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Abstract. Rigidity results are obtained for Riemannian d -manifolds with sec > 1 and spherical
rank at least d � 2 > 0. Conjecturally, all such manifolds are locally isometric to a round sphere
or complex projective space with the (symmetric) Fubini–Study metric. This conjecture is
verified in all odd dimensions, for metrics on d -spheres when d ¤ 6, for Riemannian manifolds
satisfying the Rakić duality principle, and for Kählerian manifolds.
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1. Introduction

A complete Riemannian d -manifoldM has extremal curvature � 2 f�1; 0; 1g if its
sectional curvatures satisfy sec 6 � or sec > �. For M with extremal curvature �,
the rank of a complete geodesic 
 W R ! M is defined as the maximal number of
linearly independent, orthogonal, and parallel vector fields V.t/ along 
.t/ satisfying
sec. P
; V /.t/ � �. ThemanifoldM has (hyperbolic, Euclidean or spherical according
as � is �1; 0 or 1) rank at least k if all its complete geodesics have rank at least k.

Riemannian manifolds with sec 6 � and admitting positive rank are known to
be rigid. Finite volume Riemannian manifolds with bounded nonpositive sectional
curvatures and positive Euclidean rank are locally reducible or locally isometric
to symmetric spaces of nonpositive curvature [1, 6]. Generalizations include [11]
and [28]. Closed Riemannian manifolds with sec 6 �1 and positive hyperbolic
rank are locally isometric to negatively curved symmetric spaces [12]; this fails
in infinite volume [8]. Finally, closed Riemannian manifolds with sec 6 1 and
positive spherical rank are locally isometric to positively curved, compact, rank one
symmetric spaces [25].

Rank rigidity results are less definitive in the sec > � curvature settings.
Hyperbolic rank rigidity results for manifolds with �1 6 sec 6 0 first appeared
�The first named author is partially supported by the NSF grant DMS–1207655.
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in [9]. Finite volume 3-manifolds with sec > �1 and positive hyperbolic rank are
real hyperbolic [23]. Complete Riemannian 3-manifolds with sec > 0 and positive
Euclidean rank have reducible universal coverings as a special case of [4], while the
higher dimensional sec > 0 examples in [26], [15] illustrate that rank rigidity does
not hold in complete generality.

Our present focus is the curvature setting sec > 1. Conjecturally, manifolds
with sec > 1 and positive spherical rank are locally isometric to positively curved
symmetric spaces. Note that the simply connected, compact, rank one symmetric
spaces, normalized to have minimum sectional curvature 1, have spherical rank:
n�1 D dim.Sn/�1 for the spheres; 2n�2 D dim.CPn/�2 for complex projective
space; 4n�4 D dim.HPn/�4 for quaternionic projective space; 8 D dim.OP2/�8
for the Cayley projective plane. Our main theorems concern d -manifolds with
spherical rank at least d �2, spaces that are conjecturally locally isometric to spheres
or complex projective spaces.
Theorem A. An odd dimensional Riemannian d -manifold with d > 3, sec > 1, and
spherical rank at least d � 2 has constant sectional curvatures sec � 1.
Theorem B. Let M be an even dimensional Riemannian d -manifold with d > 4,
sec > 1, and spherical rank at least d � 2. If M does not have constant sectional
curvatures i.e., sec 6� 1, thenM satisfies:

(1) Every vector v 2 SM is contained in a 2-plane section � with sec.�/ > 1.

(2) The geodesic flow �t W SM ! SM is periodic with 2� a period.

(3) There exists an almost complex structure J W TM ! TM if M is simply
connected.

(4) IfM is simply connected and if sec < 9, then every geodesic inM is simple,
closed, and of length � . Moreover,M is homotopy equivalent to CPd=2:

A Riemannian manifold satisfies the Rakić duality principle if for each p 2 M ,
orthonormal vectors v;w 2 SpM , and c 2 R, v lies in the c-eigenspace of the Jacobi
operator Jw if and only if w lies in the c-eigenspace of the Jacobi operator Jv . This
property arises naturally in the study of Osserman manifolds [19, 20]. See Section 2
for details.
Theorem C. LetM be a Riemannian d -manifold with sec > 1 and spherical rank at
least d � 2. IfM satisfies the Rakić duality principle, thenM is locally symmetric.

Theorem D. A Kählerian manifold with sec > 1, real dimension d > 4, and
spherical rank at least d � 2 is isometric to a symmetric CPd=2 with holomorphic
curvatures equal to 4.

Theorem A implies:
Corollary E. A Riemannian 3-manifold with sec > 1 and positive spherical rank
has constant sectional curvatures.
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Only the two- and six-dimensional spheres admit almost complex structures [5].
Hence, item (3) in Theorem B implies:

Corollary F. A Riemannian sphere Sd with d ¤ 2; 6, sec > 1, and with spherical
rank at least d � 2 has constant sectional curvatures.

It is instructive to compare the sec > 1 case considered here with that of the
sec 6 1 case of rank-rigidity resolved in [25]. In both cases, each unit-speed
geodesic 
 W R ! M admits a Jacobi field J.t/ D sin.t/V .t/ where V.t/ is a
normal parallel field along 
 contributing to its rank . Hence, for each p 2 M , the
tangent sphere of radius � is contained in the singular set for expp W TpM ! M .
In a symmetric space with 1

4
6 sec 6 1, the first conjugate point along a unit-speed

geodesic occurs at time � , the soonest time allowed by the curvature assumption
sec 6 1. Consequently, the rank assumption is an assumption about the locus of
first singularities of exponential maps when sec 6 1. In symmetric spaces with
1 6 sec 6 4, the first and second conjugate points along a unit-speed geodesic
occur at times �=2 and � , respectively. Therefore, when rank-rigidity holds in the
sec > 1 setting, the rank assumption is an assumption about the locus of second
singularities of exponential maps. Concerning first singularities, a simply-connected
Riemannian manifold with sec > 1 in which the first conjugate point along each
unit-speed geodesic occurs at time �=2 is globally symmetric [22].

An alternative definition for the spherical rank of a geodesic 
 in a Riemannian
manifold with sec > 1 is the dimension of the space of normal Jacobi fields along 

that make curvature one with 
 . This alternative notion of rank is a priori less
restrictive since parallel fields V.t/ give rise to Jacobi fields J.t/ as described above.
The Berger spheres, suitably rescaled, have positive rank when defined in terms of
Jacobi fields [25] but not when defined in terms of parallel fields by Corollary E.
Moreover, there is an infinite dimensional family of Riemannian metrics on S3 with
sec > 1 and positive rank when defined in terms of Jacobi fields [24]. In particular,
there exists examples that are not locally homogeneous. Each such metric admits
a unit length Killing field X with the property that a 2-plane section � � TM

with X 2 � has sec.�/ D 1; the restriction of X to a geodesic is a Jacobi field
whose normal component contributes to the rank. There are no known examples
with discrete isometry group.

To describe our methods and the organization of the paper, let I D fp 2M j
secp � 1g and O D M n I denote the subsets of isotropic and nonisotropic points
in M , respectively. The goal is to prove that M is locally isometric to complex
projective space when O ¤ ;:

We start with a pointwise analysis of curvature one planes. Given a vector
v 2 SpM , letEv denote the span of all vectorsw orthogonal to v with sec.v; w/ D 1
and let Dv denote the subspace of Ev spanned by vectors contributing to the rank
of the geodesic 
v.t/. The assignments v 7! Ev and v 7! Dv define two (possibly
singular) distributions on each unit tangent sphere SpM , called the eigenspace and
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spherical distributions, respectively (see 2.7 and 3.1). The spherical rank assumption
ensures that d � 2 D dim.SpM/ � 1 6 dim.Dv/ for each v 2 SpM so that both
distributions are of codimension at most one on SpM .

The arrangement of curvature one planes at nonisotropic points p encodes what
ought to be a complex structure, a source of rigidity. More precisely, the eigenspace
distribution on SpM is totally geodesic (see Lemma 2.12) and of codimension at
most one. Subsection 2.3 builds on earlier work of Hangan and Lutz [13] where they
exploited the fundamental theorem of projective geometry to prove that codimension
one totally geodesic distributions on odd dimensional spheres are algebraic: there is
a nonsingular projective class ŒA� of skew-symmetric linear maps of RnC1 with the
property that the distribution is orthogonal to the Killing (line) field on Sn generated
by ŒA�. In particular, such distributions are projectively equivalent to the standard
contact hyperplane distribution. Note that whenM is complex projective space, with
complex structure J W TM ! TM , the codimension one eigenspace distribution
on SpM is orthogonal to the Killing (line) field on SpM generated by ŒJp�.

As the spherical distribution D is invariant under parallel transport along
geodesics (D P
v.t/ D Pt .Dv/), its study leads to more global considerations in
Section 3.1. The sphere of radius � in TpM is also equipped with a kernel
distribution, v 7! Kv WD ker.d.expp/v/ (see 2.4). As each w 2 Dv is an
initial condition for an initially vanishing spherical Jacobi field along 
v.t/, parallel
translation in TpM identifies the spherical subspace Dv with a subspace of K�v
for each v 2 SpM (see Lemma 3.6). When p 2 O, the eigenvalue and spherical
distributions on SpM coincide (see Lemma 3.4). As a consequence, the kernel
distribution contains a totally geodesic subdistribution of codimension at most one
on S.0; �/. It follows that expp is constant on S.0; �/ (see Corollary 3.7) and
that geodesics passing through nonisotropic points p 2 O are all closed (see
Lemma 3.8). Moreover, when p 2 O, each vector v 2 SpM has rank exactly
d � 2 (see Lemma 3.12), or putting things together, the eigenspace distribution is a
nonsingular codimension one distribution on SpM . As even dimensional spheres
do not admit such distributions,M must have even dimension, proving Theorem A.
More generally, this circle of ideas and a connectivity argument culminate in a proof
that every vector in M has rank d � 2 when the nonisotropic set O ¤ ; (see
Proposition 3.13).

The remainder of the paper is largely based on curvature calculations in radial
coordinates with respect to frames adapted to the spherical distributions that
are introduced in Section 3.2. An argument based on these calculations and
the aforementioned fact that the spherical distributions are contact distributions,
establishes that if the nonisotropic set O ¤ ; , thenM D O (see Proposition 3.14).
The proof of Theorem B follows easily and appears in Section 3.3. The proof of
Theorem C appears in Section 3.4. There, the Rakić duality hypothesis is applied
to prove that the family of skew-symmetric endomorphisms Ap W TpM ! TpM ,
p 2 M , arising from the family of eigenspace distributions on the unit tangent
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spheres SpM , define an almost complex structure on M (see Lemma 3.22). This
fact, combined with additional curvature calculations in adapted framings, allows us
to deduce that M is Einstein, from which the theorem easily follows (see the proof
of Proposition 3.21).

