE1(1, χR)] at all unramified cusps,
not just the infinite cusps. The weight k specializations of these coefficients are
given respectively by

a(1, χ)(k) =
LR(χ, 0)

LS,p(χω, 1− k)
=

−1

Lan(χ, k)

a(χ, 1)(k) =
LR(χ−1, 0)〈Nn〉k−1

LS,p(χ−1ω, 1− k)
=
−〈Nn〉k−1

Lan(χ−1, k)
.

Note that these computations are unaffected if one replaces G by G −J since J
vanishes at all cusps.

The Eisenstein series other than E (1, χ) and E (χ, 1) can be killed by an
appropriate application of Hecke operators away from p without affecting the
weight 1 specialization E1(1, χR), simply by dividing each Hecke operator by its
eigenvalue on E1(1, χ). It follows that there is some t, a linear combination of
Hecke operators away from p, acting by the identity on E1(1, χ), such that

t(P0 − a(1, χ)E (1, χ)− a(χ, 1)E (χ, 1)) (3)

is a cusp form. Note that a(1, χ) and a(χ, 1) have poles at weight one of order equal
to the order of vanishing of the corresponding p-adic L-functions; let us say they are
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of order dχ and dχ−1 , respectively. Since χ(p) = 1⇒ χ−1(p) = 1, we will always
have dχ, dχ−1 ≥ 1. The additional assumption on L -invariants is equivalent to

ordk=1a(1, χ) = ordk=1(a(1, χ) + a(χ, 1)),

which implies in particular that dχ ≥ dχ−1 .
Let π ∈ Λ be the uniformizer at weight one given by 1

u log u
(1 + T − u). Then

the universal cyclotomic character χcyc can be written χcyc = 1 + κcycπ +O(π2).
Since the poles of a(1, χ) and a(χ, 1) do not cancel, we have

F = P0 − a(1, χ)E (1, χ)− a(χ, 1)E (χ, 1) ∈ π−dχM ord
Λ (n, χ).

We want to consider the image of this form in

π−dχM ord
Λ (n, χ)/π−dχ+2M ord

Λ (n, χ)

and compute the Hecke action. To do this, we will use the following identities

E (χ, 1) ≡ E (1, χ) ≡ E1(1, χS)(mod π)

P0 ≡ E1(1, χR)(mod π)

T`E (χ, 1) = (χ(`) + χcyc(`))E (χ, 1) UpE (χ, 1) = E (χ, 1)

T`E (1, χ) = (1 + χ(`)χcyc(`))E (1, χ) UpE (1, χ) = E (1, χ)

T`E1(1, χR) = (1 + χ(`))E1(1, χR) UpE1(1, χR) = E1(1, χR) + E1(1, χS)

We compute mod π−dχ+2M ord
Λ (n, χ):

T`F = (1 + χ(`))P0 − (1 + χ(`)χcyc(`))a(1, χ)E (1, χ)

− (χcyc(`) + χ(`))a(χ, 1)E (χ, 1))

= (1 + χ(`))F − χ(`)κcyc(`)πa(1, χ)E (1, χ)− κcyc(`)πa(χ, 1)E (χ, 1)

= (1 + χ(`))F − (χ(`)κcyc(`)πa(1, χ) + κcyc(`)πa(χ, 1))E1(1, χS)

= (1 + χ(`))F + (χ(`)κcyc(`)a(1, χ)

+ κcyc(`)a(χ, 1))(
π

a(1, χ) + a(χ, 1)
)F

=

((
1 + π

a(χ, 1)

a(1, χ) + a(χ, 1)
κcyc(`)

)

+ χ(`)

(
1 + π

a(1, χ)

a(1, χ) + a(χ, 1)
κcyc(`)

))
F ;

UpF = F + E1(1, χS) = (1− 1

a(1, χ) + a(χ, 1)
)F

= (1 + π
a(1, χ)

a(1, χ) + a(χ, 1)
Lan)F .
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The calculation for the Uq operators is similar. Thus we get a map

Tord → Λ/π2 ∼= E[π]/π2

T` 7→ (1 + π
a(χ, 1)

a(1, χ) + a(χ, 1)
κcyc(`)) + χ(`)(1 + π

a(1, χ)

a(1, χ) + a(χ, 1)
κcyc(`))

Uq 7→ 1− π a(χ, 1)

a(1, χ) + a(χ, 1)
κcyc(q)

Up 7→ 1 + π
a(1, χ)

a(1, χ) + a(χ, 1)
Lan.

