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Abstract. Let k be a field of characteristic not 2. We give a positive answer to Serre’s injectivity
question for any smooth connected reductive k-groupwhoseDynkin diagram contains connected
components only of type An, Bn or Cn. We do this by relating Serre’s question to the norm
principles proved by Barquero and Merkurjev. We give a scalar obstruction defined up to spinor
norms whose vanishing will imply the norm principle for the non-trialitarianDn case and yield
a positive answer to Serre’s question for connected reductive k-groups whose Dynkin diagrams
contain components of (non-trialitarian) type Dn too. We also investigate Serre’s question for
quasi-split reductive k-groups.

Mathematics Subject Classification (2010). 14L35, 20G10, 20G15.

Keywords. Principal homogeneous spaces, Serre’s question, zero cycles, norm principles,
spinor norm, Galois cohomology.

1. Introduction

Let k be a field. Then the following question of Serre, which is open in general, asks
Question 1.1 (Serre, [13, p. 233]). Let G be any connected linear algebraic group
over a field k. Let L1; L2; : : : ; Lr be finite field extensions of k of degrees
d1; d2; : : : ; dr respectively such that gcdi .di / D 1. Then is the following sequence
exact ?

1! H1.k;G/!
rY
iD1

H1.Li ; G/:

The classical result that the index of a central simple algebra divides the
degrees of its splitting fields answers Serre’s question affirmatively for the group
PGLn. Springer’s theorem for quadratic forms answers it affirmatively for the (albeit
sometimes disconnected) groupO.q/ andBayer–Lenstra’s theorem [2], for the groups
of isometries of algebras with involutions. Jodi Black [3] answers Serre’s question
positively for absolutely simple simply connected and adjoint k-groups of classical
type. In this paper, we use and extend Jodi’s result to connected reductive k-groups
whose Dynkin diagram contains connected components only of type An, Bn or Cn.
�The author acknowledges support from the NSF-FRG grant 1463882.
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Theorem 1.2. Let k be a field of characteristic not 2. LetG be a connected reductive
k-group whose Dynkin diagram contains connected components only of type An, Bn
or Cn. Then Serre’s question has a positive answer for G.

We also investigate Serre’s question for reductive k-groups whose derived
subgroups admit quasi-split simply connected covers. More precisely, we give a
uniform proof for the following :

Theorem1.3. Let k be a field of characteristic not 2. LetG be a connected quasi-split
reductive k-group whose Dynkin diagram does not contain connected components of
type E8. Then Serre’s question has a positive answer for G.

We relate Serre’s question for G with the norm principles of other closely related
groups following a series of reductions previously used by Barquero and Merkurjev
to prove the norm principles for reductive groups whose Dynkin diagrams do not
contain connected components of type Dn; E6 or E7 [1]. We also give a scalar
obstruction defined up to spinor normswhose vanishingwill imply the norm principle
for the (non-trialitarian) Dn case and yield a positive answer to Serre’s question for
connected reductive k-groups whose Dynkin diagrams contain components of this
type also.

In the next section, we begin with some lemmata and preliminary reductions. In
Section 3, we introduce intermediate groups OG and QG and relate Serre’s question for
G to Serre’s question for OG and QG via the norm principle. In Section 4, we investigate
the normprinciple for (non-trialitarian) typeDn groups and find the scalar obstruction
whose vanishing will imply the norm principle for the (non-trialitarian)Dn case. In
the final section, we use the reduction techniques used in Sections 2 and 3 to discuss
Serre’s question for connected reductive k-groups whose derived subgroups admit
quasi-split simply connected covers.

2. Preliminaries

We work over the base field k of characteristic not 2. By a k-group, we mean a
smooth connected linear algebraic group defined over k. And mostly, we will restrict
ourselves to reductive groups. We say that a k-group G satisfies SQ if Serre’s
question has a positive answer for G.

2.1. Reduction to characteristic 0. LetG be a connected reductive k-group whose
Dynkin diagram contains connected components only of type An, Bn, Cn or (non-
trialitarian)Dn. Without loss of generality wemay assume that k is of characteristic 0
[7, p. 47]. We give a sketch of the reduction argument for the sake of completeness.