Finally, Sections 4 and 5 contain the proofs of Theorem D in real dimension at
least six and in real dimension four, respectively. The methods are largely classical,
relying on pointwise curvature calculations based on the Kähler symmetries of the
curvature tensor and on expressions for the curvature tensor when evaluated on
an orthonormal 4-frame due to Berger [2, 17]. Essentially, these calculations yield
formulas that relate the eigenvalues of the endomorphismsAp W TpM ! TpM to the
curvatures of eigenplanes in invariant four dimensional subspaces of TpM . When the
real dimension is at least six, there are enough invariant four dimensional subspaces
to deduce thatM has constant holomorphic curvatures, concluding the proof in that
case. The argument in real dimension four proceeds differently by proving that M
satisfies the Rakić duality principle. When this fails, the decomposition of TM into
eigenplanes of A W TM ! TM is shown to arise from a metric splitting of M ,
contradicting the curvature hypothesis sec > 1.

2. Notation and Preliminaries

This section contains preliminary results, mostly well-known, that are used in
subsequent sections. Throughout .M; g/ denotes a smooth, connected, and complete
d -dimensional Riemannian manifold, X .M/ the R-module of smooth vector fields
onM , and r the Levi-Civita connection. Let X; Y;Z;W 2 X .M/ be vector fields.
Christoffel symbols for the connection r are determined by Koszul’s formula

g.rXY;Z/ D 1
2
fXg.Y;Z/C Y g.Z;X/ �Zg.X; Y /g

C
1
2
fg.ŒX; Y �; Z/ � g.ŒY;Z�; X/C g.ŒZ;X�; Y /g: (2.1)

The curvature tensorR W X .M/3 ! X .M/ is defined byR.X; Y /Z D ŒrX ;rY �Z�
rŒX;Y �Z and has the following symmetries

R.X; Y;Z;W / D �R.Y;X;Z;W / D R.Z;W;X; Y / (2.2)

where R.X; Y;Z;W / D g.R.X; Y /Z;W /: The sectional curvature of a 2-plane
section � spanned by vectors v andw is defined by sec.�/ D sec.v; w/ D R.v;w;w;v/

kv^wk2
.

An almost Hermitian structure onM is an almost complex structure J W TM ! TM

compatible with the metric: g.X; Y / D g.JX; J Y / for all X; Y 2 X .M/. A
Hermitian structure on M consists of an integrable almost Hermitian structure.
The Kähler form is the 2-form ! defined by !.X; Y / D g.JX; Y /. A Kähler
structure onM consists of a Hermitian structure with closed Kähler form, d! D 0,
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or equivalently, a parallel complex structure, rJ D 0. If M is Kählerian, then
rY JX D JrYX for all X; Y 2 X .M/, yielding the additional curvature identities

R.X; Y;Z;W / D R.JX; J Y;Z;W /

D R.X; Y; JZ; JW / D R.JX; J Y; JZ; JW /:
(2.3)

These curvature identities are the key properties of a Kählerian manifold used in
the proof of Theorem D.

2.1. Jacobi operators and eigenspace distributions.. Let SM denote the unit
sphere bundle ofM ; its fiber above a point p 2M is the unit sphere SpM in TpM .
For v 2 SpM define the Jacobi operator Jv W v? ! v? by Jv.w/ D R.w; v/v.
The symmetries (2.2) imply that Jv is a well-defined self-adjoint linear map of v?.
Its eigenvalues encode the sectional curvatures of 2-plane sections containing the
vector v.
Lemma 2.1. Let v;w 2 SpM be orthonormal vectors and assume that secp > � for
some � 2 R. The following are equivalent:

(1) sec.v; w/ D �
(2) w is an eigenvector of Jv with eigenvalue �.

(3) R.w; v/v D �w

Proof. Only .1/ H) .2/ is nontrivial. If feign�1iD1 is an orthonormal eigenbasis
of Jv with corresponding eigenvalues �i , then �i > � for each index i . Express
w D

Pn�1
iD1 ˛iei with

Pn�1
iD1 ˛

2
i D 1. Then � D g.R.w; v/v;w/ D g.Jv.w/; w/ DPn�1

iD1 ˛
2
i �i : Conclude that ˛i D 0 for indices i with �i > �. Therefore w is an

eigenvector of Jv with eigenvalue �.

Remark 2.2. An analogous proof works when secp 6 �.
Lemma 2.3. Let v;w 2 SpM be orthonormal vectors. If w? \ v? consists of
eigenvectors of Jv , then w is an eigenvector of Jv . Consequently, R.v;w;w0; v/ D
g.Jv.w/; w0/ D 0 for any w0 2 w? \ v?.

Proof. The orthogonal complement to an invariant subspace of a self-adjoint operator
is an invariant subspace.

2.1.1. Specialization to manifolds with cvc.�/.
Definition 2.4. A Riemannian manifold has constant vector curvature �, denoted by
cvc.�/, provided that � is an extremal sectional curvature forM (sec 6 � or sec > �)
and � is an eigenvalue of Jv for each v 2 SM [23].

For each v 2 SM , let Ev � v? denote the (nontrivial) �-eigenspace of Jv .
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Convention 2.5. For each v 2 SpM , parallel translation in TpM defines an
isomorphism between the subspace v? of TpM and the subspace Tv.SpM/

of Tv.TpM/. This isomorphism is used without mention when contextually
unambiguous.

Convention 2.6. Given a manifold M , an assignment M 3 p 7! Dp � TpM

of tangent subspaces is a distribution. The rank of the subspaces may vary with
p 2 M and the assignment is not assumed to have any regularity. The codimension
of a distribution D is defined as the greatest codimension of its subspaces. When a
distributionD is known to have constant rank, it is called a nonsingular distribution.

Definition 2.7. The �-eigenspace distribution on SpM , denoted by E, is the
distribution of tangent subspaces

SpM 3 v 7! Ev � Tv.SpM/:

Its regular set, denoted by Ep , is the open subset of SpM consisting of unit vectors v
for which dim.Ev/ is minimal.

Example 2.8. �-eigenspace distributions need not have constant rank. When M
is a Berger sphere suitably rescaled to have cvc.1/, the curvature one 2-planes in
SpM are precisely the 2-planes containing the Hopf vector h 2 SpM . Therefore
dim.Eh/ D dim.E�h/ D 2, while dim.Ev/ D 1 for any vector v 2 SpM n f˙hg.

Lemma 2.9. For each p 2 M the restriction of the �-eigenspace distribution on
SpM to Ep is smooth.

Proof. The operatorsJv�� Id vary smoothly and have constant rank inEp . Therefore
the subspaces Ev D ker.Jv � � Id/ vary smoothly with v 2 Ep (see [7, Lemma 1]
for more details).

Remark 2.10. Let E � SM denote the collection of unit tangent vectors v 2 SM
with dim.Ev/ minimal. The same proof as that of Lemma 2.9 shows that the
assignment v 7! Ev is smooth on E . Note that E \ SpM may not coincide with Ep .

A tangent distributionD on a complete RiemannianmanifoldS is totally geodesic
if complete geodesics of S that are somewhere tangent toD are everywhere tangent
toD.

Convention 2.11. Henceforth, unit tangent spheres SpM are equipped with the
standard Riemannian metric, denoted by h�; �i, induced from the Euclidean metric
gp.�; �/ on TpM . Moreover, geodesics in SpM are typically denoted by c while
geodesics inM are typically denoted by 
 .

Lemma 2.12. For each p 2M , the �-eigenspace distributionE is a totally geodesic
distribution on SpM .
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Proof. Let v 2 SpM and w 2 Ev . The geodesic c.t/ D cos.t/vC sin.t/w satisfies
c.0/ D v and Pc.0/ D w. CalculateJc.t/. Pc.t// D � sin.t/Jw.v/Ccos.t/Jv.w/. By
assumption, Jv.w/ D �w. By Lemma 2.1, Jw.v/ D �v. Therefore Jc.t/. Pc.t// D
�.� sin.t/v C cos.t/w/ D � Pc.t/. Hence Pc.t/ 2 Ec.t/; concluding the proof.

2.2. Conjugate points and Jacobi fields. LetM denote a smooth, connected, and
complete Riemannian manifold.
Convention 2.13. Henceforth, geodesics are parameterized by arclength. Moreover,
the notation 
v.t/ is frequently used to denote a complete unit speed geodesic with
initial velocity v D P
v.0/ 2 S
.0/M .

Let expp W TpM !M denote the exponential map and r W TpM n f0g ! SpM

the radial retraction r.v/ D v
kvk

. Critical points of expp are conjugate vectors. For a
conjugate vector v 2 TpM , let

Kv D ker.d.expp/v/ � Tv.TpM/: (2.4)

The multiplicity of v is defined as dim.Kv/. For t > 0, let S.0; t/ denote the sphere
in TpM with center 0 and radius t . Gauss’ Lemma asserts Kv � Tv.S.0; kvk//:

Let v 2 TpM be a conjugate vector and 
.t/ D expp.tr.v//. The point
q D expp.v/ is conjugate to the point p along 
 at time t D kvk. The point
q D expp.v/ is a first conjugate point to p along 
 if v is a first conjugate vector,
i.e. tv is not a conjugate vector for any t 2 .0; 1/. Denote the locus of first conjugate
vectors in TpM by FConj.p/. The conjugate radius at p, denoted conj.p/, is
defined by conj.p/ D infv2FConj.p/fkvkg when FConj.p/ ¤ ; and conj.p/ D 1
otherwise; when FConj.p/ ¤ ;, the infimum is realized as a consequence of
Lemma 2.14 below. The conjugate radius of M , denoted conj.M/, is defined by
conj.M/ D infp2M fconj.p/g.