Let I denote the kernel of this map, and m the maximal ideal containing I . Since
the image of t from Equation (3) is a unit, this map factors through the cuspidal
quotient of Tord. Let R denote the localization at m of this cuspidal quotient, and
think of I and m as being ideals of R. Finally, let FR := R⊗Λ FΛ.

There is a Galois representation

ρ : GF → GL2(FR)

ρ(σ) =

(
aσ bσ
cσ dσ

)
.

unramified at all ` - pn such that Trace(Frob`) = T`. For some choice of complex

conjugation c ∈ GF , we may assume ρ(c) =

(
1 0
0 −1

)
.

By a standard argument, the R-submodule of FR generated by all aσ is R, and
similarly for all dσ. Moreover,

aσ ≡ 1 + π
a(χ, 1)

a(1, χ) + a(χ, 1)
κcyc(σ)(mod I)

dσ ≡ χ(σ)(1 + π
a(1, χ)

a(1, χ) + a(χ, 1)
κcyc(σ))(mod I).

By a theorem of Wiles, there is a change-of-basis matrix
(
Ap Bp

Cp Dp

)
with the

property that(
aσ bσ
cσ dσ

)(
Ap Bp

Cp Dp

)
=

(
Ap Bp

Cp Dp

)(
χcycη

−1
p (σ) ∗
0 ηp(σ)

)
for all σ ∈ Gp. Here ηp is the unramified character Frobkp 7→ Uk

p .
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We note that in the basis with complex conjugation diagonalized, ρ(Gp) is not
upper-triangular on any component of FR. If it were, the function cσ reduced
mod m would yield a non-trivial element of H1(GF , E(χ)) that is unramified
everywhere (recall that p is the unique prime above p). However, there are no
unramified elements in this H1, since e.g. there are no unramified Zp-extensions
of Fχ. Therefore, Cp is invertible in FR. Hence, for σ ∈ Gp, we can write

bσ =
Ap

Cp
[χcycη

−1
p (σ)− aσ].

If B is the R-module generated by bσ (or equivalently by bσ
dσ

) as σ ranges
overGF , thenB is finite overR by a standard compactness argument, so thatB/mB
is nonzero. The composition of b/d with reduction mod m gives a cohomology class
inH1(GF , B/mB(χ−1)) that is unramified outside p and nonzero. Indeed, if it were
a coboundary, one can check it would have to be identically zero by considering the
image of complex conjugation. Since there are no everywhere unramified elements
of this H1, the class must be ramified at p; in particular, it is nontrivial at p. This
argument, combined with Nakayama’s lemma, shows that B is in fact generated
by bσ for σ ∈ Gp.

Reducing the above equation modulo (I Ap

Cp
∩B), we get for σ ∈ Gp,

b(σ) =
Ap

Cp
[χcyc(σ)η−1

p (σ)− a(σ)]

=
Ap

Cp
[χcyc(σ)U

−κur(σ)
p − a(σ)]

=
Ap

Cp
[(1 + πκcyc(σ))(1− π a(1, χ)

a(1, χ) + a(χ, 1)
Lanκur(σ))

− 1− π a(χ, 1)

a(1, χ) + a(χ, 1)
κcyc(σ)]

=
Ap

Cp
π[

a(1, χ)

a(1, χ) + a(χ, 1)
κcyc(σ)− a(1, χ)

a(1, χ) + a(χ, 1)
Lanκur(σ)].

Since π ∈ m and m2 ⊂ I , the module B/(I Ap

Cp
∩B) is m-torsion. Furthermore,

by our initial assumptions we can choose σ so that the bracketed expression is a unit.
It follows that B/(I Ap

Cp
∩ B) is cyclic over R/m ∼= E, generated by πAp

Cp
. Since

it is π-torsion, we must have b(σ) = b/d(σ). Thus, we may view b/d as a cocycle
with coefficients in E(χ−1), whose restriction to Gp is given, after dividing by the
unit a(1,χ)

a(1,χ)+a(χ,1)
, by κcyc −Lanκur. By Proposition 1, Lalg = Lan, and the proof

is complete.
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3. Removing the L -invariant condition

Let Lχ denote the reciprocal of the leading term of a(1, χ), and Lχ−1 the
reciprocal of the leading term of a(χ, 1), with respect to the uniformizer π. Then
Lχ = −Lan(χ) only if dχ = 1; otherwise Lan(χ) = 0 (similarly for χ−1).