Suppose that the characteristic of k is p > 0. Let L1; L2; : : : ; Lr be finite field
extensions of k of degrees d1; d2; : : : ; dr respectively such that gcdi .di / D 1 and
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let � be an element in the kernel of

H1.k;G/!
rY
iD1

H1.Li ; G/:

By a theorem of Gabber, Liu and Lorenzini [5, Thm. 9.2] which was pointed out
to us by O. Wittenberg, we note that any torsor under a smooth group scheme G=k
which admits a zero-cycle of degree 1 also admits a zero-cycle of degree 1 whose
support is étale over k. Thus without loss of generality we can assume that the given
coprime extensions Li=k are in fact separable.

By [10, Thms. 1&2], there exists a complete discrete valuation ringRwith residue
field k and fraction field K of characteristic zero. Let Si denote corresponding étale
extensions of R with residue fields Li and fraction fields Ki .

There exists a smooth R-group scheme QG with special fiber G and connected
reductive generic fiber QGK . Now given any torsor t 2 H1.k;G/, there exists a torsor
Qt 2 H1

Ket.R;
QG/ specializing to t which is unique upto isomorphism. This in turn gives

a torsor QtK in H1.K; QGK/ by base change, thus defining a map ik W H1.k;G/ !
H1.K; QGK/ [6, p. 29]. It clearly sends the trivial element to the trivial element. The
map i also behaves well with the natural restriction maps, i.e., it fits into the following
commutative diagram :

H1.k;G/ H1.K; QGK/

Q
H1.Li ; G/

Q
H1.Ki ; QGK/:

ik

Q
iLi

Let Q� denote the torsor in H1
Ket.R;

QG/ corresponding to � as above. Therefore Q�K WD
ik.�/ is in the kernel of

H1.K; QGK/!
rY
iD1

H1.Ki ; QGK/:

Suppose that QGK satisfies SQ. Then Q�K is trivial. However by [12], the natural
map H1

Ket.R;
QG/! H1.K; QGK/ is injective and hence Q� is trivial in H1

Ket.R;
QG/. This

implies that its specialization, � , is trivial in H1.k;G/.
Thus from here on, we assume that the base field k has characteristic 0.

2.2. Lemmata.
Lemma 2.1. Let k-groups G andH satisfy SQ. Then G �k H also satisfies SQ.

Proof. Let L=k be a field extension. Then the map

H1.k;G �k H/! H1.L;G �k H/
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is precisely the product of the maps

H1.k;G/! H1.L;G/ and H1.k;H/! H1.L;H/:

This immediately shows that if G andH satisfy SQ, so does G �k H .

Lemma 2.2. Let 1! Q! H ! G ! 1 be a central extension of a k-group G by
a quasi-trivial torusQ. ThenH satisfies SQ if and only if G satisfies SQ.

Proof. Let Li be field extensions of k such that gcdŒLi W k� D 1. Since Q is quasi-
trivial, H1.L;Q/ D f1g 8 L=k. From the long exact sequence in cohomology, we
have the following commutative diagram.

1 H1.k;H/ H1.k;G/ H2.k;Q/

1
Q

H1.Li ;H/
Q

H1.Li ; G/
Q

H2.Li ;Q/

ık

Q
ıLi

From the above diagram, it is clear that if G satisfies SQ, so doesH .
Conversely, assume that H satisfies SQ. Let a 2 H1.k;G/ become trivial

in
Q

H1.Li ; G/. Then ık.a/ becomes trivial in each H2.Li ;Q/. Hence
the corestriction CorLi=k .ık.a// D ık.a/

di becomes trivial in H2.k;Q/ where
di D ŒLi W k�. Since gcdi .di / D 1, this implies that ık.a/ is itself trivial inH2.k;Q/.
Therefore a comes from an element b 2 H1.k;H/ which is trivial in

Q
H1.Li ;H/.

(The fact that H1.Li ;Q/ D f1g guarantees that b is trivial in H1.Li ;H/.) Since H
satisfies SQ by assumption, b is trivial in H1.k;H/ which implies the triviality of a
in H1.k;G/.

Lemma 2.3. LetE be a finite separable field extension of k and letH be anE-group
satisfying SQ. Then the k-group RE=k.H/ also satisfies SQ.

