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Asymptotic equivalence of symplectic capacities
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Abstract. A long-standing conjecture states that all normalized symplectic capacities coincide
on the class of convex subsets ofR2n. In this note we focus on an asymptotic (in the dimension)
version of this conjecture, and show that when restricted to the class of centrally symmetric
convex bodies in R2n, several symplectic capacities, including the Ekeland–Hofer–Zehnder
capacity, the displacement energy capacity, and the cylindrical capacity, are all equivalent up to
a universal constant.
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1. Introduction

Consider the space R2n equipped both with the standard symplectic form
! D dp ^ dq, and with the standard inner product h�; �i. Note that under the usual
identification betweenR2n andCn, these two structures are the real and the imaginary
parts, respectively, of the standard Hermitian inner product in Cn. Moreover, one
has that !.v; u/ D hv; Jui, where J is the standard complex structure inR2n ' Cn.
Symplectic capacities, whose axiomatic definition below is due to Ekeland and
Hofer [4], are numerical invariants which roughly speaking measure the symplectic
size of sets. More precisely, let B2n.r/ stand for the Euclidean open ball of radius r ,
and Z2n.r/ for the cylinder B2.r/ � Cn�1.
Definition 1.1. Asymplectic capacity on .R2n; !/ associates to each subsetU � R2n
a number c.U / 2 Œ0;1� such that the following hold:
.P1/ c.U / � c.V / whenever U � V (monotonicity),
.P 2/ c

�
 .U /

�
D j˛j c.U / for  2 Diff.R2n/ such that  �! D ˛ ! for

0 ¤ ˛ 2 R (conformality),
.P 3/ 0 < c

�
B2n.r/

�
; and c

�
Z2n.r/

�
<1 (nontriviality).
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Moreover, a symplectic capacity is said to be normalized if in addition it satisfies

.P 4/ c
�
B2n.r/

�
D c

�
Z2n.r/

�
D �r2 (normalization).

Note that property .P 2/ implies that c is a symplectic invariant which scales like
a two-dimensional invariant, and .P 3/ that symplectic capacities significantly differ
from any volume related invariants. The first examples of symplectic capacities were
constructed by Gromov in [9], where he developed and used pseudoholomorphic
curve techniques to prove a striking symplectic rigidity result, nowadays known as
Gromov’s “non-squeezing theorem”. It states that one cannot map a ball inside a
thinner cylinder by a symplectic embedding. More precisely, the theorem asserts
that if r < 1, there is no symplectic embedding of the unit ball B2n into the
cylinder Z2n.r/. This naturally leads to the definition of two normalized symplectic
capacities: the Gromov width, given by c.U / D supf�r2 jB2n.r/

s
,! U g; and

the cylindrical capacity, c.U / D inff�r2 jU
s
,! Z2n.r/g. Here

s
,! stands for

symplectic embedding. It is not hard to verify that these two capacities are the
smallest and largest possible normalized symplectic capacities, respectively.

Shortly after Gromov’s work [9] many other symplectic capacities were
constructed, reflecting different geometrical and dynamical properties. Among these
are the Hofer–Zehnder capacity [13, 14], the Ekeland–Hofer capacities [4, 5], the
displacement energy [11], the Floer–Hofer capacity [7, 8], spectral capacities [6,
19, 26], and more recently, Hutchings’ embedded contact homology (ECH)
capacities [15]. These quantities play an important role in symplectic geometry,
and their properties, interrelations, and applications to symplectic topology and
Hamiltonian dynamics are intensively studied (see e.g., [3] and [17] for two excellent
surveys).

In the two-dimensional case, Siburg [23] showed that any symplectic capacity of
a compact connected domain with smooth boundary � � R2 equals its Lebesgue
measure. In higher dimensions symplectic capacities do not coincide in general.
A theorem by Hermann [10] states that for any n � 2 there is a bounded star-
shaped domain S � R2n with cylindrical capacity c.S/ � 1, and arbitrarily small
Gromov width c.S/. Still, for a large class of sets in R2n, including ellipsoids,
polydiscs, and convex Reinhardt domains, all normalized symplectic capacities
coincide [10]. In [25] Viterbo showed that for any bounded convex setK of R2n one
has c.K/ � 4n2c.K/. Moreover, it was conjectured [10, 12, 25] that:

Conjecture 1.2. For any convex body K in R2n one has c.K/ D c.K/.

