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On the Fermat-type equation x3 C y3 D zp

Nuno Freitas�

Abstract. We prove that the Fermat-type equation x3 C y3 D zp has no solutions .a; b; c/
satisfying abc ¤ 0 and gcd.a; b; c/ D 1 when �3 is not a square modp. This improves to
approximately 0:844 the Dirichlet density of the set of prime exponents to which the previous
equation is known to not have such solutions.

For the proof we develop a criterion of independent interest to decide if two elliptic curves
with certain type of potentially good reduction at 2 have symplectically or anti-symplectically
isomorphic p-torsion modules.
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1. Introduction

In this paper we consider the Fermat-type equation

x3 C y3 D zp (1.1)

which is a particular case of the Generalized Fermat Equation (GFE)

xp C yq D zr ; p; q; r 2 Z�2; 1=p C 1=q C 1=r < 1:

Here we are concerned with solutions .a; b; c/ which are non-trivial and primitive,
that is abc ¤ 0 and gcd.a; b; c/ D 1, respectively. To the triple of exponents .p; q; r/
we call the signature of the equation.

The equation (1.1) is one of the few instances of the GFE where there is a known
Frey curve defined over Q attached to it. The other few signatures with available
rational Frey curves are .p; p; p/, .p; p; 2/, .p; p; 3/, .5; 5; p/, .7; 7; p/, .2; 3; p/
and .4; p; 4/ (see [3] for their explicit definitions).1 However, only for the signatures
.p; p; p/, .4; p; 4/, .p; p; 2/ and .p; p; 3/ the existence of a Frey curve led to a full
�This work was partly supported by the grant Proyecto RSME-FBBVA 2015 José Luis Rubio de

Francia.
1There are also Frey curves attached to signatures of the form .r; r; p/ and .2`; 2m;p/ but defined

over totally real fields (see [7] and [1]).
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resolution of the corresponding equation. The first due to the groundbreaking work
of Wiles [17] and the other three due to work of Darmon [4] and Darmon–Merel [5].
Among the remaining signatures, equation (1.1) is the one where most progress was
achieved so far, due to the work of Kraus [10] and Chen–Siksek [2].

Theorem 1 (Kraus, 1998). Let p � 17 be a prime and .a; b; c/ be a non-trivial
primitive solution to (1.1). Then �2.a/ D 1, �2.b/ D 0, �2.c/ D 0, and �3.c/ � 1.

Moreover, there are no solutions for exponents p satisfying 17 � p < 104.

Theorem 2 (Chen–Siksek, 2009). For a set of primes L with density 0:681 the
equation (1.1) has no non-trivial primitive solutions. The primes inL are determined
by explicit congruence conditions, for example p � 2; 3 mod 5.

Moreover, there are no solutions for exponents p satisfying 3 � p � 107.

In this work our main goal is to prove the following theorem.

Theorem 3. Let p � 17 be a prime satisfying .�3=p/ D �1, that is p � 2 mod 3.
Then equation (1.1) has no non-trivial primitive solutions.

Therefore, equation (1.1) has no non-trivial primitive solutions for a set of prime
exponents with density approximately 0:844.

A crucial tool for the proof is the following criterion to decide whether two elliptic
curves having certain type of potentially good reduction at 2 admit a symplectic or
anti-symplectic isomorphism between their p-torsion modules (see beginning of
Section 3 for the definitions).

Write Qun2 for the maximal unramified extension of Q2.

Theorem 4. LetE=Q2 andE 0=Q2 be elliptic curves with potentially good reduction.
Write L D Qun

2 .EŒp�/ and L
0 D Qun

2 .E
0Œp�/. Write �m.E/ and �m.E 0/ for the

minimal discriminant of E and E 0 respectively. Let I2 � Gal.Q2=Q2/ be the inertia
group.