Proof. Set G D RE=k.H/ and let � be an element in the kernel of H1.k;G/ !Qr
iD1H1.Li ; G/ where gcdi ŒLi W k� D 1.
Since char.k/ D 0, Li ˝k E is an étale E-algebra and hence isomorphic to

E1;i � E2;i � � � � � Eni ;i where each Ej;i is a separable field extension of E. ThusPni

jD1

�
Ej;i W E

�
D ŒLi W k� and therefore gcd

�
Ej;i W E

�
D 1 where 1 � i � r and

1 � j � ni .
By Eckmann–Faddeev–Shapiro, we have a natural bijection of pointed sets

H1 .k;G/ ' H1 .E;H/ ;

H1 .Li ; G/ '
niY
jD1

H1
�
Ej;i ;H

�
:

Thus we have that � is in the kernel of H1.E;H/ !
Q
i�r; j�ni

H1.Ej;i ;H/.
SinceH satisfies SQ, we see that � is trivial.



Vol. 91 (2016) On Serre’s injectivity question and norm principle 149

3. Serre’s question and norm principles

3.1. Intermediate groups OG and QG . Notations are as in Section 5 of [1].
LetG be our given connected reductive k-group whose Dynkin diagram contains

connected components only of type An, Bn, Cn or (non-trialitarian) Dn and let G0
denote its derived subgroup. Let Z.G/ D T and Z.G0/ D �.

Let � W � ,! S be an embedding of � into a quasi-trivial torus S . We denote the
cofibre product e.G0; �/ D G0�S

�
by OG. This k-group is called an envelope of G0.

� G0

S OG

ı

�



Now the quasi-trivial torus S D Z. OG/ and OG fit into an exact sequence as follows:

1! S ! OG ! G0 ad ! 1 (�)

where G0 ad corresponds to the adjoint group of G0. We now recall the following
result of Jodi Black which addresses Serre’s question for adjoint groups of classical
type.
Theorem 3.1 (Jodi Black, [3, Thm. 0.2]). Let k be a field of characteristic different
from 2 and let J be an absolutely simple algebraic k-group which is not of type E8
and which is either a simply connected or adjoint classical group or a quasi-split
exceptional group. Then Serre’s question has a positive answer for J .

Since every adjoint group of classical type is a product of Weil restrictions of
absolutely simple adjoint groups, the above theorem, alongwith Lemmata 2.1 and 2.3,
implies thatG0 ad satisfiesSQ. Applying Lemma 2.2 to the exact sequence (�) above,
we see that OG satisfies SQ. Let us chose such an envelope OG ofG0 which satisfies SQ.

Define an intermediate abelian group QT to be the cofibre product T�S
�

.

� T

S QT

� ˛

�

Let the algebraic group QG be the cofibre product defined by the following diagram:

G0 � T G

G0 � QT QG:

m

id �˛ ˇ

�
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Then we have the following commutative diagram with exact rows [1, Prop. 5.1].
Note that each row is a central extension of QG.

1 � G0 � QT QG 1 .��/

1 S OG � QT QG 1 .� � �/

ı;��

�

�

id

;�

Since QT is abelian, the existence of the co-restriction map shows that QT
satisfies SQ. Since OG satisfies SQ, we can apply Lemmata 2.1 and 2.2 to (� � �) to
see that QG satisfies SQ.

3.2. Norm principle and weak norm principle. Let f W G ! T be a
map of k-groups where T is an abelian k-group. Then we have norm maps
NL=k W T .L/! T .k/ for any separable field extension L=k.

G.L/ T .L/

G.k/ T .k/

f .L/

NL=k

f .k/

We say that the norm principle holds for f W G ! T if for all separable field
extensions L=k,

NL=k.Imagef .L// � Imagef .k/:

That is, we say that the norm principle holds for f W G ! T if given any
separable field extension L=k and any t 2 T .L/ such that

t 2 .Imagef .L/ W G.L/! T .L// ;

then NL=k.t/ 2 .Imagef .k/ W G.k/! T .k// :

Note that the norm principle holds for any algebraic group homomorphism
between abelian groups.

We say that the weak norm principle holds for f W G ! T if given any t 2 T .k/
such that

t 2 .Imagef .L/ W G.L/! T .L// ;

then t ŒLWk� D NL=k.t/ 2 .Imagef .k/ W G.k/! T .k// :

It is clear that if the norm principle holds for f , then so does the weak norm
principle.



Vol. 91 (2016) On Serre’s injectivity question and norm principle 151

3.3. Relating Serre’s question and norm principle. The deduction of SQ for G
from OG and QG follows via the (weak) norm principles.