Here, by a convex body we mean a compact convex subset of R2n with non-
empty interior. The above conjecture is particularly challenging due to the scarcity of
examples of convex domains for which capacities have been computed. Moreover, an
affirmative answer to Conjecture 1.2 would in particular implies Viterbo’s volume-
capacity conjecture [25], and it was recently shown that the latter would in turn settle
a 70-years old question in convex geometry known as the Mahler conjecture. For
more information regarding these applications of Conjecture 1.2 see [1] and [20].
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A somewhat more modest question in the same direction (c.f. Problem 1.4 in [10],
Problem 8 in [3], and Section 5 in [20]) is whether Conjecture 1.2 above holds
asymptotically in the dimension, i.e.,
Question 1.3. Is there is an absolute constant A > 0 such that for every convex
body K in R2n one has

c.K/ � Ac.K/:

Here we will give a partial answer to this question. Before we state our main
result we wish to recall the definition of the Ekeland–Hofer–Zehnder capacity. The
restriction of the symplectic form ! to a smooth closed hypersurface S � R2n
canonically defines a 1-dimensional subbundle, ker.!jS/, whose integral curves
comprise the characteristic foliation of S . In other words, a closed characteristic of S
is an embedded circle in S tangent to the canonical line bundle

SS D f.x; �/ 2 TS j!.�; �/ D 0 for all � 2 TxSg:

Recall that the symplectic action of a closed curve 
 is defined by A.
/ D
R


�;

where � D pdq is the Liouville 1-form. The action spectrum of S is

L.S/ D fjA.
/j I 
 is a closed characteristic on Sg:

In [4] and [14] it was proved that for a smooth convex body K � R2n, the
two aforementioned Hofer–Zehnder and Ekeland–Hofer capacities coincide, and are
given by the minimal action over all closed characteristics on the boundary of the
body K, i.e.,

cEH.K/ D cHZ.K/ D min L.@K/: (1)

We remark that although the above definition of closed characteristics, as well as the
equalities in .1/, were given only for the class of convex bodieswith smooth boundary,
they can naturally be generalized to the class of convex sets in R2n with nonempty
interior (see e.g., [2]). In what follows, we refer to the coinciding Ekeland–Hofer and
Hofer–Zehnder capacities on this class as the Ekeland–Hofer–Zehnder capacity, and
denote it by cEHZ .

Our first result in the note is the following. Recall that a convex body K � Rn is
said to be centrally symmetric if K D �K.
Theorem 1.4. For every centrally symmetric convex body K in R2n,

c.K/ � 4cEHZ.K/:

Remark 1.5. Other symplectic capacities, like the spectral capacities c� , which are
based on a choice of an action selector � , and the displacement energy d , are known
to be bigger than or equal to the Hofer–Zehnder capacity (see e.g., Section 2.3.4
in [3]). Thus, it follows from Theorem 1.4 that on the class of symmetric convex sets
in R2n, the normalized symplectic capacities cEHZ ; d; c� and c, all coincide up to an
absolute constant.
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In fact, we prove a slightly stronger result than Theorem 1.4 which shows that
for a centrally symmetric convex body K � R2n, the aforementioned symplectic
capacities are all equivalent to yet another quantity associated with the body K.
More precisely, for a convex body K � R2n with 0 2 Int.K/, we denote by
Kı D fy 2 R2n j hx; yi � 1; for every x 2 Kg the polar body of K 1. Moreover,
we denote

kJ k
Kı!K

WD sup
v;u2Kı

hJv; ui:

To explain the reason for this notation, we remark that when the convex body K is
centrally symmetric, kJ k

Kı!K
is the operator norm of the complex structure J ,

when the latter is considered as a linear map between the normed spaces
J W .R2n; k � kKı/! .R2n; k � kK/, i.e.,

kJ k
Kı!K

D sup
v;u2Kı

hJv; ui D sup
v W kvkKı�1

kJvkK :

Here we use the standard identification between normed spaces and centrally
symmetric convex bodies, i.e., for a non-empty centrally symmetric convex body K
in R2n we denote by k � kK the norm on R2n induced by K, that is,

k � kK D inffr W x 2 rKg:

Theorem 1.6. For every centrally symmetric convex body K in R2n,

1

kJ k
Kı!K

� cEHZ.K/ � c.K/ �
4

kJ k
Kı!K

: (2)

Remark 1.7. In fact, in the proof of Theorem 1.6 we use the centrally symmetric
assumption on the body K only for the right-most inequality of .2/. The first two
inequalities on the left-hand side hold for every convex body K in R2n.