Suppose that L D L0 and Gal.L=Qun
2 / ' SL2.F3/. Then, EŒp� and E 0Œp� are

isomorphic I2-modules for all prime p � 3. Moreover,

(1) if .2=p/ D 1 then EŒp� and E 0Œp� are symplectically isomorphic I2-modules.

(2) if .2=p/ D �1 thenEŒp� andE 0Œp� are symplectically isomorphic I2-modules
if and only if �2.�m.E// � �2.�m.E 0// .mod 3/.

Furthermore, EŒp� and E 0Œp� cannot be both symplectic and anti-symplectic
isomorphic I2-modules.

This theorem extends the ideas in [9, Appendice A] and it is proved in Section 3;
in Section 2 we use it to establish Theorem 3. In [8] we develop further symplecticity
criteria and apply them to the Generalized Fermat Equation x2 C y3 D zp .
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Idea behind the proof. Our proof of Theorem 3 builds on Kraus’ modular argu-
ment [10]. Indeed, for p � 17 he attaches to a putative non-trivial primitive solution
.a; b; c/ of (1.1) a Frey elliptic curve

Ea;b W Y
2
D X3 C 3abX C b3 � a3; �.Ea;b/ D �2

4
� 33 � c2p

and shows that its mod p Galois representation �Ea;b ;p is mostly independent of
.a; b; c/. By the now classic modularity, irreducibility and level lowering results
overQ it follows that �Ea;b ;p is isomorphic to �f;p the mod p representation attached
to a rational newform f in a finite list. Finally, among all the possibilities for f
Kraus obtains a contradiction except for the newform corresponding to the rational
elliptic curve with Cremona label 72a1.

In particular, following the ideas in [14], Kraus’ work implies that the
solution .a; b; c/ gives rise to a rational point on one of the modular curvesXC72a1.p/
or X�72a1.p/; these curves respectively parameterize elliptic curves with p-torsion
modules symplectically or anti-symplectically isomorphic to the p-torsion module
of 72a1. By applying Theorem 4 and [12, Proposition 2] we will show that there
are no 2-adic points in X�72a1.p/ and 3-adic points in X�.�3=p/72a1 .p/ arising from
relevant solutions of (1.1). In particular, when .�3=p/ D �1 this implies there are
no relevant points on X˙72a1.p/.Q/.

Acknowledgements. I would like to thank Benjamin Matschke, Bartosz Naskręcki
andMichael Stoll for helpful discussions. I also thank Alain Kraus for his comments.

2. Proof of Theorem 3

Let .a; b; c/ be a non-trivial primitive solution to x3 C y3 D zp . From Theorem 1
we know that �2.a/ D 1, �2.b/ D 0, �2.c/ D 0 and �3.c/ � 1 and we can attach to
it the Frey curve

Ea;b W Y
2
D X3 C 3abX C b3 � a3:

A closer look into Kraus’ proof shows also that the mod p Galois representation
of Ea;b has to satisfy �Ea;b ;p � �W 0;p , whereW

0 is the elliptic curve with Cremona
label 72a1. Moreover, this possibility is the unique obstruction to conclude that (1.1)
has no non-trivial primitive solutions. We shall show that �Ea;b ;p 6� �W 0;p when
.�3=p/ D �1.

Note that W 0 has potentially multiplicative reduction at 3, which becomes
multiplicative after twisting by �3. Write E andW for the quadratic twists by �3 of
Ea;b and W 0, respectively. Thus we have

�E;p � �W;p; (2.1)

where W has Cremona label 24a4 with j -invariant jW D 2048=3 and minimal
model

W W Y 2 D X3 �X2 CX:
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Since �2.jW / D 11 the curveW has potentially good reduction at 2 and it gets good
reduction over L D Qun2 .W Œp�/. The curve W also satisfies

�2.�m.W // D 4 and �2.c4.W // D 5;

hence Gal.L=Qun2 / ' SL2.F3/ by [11]. From (2.1) the same must be true for E,
therefore we are under the hypothesis of Theorem 4.