Let ˇ W G ! QG be the embedding of k-groups with the cokernel P isomorphic
to the torus S

�
where QG and G are as in Section 3.1. Thus we have the following

exact sequence:

1! G
ˇ
�! QG

�
�! P ! 1:

Lemma 3.2. If the weak norm principle holds for � W QG ! P , thenG satisfies SQ.

Proof. From the long exact sequence of cohomology, we have the following
commutative diagram:
1 ! G.k/ ! QG.k/

�k
��! P.k/

ık
�! H1.k;G/

ˇk
�! H1.k; QG/

# # # # #

1 !
Q
G.Li / !

Q
QG.Li /

Q
�Li
����!

Q
P.Li /

Q
ıLi
����!

Q
H1.Li ; G/ !

Q
H1.Li ; QG/:

Let a 2 H1.k;G/ become trivial in
Q

H1.Li ; G/. As QG satisfiesSQ, ˇk.a/ becomes
trivial in H1.k; QG/. Hence a D ık.b/ for some b 2 P.k/ and ıLi

.b/ is trivial in
H1.Li ; G/. Therefore, there exist ci 2 QG.Li / such that �Li

.ci / D b.
Showing that G satisfies SQ, i.e. that a is trivial, is equivalent to showing

b 2
�
Image�k W QG.k/! P.k/

�
:

However b 2
�
Image�Li

W QG.Li /! P.Li /
�
. Since the weak norm principle holds

for � W QG ! P , bdi 2 Image
�
�k W QG.k/! P.k/

�
where ŒLi W k� D di for each i .

As gcdi .di / D 1, this means b 2 Image
�
�k W QG.k/! P.k/

�
.

We recall now the norm principle ofMerkurjev and Barquero for reductive groups
of classical type.

Theorem 3.3 (Barquero–Merkurjev, [1]). Let G be a reductive group over a field k.
Assume that the Dynkin diagram of G does not contain connected components Dn,
n � 4,E6 orE7. Let T be any commutative k-group. Then the norm principle holds
for any group homomorphism G ! T .

This shows that the norm principle and hence the weak norm principle holds for
the map � W QG ! P for reductive k-groupsG as in the main theorem (Theorem 1:2).
Thus we have concluded the proof for the following:

Theorem 1.2. Let k be a field of characteristic not 2. LetG be a connected reductive
k-group whose Dynkin diagram contains connected components only of type An, Bn
or Cn. Then Serre’s question has a positive answer for G.
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4. Obstruction to norm principle for (non-trialitarian)Dn

4.1. Preliminaries. Let .A; �/ be a central simple algebra of degree 2n over k and
let � be an orthogonal involution. Let C .A; �/ denote its Clifford algebra which is a
central simple algebra over its center, Z=k, the discriminant extension. Let i denote
the non-trivial automorphism of Z=k and let � denote the canonical involution
of C .A; �/.

Recall that, depending on the parity of n, � is either an involution of the second
kind (whenn is odd) or of the first kind (whenn is even). Let� W Sim .C .A; �/ ; �/!
RZ=kGm denote the multiplier map sending similitude c to �.c/c.

Let �.A; �/ be the extended Clifford group. Note that this has center
RZ=kGm and is an envelope of Spin .A; �/ [1, Ex. 4.4]. We recall below the map
~ W �.A; �/ .k/! Z�=k� as defined in [9, p. 182].

Given ! 2 �.A; �/ .k/, let g 2 GOC .A; �/ .k/ be some similitude such that
! Ý gk� under the natural surjection �.A; �/ .k/! PGOC .A; �/ .k/.

Let h D �.g/�1g2 2 OC .A; �/ .k/ and let  2 � .A; �/ .k/ be some element
in the special Clifford group which maps to h under the vector representation
�0 W � .A; �/ .k/! OC .A; �/ .k/. Then !2 D z for some z 2 Z� and
~ .!/ D zk�.

Note that themap~ has� .A; �/ .k/ as kernel. Also if z 2 Z�, then~.z/ D z2k�.
By following the reductions in [1], it is easy to see that one needs to investigate

whether the norm principle holds for the canonical map

�.A; �/!
�.A; �/

Œ� .A; �/ ;� .A; �/�
:

We will need to investigate the norm principle for two different maps depending
on the parity of n.