As explained in the introduction, we break into two cases.

3.1. dχ < dχ−1 . Although this case is covered by [4, Theorem 2.2], only the final
few sentences of the paper allude to a proof, and details are omitted. For the sake of
completeness, we include a proof here, which in any case appears to take a different
approach from what the authors had in mind.

In this case, the form P0 − a(1, χ)E (1, χ) − a(χ, 1)E (χ, 1) has a pole of
order dχ−1 coming from the third term, while the second term has a pole of order dχ.
Consider the Hecke action on the image of this form in

π−dχ−1 M ord
Λ (n, χ)/π−dχ+2M ord

Λ (n, χ).

A similar analysis to the previous case shows that this form is an eigenform, giving
rise to a homomorphism

Tord → E[π]/πdχ−1−dχ+2,

as follows:

T` 7→
(
χcyc(`)− π

a(1, χ)

a(1, χ) + a(χ, 1)
κcyc(`)

)
+ χ(`)

(
1 + π

a(1, χ)

a(1, χ) + a(χ, 1)
κcyc(`)

)
Uq 7→ 1− π a(χ, 1)

a(1, χ) + a(χ, 1)
κcyc(q)

Up 7→ 1− 1

a(χ, 1)
.

As before, this homomorphism factors throughR, the localization of the cuspidal
quotient at the maximal ideal corresponding to the E1(1, χ)-system of Hecke
eigenvalues. Let I ⊂ R denote the kernel. There is a Galois representation
GF → GL2(FR) with coefficients aσ, bσ, cσ, dσ, satisfying

R 3 aσ ≡ χcyc(σ)− π a(1, χ)

a(1, χ) + a(χ, 1)
κcyc(σ)(mod I)

R 3 dσ ≡ χ(σ)(1 + π
a(1, χ)

a(1, χ) + a(χ, 1)
κcyc(σ))(mod I).



Vol. 90 (2015) On the rank one abelian Gross–Stark conjecture 953

Finally, there is a transition matrix
(
Ap Bp

Cp Dp

)
that satisfies

bσ =
Ap

Cp
[χcycη

−1
p (σ)− a(σ)]

for all σ ∈ Gp. Reducing this equation modulo I Ap

Cp
∩B, we get for σ ∈ Gp,

b/d(σ) = b(σ) =
Ap

Cp
[χcycη

−1
p (σ)− a(σ)]

=
Ap

Cp
[

1

a(χ, 1)
κur(σ) + π

a(1, χ)

a(χ, 1)
κcyc(σ)]

=
Ap

Cp
[πdχ−1 Lχ−1κur(σ) + πdχ−1−dχ+1 Lχ−1

Lχ

κcyc(σ)].

For σ ∈ Ip\ ker(κcyc), the bracketed expression generates (πdχ−1−dχ+1Ap

Cp
) mod

I Ap

Cp
. Hence, as before, B/(B ∩ I Ap

Cp
) is one-dimensional over R/m ∼= E, with a

canonical generator given by πdχ−1−dχ+1Ap

Cp
. The composition

b/d : GF → B/(B ∩ I Ap

Cp
) ∼= E

given by this generator yields a nonzero cocycle

[κ] ∈ H1
p(F,E(χ−1))

with the property that

[κ]|Gp = δdχ=1Lχ−1κur +
Lχ−1

Lχ

κcyc.

After multiplying by the nonzero scalar Lχ

Lχ−1
, the right hand side equals

−Lan(χ)κur + κcyc.

This finishes the proof.