Note that Theorem 1.4 follows immediately from Theorem 1.6. Moreover, we
wish to emphasize that Theorem 1.6 provides in many cases an efficient way to
approximate the numerical value of the capacities cEHZ.K/ and c.K/ (for centrally
symmetric convex bodies), as the quantity kJ k

Kı!K
is a-priori much easier to

compute than the above mentioned symplectic capacities.
Another by-product of Theorem 1.6, which may be of independent interest,

concerns the equivalence of the cylindrical capacity and the Gromov width capacity
with their linearized versions clin and clin respectively. The definitions of these
two quantities are given in Definitions 2.4 and 3.1 below. It turns out that for
centrally symmetric convex bodies inR2n, the cylindrical capacity c is asymptotically
equivalent to its linearized version clin, while surprisingly enough, this is false for the
Gromov width capacity.

1As a matter of fact, the polar body Kı should be defined as a subset of the dual space of R2n.
However, since we have fixed a scalar product in our setting, we will identify the latter space with R2n

itself.
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More precisely,
Theorem 1.8. For every centrally symmetric convex body K in R2n,

c.K/ � clin.K/ � 4c.K/:

On the other hand, there exist a centrally symmetric convex body eK in R2n such that

clin.
eK/ � �; while c.eK/ �rn

2
:

Note that an immediate corollary from Theorem 1.8 is that the linearized versions
of the Gromov width and the cylindrical capacity are not asymptotically equivalent.

Notation. We denote by Kn the class of convex bodies of Rn, i.e., compact convex
sets with non-empty interior. For K 2 Kn, we denote by hK W Rn ! R its support
function given by hK.u/ D supfhx; ui W x 2 Kg. Also, we denote by gK W Rn ! R
the gauge function gK.x/ D inffr jx 2 rKg associated with K. Note that when K
is centrally symmetric, i.e., K D �K, the gauge function gK.x/ is a norm, and is
denoted by kxkK . Furthermore, when 0 2 int.K/; one has that hK D gKı , where
Kı D fy 2 Rn j hx; yi � 1; for every x 2 Kg is the polar body of K. The
Euclidean norm will be denoted by j � j. Finally, we denote by Sn the unit sphere
in RnC1, i.e., Sn D fx 2 RnC1 j jxj D 1g.

Acknowledgements. The authors are grateful to Shiri Artstein-Avidan and Boaz
Klartag for many stimulating discussions on various topics related to symplectic
geometry and convexity.

2. Proof of Theorem 1.6

Note first that there is no loss of generality in assuming that in addition to being
compact and with non-empty interior, all convex bodies considered also have a
smooth boundary, and contain the origin in their interior. Indeed, affine translations
inR2n are symplectomorphisms, which accounts for the assumption that the origin is
in the interior. Secondly, once Theorem 1.6 is proved for smooth convex domains, the
general case follows by standard approximation arguments, as symplectic capacities
are continuous on the class of convex bodies with respect to the Hausdorff distance
(see e.g. [18, p. 376]).

Moreover, in what follows we will make repeated use of the following well-known
geometric observation from convex geometry.
Lemma 2.1. Let gK be the gauge function associated with a smooth convex bodyK.
Then, when restricted to the boundary @K, the gradient rgK is a surjective map
rgK W @K ! @Kı.
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A proof of Lemma 2.1 can be found e.g., in Subsection 1.7.1 of [22]. We turn
now to the proof of Theorem 1.6, and start with the following proposition.
Proposition 2.2. For every smooth convex body K 2 K2n,

1

kJ k
Kı!K

� cEHZ.K/:

To prove Proposition 2.2 we first need some preparation. Recall (see e.g.,
Chapter 1 of [13]) that the classical geometric problem of finding closed
characteristics on @K has the following dynamical interpretation. If the boundary @K
is represented as a regular energy surface fx 2 R2n jH.x/ D 1g of a smooth
Hamiltonian function H W R2n ! R, then the restriction to @K of the Hamiltonian
vector field XH , defined by iXH