Equivalently, conjugate vectors and points are described in terms of Jacobi fields
along 
 . A normal Jacobi field along 
.t/ is a vector field J.t/, perpendicular to P
.t/
and satisfying Jacobi’s second order ode: J 00 C R.J; P
/ P
 D 0: Initial conditions
J.t/; J 0.t/ 2 P
.t/? uniquely determine a normal Jacobi field. Let p D 
.0/,
v D P
.0/ 2 SpM , and w 2 v?. The geodesic variation ˛.s; t/ D expp.t.v C sw//
of 
.t/ D ˛.0; t/ has variational field J.t/ D @

@s
˛.s; t/jsD0, a normal Jacobi field

along 
 with initial conditions J.0/ D 0 and J 0.0/ D w given by

J.t/ D d.expp/tv.tw/: (2.5)

If J.a/ D 0, then (2.5) implies that aw 2 Kav . In this case av is a conjugate vector
and 
.a/ is a conjugate point to p D 
.0/ along 
 . All initially vanishing normal
Jacobi fields along 
 arise in this fashion, furnishing the characterization: 
.a/ is
conjugate to 
.0/ along 
 if and only if there exists a nonzero normal Jacobi field
J.t/ along 
 with J.0/ D J.a/ D 0.
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For 
.t/ a geodesic and t0 > 0, let V t0
 denote the vector space of piecewise
differentiable normal vector fields X.t/ along 
.t/ with X.0/ D X.t0/ D 0. The
index form I

t0

 W V t0
 � V t0
 ! R is the bilinear symmetric map defined by

I t0
 .X; Y / D

Z t0

0

g.X 0; Y 0/ � g.R.X; P
/ P
; Y / dt:

The null space of I t0
 consists of normal Jacobi fields J.t/ along 
.t/ with
J.0/ D J.t0/ D 0. By the Morse Index Theorem [10, Chapter 11], there exists
X 2 V t0
 such that I t0
 .X;X/ < 0 if and only if there exists 0 < s < t0 such that 
.s/
is conjugate to 
.0/ at time s. In particular, the property of being a first conjugate
point along a geodesic segment is a symmetric property.
Lemma 2.14. FConj.p/ is a closed subset of TpM .

Proof. Assume that vi 2 FConj.p/ converge to v 2 TpM . Let ti D kvik, Nt D kvk,
and wi D r.vi /; w D r.v/ 2 SpM . As vi is a conjugate vector, there exists a
normal Jacobi field Ji .t/ along 
wi

.t/ with Ji .0/ D Ji .ti / D 0 and kJ 0i .0/k D 1. A
subsequence of the Jacobi fields Ji .t/ converges to a nonzero Jacobi field J.t/
along 
w.t/ with J.0/ D J.Nt / D 0. Therefore v is a conjugate vector. If
v … FConj.p/, there exists 0 < s < 1 such that sv is a conjugate vector. Therefore
there exists X 2 V Nt
w

with I Nt
w
.X;X/ < 0.

An orthonormal framing fe1; : : : ; en�1g of a neighborhood B of w in SpM
induces parallel orthonormal framings fE1.t/; : : : ; En�1.t/g along geodesics with
initial tangent vectors in B , yielding isomorphisms between V t
b

Š V t
w
for each

b 2 B and t > 0. Under these isomorphisms, I ti
wi
.X;X/ ! I Nt
w

.X;X/ by
continuity; therefore, I ti
wi

.X;X/ < 0 for all i sufficiently large, contradicting
vi 2 FConj.p/.

2.3. Codimension one totally geodesic distributions on spheres.. Given a non-
zero skew-symmetric linear map A W Rd ! Rd and v 2 Sd�1, parallel translation
in Rd identifies v? and TvSd�1. As A is skew-symmetric and non-zero, the
assignment Sd�1 3 v 7! Av 2 TvS

d�1 defines a Killing field on Sd�1. Let
Ev D spanfv;Avg? denote the subspace of TvSd�1 orthogonal to Av. Then
Sd�1 3 v 7! Ev � TvS

d�1 defines a codimension one totally geodesic distribution
on Sd�1 with singular set X WD fx 2 Sd�1 jEx D TxS

d�1g D ker.A/ \ Sd�1 as
a consequence of the following well-known lemma.
Lemma 2.15. Let X be a Killing field on a complete Riemannian manifold .S; g/. If
a geodesic c.t/ satisfies g. Pc;X/.0/ D 0, then g. Pc;X/.t/ � 0.

The skew-symmetric linear map A and each nonzero real multiple rA yield the
same codimension one totally geodesic distribution E on Sn. In [13], Hangan and
Lutz apply the fundamental theorem of projective geometry to establish the following:
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Theorem 2.16 (Hangan and Lutz). Let E be a nonsingular codimension one totally
geodesic distribution on a unit sphere Sd�1 � Rd . Then d�1 is odd and there exists
a nonsingular projective class ŒA� 2 PGL.Rd / of skew-symmetric linear maps such
that for each x 2 Sd�1, Ex D spanfx;Axg?.

The elegance of their approach lies in the fact that no a priori regularity assumption
is made, while a posteriori the distribution is algebraic. The following corollary is
immediate (see [13]).

Corollary 2.17. A nonsingular codimension one totally geodesic distribution on an
odd dimensional unit sphere is real-analytic and contact.

Corollary 2.18. LetE be a nonsingular codimension one totally geodesic distribution
on an odd dimensional unit sphere Sd�1. The line field L on Sd�1 defined
by L D E? is totally geodesic if and only if ŒA2� D Œ� Id�, where ŒA� is as in
Theorem 2.16 above.

Proof. Assume that ŒA2� D Œ� Id�. Choose a representative A 2 ŒA� with unit-
modulus eigenvalues. Then kAvk D 1 and A2v D �v for each v 2 Sd�1. The
geodesic c.t/ D cos.t/v C sin.t/Av satisfies Pc.0/ 2 Lv . Then Pc.t/ 2 Lc.t/ since
Pc.t/ D � sin.t/v C cos.t/Av D Ac.t/, concluding the proof that L is totally
geodesic.

Conversely, assume that L is totally geodesic. Let v 2 Sd�1 and choose a
representative A 2 ŒA� satisfying kAvk D 1. The geodesic c.t/ D cos.t/v C
sin.t/Av satisfies Pc.t/ 2 Lc.t/ for each t 2 R. Set t D �

2
and conclude that

the 2-plane spanned by v and Av is invariant under A. As kAvk D 1 and A is
skew-symmetric, A2v D �v, concluding the proof.

Let X D fx 2 Sd�1 jEx D TxS
d g denote the singular set for a codimension

one totally geodesic distributionE on Sd�1. Given a subsetU � Sd�1, let†.U / D
spanfU g\Sd�1 denote the smallest totally geodesic subsphere ofSd�1 containingU .

Lemma 2.19. The singular set X satisfies †.X / D X .

Proof. There is nothing to prove if X D ;. If x 2 X , then �x 2 X since each
great circle through �x also passes through x. It remains to prove that for linearly
independent x1; x2 2 X , the great circle C1 WD Sp.fx1; x2g/ � X .

If x3 2 C1 n f˙x1;˙x2g, then the line L1 WD Tx3
C1 is a subspace of Ex3

since
x1 2 X . Let L2 be any other line in Tx3

Sd�1 and let C2 denote the great circle
containing x3 with tangent line L2.

Let p 2 C2 n f˙x3g. As x1; x2 2 X are linearly independent, the tangent lines
at p to the great circles in the totally geodesic 2-sphere †.C1 [ C2/ that join x1
to p and x2 to p are transverse subspaces of Ep \ Tp†.C1 [ C2/. Therefore
Tp†.C1 [ C2/ � Ep . In particular, the tangent line to C2 at p is a subspace of Ep ,
whence the line L2 is a subspace of Ex3

, as required.
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Corollary 2.20. The singular setX of a codimension one totally geodesic distribution
on Sd�1 does not contain a basis of Rd .

The following simple lemma is applied to Riemannian exponential maps in
subsequent sections.

Lemma 2.21. Let E be a codimension one totally geodesic distribution on Sd�1, X
a set, and f W Sd�1 ! X a function. If f is constant on curves everywhere tangent
to E, then f is constant.

Proof. Let x 2 Sd�1. The assumption implies that f is constant on the union
of geodesics with initial velocity in Ex , a totally geodesic subsphere of Sd�1 of
codimension at most one. Any two such subspheres intersect.

3. Proofs of Theorems A, B, and C

Throughout this sectionM denotes a complete d -dimensional Riemannian manifold
with sec > 1 and spherical rank at least d � 2. Then M is closed and has cvc.1/.
In particular, for each v 2 SM , the 1-eigenspace Ev of the Jacobi operator Jv (see
Definition 2.7) is a nonempty subspace of v?.

Recall that a point p 2 M is isotropic if sec.�/ is independent of the 2-plane
section � � TpM and nonisotropic otherwise. Hence, p is an isotropic point if and
only if Ev D v? for each v 2 SpM . Let I and O denote the subsets of isotropic
and nonisotropic points inM , respectively. Note that I is closed inM and thatO is
open inM .

3.1. Preliminary structure and Proof of Theorem A. This subsection discusses
a number of preliminary structural results that culminate in a proof of Theorem A.

For p 2 M and v 2 SpM , let Pt W TpM ! T
v.t/M denote parallel translation
along the geodesic 
v.t/. Define the subspaceDv � v? by

Dv D spanfw 2 v? j sec. P
v.t/; Ptw/ D 1 8t 2 Rg
D spanfw 2 v? jPtw 2 E P
.t/ 8t 2 Rg:

(3.1)

Note thatDv is a subspace of Ev for each v 2 SpM . The spherical rank assumption
implies dim.Dv/ > d � 2. In particular, the 1-eigenspace distribution E is a
codimension one totally geodesic (by Lemma 2.12) distribution on SpM when
p 2 O.

Lemma 3.1. For each v 2 SpM

(1) Dv D D�v
(2) If w 2 Dv , then sec. P
v.t/; Ptw/ D 1 for all t 2 R.
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Proof. .1/ is immediate from the definition of Dv . For (2), let fu1; : : : ; ukg be a
maximal collection of linearly independent vectors in

fw 2 v? jPtw 2 E P
.t/ 8t 2 Rg

and express w D
Pk
iD1 aiui . As E P
.t/ is a subspace, Ptw D

Pk
iD1 aiPtui 2 E P
.t/

for each t 2 R, concluding the proof.

The rank of a vector v 2 SpM is defined as dim.Dv/. The rank of a one
dimensional linear subspace L 6 TpM is defined as the rank of a unit vector tangent
to L. The rank of a geodesic is the common rank of unit tangent vectors to the
geodesic.

Definition 3.2. The spherical distribution on SpM , denoted by D, is the tangent
distribution defined by

SpM 3 v 7! Dv � Tv.SpM/:

Let Dp denote the subset of SpM consisting of rank d � 2 vectors and let
D D [p2MDp denote the collection of all rank d � 2 unit vectors in SM .