From part (2.2) in the proof of [10, Lemma 4.1] we have that Ea;b is minimal
at 2 and satisfies �2.�m.Ea;b// D 4. Hence the same is true for the quadratic twist
E D �3Ea;b and we have �2.�m.E// � �2.�m.W // .mod 3/. We conclude from
Theorem 4 that EŒp� and W Œp� are symplectically (and not anti-symplectically)
isomorphic I2-modules for all p � 3. Since �W;p.I2/ is non-abelian, by [9,
Lemma A.4] the same is true for EŒp� and W Œp� as GQ-modules.

From [12, Proposition 2] applied with the multiplicative prime ` D 3 it follows
that EŒp� and W Œp� are symplectically isomorphic if and only if �3.�m.W // and
�3.�m.E// differ multiplicatively by a square modulo p. We now compute these
quantities.

One easily checks that �3.�m.W // D 1.
From part (3.1) in the proof of [10, Lemma 4.1] we see that

�3.c4.Ea;b// D 2; �3.c6.Ea;b// D 3; �3.�.Ea;b// D 3C 2p�3.c/:

Therefore, the twisted curve E D �3Ea;b satisfies

�3.c4.E// D 4; �3.c6.E// D 6; �3.�.E// D 9C 2p�3.c/:

Since �3.c/ � 1 it follows from Table II in [13] that the equation forE is not minimal.
After a change of variables we obtain

�3.c4/ D 0; �3.c6/ D 0; �3.�m.E// D �3C 2p�3.c/

and the model gets multiplicative reduction. Therefore, EŒp� and W Œp� are
symplectically isomorphic if and only if

1 D �3.�m.W // � u
2�3.�m.E// D u

2.�3C 2p�3.c// .mod p/

which is equivalent to .�3=p/ D 1. The result follows.
The statement about the density follows by the same computations as in [2,

Section 10] but now we also take into account the congruence p � 2 mod 3.

3. Symplectic isomorphisms of the p-torsion of elliptic curves

Let p be a prime. Let K be a field of characteristic zero or a finite field of
characteristic ¤ p with an algebraic closure K. Fix �p 2 K a primitive p-th
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root of unity. For E an elliptic curve defined over K we write EŒp� for its p-torsion
GK-module, �E;p W GK ! Aut.EŒp�/ for the corresponding Galois representation
and eE;p for the Weil pairing on EŒp�. We will call an Fp-basis .P;Q/ of EŒp�
symplectic if eE;p.P;Q/ D �p .

Now let E=K and E 0=K be two elliptic curves and � W EŒp� ! E 0Œp� be an
isomorphism of GK-modules. Then there is an element r.�/ 2 F�p such that

eE 0;p.�.P /; �.Q// D eE;p.P;Q/
r.�/ for all P;Q 2 EŒp�.

Note that for any a 2 F�p we have r.a�/ D a2r.�/. We say that � is a symplectic
isomorphism if r.�/ D 1 or, more generally, r.�/ is a square in F�p . Fix a
nonsquare rp 2 F�p . We say that � is a anti-symplectic isomorphism if r.�/ D rp
or, more generally, r.�/ is a nonsquare in F�p . Finally, we say that EŒp� and E 0Œp�
are symplectically isomorphic (or anti-symplectically isomorphic), if there exists a
symplectic (or anti-symplectic) isomorphism of GK-modules between them. Note
that it is possible thatEŒp� andE 0Œp� are both symplectically and anti-symplectically
isomorphic; this will be the case if and only if EŒp� admits an anti-symplectic
automorphism.

We will need the following criterion.
Lemma 1. LetE andE 0 be two elliptic curves defined over a fieldK with isomorphic
p-torsion. Fix symplectic bases for EŒp� and E 0Œp�. Let � W EŒp� ! E 0Œp� be an
isomorphism ofGK-modules and writeM� for the matrix representing � with respect
to the fixed bases.