! D �dH; is a section of the line bundle S@K .
Thus, the images of the periodic solutions of the classical Hamiltonian equation
Px D XH .x/ D JrH.x/ on @K are precisely the closed characteristics of @K.
In particular, the closed characteristics do not depend (up to parametrization) on
the choice of the Hamiltonian function. Indeed, if the energy surface can be
represented as a regular level set of some other function F W R2n ! R, then
XH D ˛XF on @K for some scalar function ˛ ¤ 0, and the corresponding
Hamiltonian equations have the same solutions up to parametrization. Finally, note
that for a smooth convex bodyK the gauge function gK is a defining function forK,
i.e., K D g�1K .Œ0; 1�/; @K D g�1K .1/, and 1 is a regular value of gK .
Lemma 2.3. Let 
 W Œ0; T � ! @K be a solution of the Hamiltonian equation
P
 D JrgK.
/, with 
.0/ D 
.T /. Then there exist t0 2 Œ0; T � such that

gK.
.t0/ � 
.0// � 1:

Proof of Lemma 2.3. It follows immediately from the assumptions that

0 D

Z T

0

P
.t/dt D

Z T

0

JrgK.
.t//dt D J

Z T

0

rgK.
.t//dt:

From this one can conclude thatZ T

0

hrgK.
.t//; 
.0/idt D 0:

In particular, this implies that there exists t0 2 Œ0; T � such that

hrgK.
.t0//; 
.0/i � 0: (3)

Next, from Lemma 2.1 it follows that rgK.
.t0// 2 @Kı, and we obtain that

gK.
.t0/ � 
.0// D supfh
.t0/ � 
.0/; ui ju 2 Kıg
� h
.t0/ � 
.0/;rgK.
.t0//i:

(4)
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Finally, from Euler’s homogeneous function theorem it follows that for every x 2 @K,
one has hx;rgK.x/i D gK.x/ D 1, and hence the combination of this fact together
with inequalities .3/ and .4/ completes the proof of the lemma.

Proof of Proposition 2.2. Let 
 W Œ0; T � ! @K be a closed characteristic on the
boundary @K, i.e., a solution of the Hamiltonian equation P
 D JrgK.
/, with

.0/ D 
.T /. Note that

A.
/ D
1

2

Z T

0

hJ
.t/; P
.t/i dt D
1

2

Z T

0

h
.t/;rgK.
.t//i dt D
T

2
: (5)

It follows from Lemma 2.3, the subadditivity property of gK , and the definition of 
 ,
that there exists t0 2 Œ0; T � such that

1 � gK

�Z t0

0

P
.t/dt

�
�

Z t0

0

gK. P
.t//dt D

Z t0

0

gK.JrgK.
.t///dt: (6)

On the other hand, it follows from the definition of an operator norm thatZ t0

0

gK.JrgK.
.t///dt �

Z t0

0

kJ k
Kı!K

gKı.rgK.
.t/// dt: (7)

The combination of .6/, .7/, and Lemma 2.1 gives

1 �

Z t0

0

kJ k
Kı!K

gKı.rgK.
.t/// dt D

Z t0

0

kJ k
Kı!K

dt; (8)

and thus we obtain that
1

kJ k
Kı!K

� t0: (9)

Note that since 
.0/ D 
.T /, repeating the same arguments as above (this time,
integrating in .6/, .7/, and .8/ between t0 and T ) we obtain also that

1

kJ k
Kı!K

� T � t0: (10)

From .5/ it follows that minft0; T � t0g � T=2 D A.
/; and since, by definition, the
capacity cEHZ.K/ is defined to be the minimal action of closed characteristics on the
boundary @K, we conclude from .9/ and .10/ that,

1

kJ k
Kı!K

� cEHZ.K/:

This completes the proof of the proposition.
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To describe the second ingredient in the proof of Theorem1.6we need to introduce
one more definition. It is known (see e.g., Appendix C in [21]) that for a Lebesgue
measurable set U � R2n,

c.U/ D inf
'
Area

�
�.'.U//

�
;

where � is the orthogonal projection to the complex line

E D fz 2 Cn j zj D 0 for j ¤ 1g;

and the infimum is taken over all symplectic embeddings ' of U into R2n. Recall
that with our notations, under the natural identification R2n ' Cn one has that
zj D qj C ipj . Thus, a natural way to “linearize” the cylindrical capacity c is
as follows. Let ISp.2n/ be the affine symplectic group, defined as the semi-direct
product Sp.2n/Ë T.2n/ of the linear symplectic group and the group of translations
in R2n.

Definition 2.4. The linearized cylindrical capacity clin of a set U � R2n is defined
as

clin.U/ D inf
S

Area
�
�.S.U//

�
;

where the infimum is taken over all affine symplectic maps S 2 ISp.2n/.