As parallel translations along geodesics and sectional curvatures are continuous,
the rank of vectors cannot decrease under taking limits. This implies the following:

Lemma 3.3. For each p 2 M , the regular set Dp is open and the spherical
distributionD on SpM is continuous on its regular set Dp .

Lemma3.4. Ifp is a nonisotropic point, i.e. p 2 O, then the spherical distributionD
and eigenspace distribution E coincide on SpM .

Proof. If not, then there exists a rank d � 2 vector v 2 Dp with the property
that Ev D Tv.SpM/. Consider the codimension one totally geodesic subsphere
S � SpM containing v and determined by TvS D Dv , namely S D expv.Dv/.

Given x 2 SpM n S sufficiently close to v, let C.v; x/ denote the great circle
through v and x. Lemma 3.3 implies that the tangent line TxC.v; x/ is transverse
to the subspace Dx . As E is totally geodesic and Ev D Tv.SpM/, it follows
that TxC.v; x/ � Ex . Conclude that Ex D Tx.SpM/. Lemma 2.20 implies that
E D T .SpM/, a contradiction since p 2 O.

Convention 3.5. Parallel translation in TpM identifies the spherical distribution D
on SpM with a distribution defined on the tangent sphere S.0; �/ � TpM . The
latter is also denoted byD when unambiguous.

Lemma 3.6. Let v 2 SpM . If w 2 Dv , then J.t/ D sin.t/Ptw is a Jacobi field
along 
v.t/. In particular,D�v � K�v , where K�v D ker.d.expp/�v/ (see (2.4)).
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Proof. Lemma 2.1 and Lemma 3.1(2) imply

J 00.t/CR.J; P
v/ P
v.t/ D sin.t/.�Ptw CR.Ptw; P
v/ P
v.t// D 0

for all t 2 R. As J.�/ D 0, w 2 K�v by (2.5).

Corollary 3.7. If p 2 O, then the restriction of expp to the tangent sphere S.0; �/
is a point map.

Proof. The map expp is constant on curves tangent to the kernel distribution defined
by S.0; �/ 3 �v 7! K�v � T�v.S.0; �//. The distributions E and D coincide on
SpM by Lemma 3.4. Lemma 3.6 implies that expp is constant on curves tangent to
the distribution E. Lemma 2.21 implies the corollary.

Let �t W SM ! SM , t 2 R, denote the geodesic flow. For T > 0, let

FixT D fv 2 SM j�T v D vg:

Lemma 3.8. If p 2 O, then SpM � Fix2� .

Proof. Corollary 3.7 implies expp.S.0; �// D fp0g for some p0 2 M . The lemma
is a consequence of the following claim.

Claim. For v 2 SpM , the geodesics 
v.t/ and 
�v.t/ satisfy P
v.�/ D � P
�v.�/.

There exists a positive � < inj.M/ such that 
v.�/ 2 O since O is open in M .
Let w D P
v.�/. Corollary 3.7 implies that q0 WD 
w.�/ D 
�w.�/ D 
�v.� � �/.
The geodesic segments 
w.Œ� � �; ��/ and 
�v.Œ� � �; ��/ each have length � and
meet at the points p0 and q0. As � < inj.M/, these segments coincide, implying the
claim.

Lemma 3.9. Let v 2 SpM have rank d � 2 and let w be a unit vector in v? \D?v .
The initially vanishing normal Jacobi field J.t/ along 
v.t/ with J.0/ D 0 and
J 0.0/ D w has the form J.t/ D f .t/Ptw where f .t/ is the solution to the ODE
f 00 C sec.Ptw; P
v/f D 0 with initial conditions f .0/ D 0 and f 0.0/ D 1.

Proof. The initial conditions f .0/ D 0 and f 0.0/ D 1 imply the initial conditions
J.0/ D 0 and J 0.0/ D w. The hypotheses and Lemma 2.3 imply that Ptw is an
eigenvector of J P
v.t/ with eigenvalue sec.Ptw; P
v/.t/. Consequently,

J 00.t/CR.J; P
v/ P
v.t/ D Œf
00.t/C sec.Ptw; P
v.t//f .t/�Ptw D 0

concluding the proof.

Corollary 3.10. A vector v 2 SpM has rank d � 1 if and only if �v 2 FConj.p/.

Proof. If v has rank d � 1, then Lemma 3.6 implies that �v 2 FConj.p/. If v has
rank d � 2 then there is an initially vanishing Jacobi field of the form described by
Lemma 3.9. The function f .t/ vanishes strictly before � by the equality case of the
Rauch Comparison Theorem [10, Chapter 11].
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Recall that FConj.p/ denotes the locus of first conjugate vectors in TpM .
Corollary 3.11. If there exists p 2 M with FConj.p/ D S.0; �/, then M D I ,
i.e.M has constant curvatures equal to one.

Proof. Let Up D M n Cut.p/. By Corollary 3.10, all vectors in SpM have rank
d �1. By Cartan’s theorem on determination of the metric [10, Theorem 2.1, p. 157],
Up � I . Therefore,M D closure.Up/ � I:

Lemma 3.12. If v 2 SpM has rank d � 1 and the restriction of expp to S.0; �/ is
a point map, thenM D I .

Proof. It suffices to prove FConj.p/ D S.0; �/ by Corollary 3.11. Let X D
FConj.p/ \ S.0; �/. The vector �v 2 X by Corollary 3.10; therefore X is a
nonempty subset of S.0; �/. The subset X is closed in S.0; �/ by Lemma 2.14. It
remains to demonstrate that X is an open subset of S.0; �/.

This fails only if there exists x 2 X and a sequence xi 2 S.0; �/ nX converging
to x. As expp is a point map on S.0; �/ each xi is a conjugate vector. As
xi … FConj.p/ there exists si 2 .0; 1/ such that sixi 2 FConj.p/. By Lemma 3.9,
there exist Jacobi field Ji .t/ D fi .t/Ptwi along the geodesics 
r.xi /.t/ with
fi .0/ D fi .si / D fi .�/ D 0 for each index i . Note that minfsi ; ��sig > inj.M/=2.
Therefore, sixi converge to a conjugate vector sxwith 0 < s < 1, a contradiction.

Proposition 3.13. SM D D orM D I .

Proof. Assume that I is a proper subset of M , or equivalently, that O ¤ ;.
Corollary 3.7 and Lemma 3.12 imply Dp D SpM for each p 2 O. Therefore
D ¤ ;. As D is an open subset of the connected SM , it remains to prove that D is
a closed subset of SM .

This fails only if there exists a sequence of rank d � 2 vectors vi 2 D with vi
converging to a vector v 2 SM of rank d � 1. Lemma 3.8 implies each of the
geodesics 
vi

is closed and has 2� as a period; therefore, 
v is a closed geodesic
having 2� as a period. Let pi 2 M denote the footpoint of each vi and p 2 M the
footpoint of v. As the rank of vi is d � 2, the geodesic 
vi

entersO at some time ti .
Replace vi withwi D P
vi

.ti /. After possibly passing to a subsequence, the sequence
of rank n � 2 vectors wi with footpoints qi 2 O converge to a rank d � 1 vector w
with footpoint q.

Continuity of exp W TM ! M and Lemma 3.7 imply that expq restricts to a
point map on the tangent sphere S.0; �/ � TqM . Lemma 3.12 implies M D I , a
contradiction.

Proof of Theorem A. Seeking a contradiction, assume thatM ¤ I . Then SM D D
by Proposition 3.13. For p 2 M , the spherical distribution D is a nonsingular
codimension one tangent distribution onSpM , an even dimensional sphere sinceM is
odd dimensional. This distribution is continuous by Lemma 3.3, a contradiction.
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3.2. Adapted Frames. This subsection consists of preliminary results that will
culminate in the proof of Theorem B in the next subsection. If M does not have
constant curvatures equal to one, then Theorem A implies d D dim.M/ is even and
Proposition 3.13 implies every tangent vector has rank d � 2 (SM D D). These
are standing assumptions on M throughout this subsection. The main result is the
following proposition; its proof appears at the end of this subsection.
Proposition 3.14. IfM does not have constant curvatures equal to one, thenM has
no isotropic points (M D O).

Lemma 3.15. For each p 2 M , the spherical distribution D is a smooth tangent
distribution on SpM .

Proof. It suffices to prove smoothness of D on a metric ball B contained in the
tangent sphere SpM . As the center b0 of B is a rank d � 2 vector, there exists
a unit vector w 2 b?0 and a t0 > 0 such that sec. P
b0

.t0/; Pt0w/ > 1. Therefore

b0
.t0/ 2 O, and since O is open, 
b.t0/ 2 O for all b 2 B after possibly reducing

the radius of B .
Lemma 3.4 implies D P
b.t0/ D E P
b.t0/ for each b 2 B . The unit tangent

vectors P
b.t0/ vary smoothly with b 2 B . Remark 2.10 implies D P
b.t0/ varies
smoothly with b 2 B . The lemma follows sinceDb is obtained by parallel translating
along 
b for time t0 the subspaceD P
b.t0/ to Tb.SpM/.

The proof of Proposition 3.14 is based on a curvature calculation in special
framings along geodesics. To introduce these framings, let p 2 M , v 2 SpM , and
let fe1; : : : ; ed�1g � Tv.SpM/ be an orthonormal basis with e1; : : : ; ed�2 2 Dv .
Define E0.t/ D Ptv D P
v.t/ for t > 0 and Ei .t/ D Ptei for i 2 f1; : : : ; d � 1g
and t > 0.
Definition 3.16. The parallel orthonormal framing fE0.t/; : : : ; Ed�1.t/g along the
ray 
v W Œ0;1/!M is an adapted framing.

The following describes curvature calculations in polar coordinates using adapted
framings.

Suppose that B � SpM is a metric ball of radius less than � . Then TB is trivial
and the restriction of the spherical distributionD toB is trivial. ByLemma3.15, there
are smooth unit length vector fields e1; : : : ; ed�2 on B tangent to D. An orientation
on SpM determines a positively oriented orthonormal framing fe1; : : : ; ed�1g of B .
For each b 2 B , let fE0.t/; : : : ; Ed�1.t/g be the associated adapted framing along
the ray 
b .