Then � is a symplectic isomorphism if and only if det.M�/ is a square mod p;
otherwise � is anti-symplectic.

Moreover, if �E;p.GK/ is a non-abelian subgroup of GL2.Fp/, then EŒp�
and E 0Œp� cannot be simultaneously symplectically and anti-symplectically isomor-
phic.

Proof. Let P;Q 2 EŒp� and P 0;Q0 2 E 0Œp� be symplectic bases. We have that

eE 0;p.�.P /; �.Q// D eE 0;p.P
0;Q0/det.M�/ D �p

det.M�/ D eE;p.P;Q/
det.M�/;

so r.�/ D det.M�/. This implies the first assertion.
We now prove the last statement. Let ˇWEŒp�! E 0Œp� be another isomorphism

ofGK-modules. Then ˇ�1� D � is in the centralizer of �E;p.GK/. Since �E;p.GK/
is non-abelian, � is represented by a scalar matrix (see [9, Lemme A.3]). Therefore
det.Mˇ / and det.M�/ are in the same square class mod p.

We now introduce notation from [15, Section 2] and [9, Appendice A]. Let
p ¤ ` be primes such that p � 3. For an elliptic curve E=Q` with potentially
good reduction write L D Qun

`
.EŒp�/. Write also I D Gal.L=Qun

`
/. Write E for

the elliptic curve over F` obtained by reduction of a minimal model of E=L and
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' W EŒp� ! EŒp� for the reduction morphism which is a symplectic isomorphism
of (trivial) GL-modules. Let Aut.E/ be the automorphism group of E over F` and
write  W Aut.E/! GL.EŒp�/ for the natural injective morphism. The action of I
on L induces an injective morphism E W I ! Aut.E/. Moreover, for � 2 I we
have

' ı �E;p.�/ D  .E .�// ı ': (3.1)

The following group theoretical lemma is proved in Section 3.1. For convenience
we state it here since it plays a crucial rôle in the proof of Theorem 4.

Lemma 2. Let p � 3 and G D GL2.Fp/. Let H � SL2.Fp/ � G be a subgroup
isomorphic to SL2.F3/. Then the group Aut.H/ of automorphisms ofH satisfies

NG.H/=C.G/ ' Aut.H/ ' S4;

whereNG.H/ denotes the normalizer ofH inG andC.G/ the center ofG. Moreover,

(a) if .2=p/ D 1, then all the matrices in NG.H/ have square determinant;

(b) if .2=p/ D �1, then the matrices in NG.H/ with square determinant
correspond to the subgroup of Aut.H/ isomorphic to A4.

Proof of Theorem 4. Let E;E 0 be elliptic curves as in the statement. Note that
L D Qun

2 .EŒp�/ is the smallest extension of Qun
2 where E obtains good reduction

and the reduction map ' is an isomorphism between the Fp-vector spaces EŒp�.L/
and EŒp�.F2/. By hypothesis E 0 also has good reduction over L and the same is
true for '0. Applying equation (3.1) to both E and E 0 we see that EŒp� and E 0Œp�
are isomorphic I2-modules if we show that  ı E and  ı E 0 are isomorphic as
representations into GL.EŒp�/ and GL.E 0Œp�/, respectively.

We have that j.E/ D j.E 0/ D 0 (see the proof of [6, Thereom 3.2]) thus E
and E 0 are isomorphic over F`. So we can fix minimal models of E=L and E 0=L
both reducing to the same E. Write H WD Aut.E/ and note that H ' SL2.F3/
(see [16, Thm.III.10.1]). Therefore

 .E .I // D  .E 0.I // D  .H/ � SL.EŒp�/ � GL.EŒp�/

and there must be an automorphism ˛ 2 Aut. .H// such that .E / D ˛ ı .E 0/.
Thefirst statement ofLemma2 shows there isg 2 GL.EŒp�/ such that˛.x/ D gxg�1
for all x 2  .H/; thus  ı E and  ı E 0 are isomorphic representations.