The second main ingredient in the proof of Theorem 1.6 is the following:

Proposition 2.5. For every centrally symmetric convex body K 2 K2n,

c.K/ � clin.K/ �
4

kJ k
Kı!K

: (11)

To establish Proposition 2.5 we shall need the following geometric observation.
For v 2 R2n, we denote by Kv the section K \ fvg?, and by k � kKıv the semi-norm
defined by

kwkKıv D supfhw; yi jy 2 Kvg:

Lemma 2.6. For a symmetric convex body K 2 K2n, a linear symplectic map
S 2 Sp.2n/, and the orthogonal projection � to the complex line

E D fz 2 Cn j zj D 0 for j ¤ 1g

defined above, one has

Area
�
�.S.K//

�
� 4kST ekKıkS

T JekKıv ; (12)

where ST stands for the transpose of the matrix S , e is a unit vector parallel to the
q1-axis, and v D ST e.
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Proof of Lemma 2.6. The lemma follows from amuchmore general result byRogers
and Shephard [24], which states that for every symmetric convex body K � Rn one
has

Voln.K/ �
�
Volk.�E .K//Voln�k.K \E?/

�
�

 
n

k

!
Voln.K/; (13)

for every k-dimensional subspace E of Rn, where �E stands for the orthogonal
projection on the subspace E. We remark that we use only the case where n D 2

and k D 1, in which inequality .13/ is an elementary geometric fact. It can be easily
checked that the right-hand side of .12/ exactly equals the product of the length of
the projection of �.SK/ to the q1-axis, and the length of the intersection of �.SK/
with the p1-axis.

We are now in a position to prove Proposition 2.5.

Proof of Proposition 2.5. Note that, by definition, for every measurable set
U � R2n one has c.U/ � clin.U/, and hence the left-hand side inequality in .11/
holds. Next, we recall the easily verified fact that for any v;w 2 R2n such that
!.v;w/ D 1, there exists a linear symplectic map S 2 Sp.2n/ such that v D ST e

and w D ST Je, where as before, e is a unit vector parallel to the q1-axis. From this
fact, Lemma 2.6, and Definition 2.4 it follows that for a centrally symmetric convex
body K 2 K2n

clin.K/ � 4 inf
v2S2n�1

inf
w W hJv;wiD1

kvkKıkwkKıv

D 4 inf
v2S2n�1

kvkKı inf
w W hJv;wiD1

kwkKıv :
(14)

We focus now on the second infimum on the right-hand side of .14/. Note that for a
fixed vector v 2 S2n�1, the equality hJv;wi D 1 is equivalent to hJv;w�Jvi D 0.
Denoting z WD w � Jv, we can write

inf
w W hJv;wiD1

kwkKıv D inf
z W z?Jv

kJv C zkKıv : (15)

This quantity measures the distance, with respect to the semi-metric induced by
k � kKıv , between the vector Jv and the subspace fJvg

? orthogonal to it. By duality,

inf
z W z?Jv

kJv C zkKıv D distk�k
Kıv
.J v; fJvg?/ D sup

u
hu; J vi; (16)

where the supremum is taken over all vectors u such that u 2 spanfJvg and
kukKv

� 1. Note that we have used the fact that .Kıv/ı D Kv . Next, we use
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the fact that Jv is orthogonal to v (and hence in particular kJvkKv
<1) to deduce

from .15/ and .16/ that

inf
w W hJv;wiD1

kwkKıv D sup
u2spanfJvg;
kukKv�1

hu; J vi �
hJv; J vi

kJvkKv

D
1

kJvkK
: (17)

From the combination of .14/ and .17/ we conclude that

clin.K/ � 4 inf
v¤0

kvkKı

kJvkK
D

4

kJ k
Kı!K

; (18)

which completes the proof of the proposition.

Remark 2.7. For a general convex body K in R2n (not necessarily centrally
symmetric), the same proof as the one above will give the following bound:

1

4
clin.K �K/ � clin.K/ �

1

kJ k
.K�K/ı!.K�K/

: (19)

On the other hand, from Proposition 2.2 it follows that

cEHZ.K/ � sup
v

1

kJ k.K�v/ı!.K�v/
; (20)

where the supremum is taken over all v 2 R2n such that v 2 Int.K/. We remark
that although the upper bound for clin.K/ in .19/, and the lower bound for cEHZ.K/
in .20/ seem not too far away, we do not expect them to be asymptotically equivalent
in general.