Now fix v 2 B . For T > 0 such that T v is not a conjugate vector, expp carries
a neighborhood U of T v in TpM diffeomorphically onto a neighborhood V of
expp.T v/ inM . After possibly reducing the radius of B , the radial retraction of U
to the unit sphere r.U / coincides with B . The collection of adapted framings along
geodesic rays with initial tangent vectors in B restrict to an orthonormal framing
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fE0; : : : ; Ed�1g of the open set V inM . To calculate the Christoffel symbols in this
framing, first define akij W B ! R by

Œei ; ej � D

d�1X
kD1

akij ek : (3.2)

AsT v is not a conjugate vector, the geodesic spheresS.p; t/with centerp and radius t
close to T intersect the neighborhood V in smooth codimension one submanifolds.
The vector fields E1.t/; : : : ; Ed�1.t/ are tangent to the distance sphere S.p; t/
in V and have outward pointing unit normal vector field E0.t/. In what follows,
g0 WD E0.g/ denotes the radial derivative of a function g.

For each unit speed geodesic 
.t/ with initial velocity vector in B , let Ji .t/
denote the Jacobi field along 
 with initial conditions Ji .0/ D 0 and J 0i .0/ D ei 2

T P
.0/.SpM/. Lemmas 3.6 and 3.9 imply

Ji .t/ D sin.t/Ei .t/; i 2 f1; : : : ; d � 2g;

Jd�1.t/ D f .t/Ed�1.t/;
(3.3)

where f .t/ is the solution of the ODE

f 00 C sec.E0; Ed�1/f D 0; with f .0/ D 0; f 0.0/ D 1:

For t close to T , define Ft W B !M by Ft .b/ D expp.tb/. The chain rule and (2.5)
imply

dFt .ei / D Ji .t/ (3.4)

for i 2 f1; 2; : : : ; d � 1g. Use (3.2), (3.4), and the fact that the Jacobi fields Ji are
invariant under the radial (geodesic) flow generated by E0 to deduce

ŒJi ; Jj � D

d�1X
kD1

akijJk; LE0
Ji D ŒE0; Ji � D 0: (3.5)

Use (3.3) and (3.5) to calculate that for i; j 2 f1; : : : ; d � 2g:

ŒE0; Ei � D � cotEi
ŒE0; Ed�1� D

�f 0

f
Ed�1

ŒEi ; Ej � D

d�2X
kD1

ak
ij

sin Ek C
ad�1

ij
f

sin2 Ed�1

ŒEi ; Ed�1� D

d�2X
kD1

ak
i d�1

f
Ek C .

ad�1
i d�1

sin �
Ei .f /
f

/Ed�1:

(3.6)
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Lemma 3.17. Let i; j 2 f1; : : : ; d � 2g. The orthonormal framing fE0; : : : ; Ed�1g
has Christoffel symbols given by rE0

Ek D 0 for each k 2 f0; : : : ; d � 2g and:

rEi
E0 D cotEi

rEi
Ej D � cot ıji E0 C

d�2X
kD1

akij � a
i
jk
C a

j

ki

2 sin
Ek

�
1

2

�
a
j

i d�1
C ai

j d�1

f
C
ad�1ji f

sin2

�
Ed�1

rEi
Ed�1 D

d�2X
kD1

1

2

�
ak
i d�1

C ai
k d�1

f
C
ad�1
ki

f

sin2

�
Ek

rEd�1
E0 D

f 0

f
Ed�1

rEd�1
Ej D

d�2X
kD1

1

2

�
a
j

k d�1
� ak

j d�1

f
�
ad�1
jk

f

sin2

�
Ek C

�
Ej .f /

f
�
ad�1
j d�1

sin

�
Ed�1

rEd�1
Ed�1 D �

f 0

f
E0 C

d�2X
kD1

�
ad�1
k d�1

sin
�
Ek.f /

f

�
Ek

where f .t/ is the solution of the ODE

f 00 C sec.E0; Ed�1/f D 0; with f .0/ D 0; f 0.0/ D 1:

Proof. Calculate using (2.1) and (3.6).

Use Lemma 3.17 to derive the curvature components: For i; j 2 f1; : : : ; d � 2g,

R.Ei ; Ej ; E0; Ed�1/ D
�.ad�1ij f csc/0

sin
(3.7)

R.Ed�1; E0; Ej ; Ed�1/ D
.ad�1
j d�1

f csc�Ej .f //0

f
: (3.8)

Proof of Proposition 3.14. The goal is to prove I D M or I D ;. The set of
isotropic points I is closed inM andM is connected. It suffices to prove that I is
open inM . Let p 2 I and v 2 SpM . As v has rank d � 2, there exists a positive
s < � such that q WD 
v.s/ is the first conjugate point to p along the geodesic 
v.t/.

Claim. I contains an open neighborhood of q inM .

Assuming the claim holds, I contains an open neighborhood of the point p inM
since the property of being a first conjugate point along a geodesic is symmetric.
Hence I is open inM .
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Proof of the claim. Let w D � P
v.s/ and note that p D 
w.s/. Let B be a small
metric ball in SqM containing w and trivialize the tangent bundle of B with
orthonormal vector fields fe1; : : : ; ed�1g with ei .b/ 2 Db for each b 2 B and
i 2 f1; : : : ; d � 2g. Consider the induced adapted framings fE0; : : : ; Ed�1g along
geodesics with initial velocity vectors in B .

If q is not contained in an open neighborhood of isotropic points, then there exists
a sequence qi 2 O converging to q. As all vectors have rank d � 2 the spherical
distributions on Sqi

M converge to the spherical distribution on SqM .
As qi 2 O, Lemma 3.4 implies that the spherical distribution on each Sqi

M

is totally geodesic. Therefore, the limiting spherical distribution on SqM is
totally geodesic. By Corollary 2.17, the limiting distribution on SqM is a contact
distribution. In particular, the function

ad�112 D hŒe1; e2�; ed�1i

is nonzero on B . Use (3.7) to calculate

R.E1; E2; E0; Ed�1/.t/ D
ad�112 .w/

sin3.t/
.cos.t/f .t/ � sin.t/f 0.t// (3.9)

for t 2 .0; s/ along 
w.t/.
As p 2 I , the curvature tensor vanishes on orthonormal 4-frames at the point p:

Therefore as t converges to s, the left hand side of (3.9) converges to zero. As ad�112

is nonzero on B , .cosf � sinf 0/! 0 as t ! s.
Only the Jacobi field Jd�1.t/ can vanish before time � . As p is conjugate to q,

f .t/ ! 0 as t ! s. As s < � , sin.s/ ¤ 0. Conclude that f .s/ D f 0.s/ D 0, a
contradiction since Jd�1.t/ D fEd�1.t/ is a nonzero Jacobi field along 
w.t/.

3.3. Proof of Theorem B.

Proof of (1). Let v 2 SpM . Since every tangent vector has rank d � 2, dim.Dv/ D
dim.v?/ � 1. Proposition 3.14 and Lemma 3.4 imply Dv D Ev . Lemma 2.1
concludes the proof.

Proof of (2). Proposition 3.14 and Lemma 3.8 imply that SM � Fix2� .

Proof of (3). As in the proof of (1), Dv D Ev and dim.Dv/ D dim.v?/ � 1 D
d � 2 for all v 2 SM . Lemma 2.12 implies that for each p 2 M , the
eigenspace distributionE on SpM is a nonsingular codimension one totally geodesic
distribution. Theorem 2.16 yields a nonsingular projective class ŒAp� 2 PGL.TpM/

for each p 2 M , varying smoothly with p 2 M by Remark 2.10. For each p 2 M
there are precisely two representatives of the projective class ŒAp� having determinant
one. As M is simply connected there exists a smooth section p 7! Ap 2 ŒAp�.
Item (3) is therefore a consequence of the polar decomposition of Ap , see [3,
Lemma 2.32, p. 64] for details.
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The proof of item (4) of Theorem B requires some preliminary lemmas.
Corollary 3.7 and Proposition 3.14 imply that the restriction of expp to the tangent

sphereS.0; �/ � TpM is a point map for eachp 2M . Define themapF WM !M

by F.p/ D expp.S.0; �//. Then F 2 D Id by item (2) of Theorem B.
Lemma 3.18. F is an isometry ofM .

Proof. The map F sends each complete geodesic inM into itself while preserving
the lengths of subsegments.

Lemma 3.19. If F has a fixed point, then F D Id.

Proof. By Lemma 3.18, it suffices to prove if F.p/ D p, then the derivative map
dFp D Id. The eigenvalues of the derivative map dFp are square roots of unity
since F 2 D Id. If v 2 TpM is a unit length eigenvector of eigenvalue �1, then
dFp.v/ D P
v.�/ D �v. Therefore, 
v.� C t / D 
v.�t / for all t . By the chain rule,
P
v.� C t / D � P
v.�t / for all t . When t D ��

2
this implies P
v.�2 / D � P
v.

�
2
/, a

contradiction.

Lemma 3.20. If sec < 9, then F has a fixed point.

Proof. IfF has nofixed points, then the displacement function ofF , x 7! d.x; F.x//,
obtains a positive minimum value at some p 2 M asM is compact. A minimizing
geodesic segment 
 that joints p to F.p/ has length L 6 diam.M/ < � by
Toponogov’s diameter rigidity theorem [27] (see also [21, Remark 3.6, pg. 157]).
Let m denote the midpoint of the segment 
 . The union 
 [ F.
/ forms a smoothly
closed geodesic of length 2L since otherwise d.m; F.m// < L D d.p; F.p/. By
item (2) and since F has no fixed points, 2L 2 f2�=.2k C 1/ j k > 1g. Therefore,
inj.M/ 6 L 6 �=3. As M is simply connected, even dimensional, and positively
curved, inj.M/ D conj.M/. The Rauch comparison theorem and the assumption
sec < 9 imply that conj.M/ > �=3, a contradiction.

Proof of (4). Lemmas 3.19 and 3.20 imply thatF D Id. It follows that each geodesic
inM is a closed geodesic having � as a period. If a closed geodesic of length � is
not simple, then there exists a geodesic loop inM of length at most �=2. In this case,
inj.M/ 6 �=4, contradicting inj.M/ D conj.M/ > �=3. Therefore, each geodesic
inM is simple, closed, and of length � .