3.2. dχ = dχ−1 and Lχ = −Lχ−1 . Let d := dχ = dχ−1 . In this case, although
the second and third term of P0 − a(1, χ)E (1, χ) − a(χ, 1)E (χ, 1) each have
poles of order d, the sum only has a pole of order d − 1. We consider the Hecke
action on the image of this form in π−d+1M ord

Λ (n, χ)/π−d+2M ord
Λ (n, χ). Unlike
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the previous cases, this form is not an eigenform. Nevertheless, we may compute
mod π−d+2M ord

Λ (n, χ):

T`(P
0 − a(1, χ)E (1, χ)− a(χ, 1)E (χ, 1))

= (1 + χ(`))P0 − (1 + χ(`)(1 + πκcyc(`)))a(1, χ)E (1, χ)

− (1 + πκcyc(`) + χ(`))a(χ, 1)E (χ, 1)

= (1 + χ(`))[P0 − a(1, χ)E (1, χ)− a(χ, 1)E (χ, 1)]

− (κcyc(`)χ(`)πa(1, χ) + κcyc(`)πa(χ, 1))E1(1, χ).

Uq(P0 − a(1, χ)E (1, χ)− a(χ, 1)E (χ, 1))

= (P0 − a(1, χ)E (1, χ)− a(χ, 1)E (χ, 1))− πκcyc(q)a(χ, 1)E1(1, χ).

Up(P0 − a(1, χ)E (1, χ)− a(χ, 1)E (χ, 1))

= (P0 − a(1, χ)E (1, χ)− a(χ, 1)E (χ, 1)) + E1(1, χ).

Thus, although the image of our form is not an eigenvector for the Hecke
operators, it is a generalized eigenvector for the E1(1, χ)-system of eigenvalues;
the Hecke stable subspace it generates is two-dimensional overE, with a basis given
by (P0−a(1, χ)E (1, χ)−a(χ, 1)E (χ, 1)) and π−d+1E1(1, χ). The Hecke action
can then be viewed as a homomorphism

Tord →
(
x y
0 x

)
⊂M2(E).

The image is canonically isomorphic to E[ε]/ε2. Under this identification, the map
Tord → E[ε]/ε2 is given explicitly by

T` 7→ 1 + χ(`)− ε(κcyc(`)χ(`)

Lχ

+
κcyc(`)

Lχ−1

)

Uq 7→ 1− ε(κcyc(q)

Lχ−1

)

Up 7→ 1 + ε(δd=1).

Here δd=1 = 1 if d = 1, and is zero otherwise. Following the same proof as before,
we get a Galois representation GF → GL2(FR) such that

R 3 aσ ≡ 1− εκcyc(σ)

Lχ−1

(mod I)

R 3 dσ ≡ χ(σ)(1− εκcyc(`)
Lχ

)(mod I).
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However, in this case the image of the universal cyclotomic character χcyc in R/I
is trivial, as we are working “purely in weight one.” Thus, reducing the equation

bσ =
Ap

Cp
[χcycη

−1
p − aσ]

modulo I Ap

Cp
gives for σ ∈ Gp

b/d(σ) =
Ap

Cp
[η−1

p − aσ]

=
Ap

Cp
ε(−δd=1κur(σ) +

κcyc(σ)

Lχ−1

).

Just as before, we see thatB/(B∩ I Ap

Cp
) is one-dimensional, generated by εAp

Cp
, and

that the function b/d yields a class [κ] ∈ H1
p(F,E(χ−1)) such that

[κ]|Gp = −δd=1κur +
1

Lχ−1

κcyc

= −δd=1κur −
1

Lχ

κcyc.

Multiplying through by −Lχ, the right hand side becomes

δd=1Lχκur + κcyc = −Lan(χ)κur + κcyc.

This finishes the proof.

4. A Λ-adic form passing through 1

We revert to letting Λ denote Zp[[T ]]. In this section we prove the following

Theorem 2. There exists an FΛ-adic cusp form J ∈ S ord
FΛ

(1, ω−1) such that G −
J ∈M ord

Λ(0)
(1, ω−1) and (G −J )(0) is the constant form 1.

The existence of this form is perhaps known to experts. As explained in
Section 2, this theorem removes the reliance on Leopoldt’s conjecture in the proof of
Conjecture 1.ii. At the end of this section, we also explain how the form J gives
an easier and more direct construction of the Iwasawa extensions corresponding to
the “Leopoldt” zeros in Wiles’ proof of the Main Conjecture.