The map�� for n odd. Let U � Gm�RZ=kGm be the algebraic subgroup defined
by

U.k/ D f.f; z/ 2 k� �Z�jf 4 D NZ=k.z/g:

Recall the map �� W �.A; �/! U defined in [9, p. 188] which sends

! Ý
�
�.!/; ai.a/�1�.!/2

�
;

where ! 2 �.A; �/ .k/ and ~.!/ D a k�. This induces the following exact
sequence [9, p. 190]

1! Spin .A; �/! �.A; �/
��
��! U ! 1:

Since the semisimple part of �.A; �/ is Spin .A; �/, the above exact sequence
shows that it suffices to check the norm principle for the map ��.
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The map � for n even. Recall the following exact sequence induced by restricting
� to �.A; �/ [9, p. 187]

1! Spin .A; �/! �.A; �/
�

�! RZ=kGm ! 1:

Since the semisimple part of �.A; �/ is Spin .A; �/, the above exact sequence
shows that it suffices to check the norm principle for the map �.

4.2. An obstruction to being in the image of �� for n odd. Given .f; z/ 2 U.k/,
we would like to formulate an obstruction which prevents .f; z/ from being in the
image �� .� .A; �/ .k//. Note that for z 2 Z�, ��.z/ D .NZ=k.z/; z4/ and hence
the algebraic subgroup U0 � U defined by

U0.k/ D f.NZ=k.z/; z
4/jz 2 Z�g

has its k-points in the image �� .� .A; �/ .k//.

Let �nŒZ� denote the kernel of the norm map RK=k�n
N
�! �n where K=k is a

quadratic extension. Note that �4ŒZ� is the center of Spin .A; �/ as n is odd. Also
recall that [9, Prop. 30.13, p. 418]

H1
�
k; �4ŒZ�

�
Š

U.k/

U0.k/
:

Thus, we can construct the map S W PGOC .A; �/ .k/ ! H1
�
k; �4ŒZ�

�
induced

by the following commutative diagram with exact rows:

1 Z� �.A; �/ .k/ PGOC .A; �/ .k/ 1

1 U0.k/ U.k/ H1
�
k; �4ŒZ�

�
1

��

�0

�� S

The map S also turns out to be the connecting map from PGOC .A; �/ .k/ !
H1
�
k; �4ŒZ�

�
[9, Prop. 13.37, p. 190] in the long exact sequence of cohomology

corresponding to the exact sequence

1! �4ŒZ� ! Spin .A; �/! PGOC .A; �/! 1:

Since the maps �� W Z� ! U0.k/ and �0 W �.A; �/ .k/! PGOC .A; �/ .k/ are
surjective, an element .f; z/ 2 U.k/ is in the image �� .� .A; �/ .k// if and only if
its image Œf; z� 2 H1

�
k; �4ŒZ�

�
is in the image S

�
PGOC .A; �/ .k/

�
.
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Therefore we look for an obstruction preventing Œf; z� from being in the image
S.PGOC .A; �/ .k//. Recall the following commutative diagram with exact rows
and columns:

1

�2

1 �2 Spin .A; �/ OC .A; �/ 1

1 �4ŒZ� Spin .A; �/ PGOC .A; �/ 1

1

�

id �

�0

The long exact sequence of cohomology induces the following commutative
diagram (Figure 1) with exact columns [9, Prop. 13.36, p. 189], where

OC .A; �/ .k/ k�

k�2

PGOC .A; �/ .k/ H1
�
k; �4ŒZ�

�
k�

k�2 D
k�

k�2

Sn

� i

S

� j

Figure 1. Spinor norms and S for n odd

� W PGOC.A; �/.k/! k�

k�2 is induced by themultipliermap� WGOC.A; �/! Gm

i W k�

k�2 ! H1
�
k; �4ŒZ�

�
D

U.k/
U0.k/

is the map sending f k�2 Ý Œf; f 2�

j W U.k/
U0.k/

D H1
�
k; �4ŒZ�

�
!

k�

k�2 is the map sending Œf; z�Ý N.z0/k�2,

where z0 2 Z� is such that z0i.z0/�1 D f �2z.