Each unit speed geodesic starting at a point p 2 M of length � has equal
index k D 1; 3; 7; or dim.M/ � 1 in the pointed loop space �.p; p/ by the Bott–
Samelson Theorem [3, Theorem 7.23]. The multiplicity of each conjugate point
to p in the interior of these geodesics is one since the spherical Jacobi fields defined
in Lemma 3.6 do not vanish before time � . If k > 3, the Jacobi field given by
Lemma 3.9 has a pair of consecutive vanishing times 0 < t1 < t2 < � satisfying
t2 � t1 6 �=k 6 �=3. This contradicts conj.M/ > �=3 as sec < 9. Conclude that
k D 1 and thatM has the homotopy type of CPd=2 by [3, Theorem 7.23].
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3.4. Proof of Theorem C. Recall that a Riemannian manifold satisfies the Rakić
duality principle if for each p 2 M , orthonormal vectors v;w 2 SpM , and � 2 R,
v is a �-eigenvector of the Jacobi operator Jw if and only if w is a �-eigenvector of
the Jacobi operator Jv . This subsection contains the proof of Theorem C, an easy
consequence of the next proposition.

Proposition 3.21. Let M be a complete and simply connected Riemannian d -
manifold with d > 4 even, sec > 1, spherical rank at least d � 2, and no isotropic
points. If M satisfies the Rakić duality principle, then M is isometric to CPd=2
endowed with the symmetric metric having constant holomorphic curvatures equal
to 4.

The proof of this proposition appears at the end of the subsection. As a preliminary
step, observe that the proof of item (3) of Theorem B shows that there exists a
smooth section p 7! Ap 2 SL.TpM/ where each Ap is skew-symmetric and
satisfies Dv D spanfv;Apvg? for each v 2 SpM . Define � W SM ! R by
�.v/ D sec.v; Apv/ where p denotes the footpoint of the vector v 2 SM .

Lemma 3.22. A2p D � Id for each p 2M .

Proof. The proof of item (1) of Theorem B shows that Apv is orthogonal to the
1-eigenspace Dv of the Jacobi operator Jv . Therefore �.v/ > 1 and Apv=kApvk
is a unit vector in the �.v/-eigenspace of Jv . Similarly, �.Apv=kApvk/ > 1 and
A2pv=kA

2
pvk is a unit vector in the �.Apv=kApvk/-eigenspace of the Jacobi operator

JApv=kApvk. The Rakić duality property implies that v is a unit vector in the �.v/-
eigenspace of the Jacobi operator JApv=kApvk. The Jacobi operator JApv=kApvk

has two eigenspaces, the 1-eigenspace DApv=kApvk of dimension d � 2 and its one
dimensional orthogonal complement, the �.Apv=kApvk/ eigenspace. Conclude
that for each v 2 SpM , �.v/ D �.Apv=kApvk/ and by skew-symmetry of Ap
that v D �A2pv=kA2pvk. As A2pv is a multiple of v for each v 2 SpM and Ap is
skew-symmetric of determinant one, A2p D � Id.

Fix p 2M and a metric ballB in the tangent sphere SpM . Let fe1; : : : ; ed�1g be
a smooth framing of B with fe1; : : : ; ed�2g tangent to the spherical distributionD.

Lemma 3.23. The field ed�1 satisfiesred�1
ed�1 D 0 onB with respect to the round

metric on SpM . Equivalently, ad�1
j d�1

D 0 for each j 2 f1; : : : ; d � 2g.

Proof. The first assertion is a consequence of Corollary 2.18 and Lemma 3.22. The
second is derived from (2.1)

2hred�1
ed�1; ej i D hŒed�1; ed�1�; ej i � hŒed�1; ej �; ed�1i C hŒej ; ed�1�; ed�1i

D 2ad�1j d�1:
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Consider the adapted framing fE0.t/; : : : ; Ed�1.t/g along geodesics with initial
velocity in B induced by the framing fe1; : : : ; ed�1g of B . Let � < inj.M/ and let
J.b; t/ D f .b; t/Ed�1.t/ be the Jacobi field along 
b.t/ defined by Lemma 3.9.
Then f > 0 on B � .0; �/.
Proposition 3.24. The function f W B � .0; �/! R is radial: Ej .f / D 0 for each
j 2 f1; : : : ; d � 1g, or equivalently, f .b; t/ does not depend on b 2 B .

Proof. Lemma 3.23 and (3.8) imply R.Ed�1; E0; Ej ; Ed�1/ D
�Ej .f /

0

f
for each

j 2 f1; : : : ; n � 2g. For each b 2 B and t 2 .0; �/, Ed�1.b; t/ is an eigenvector
of eigenvalue �.E0.b; t// for the Jacobi operator JE0.b;t/. The symmetry property
implies that E0.b; t/ is an eigenvector of the Jacobi operator JEd�1.b;t/. Conclude
Ej .f /

0 D 0 for each j 2 f1; : : : ; d � 2g. Use (3.6) to calculate

0 D Ej .f /
0

D E0Ej .f /

D ŒE0; Ej �.f /CEjE0.f /

D � cotEj .f /CEj .f 0/
D Ej .f

0
� cot f /:

Let g D f 0 � cot f . Corollary 2.17 and the fact that the time t -map of the radial
flow generated by E0 carries the spherical distributionD to the distribution spanned
by fE1.t/; : : : ; Ed�2.t/g on expp.tB/ � S.p; t/ imply that the latter distribution is
contact. Conclude that Ed�1.g/ D 0 and that g is a radial function.

Therefore
h WD

g

sin
D
f 0 sin� cosf

sin2
D

�
f

sin

�0
is a radial function. Let k D f

sin and consider the restriction k.t/ to a geodesic 
b.t/
with b 2 B . By L’Hopital’s rule and the initial condition f 0.0/ D 1, limt!0 k.t/ D
f 0.0/
cos.0/ D 1. By the fundamental theorem of calculus, k.t/ D 1 C

R t
0
h.s/ ds is a

radial function. Therefore f D k sin is a radial function.

Proof of Proposition 3.21. It suffices to prove that � W SM ! R is constant by [7,
Theorem 2, p. 193]. Fix p 2M and a metric ball B � SpM as in Proposition 3.24.
Proposition 3.24 implies that � is constant onB since by the Jacobi equation, �.b/ D
limt!0 �f

00

f
.b; t/ for each b 2 B . As SpM is connected, � W SpM ! R has

a constant value �.p/. Each point p 2 M is an Einstein point with Ricp D
.�.p/ C d � 2/gp . The adaptation of Schur’s Theorem for Ricci curvatures [18,
Note 3, Theorem 1, p. 292] implies that M is globally Einstein. Therefore �.p/ is
independent of p 2M .

Proof of Theorem C. Apply TheoremA, Proposition 3.14, and Proposition 3.21.
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4. Proof of Theorem D in real dimension at least six

Throughout this section, M is Kählerian with complex structure J W TM ! TM ,
real even dimension d > 4, sec > 1, and spherical rank at least d � 2. This section
contains preliminary results, culminating in the proof of Theorem D when d > 6.

As M is orientable (complex), even-dimensional, and positively curved, M is
simply connected by Synge’s theorem. AsM is Kählerian, its second betti number
b2.M/ ¤ 0, whence M is not homeomorphic to a sphere. Therefore M does not
have constant sectional curvatures.

Proposition 3.14 now implies that M has no isotropic points (M D O).
Proposition 3.13 implies that every vector in M has rank d � 2. Lemmas 2.12
and 3.4 imply that that the eigenspace distribution is a nonsingular codimension one
distribution on each unit tangent sphere in M . By Theorem 2.16, there exists a
nonsingular projective class ŒAp� 2 PGL.TpM/ of skew-symmetric maps such that
Dv D Ev D fv;Apvg

? for each p 2M and v 2 SpM .

4.1. Relating the complex structure and the eigenspace distribution. Fix p 2M
and choose a representative Ap 2 ŒAp�. Assume that V D �1 ˚ �2 is an orthogonal
direct sum of two Ap-invariant 2-plane sections. There exist scalars 0 < �1 and
0 < �2 such that kApvik D �i for each unit vector vi 2 �i . There is no loss in
generality in assuming �1 6 �2 and if equality �1 D �2 holds, then �1 6 �2.

For a unit vector v 2 SpM , let �.v/ D sec.v; Apv/. Then Apv is an
eigenvector of the Jacobi operator Jv with eigenvalue �.v/ > 1. Note that �.v/
is the maximal curvature of a 2-plane section containing the vector v. Therefore,
�.Apv=kApvk/ > �.v/ with equality only if A2pv and v are linearly dependent. For
a vector vi 2 �i , let Nvi D A.vi /=�i . With this notation, NNvi D �vi .

Lemma 4.1. Assume that fu; v;wg � V are orthonormal vectors with u; v 2 �i and
w 2 �j with i ¤ j 2 f1; 2g. Then R.u; v;w; u/ D 0 and R.u;w;w; u/ D 1.

Proof. As u 2 �i , an Ap-invariant 2-plane, the orthogonal 2-plane �j is contained
in Eu. In particular, w 2 Eu, implying the lemma.

Lemma 4.2. Let vi 2 �i , i D 1; 2, be unit-vectors. If v D av1Cbv2 is a unit-vector,
then �.v/ D a2�1 C b2�2.

Proof. Observe that �.v/kApvk2 D R.v;Apv;Apv; v/ or equivalently

�.v/.a2�21Cb
2�22/ D R.av1Cbv2; a�1 Nv1Cb�2 Nv2; a�1 Nv1Cb�2 Nv2; av1Cbv2/:

Expanding the above, using Lemma 4.1, and simplifying yields

�.v/.a2�21 C b
2�22/ D a

4�21�1 C a
2b2.�21 C �

2
2/C b

4�22�2 Cˆ (4.1)
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where
ˆ D 2a2b2�1�2ŒR.v1; Nv1; Nv2; v2/CR.v1; Nv2; Nv1; v2/�: (4.2)

The vector w WD b�2 Nv1 � a�1 Nv2 is orthogonal to both v and Apv so that
1 D sec.v; w/. Equivalently

.a2�21 C b
2�22/ D R.av1 C bv2; b�2 Nv1 � a�1 Nv2; b�2 Nv1 � a�1 Nv2; av1 C bv2/:

Expanding the above, using Lemma 4.1, and simplifying yields

ˆ D a2b2.�22�1 C �
2
1�2/C a

2�21.a
2
� 1/C b2�22.b

2
� 1/: (4.3)

Substituting (4.3) into (4.1) and simplifying using a2Cb2 D 1 yields the desired
formula for �.v/.

Corollary 4.3. If �1 < �2, then �1 < �2.

Proof. In the notation of Lemma 4.2, choose the vector v so that a D b D
p
2=2.