4.1. Reductions and geometric Λ-adic forms. We begin with some reductions.
First, it is enough to find any ordinary ΛE,(0)-adic form of level one with constant
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weight zero specialization, where E is a finite extension of Qp. Rescaling, we may
assume the constant at weight zero is equal to one. Let F be such a form, so that

F ∈M ord
FΛE

(1) =
⊕
χ

M ord
FΛE

(1, χω−1)

where χ ranges over all even ray class characters of conductor 1. It causes no
harm to assume E contains sufficiently many roots of unity, so that there is a E-
linear combination of diamond operators projecting onto the ω−1 component above.
Specializing at weight 0, this acts by the identity on the constant form, so we may
assume F has character ω−1. We can write F as an FΛE -linear combination of a
cusp form and Eisenstein series E (η, η−1ω−1), where η ranges over strict ray class
characters of conductor 1. For η 6= 1, the system of Hecke eigenvalues associated to
the Eisenstein series E (η, η−1ω−1) at weight zero differs from that of the constant
form. Hence, there is a ΛE,(0)-linear combination of Hecke operators that will kill
all Eisenstein contributions except E (1, ω−1), and act by the identity on the constant
form. Applying this to F , we are left with an FΛE -linear combination of E (1, ω−1)
and a cusp form. Since the constant terms of this form are identically one, it must
be equal to G − J for some FΛE -cuspform J . Finally, we can average over
Gal(FΛE/FΛ) so that J has coefficients in FΛ.

Our next reduction requires a new definition. Let r > 0 be a natural number, and
Λ̃ := Zp[[ Tpr ]]. For an integral ideal n and odd ray class character χ of conductor

dividing n, we define an ordinary Λ̃-adic Hilbert modular form to be a collection of
coefficients

{cλ(0,F )}, {c(m,F )} ∈ Λ̃

such that for infinitely many k ∈ prN, their image under the specialization T =
uk − 1 are the coefficients of a classical ordinary Hilbert modular form of parallel
weight k, level lcm(p, n), and character χω1−k. We will denote this module by
M ord

Λ̃
(n, χ), for any ring Λ̃ ⊂ R ⊂ FΛ̃, we set M ord

R (n, χ) = M ord
Λ̃

(n, χ)⊗Λ̃ R.
Using the constant dimensionality of the spaces of ordinary weight k forms, and an
argument similar to that used in Lemma 2, one can show that the space of FΛ̃-adic
forms has the same dimension as the space of FΛ-adic forms, and hence is identified
with M ord

FΛ
⊗FΛ

FΛ̃. Now suppose we can find an Λ̃( Tpr )-adic form specializing
to 1 at weight zero (i.e. modulo T

pr
). Then writing it as an FΛ̃-linear combination of

elements of M ord
Λ , we can replace the coefficients in FΛ̃ with elements of FΛ having

the same principal part and constant term at weight zero, to arrive at an FΛ-adic form
specializing to 1 at weight zero. Thus, it is enough to find an ordinary family with
coefficients in FΛ̃.

To construct a family of level one, we first construct a family of some auxiliary
level q using powers of a certain theta series (Lemmas 3 and 4). We will then use the
Atkin–Lehner operatorsUq andWq to project the form down to level one. In order to



Vol. 90 (2015) On the rank one abelian Gross–Stark conjecture 957

define these operators, we will make use of a geometric description of Λ-adic forms
(see Proposition 2).

FixF, p as in Section 2 and let n be an integral ideal ofOF . Fix a strict ideal class,
and let c be a prime-to-p representative of this class. Let R be a p-adically complete
DVR. Following [1, Definition 3.2], we let Tm,n = M(R/pm, µpn ,Γ0(n)) be the
moduli stack over R/pm whose objects over S, for any R/pn-scheme S, are given
by isomorphism classes of tuples (A, ι, λ, φn, ipn) where

• A→ S is an abelian scheme of relative dimension g;

• ι : OF ↪→ EndR(A) is a ring homomorphism;

• λ : (MA,M
+
A )

∼=→ (c, c+) is an OF -linear isomorphism of étale sheaves over
T between the module of symmetric OF -linear homomorphisms from A to
its dual A∨ to the ideal c, such that the polarizations M+

A map to c+;

• φn ⊆ A is an OF -invariant closed subgroup scheme that is isomorphic to the
constant group scheme (OF/n) étale locally on S;

• ipn : µpn ⊗Z d−1 ↪→ A is an inclusion of group schemes.

These are referred to as c-polarized Hilbert Blumenthal Abelian Varieties
(HBAV’s) with level structure. Following [1, Definition 11.4], we define a p-adic
c-Hilbert modular form (or c-HMF) of level Γ0(n) over R to be an element of

V∞,∞ := lim←−mlim−→nH
0(Tm,n/(R/pm),OTm,n).