Proof of Theorem 1.6. For a smooth symmetric convex body K, the proof follows
immediately from Propositions 2.2 and 2.5. The general case (i.e., without the
smoothness assumption) follows by a standard approximation argument, as indicated
at the beginning of this section.

3. Linearized symplectic capacities

In this section we prove Theorem 1.8. We recall first the following definition.
Definition 3.1. The linearized Gromov width clin of a set U � R2n is defined as

clin.U/ D sup
S

f�r2 jSB2n.r/ � Ug;

where the supremum is taken over all affine symplectic maps S 2 ISp.2n/.
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The following is the main ingredient in the proof of Theorem 1.8.

Proposition 3.2. Let Q D Œ�1; 1�2n be the standard cube in R2n. Then, for every
orthogonal transformation O 2 O.2n/ one has clin.OQ/ � � . Moreover, there is a
rotation eO 2 O.2n/ for which c.eOQ/ �pn=2.
Proof of Proposition 3.2. Notefirst that for every orthogonal transformationO 2O.2n/,

clin.OQ/ � sup
L

f�r2 jLB2n.r/ � Qg; (21)

where the supremum is taken over all affine volume-preserving linear mapsL ofR2n.
It is straightforward to check that the largest ellipsoid contained in the cubeQ is the
unit-ball B2n.1/, and hence clin.OQ/ � � for every orthogonal transformation
O 2 O.2n/.

For the second part of the proposition, consider the Lagrangian splitting
Rn.q/ � Rn.p/ of R2n, and the following configuration: Bn1.˛/ � Bn1 .ˇ/ � R2n,
where

Bn1.˛/ D
˚
.q1; : : : ; xq/ 2 Rn.q/ j maxfjq1j; : : : ; jqnjg < ˛

	
;

Bn1 .ˇ/ D f.p1; : : : ; pn/ 2 Rn.p/ j
nX
iD1

jpi j < ˇg:

Note that Bn1.1/ � Bn1 .1/ is the product of a hypercube and its dual body, the
cross-polytope. It is known (see e.g., §4 of [16]) that for every " > 0, the
ball B2n.r/ symplectically embeds (via a non-linear symplectomorphism) into the
product Bn1.1/�Bn1 .ˇ.1C "//, for a parameter ˇ such that Vol.Bn1.1/�Bn1 .ˇ// D
Vol.B2n.r//. In particular, this implies that for an orthogonal transformation O
of R2n, one has the following lower bound

c.OQ/ � supf4r jBn1.1/ � B
n
1 .r/ � OQg:

Thus, to complete the proof of the proposition it is enough to find an orthogonal
transformation O 2 O.2n/ such that

O.Bn1.1/ � B
n
1 .er// � Q;

whereer �pn=2. In particular, it is enough to find an orthogonal transformationO 0
of Rn.p/ such that O 0.Bn1 .er// � Œ�1; 1�n � Rn.p/, wither as above. The fact that
such a transformation exists is well known to experts. For completeness we will give
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an explicit construction2. We define the elements O 0
kj

of the matrix O 0 by

p
nO 0kj D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

p
2 sin

�
kj
n
2�
�

for 1 � k < n
2
and 1 � j � n;

.�1/j for k D n
2
and 1 � j � n;

p
2 cos

�
kj
n
2�
�

for n
2
< k < n and 1 � j � n;

1 for k D n and 1 � j � n:

(22)

It is a straightforward computation (based on the orthonormality of the standard
Fourier basis) to check that the matrix O 0 defined by .22/ is indeed an orthogonal
transformation. Moreover, denote by feigniD1 the standard basis of Rn.p/. Note that
Bn1 .1/ D Convf˙eig. It follows immediately from the definition of the matrix O’
that

kO 0eik1 WD max
1�j�n

j.O 0ei /j j �

p
2
p
n
;

where .O 0ei /j stands for the j -th component of the vector O 0ei 2 Rn.p/. This
implies in particular that

O 0.Bn1 .
p
n// D O 0.Convf˙

p
neig/ D Convf˙O 0

p
neig � Œ�

p
2;
p
2�n;

which completes the proof of Proposition 3.2.

Proof of Theorem 1.8. Note that an immediate corollary from Propositions 2.2
and 2.5 is that the cylindrical capacity c is asymptotically equivalent to its linearized
version clin for symmetric convex domains in R2n, i.e., for every symmetric convex
body K 2 K2n,

c.K/ � clin.K/ � 4cEHZ.K/ � 4c.K/:

This establishes the first part of Theorem 1.8. The second part follows from
Proposition 3.2.
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