Fix a symplectic basis of EŒp� identifying GL.EŒp�/ with GL2.Fp/. Let Mg

denote the matrix representing g and observe that Mg 2 NGL2.Fp/. .H//. Lift
the fixed basis to bases of EŒp� and E 0Œp� via the corresponding reduction maps '
and '0. The lifted bases are symplectic. The matrices representing ' and '0 on these
bases are the identity. From (3.1) it follows that �E;p.�/ DMg�E 0;p.�/M

�1
g for all

� 2 I . Moreover,Mg represents some I2-modules isomorphism � W EŒp�! E 0Œp�



Vol. 91 (2016) The generalized Fermat equation 301

and from Lemma 1 we have that EŒp� and E 0Œp� are symplectically isomorphic if
and only if det.Mg/ is a square mod p. Part (1) now follows from Lemma 2 (a).

We now prove (2). From Lemma 2 (b) we see that EŒp� and E 0Œp�

are symplectically isomorphic if and only if ˛ is an automorphism in A4 �

Aut. .H// ' S4. Note that these are precisely the inner automorphisms. For eachp
the map ˛p WD  �1 ı ˛ ı  defines an automorphism of E .I / D H D Aut.E/
satisfying ˛p ı E 0 D E . Since E , E 0 are surjective and independent of p it
follows that ˛p is the same for all p. Since ˛ and ˛p are simultaneously inner or not
it follows this property is independent of the prime p satisfying .2=p/ D �1. This
shows that EŒp� and E 0Œp� are symplectically isomorphic I2-modules if and only
if EŒ`� and E 0Œ`� are symplectically isomorphic I2-modules for one (hence all) `
satisfying .2=`/ D �1.

We are left to show that symplecticity is equivalent to �2.�m.E// � �2.�m.E 0//
.mod 3/. Since .2=3/ D �1 from the observation above we can work with p D 3.

Fix ! 2 F2 a primitive cubic root of unity. Let L3 � L be an extension of Qun2
of degree 8. Hence L=L3 is cyclic of degree 3 and we write � for a generator of
G D Gal.L=L3/ � I . Thus E .G/ and E 0.G/ are order 3 subgroups of Aut.E/.

Recall that  W Aut.E/ ! GL.EŒ3�/ is the natural injective morphism. After
fixing a symplectic basis for EŒ3�, conjugation by an element of SL2.F3/ (which
preserves the property of a basis of EŒ3� being symplectic) allows to assume that
 .E .G// is the group generated by U D

�
1 1
0 1

�
. In particular, E has a 3-torsion

point defined over L3.
By doing the same forE 0 we obtain .E .�// DMg .E 0.�//M

�1
g , whereMg

belongs to the normalizerN D NGL2.F3/. .E .G///. Observe that the centralizerC
of  .E .�// in GL2.F3/ is generated by the scalar matrices and U ; moreover N is
generated byC and the diagonal matrices. Therefore, the elements ofC are precisely
the elements of N with square determinant. It follows that that

E .�/ D E 0.�/, EŒ3� ' E 0Œ3� symplectically:

We can further assume that the residual curve E is of the following form

E W y2 C a3y D x
3
C a4x C a6; ai 2 F2; a3 ¤ 0:

For such a model the elements in Aut.E/ given by the linear transformations
T .u/ W .x; y/ 7! .u2x; u3y/, where u D !k for k D 0; 1; 2 have order 1
or 3. Since E has a 3-torsion point defined over L3, the same argument
leading to equation (17) in [9] applies (possibly after replacing � by �2). Thus
E .�/ D T .!

�.�m.E///. By doing the same forE 0 we get E 0.�/ D T .!�.�m.E
0///

and the result follows.

3.1. A lemma in group theory. Write Sn andAn for the symmetric and alternating
group on n elements, respectively. We write C.G/ for the center of a group G. IfH
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is a subgroup of G, then we write NG.H/ for its normalizer and CG.H/ for its
centralizer in G.