If χ : (OF ⊗ Zp)× → R× is a finite order character, we will say the form is of
(parallel) weight k ∈ Zp and character χ if for any α ∈ (OF ⊗ Zp)×, we have

α∗(f) = χ(α)Nm(α)kf,

where α∗f(A, ι, λ, φn, ip∞) = f(A, ι, λ, φn, ip∞ ◦α−1), and Nm : (OF ⊗Zp)× →
1+2pZp → R× is induced by the norm map followed by projection onto the 1-units.

Fix an isomorphism ε : c ⊗ Zp ∼= OF ⊗ Zp. The q-expansion at∞ of f is an
element

f(q) ∈ R[[qb]]b∈c+∪{0}.

that generalizes the q-expansion of classical Hilbert modular forms. We refer to
[1, Definition 11.6] for the precise definition. In their notation, it is the evaluation
of f at the cusp (c,OF , ε, jε) where jε is induced from ε as in [loc. cit., 6.5]. The
q-expansion principle states that a p-adic c-HMF of weight κ is determined by its
q-expansion [loc. cit., 11.7].
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For every k ≥ 2, there is a Hecke-equivariant inclusion

Mk,c(Γ0(np), R) ↪→ V∞,∞/R

that preserves q-expansions and weights [9, Thm. 1.10.15]. In fact, in the quoted
theorem, the space of classical forms on the left hand side of the inclusion is more
general than the forms we considered in Section 2: it allows any power of p in
the level, and in the complex setting, it consists of those forms invariant under the
subgroup of Γc(n) consisting of matrices of determinant 1 (see [1, 6.11]). However,
this certainly contains the forms we want to consider, and this is all we will need.
We will call a form in the image of the above inclusion classical.

LetW be a finite flat DVR over Zp. Let mΛ denote the maximal ideal of ΛW . We
now present two definitions of “p-adic” ΛW -adic forms and prove that they are the
same. We also want similar statements to hold for Λ̃-adic forms, and will indicate
where changes need to be made.

Recall that u ∈ 1 + 2pZp is a generator of the image of Gal(F∞/F ). Define a
map φ : (OF ⊗ Zp)× → Λ×W as the composition

(OF ⊗ Zp)× → Gal(F∞/F )
u7→1+T−→ Λ×W

We may also consider φ as a Λ̃W -valued character via the inclusion Λ ⊂ Λ̃.
Definition. A Wiles ΛW -adic c-Hilbert modular form F , of level Γ0(n), is a multiset
of elements {c(t,F )}t∈c+∪{0} ⊂ ΛW such that for every s ∈ Zp, the sequence of
elements of W obtained from the specialization T 7→ us − 1 is the q-expansion of
a p-adic c-Hilbert modular form of level Γ0(n) and weight s over W . We use the
same definition for Λ̃W -adic c-Hilbert modular forms, except that we only require
the specialization condition to hold for s ∈ prZp.
Remark. Given a |Cl+(F )|-tuple of Wiles ΛW -adic forms, one for each strict
ideal class with representative c, and with infinitely many specializations giving the
Fourier coefficients of an ordinary classical Hilbert modular form, we can obtain
a Λ-adic form as in Section 2 as follows. Under the usual normalization for
weight k forms, one would set c(m,F (uk − 1)) = (Nc)−k/2 · ac(b)(uk − 1),
where b is a totally positive generator of mc. However, this presents a problem
since (Nc)−k/2 may not vary p-adically continuously with k. So instead, we simply
set c(m,F ) = ac(b), and cc(0, ) equal to the constant term. Since this is
independent of the choice of b at infinitely many weights, it must be independent
Λ-adically. This modification will not affect what we are ultimately interested in:
finding a family whose weight zero specialization is the constant form 1.
Definition. A Katz ΛW -adic c-Hilbert modular form of level Γ0(n) is an element of
the subspace of V∞,∞/Zp⊗̂ZpΛW := lim←−V∞,∞/Zp ⊗Zp ΛW/m

n
Λ satisfying

α∗(f) = φ(α)f. (∗)

for every α ∈ (OF ⊗ Zp)×. We use the same definition for Λ̃W mutatis mutandis.
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This last property is equivalent to requiring that for every s ∈ Zp (resp. prZp),
reducing the form modulo (1 + T − us) yields a p-adic c-Hilbert modular form
of weight s defined over ΛW/(1 + T − us). Note that neither of these definitions
require any of the specializations to be classical.