Definition 4.1. We call an element .f; z/ 2 U.k/ to be special if there exists a
Œg� 2 PGOC .A; �/ .k/ such that j.Œf; z�/ D �.Œg�/.
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Let .f; z/ 2 U.k/ be a special element and let Œg� 2 PGOC .A; �/ .k/ be such
that j.Œf; z�/ D �.Œg�/. From the discussion above, it is clear that .f; z/ is in the
image �� .� .A; �/ .k// if and only if Œf; z� is in the image S

�
PGOC .A; �/ .k/

�
.

Thus S.Œg�/Œf; z��1 is in kernel j D Image i and hence there exists some ˛ 2 k�
such that

Œf; z� D S.Œg�/Œ˛; ˛2� 2
U.k/

U0.k/
:

Note that if g is changed by an element in OC .A; �/ .k/, then ˛ changes by a
spinor norm by Figure 1 above. Thus given a special element, we have produced a
scalar ˛ 2 k� which is well defined upto spinor norms.

Œf; z� 2 S
�
PGOC .A; �/ .k/

�
” Œ˛; ˛2� 2 S

�
PGOC .A; �/ .k/

�
” .˛; ˛2/ 2 �� .� .A; �/ .k// :

This happens if and only if there exists w 2 �.A; �/ .k/ such that

˛ D �.w/

˛2 D ~.w/i.~.w//�1�.w/2

This implies ~.w/ 2 k� and hencew 2 � .A; �/ .k/. Thus ˛ is a spinor norm, being
the similarity of an element in the special Clifford group. Also note if ˛ is a spinor
norm, then ˛ D �./ for some  2 � .A; �/ .k/ and ��./ D

�
�./; �./2

�
.

Thus a special element .f; z/ is in the image of �� if and only if the produced
scalar ˛ is a spinor norm. We call the class of ˛ in k�

Sn.A;�/ to be the scalar
obstruction preventing the special element .f; z/ 2 U.k/ from being in the image
�� .� .A; �/ .k//.

4.3. An obstruction to being in the image of � for n even. Given z 2 Z�, we
would like to formulate an obstruction which prevents z from being in the image
� .� .A; �/ .k// . Note that for z 2 Z�, �.z/ D z2 and hence the subgroup Z�2 is
in the image � .� .A; �/ .k//.

Like in the case of odd n, we can construct the map S W PGOC .A; �/ .k/! Z�

Z�2

induced by the following commutative diagram with exact rows [9, Def. 13.32,
p. 187]:

1 Z� �.A; �/ .k/ PGOC .A; �/ .k/ 1

1 Z�2 Z� Z�

Z�2 1

� �

�0

S

Again by the surjectivity of the maps, � W Z� ! Z�2 and �0 W �.A; �/ .k/ !
PGOC .A; �/ .k/, an element z 2 Z� is in the image � .� .A; �/ .k// if and only
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if its image Œz� 2 Z�

Z�2 is in the image S
�
PGOC .A; �/ .k/

�
. Therefore we look for

an obstruction preventing Œz� from being in the image S.PGOC .A; �/ .k//. And as
before, we arrive at the the following commutative diagram (Figure 2) with exact
rows and columns [9, Prop. 13.33, p. 188], where

OC .A; �/ .k/ k�

k�2

PGOC .A; �/ .k/ Z�

Z�2

k�

k�2 D
k�

k�2

Sn

� i

S

� j

Figure 2. Spinor norms and S for n even

� W PGOC.A; �/.k/! k�

k�2 is induced by themultipliermap� WGOC.A; �/! Gm

i W k�

k�2 !
Z�

Z�2 is the inclusion map

j W Z�

Z�2 !
k�

k�2 is induced by the norm map from Z� ! k�.

Definition 4.2. We call an element z 2 Z� to be special if there exists a
Œg� 2 PGOC .A; �/ .k/ such that j.Œz�/ D �.Œg�/.

Let z 2 Z� be a special element and let Œg� 2 PGOC .A; �/ .k/ be such that
j.Œz�/ D �.Œg�/. As before a special element z 2 Z� is in the image� .� .A; �/ .k//
if and only if Œz� is in the image S

�
PGOC .A; �/ .k/

�
.

Thus S.Œg�/Œz��1 is in kernel j D Image i and hence there exists some ˛ 2 k�
such that

Œz� D S.Œg�/Œ˛� 2
Z�

Z�2
:

Note that if g is changed by an element in OC .A; �/ .k/, then ˛ changes by a
spinor norm by Figure 2 above. Thus given a special element, we have produced a
scalar ˛ 2 k� which is well defined up to spinor norms.