As �1 < �2, the vectors v D av1Cbv2 andA2pv D �.a�21v1Cb�22v2/ are linearly
independent. Therefore

�.v/ D sec.v; Apv/ < sec.Apv;A2pv/ D �.Apv=kApvk/:

By Lemma 4.2,

1

2
�1 C

1

2
�2 <

�21
�21 C �

2
2

�1 C
�22

�21 C �
2
2

�2;

or equivalently,
�
1

2
�

�21
�21 C �

2
2

�
�1 <

�
�22

�21 C �
2
2

�
1

2

�
�2:

If �2 6 �1, it follows that
1

2
�

�21
�21 C �

2
2

<
�22

�21 C �
2
2

�
1

2
, a contradiction.

Given unit vectors ei 2 �i , i D 1; 2, consider the following components
of the curvature tensor: ˛ D R.e1; Ne1; e2; Ne2/, b D R. Ne1; e2; e1; Ne2/, and

 D R.e2; e1; Ne1; Ne2/. By the Bianchi identity,

˛ C ˇ C 
 D 0: (4.4)

Lemma 4.4. In the notation above, ˇ D 
 > 0, ˛ D �2
 < 0, and �21.�2 � 1/C
�22.�1 � 1/ D 6�1�2
 . Moreover, .�1 � 1/.�2 � 1/ 6 9
2.

Proof. Set v1 D e1, v2 D e2, and a D b D
p
2
2

and use (4.2) and (4.3) to deduce

�21.�2 � 1/C �
2
2.�1 � 1/ D 2�1�2.ˇ � ˛/: (4.5)

after simplification.
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Similarly, set v1 D e1, v2 D Ne2, and a D b D
p
2
2

and use (4.2) and (4.3) to
deduce

�21.�2 � 1/C �
2
2.�1 � 1/ D 2�1�2.
 � ˛/: (4.6)

As �i > 0 and �i > 1, (5.3) and (4.6) imply that ˇ D 
 . By (4.4) ˛ D �2
 which
upon substitution into (4.6) yields

�21.�2 � 1/C �
2
2.�1 � 1/ D 6�1�2


from which the remaining inequalities are easily deduced.

Lemma 4.5. In the notation above, �1 6 3
C1 6 �2. Equality holds in either case
only if �1 D �2 D 3
 C 1 and �1 D �2:

Proof. If �1 > 3
 C 1, then 9
2 6 .�1 � 1/
2 6 .�1 � 1/.�2 � 1/ 6 9
2, implying

that �1 D �2 D 3
 C 1 (and �1 D �2 by Corollary 4.3). Lemma 4.4 and the
derivation of Berger’s curvature inequality [2, 17] imply

2
 D �˛ D R. Ne1; e1; e2; Ne2/

D
1

6
Œsec. Ne1 C Ne2; e1 C e2/C sec.e1 C Ne2; Ne1 � e2/�

C
1

6
Œsec. Ne1 � Ne2; e1 � e2/C sec.e1 � Ne2; Ne1 C e2/�

�
1

6
Œsec. Ne1 � Ne2; e1 C e2/C sec.e1 � Ne2; Ne1 � e2/�

�
1

6
Œsec. Ne1 C Ne2; e1 � e2/C sec.e1 C Ne2; Ne1 C e2/�:

If � � V D �1 ˚ �2 is a 2-plane section and v 2 � is a unit vector, then
sec.�/ 6 �.v/ 6 �2 where the last inequality is a consequence of Lemma 4.2.
Hence 1 6 sec 6 �2 on V . These inequalities and the above formula for 2
 yields
the inequality �2 > 3
 C 1 where equality holds only if sec. Ne1C Ne2; e1C e2/ D �2.
Hence, equality holds only if �2 D sec. Ne1 C Ne2; e1 C e2/ 6 �..e1 C e2/=

p
2/ D

1
2
.�1 C �2/ 6 �2, or equivalently if �1 D �2 (and �1 D �2 by Corollary 4.3).

Lemma 4.6. For each nonzero vector v 2 TpM , there exists c.v/ 2 R n f0g such
that ApJpv D c.v/JpApv.

Proof. Let v 2 TpM n f0g. Lemma 2.1 and (2.3) imply that Jp.Ev/ D EJpv .
Therefore

spanfJpv;EJpvg D spanfJpv; Jp.Ev/g D Jp.spanfv;Evg/
D Jp..Apv/

?/ D Jp.Apv/
?;

where the last equality uses the fact that Jp acts orthogonally.
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Conclude that both the vectors JpApv and ApJpv are perpendicular to the
codimension one subspace spanfJpv;EJpvg, concluding the proof.

Lemma 4.7. Either ApJp D JpAp or ApJp D �JpAp .

Proof. As both ApJp and JpAp are non-degenerate, Lemma 4.6 implies that there
is a nonzero constant c 2 R such that ApJp D cJpAp . Taking the determinant
yields cd D 1, whence c D ˙1 since d is even.

Proposition 4.8. ApJp D JpAp .

Proof. Let �1 be an Ap-invariant 2-plane section. If �1 is Jp-invariant, then the
restriction of Ap and Jp to �1 differ by a scalar, hence commute, concluding the
proof in this case by Lemma 4.7.

Hence, if the proposition fails, then ApJp D �JpAp and �1 is not invariant
under Jp . The following derives a contradiction.

Let fe1; e2g be an orthonormal basis of �1. There exists a nonzero constant �
such that Ape1 D �e2 and Ape2 D ��e1. Rescale Ap and replace e2 with �e2, if
necessary, so that � D 1. If A�p denotes the adjoint of Ap , then A�p D �Ap on the
subspace �1.

As Jp is orthogonal, fe3 D Jpe1; e4 D Jpe2g is an orthonormal basis of
�2 WD Jp.�1/. The following calculations will demonstrate that fe1; e2; e3; e4g form
an orthonormal 4-frame. As gp.e1; e3/ D gp.e1; Jpe1/ D 0 D gp.e2; Jpe2/ D
gp.e2; e4/, it remains to verify the equalities gp.e1; e4/ D 0 D gp.e2; e3/: Calculate

gp.e1; e4/ D gp.e1; Jpe2/ D gp.e1; JpApe1/
D gp.e1;�ApJpe1/ D gp.�A�pe1; Jpe1/
D gp.Ape1; Jpe1/ D gp.e2; Jpe1/
D gp.Jpe2;�e1/ D �gp.e4; e1/

to conclude that gp.e1; e4/ D 0. Finally,

gp.e2; e3/ D gp.Jpe2; Jpe3/ D gp.e4;�e1/ D 0

concluding the proof that fe1; e2; e3; e4g are orthonormal. Let � D sec.�1/ and note
that

� D R.e1; e2; e2; e1/ D R.Jpe1; Jpe2; Jpe2; Jpe1/ D R.e3; e4; e4; e3/ D sec.�2/:

As Ap.�2/ D ApJp.�1/ D �JpAp.�1/ D �Jp.�1/ D �2, the 2-plane �2 is
Ap-invariant. Lemma 4.2 implies that � is the maximum sectional curvature on the
subspaceV D �1˚�2. By Berger’s curvature inequality ([2,17]),R.e1; e2; e4; e3/ 6
2
3
.� � 1/. Consequently,

� D R.e1; e2; e2; e1/ D R.e1; e2; Jpe2; Jpe1/ D R.e1; e2; e4; e3/ 6
2

3
.� � 1/;

or equivalently, � 6 �2, a contradiction.
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Lemma 4.9. Assume that V D �1 ˚ �2 is an orthogonal sum of Ap-invariant and
Jp-invariant 2-plane sections. Let vi 2 �i be unit vectors and Nvi D Apvi=�i . If
Jpv1 D Nv1, then Jpv2 D Nv2. If Jpv1 D �Nv1, then Jpv2 D �Nv2. In both cases

 D R.v2; v1; Nv1; Nv2/ D 1.

Proof. The assumptions imply that there are constants c1; c2 2 f�1; 1g such that
Jpvi D ci Nvi for i D 1; 2. The first assertion in the lemma is the equality c1 D c2 as
will now be demonstrated. Note that


 D R.v2; v1; Nv1; Nv2/ D R.Jpv2; Jpv1; Nv1; Nv2/ D R.c2 Nv2; c1 Nv1; Nv1; Nv2/ D c1c2

where Lemma 4.1 is used in the last equality. By Lemma 4.4, 
 > 0whence c1 D c2
and 
 D 1.

Corollary 4.10. If � � TpM is a 2-plane section satisfying Ap.�/ D � , then
Jp.�/ D � .

Proof. After possibly rescaling Ap , there exists an orthonormal basis fe1; e2g of �
satisfying Ape1 D e2 and Ape2 D �e1. If Jp.�/ ¤ � then Jp.�/ \ � D f0g.
Letting e3 D Jpe1 and e4 D Jpe2, the vectors fe1; e2; e3; e4g span a 4-dimensional
subspace of TpM .

By Proposition 4.8, Ape3 D e4 and Ape4 D �e3 since

Ape3 D ApJpe1 D JpApe1 D Jpe2 D e4

and Ape4 D ApJpe2 D JpApe2 D �Jpe1 D �e3:

Let v1 D e1Ce4p
2

and v2 D e1�e4p
2

and use the above to calculate Nv1 D e2�e3p
2

and
Nv2 D

e2Ce3p
2

. Verify that �1 D spanfv1; Nv1g and �2 D spanfv2; Nv2g are orthogonal
Ap-invariant and Jp-invariant 2-planes and that Jpv1 D �Nv1 and Jpv2 D Nv2. This
contradicts Lemma 4.9.

4.2. Proof of Theorem D when d D dimR.M/ > 6.

Lemma 4.11. For p 2M , Ap has at most two distinct eigenvalues.

Proof. If not, then there exist three orthogonal Ap-invariant 2-planes �i , i D 1; 2; 3
and constants 0 < �1 < �2 < �3 such that kA.wi /k D �i for each unit vector
wi 2 �i . Let �i D sec.�i /. As �1 < �2, Corollary 4.3 implies that �1 < �2. By
Lemmas 4.5 and 4.9, �2 > 4. As �2 < �3, Corollary 4.3 implies that �2 < �3. By
Lemmas 4.5 and 4.9, �2 < 4, a contradiction.

Lemma 4.12. If d D dimR.M/ > 6, then Ap has a single eigenvalue for each
p 2M .
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Proof. If not, Lemma 4.11 implies that there exist constants 0 < �1 < �2
and Ap-eigenspaces E1 and E2 such that TpM is the orthogonal direct sum
TpM D E1 ˚E2 and kAp.vi /k D �i for each unit vector vi 2 Ei , i D 1; 2.
As dimR.M/ > 6, one of the two eigenspaces E1 or E2 has real dimension at least
four.