By definition, a Katz Λ-adic c-HMF is nothing but a compatible sequence of
p-adic c-HMFs over ΛW/m

n
Λ satisfying certain extra conditions. Thus, we may

define the q-expansion at∞ of a Katz Λ-adic form to be the inverse limit of these
q-expansions; it is an element of Λ[[qb]]b∈c+∪{0}.

The following proposition is due to Hida when F = Q [7, Thm. 3.2.16]. We
essentially follow his proof.

Proposition 2. The space of Katz ΛW -adic c-Hilbert modular forms is identified
with the space of Wiles ΛW -adic c-Hilbert modular forms via q-expansion at ∞.
The same is true for Λ̃W -adic forms.

Proof. We first explain the proof for ΛW -adic forms. It follows from the definitions
that the q-expansion of a Katz form is a Wiles ΛW -adic form, so we need only show
that all Wiles ΛW -adic forms arise in this way. Let F be a Wiles ΛW -adic form. We
start by reinterpreting F as a measure C(Zp,Zp) → V∞,∞/W , defined by sending
the function

(
x
n

)
to the coefficient of T n in F (which is a p-adic c-HMF by virtue

of being a limit of p-adic c-HMF’s). By the binomial theorem, this measure has the
property that for s ∈ Zp, the function x 7→ usx is sent to F (us−1), a p-adic c-HMF
of weight s.

Taking the completed tensor product with Λ of this measure gives a map

C(Zp,Λ)→ V∞,∞/W ⊗̂Λ.

The image of the function x 7→ (1 + T )x is easily seen to be a Katz ΛW -adic form
(i.e. obeys the equation (∗)), with q-expansion equal to F .

Now suppose F is a Wiles Λ̃W -adic form. Define the submoduleM ⊂ C(Zp,Zp)
by demanding that if C(Zp,Zp) 3 f =

∑
N≥0 aN

(
x
N

)
, then

f ∈M ⇐⇒ aN
prN
∈ Zp and

aN
prN
→ 0 as N →∞.

Then we may consider F as a measure M → V∞,∞/W that sends prN
(
x
N

)
to the

coefficient of ( T
pr

)N in F . Then just as before, we take the completed tensor product

with Λ̃W , and consider the image of the function x 7→ (1 + T )x. This gives the
desired Katz Λ̃W -adic form.

The Katz definition gives us a geometric interpretation of Λ-adic forms as
follows:

Let Mc denote the functor from the category of mΛ-adically complete Λ-algebras
to Sets that takes an algebraR to the set of isomorphism classes tuples (A, ι, λ, φn, ip∞)
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as above. Then we can view a Λ-adic c-HMF as a natural transformation from this
functor to the forgetful functor A1, that further satisfies (∗). For Λ̃-adic c-HMFs, the
same statement holds if we consider mΛ̃-adically complete Λ̃-algebras.

4.2. Construction of the form. We now construct the level one ordinary family
with constant weight zero specialization. We begin by quoting Lemma 1.4.2 of [12],
which is attributed to Hida:

Lemma 3. For some prime q - p, and some m > 0, there is a Hilbert modular
form f of weight 2m(p − 1) and level Γ0(pq), with coefficients in Zp, such that
cλ(0, f) = 1 for all λ, and f ≡ 1(mod p).

Remark. The quoted lemma has a power pj in the level; however, we can apply the
operatorUp := Tnp(p) j−1 times to decrease the level at p to Γ0(p) without altering
any of the other properties. This lemma is proved using theta series coming from the
extension F (µp)/F (µp)

+. An alternative approach is to use lifts of suitable powers
of the Hasse invariant (see [1, Lemma 11.10]).

Write f = (fc)c. Since fc ≡ 1(mod p), for any s ∈ Zp, we can make sense
of f s as a p-adic c-Hilbert modular form of level q and weight 2m(p− 1)s (here we
are using the equivalence of Katz-type and Serre-type p-adic Hilbert modular forms
in parallel weight; see [1, Theorem 11.12]).