Œz� 2 S
�
PGOC .A; �/ .k/

�
” Œ˛� 2 S

�
PGOC .A; �/ .k/

�
” .˛/ 2 � .� .A; �/ .k// :

Since ˛ 2 k� also, this is equivalent to ˛ being a spinor norm [9, Prop. 13.25,
p. 184].

We call the class of ˛ in k�

Sn.A;�/ to be the scalar obstruction preventing the special
element z 2 Z� from being in the image � .� .A; �/ .k//.
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4.4. Scharlau’s normprinciple for� WGOC.A; � /!Gm. Let� WGOC.A; �/!Gm
denote the multiplier map and let L=k be a separable field extension of finite degree.
Let g1 2 GOC .A; �/ .L/ be such that � .g1/ D f1 2 L�. Let f denote NL=k .f1/.
We would like to show that f is in the image �

�
GOC .A; �/ .k/

�
.

Note that by a generalization of Scharlau’s norm principle ([9, Prop. 12.21]; [3,
Lemma 4.3]) there exists a Qg 2 GO .A; �/ .k/ such that f D �. Qg/ . However we
would like to find a proper similitude g 2 GOC .A; �/ .k/ such that �.g/ D f .

We investigate the cases when the algebra A is non-split and split separately.

Case I:A is non-split. Note that g1 2 GOC .A; �/ .L/. If Qg 2 GOC .A; �/ .k/, we
are done. Hence assume Qg 62 GOC .A; �/ .k/. By a generalization of Dieudonné’s
theorem [9, Thm. 13.38, p. 190], we see that the quaternion algebras

B1 D .Z; f1/ D 0 2 Br.L/;
B2 D .Z; f / D A 2 Br.k/:

Since A is non-split, B2 ¤ 0 2 Br.k/. However co-restriction of B1 from L to k
gives a contradiction, because

0 D CorB1 D
�
Z;NL=k.f1/

�
D B2 2 Br.k/:

Hence Qg 2 GOC .A; �/ .k/.

Case II: A is split. Since A is split, A D EndV where .V; q/ is a quadratic space
and � is the adjoint involution for the quadratic form q. Again, if Qg 2 GOC .A; �/ .k/,
we are done. Hence assume Qg 62 GOC .A; �/ .k/. That is

det. Qg/ D �f 2n=2 D �.f n/:

Since A is of even degree (2n) and split, there exists an isometry1 h of
determinant �1. Set g D Qgh. Then det.g/ D f n where �.g/ D f . Thus
we have found a suitable g 2 GOC .A; �/ .k/ which concludes the proof of the
following:
Theorem 4.3. The norm principle holds for the map � W GOC .A; �/! Gm.

4.5. Spinor obstruction to norm principle for non-trialitarian Dn. Let L=k be
a separable field extension of finite degree. And let w1 2 �.A; �/ .L/ be such that
for

n odd W��.w1/ D � which is equal to .f1; z1/ 2 U.L/;
n even W�.w1/ D � which is equal to z1 2

�
RZ=kGm

�
.L/:

1Since V is of even dimension 2n, h can be chosen to be a hyperplane reflection for instance
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Wewould like to investigate whether NL=k.�/ is in the image of�� .� .A; �/ .k//
(resp. � .� .A; �/ .k//) when n is odd (resp. even) in order to check if the norm
principle holds for the map �� W �.A; �/! U (resp. � W �.A; �/! RZ=kGm).

Let Œg1� 2 PGOC .A; �/ .L/ be the image of w1 under the canonical map
�0 W�.A; �/.L/!PGOC.A; �/.L/. Clearly � is special and letg1 2 GOC .A; �/ .L/
be such that �.Œg1�/ D j.Œ��/.