Let ˛; ˇ 2 F�p satisfy ˛2 C ˇ2 D �1 and consider the following matrices in
SL2.Fp/

g1 D

�
0 �1

1 0

�
; g2 D

�
˛ ˇ

ˇ �˛

�
; g3 D

1

2

�
ˇ � ˛ � 1 1 � ˛ � ˇ

�1 � ˛ � ˇ ˛ � ˇ � 1

�
:

We observe that hg1; g2i ' H8 and hg1; g2; g3i ' SL2.F3/. The proof of
Lemma 2 requires the following proposition.

Proposition 1. Let p � 3 and G D GL2.Fp/. Let H � SL2.Fp/ � G be a
subgroup isomorphic to SL2.F3/. Then H and hg1; g2; g3i are conjugated by an
element of G.

Proof. We can writeH asH D hi; j; k; ui where

(1) H8 D hi; j; ki is a subgroup isomorphic to the quaternion group; there is no
other subgroup ofH with order 8, henceH8 is normal inH ;

(2) u has order 3 and satisies uiu�1 D j , uju�1 D k, uku�1 D i .

We claim thatH8 can be conjugated by an elementg 2 G into hg1; g2i. Moreover,
we have gHg�1 D hg1; g2; g1g2; ugi where gig�1 D g1, gjg�1 D g2, gkg�1 D
g1g2, ug D gug�1. One checks that the action by conjugation of ug and g3 on
hg1; g2i is equal, therefore ug D g3� for some � 2 CG.hg1; g2i/, that is � is a scalar
matrix. Since ug 2 SL2.Fp/ by taking determinants we see that � D ˙1; � D �1
is impossible due to order considerations, thus ug D g3. This shows that we can
suppose the generators ofH are i D g1, j D g2, k D g1g2 and u D g3 as desired.

We now prove the claim by showing there is only one irreducible 2-dimensional
representation of H8 over Fp . The maximal abelian quotient of H8 is the
Klein four group, so H8 has four 1-dimensional representations. Note that
8 D 12 C 12 C 12 C 12 C 22. Therefore, over Fp (p ¤ 2) there is only space
for one further irreducible representation which must be 2-dimensional. This is
also true over the field where the 2-dimensional representation is defined. Since
an injective representation of H8 into GL2.Fp/ must be irreducible we conclude
that up to isomorphismH8 ' hg1; g2i ,! G is the unique irreducible 2-dimensional
representation.

Proof of Lemma 2. It can be easily checked that Aut.H/ ' Aut.SL2.F3// ' S4.
By Proposition 1 we can assume thatH D hg1; g2; g3i.

From [9, Lemma A.3] we have CG.H/ D C.G/. Now the action by conjugation
induces a canonical group homomorphism NG.H/! Aut.H/ with kernel CG.H/,
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leading to an injectionNG.H/=C.G/! Aut.H/ ' S4. To see that this map is also
surjective (and hence an isomorphism), note that NG.H/ contains the matrix

n1 D

�
1 �1

1 1

�
:

Since n1C.G/ and g3C.G/ have respectively order 4 and 3, the groupNG.H/=C.G/
is isomorphic to a subgroup of S4 with order divisible by 12. It cannot be A4 (a
4-cycle is not in A4) so it must have order 24 and the first statement follows.

Note that A4 is the unique subgroup of S4 of index 2. The determinant induces a
homomorphism S4 ' NG.H/=C.G/ ! F�p=F�2p whose kernel is either S4 or A4.
SinceH � SL2.Fp/, all matrices in C.G/ have square determinant and det.n1/ D 2
the result follows.
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[8] N. Freitas, B. Naskręcki and M. Stoll, The Generalized Fermat equation with
exponents 2; 3; n, in preparation.