Let e be the p-adic valuation of u− 1. Let

r =

{
e+m+ 1 if p = 2
e+ 1 if p > 2

and Λ̃ = Zp[[ Tpr ]].

Lemma 4. There is a Λ̃-adic c-HMF Fc such that Fc(u
s − 1) = f

s/2m(p−1)
c for

all s ∈ 2mZp.

Proof. Write fc =
∑

b∈c+∪{0} cbq
b. Fix a positive integer k, and some b ∈ c+.

Let Π be the set of all tuples {(k1, b1), . . . , (k`, b`)}, where ki ∈ N>0 and bi ∈ c+,
such that

∑
kibi = b. Note that the cardinality of Π is finite and does not depend on

k. The qb coefficient of fkc is given explicitly by

[qb]fkc =
∑

Π

(
k

k1, . . . , k`, k − (k1 + . . .+ k`)

)
ck1

b1
. . . ck`b` ,

where we have used that c0 = 1, and we interpret a multinomial coefficient with
negative arguments to be zero.

As this sum is finite, it suffices to prove that each element of the above sum is
given by evaluating some element of Λ̃ at u(p−1)2mk−1. The multinomial coefficient
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can be written as P (k)

k1!...k`!
for some polynomial P . Since fc ≡ 1(mod p), we have

vp(cbi) ≥ 1, so vp(
c
ki
bi

ki!
) ≥ 0. Thus, it is enough to show P (k) can be expressed as

an element of Λ̃, and for this it is enough to show k itself can be. The function k is
nothing but the weight divided by 2m(p− 1), so it is given by

logp(1 + T )

(p− 1)2m logp u
∈ Λ̃.

This concludes the proof.

Note that the weight zero specialization of the tuple F = (Fc)c is the constant
form 1, and that this form has infinitely many classical specializations. To remove q
from the level, we make use of the Hecke operators Wq and Uq, interpreting F as a
rule on c-polarized HBAV’s for some c.

For C a finite subgroup scheme of an HBAV A, we let πC : A→ A/C. We can
geometrically define the operators Uq and Wq on ΛE (or Λ̃E)-adic modular forms
of level Γ0(q) in the usual way (see e.g. [8, pp. 320–321]):

UqF (A, λ, ip∞ , φq) =
1

Nq

∑
C∩φq={0}

F (A/C, πC∗λ, πC ◦ ip∞ , πC∗φq)

WqF (A, λ, ip∞ , φq) = F (A/φq, πφq∗λ, πφq ◦ ip∞ , πφq∗A[q]),

The FΛ̃E
-adic form e

(
Wq+Uq

1+Nq−1

)
F is ordinary of level one, since its evaluation

at any tuple (A, λ, ip∞ , φq) does not depend on level q structure. It has infinitely
many classical specializations, and its weight zero specialization is the constant
form 1. By the remarks at the beginning of the section, this finishes the proof of
Theorem 1.

4.3. Application to the Iwasawa Main Conjecture. Theorem 2 allows us to give
a direct construction of the Iwasawa extensions corresponding to the (conjecturally
nonexistent) zeroes of the p-adic zeta function at s = 1 [13]. We remark that
C. Khare has given a different simplification of this construction by allowing
ramification at an auxiliary prime. A separate proof is needed for these extensions,
as the general argument only constructs a space of extensions of rank ords=1ζF,p(s),
but the Main Conjecture predicts that this space has rank δ = ords=1ζF,p(s) + 1.
The proofs given in §§10, 11 of loc. cit. are somewhat indirect, using “patching”
arguments similar to what is needed in the weight one case. The proof we give here
is relatively straightforward with the help of Theorem 2.

Since the non-constant terms of the form 1 vanish, we have that for each nonzero
integral ideal m,

c(m,G −J ) = c(m, 2nG−1
ζ E (1, ω−1)−J ) ∈ m(0).



962 K. Ventullo CMH

Thus,
c(m,E (1, ω−1)− 2−nGζJ ) ∈ mδ

(0).

Consider the action of the cuspidal Hecke algebra on 2−nGζJ . We have

2−nGζJ ≡ E (1, ω−1)(mod mδ
(0))

away from the constant terms, so there is a map

Tcusp → Λ/mδ
(0)

that is just the E (1, ω−1) system of Hecke eigenvalues (mod mδ
(0)). From here, the

usual argument by Ribet’s method constructs the desired extensions.
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