By Theorem 4.3, there exists a g 2 GOC .A; �/ .k/ such that2

�.Œg�/ D NL=k .j Œ��/ D j
�
ŒNL=k ��

�
:

Hence NL=k.�/ is special.
By Subsection 4.2 (resp. 4.3) , NL=k.�/ is in the image of �� (resp �) if and only

if the scalar obstruction ˛ 2 k�

Sn.A;�/ defined for NL=k.�/ vanishes. Thus we have a
spinor norm obstruction given below.
Theorem 4.4 (Spinor norm obstruction). Let L=k be a finite separable extension of
fields. Let f denote the map �� (resp �) in the case when n is odd (resp. even).
Given � 2 f .� .A; �/ .L//, there exists scalar obstruction ˛ 2 k� such that

NL=k.�/ 2 f .� .A; �/ .k// ” ˛ D 1 2
k�

Sn.A; �/
:

Thus the norm principle for the canonical map

�.A; �/!
�.A; �/

Œ� .A; �/ ;� .A; �/�

and hence for non-trialitarian Dn holds if and only if the scalar obstructions are
spinor norms.

5. Quasi-split groups

Let G be a connected reductive k-group whose Dynkin diagram does not contain
connected components of type E8 and let G0 denote its derived subgroup. Let Gsc
denote the simply connected cover of G0. Then one has the exact sequence 1 !
C ! Gsc ! G0 ! 1, where C is a finite k-group of multiplicative type, central in
Gsc . Assuming that Gsc is quasi-split, we would like to show that G satisfies SQ by
following the reduction techniques used in Sections 2 and 3.
Lemma 5.1. Let G be a connected reductive k-group. If Gsc is quasi-split, then

there exists an extension 1 ! Q ! H
 
�! G ! 1, where Q is a quasi-trivial

k-torus, central in reductive k-groupH withH 0 simply connected and quasi-split.
2The map j commutes with NL=k in both cases.
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Proof. Recall that there is a central extension (called a z-extension) of G by a quasi-
trivial torus Q such that H 0 is semisimple and simply connected ( [11, Prop. 3.1]
and [4, Lemma 1.1.4]).

1! Q! H
 
�! G ! 1:

The restriction  jH 0 W H 0 ! G yields the fact thatH 0 is the simply connected cover
of G0 and hence is quasi-split.

Lemmata 2.2 and 5.1 imply that we can restrict ourselves to connected reductive
k-groups G such that G0 is simply connected and quasi-split.
Lemma 5.2. Let H be any reductive k-group such that its derived subgroup H 0

is semisimple simply connected and quasi-split. Let T denote the k-torus H=H 0.

Then the natural exact sequence 1! H 0 ! H
�
�! T ! 1 induces surjective maps

�.L/ W H.L/! T .L/ for all field extensionsL=k. In particular, the norm principle
holds for � W H ! T .

Proof. There exists a quasi-trivial maximal torus Q1 of H 0 defined over k [8,
Lem. 6.7]. Let Q1 � Q2, where Q2 is a maximal torus of H defined over k.
The proof of [8, Lem. 6.6] shows that �jQ2

W Q2 ! T is surjective and thatQ2\H 0
is a maximal torus of H 0. Since Q2 \H 0 � Q1, we get the following extension of
k-tori

1! Q1 ! Q2 ! T ! 1

Since Q1 is quasitrivial, H1 .L;Q1/ D 0 for any field extension L=k which gives
the surjectivity of �.L/ W Q2.L/! T .L/ and hence of �.L/ W H.L/! T .L/.

Let OG be an envelope of G0 defined using an embedding of � D Z.G0/ into a
quasi-trivial torus S . Note thatG0 is assumed to be simply connected and quasi-split
and is also the derived subgroup of OG by construction.

� G0

S OG

ı

�



Thus, we get an exact sequence 1 ! G0 ! OG ! OG=G0 ! 1 to which we can
apply Lemma 5.2 to conclude that the norm principle holds for the canonical map
OG !

OGh
OG; OG

i .
Constructing the intermediate group QG as in Section 3.1, we see that the norm

principle also holds for the natural map QG ! QG=G [1, Prop. 5.1]. Then using
Theorem 3.1 [3], Lemma 3.2, and a remark from Gopal Prasad thatGsc is quasi-split
if and only if G is quasi-split, we can conclude that Theorem 1:3 (restated below)
holds.
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Theorem1.3. Let k be a field of characteristic not 2. LetG be a connected quasi-split
reductive k-group whose Dynkin diagram does not contain connected components of
type E8. Then Serre’s question has a positive answer for G.

Acknowledgements. The author thanks Professors A. S. Merkurjev, R. Parimala,
O. Wittenberg and the anonymous referee for their many valuable suggestions and
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