Case I. dimR.E1/ > 4 Choose orthogonal Ap-invariant 2-planes �1; �2 � E1 and
�3 � E2. Let �i D sec.�i / for each i D 1; 2; 3. As �1 < �2, Corollary 4.3 implies
that �1 < �3 and �2 < �3. Apply Lemmas 4.5 and 4.9 to the four dimensional
subspaces �1 ˚ �3 and �2 ˚ �3 to deduce �1 < 4 and �2 < 4. Apply Lemmas 4.4
and 4.9 to the four dimensional subspace �1 ˚ �2 to deduce �1 C �2 D 8, a
contradiction.

Case II. dimR.E2/ > 4 Choose orthogonal Ap-invariant 2-planes �1 � E1 and
�2; �3 � E2. Let �i D sec.�i / for each i D 1; 2; 3. As �1 < �2, Corollary 4.3
implies that�1 < �2 and�1 < �3. Apply Lemmas 4.5 and 4.9 to the four dimensional
subspaces �1˚�2 and �1˚�3 to deduce �2 > 4 and �3 > 4. Applying Lemmas 4.4
and 4.9 to the four dimensional subspace �2 ˚ �3 to deduce �2 C �3 D 8, a
contradiction.

Remark 4.13. When dimR.M/ > 6, Theorem D is easily derived from Lemma 4.12
and Theorem C. This approach is taken when dimR D 4 in the next section.

In the remainder of this section, a more elementary proof is presented for the
case when dimR.M/ > 6. This alternative proof is based on the well-known
classification [14, 16] of simply-connected Kählerian manifolds having constant
holomorphic curvatures.
Corollary 4.14. A 2-plane � � TpM is holomorphic if and only if Ap.�/ D � .

Proof. Fix p 2 M and let � � TpM be a 2-plane. If Ap.�/ D � then Jp.�/ D �
by Corollary 4.10. Conversely, assume that Jp.�/ D � and let v 2 � be a
nonzero vector. The 2-plane N� D spanfv;Apvg is Ap-invariant by Lemma 4.12.
By Corollary 4.10, N� is Jp-invariant. As v lies in a unique holomorphic 2-plane,
� D N� , so that � is Ap-invariant.

Corollary 4.15. If d D dimR.M/ > 6, then �.v/ D 4 for every unit vector v 2 SM .

Proof. Given v 2 SpM , the 2-plane �1 D spanfv;Apvg is Ap-invariant by
Lemma 4.12. As dimR.M/ > 6, there exist orthogonal Ap-invariant 2-planes
�2; �3 � �

?
1 . Let �i D sec.�i / for i D 1; 2; 3 and note that �.v/ D �1.

Applying Lemmas 4.4 and 4.9 to the three four dimensional subspaces �i ˚ �j ,
i; j 2 f1; 2; 3g distinct, yields the linear system

�1 C �2 D �1 C �3 D �2 C �3 D 8;

whose solution �1 D �2 D �3 D 4 is unique.
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Theorem 4.16. A Kählerian manifold with sec > 1, real dimension d > 6, and
spherical rank at least d � 2 is isometric to a globally symmetric CPd=2 with
holomorphic curvatures equal to 4.

Proof. It suffices to prove that all holomorphic 2-planes inM have sectional curvature
equal to four by [14, 16]. Let p 2 M and let � � TpM be a holomorphic 2-plane.
Let v 2 � be a nonzero vector. By Corollary 4.14, � is Ap-invariant, so that
sec.�/ D sec.v; Apv/ D �.v/. By Corollary 4.15, �.v/ D 4.

5. Proof of Theorem D in real dimension four

This final section completes the proof of Theorem D, establishing its veracity when
d D dimR.M/ D 4. The approach, alluded to in Remark 4.13, is to appeal to
Theorem C. The main step in proving thatM satisfies the Rakić duality principle is
to establish the analogue of Lemma 4.12 when d D 4. The following lemma, likely
well-known, is used for this purpose.

Lemma 5.1. Let B be an open connected subset of a Riemannian manifold .M; g/
admitting a pair of orthogonal and totally geodesic foliations F1 and F2. Then B is
locally isometric to the product F1 �F2.

Proof. If H D TF1 and V D TF2, then the tangent bundle splits orthogonally
TB D H ˚ V . By de Rham’s splitting theorem, it suffices to prove that the
distributionH is parallel onB . Let h; Nh denote vector fields tangent toH and let v, Nv
denote vector fields tangent to V .

As H is integrable, 0 D g.Œh; Nh�; v/; implying g.rh Nh; v/ D g.r Nhh; v/. As H is
totally geodesic, g.rh Nh; v/ D �g.r Nhh; v/. Conclude that

g.r Nhh; v/ D 0: (5.1)

Similarly, the fact that V is integrable and totally geodesic implies that
g.r Nvv; h/ D 0. AsH and V are orthogonal, this implies

g.r Nvh; v/ D 0: (5.2)

By (5.1) and (5.2),H is parallel on B , concluding the proof.

Recall from the proof of item (3) of Theorem B that there exists a smooth section
p 3M 7! Ap 2 SL.TpM/.

Proposition 5.2. Assume that d D dimR.M/ D 4. Then for each p 2M , Ap has a
single eigenvalue.



Vol. 91 (2016) Positively curved manifolds with large spherical rank 247

Proof. If not, then there exists a metric ball B inM with the property that for each
b 2 B , Ab has two distinct eigenvalues. For each b 2 B , there exist constants
0 < �1.b/ < �2.b/ and orthogonal eigenplanes �1.b/ and �2.b/ of Ab satisfying
kAb.vi /k D �i .b/ for each unit vector vi 2 �i .b/. As the Ab vary smoothly with
b 2 B , the functions �i W B ! R and the orthogonal splitting TB D �1 ˚ �2 are
both smooth. Define �i W B ! R by �i .b/ D sec.�i .b// for i D 1; 2.

After possibly reducing the radius of B , there exist smooth unit vector fields v1
and v2 on B tangent to �1 and �2 respectively. By Corollary 4.10, the two 2-plane
fields �1 and �2 areJ -invariant. Therefore, letting Nvi D Jvi , the smooth orthonormal
framing fv1; Nv1; v2; Nv2g of TB satisfies �i D spanfvi ; Nvig for i D 1; 2. Define

 W B ! R by 
 D R.v2; v1; Nv1; Nv2/. Again by Corollary 4.10, the Ab-invariant
2-planes �i .b/ are Jb-invariant and by Lemma 4.9, 
 D 1 on B .

Corollary 4.3, implies that �1.b/ < �2.b/ and Lemma 4.5 implies

�1.b/ < 4 < �2.b/ (5.3)

for each b 2 B .
The goal of the following calculations is to show that the orthogonal distribu-

tions �1 and �2 are integrable and totally geodesic. As J is parallel,

g.rXJ Y;Z/ D g.JrXY;Z/ D �g.rXY; JZ/ (5.4)

for all smooth vector fields X; Y;Z.
Use (5.4) to conclude

g.rv2
v2; Nv1/ D �g.rv2

Nv2; v1/: (5.5)

Use the differential Bianchi identity,

0 D .rv2
R/.v1; Nv1; v1; v2/C .rv1

R/. Nv1; v2; v1; v2/C .r Nv1
R/.v2; v1; v1; v2/

to derive

.�1 � 1/g.rv2
v2; Nv1/C 3g.rv2

Nv2; v1/ D 0: (5.6)

Use (5.3), (5.5), and (5.6) to conclude

g.rv2
v2; Nv1/ D g.rv2

Nv2; v1/ D 0: (5.7)

Set w1 WD Nv1 and Nw1 WD Jw1 D �v1. Repeating the above calculations with w1
and Nw1 in place of v1 and Nv1, respectively, yields the following analogue of (5.7)

g.rv2
v2; Nw1/ D g.rv2

Nv2; w1/ D 0; (5.8)

or equivalently,
g.rv2

v2; v1/ D g.rv2
Nv2; Nv1/ D 0: (5.9)
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Set w2 WD Nv2 and Nw2 WD Jw2 D �v2. Repeating the above calculations with w2
and Nw2 in place of v2 and Nv2, respectively, yields the following analogues of (5.7)
and (5.9)

g.rw2
w2; Nv1/ D g.rw2

Nw2; v1/ D 0; (5.10)
and g.rw2

w2; v1/ D g.rw2
Nw2; Nv1/ D 0; (5.11)

or equivalently,

g.r Nv2
Nv2; Nv1/ D g.r Nv2

v2; v1/ D 0; (5.12)
and g.r Nv2

Nv2; v1/ D g.r Nv2
v2; Nv1/ D 0: (5.13)

The 2-plane field �2 is integrable and totally geodesic by (5.7), (5.9), (5.12),
and (5.13).

Switching the roles of the indices 1 and 2 in the differential Bianchi calculation
above, yields the following analogue of (5.6)

.�2 � 1/g.rv1
v1; Nv2/C 3g.rv1

Nv1; v2/ D 0: (5.14)

Now, arguing as in the case of the 2-plane field �2, the 2-plane field �1 is also
integrable and totally geodesic. As the tangent 2-plane fields�1 and�2 are orthogonal,
integrable, and totally geodesic, B is locally isometric to a Riemannian product by
Lemma 5.1. This contradicts the curvature assumption sec > 1.

Theorem 5.3. A Kählerian manifold with sec > 1, real dimension d D 4, and
spherical rank at least 2 is isometric to a globally symmetric CP2 with holomorphic
curvatures equal to 4.

Proof. It suffices to prove thatM satisfies the Rakić duality principle by Theorem C.
Let p 2 M and let v;w 2 SpM be a pair of orthonormal vectors. The Jacobi

operator Jv has two eigenspaces, namely the two-dimensional 1-eigenspace Ev and
the one-dimensional �.v/-eigenspace spanned by the vector Apv. Similarly, the
Jacobi operator Jw has a two-dimensional 1-eigenspace Ew and a one-dimensional
�.w/-eigenspace spanned by Apw.

If w 2 Ev , then v 2 Ew by Lemma 2.1. If w lies in the �.v/-eigenspace of Jv ,
then w is a multiple of Apv. By Proposition 5.2 the 2-plane � WD spanfv;wg is
Ap-invariant, whence �.w/ D sec.�/ D �.v/ and v lies in the �.w/-eigenspace
of Jw .

Together, Theorems 4.16 and 5.3 complete the proof of Theorem D.
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