[9] E. Halberstadt andA.Kraus, Courbes de Fermat: résultats et problèmes, J. Reine
Angew. Math., 548 (2002), 167–234. Zbl 1125.11038 MR 1915212

[10] A. Kraus, Sur l’équation a3 C b3 D cp , Experimental Math., 7 (1998), no. 4,
1–13. Zbl 0923.11054 MR 1618290

https://zbmath.org/?q=an:1215.11026
http://www.ams.org/mathscinet-getitem?mr=2531215
https://zbmath.org/?q=an:0932.11022
http://www.ams.org/mathscinet-getitem?mr=1479291
https://zbmath.org/?q=an:0794.11014
http://www.ams.org/mathscinet-getitem?mr=1260076
https://zbmath.org/?q=an:0976.11017
http://www.ams.org/mathscinet-getitem?mr=1468926
https://zbmath.org/?q=an:06429129
http://www.ams.org/mathscinet-getitem?mr=3324930
https://zbmath.org/?q=an:06422632
http://www.ams.org/mathscinet-getitem?mr=3318242
https://zbmath.org/?q=an:1125.11038
http://www.ams.org/mathscinet-getitem?mr=1915212
https://zbmath.org/?q=an:0923.11054
http://www.ams.org/mathscinet-getitem?mr=1618290


304 N. Freitas CMH

[11] A. Kraus, Sur le défaut de semi-stabilité des courbes elliptiques à réduction
additive, Manuscripta Math., 69 (1990), no. 4, 353–385. Zbl 0792.14014
MR 1080288

[12] A. Kraus and J. Oesterlé, Sur une question de B.Mazur,Math. Ann., 293 (1992),
259–275. Zbl 0773.14017 MR 1166121

[13] I. Papadopoulos, Sur la classification de Néron des courbes elliptiques en
caractéristique résiduelle 2 et 3, J. Number Theory, 44 (1993), no. 2, 119–
152. Zbl 0786.14020 MR 1225948

[14] B. Poonen, E. F. Schaefer and M. Stoll, Twists of X.7/ and primitive solutions
to x2 C y3 D z7, Duke Math. J., 137 (2007), no. 1, 103–158. Zbl 1124.11019
MR 2309145

[15] J.-P. Serre and J. Tate, Good reduction of abelian varieties, Annals of Math., 88
(1968), no. 2, 492–517. Zbl 0172.46101 MR 0236190

[16] J. H. Silverman, The arithmetic of elliptic curves, Second Edition, Graduate
Texts in Mathematics, 106, Springer, Dordrecht, 2009. Zbl 1194.11005
MR 2514094

[17] A. Wiles, Modular elliptic curves and Fermat’s Last Theorem, Annals of Math.,
141 (1995), 443–551. Zbl 0823.11029 MR 1333035

Received January 21, 2016

N. Freitas, Department of Mathematics, University of British Columbia, Vancouver,
BC V6T 1Z2, Canada
E-mail: nunobfreitas@gmail.com

https://zbmath.org/?q=an:0792.14014
http://www.ams.org/mathscinet-getitem?mr=1080288
https://zbmath.org/?q=an:0773.14017
http://www.ams.org/mathscinet-getitem?mr=1166121
https://zbmath.org/?q=an:0786.14020
http://www.ams.org/mathscinet-getitem?mr=1225948
https://zbmath.org/?q=an:1124.11019
http://www.ams.org/mathscinet-getitem?mr=2309145
https://zbmath.org/?q=an:0172.46101
http://www.ams.org/mathscinet-getitem?mr=0236190
https://zbmath.org/?q=an:1194.11005
http://www.ams.org/mathscinet-getitem?mr=2514094
https://zbmath.org/?q=an:0823.11029
http://www.ams.org/mathscinet-getitem?mr=1333035
mailto:nunobfreitas@gmail.com

	Introduction
	Proof of Theorem 3
	Symplectic isomorphisms of the p-torsion of elliptic curves
	A lemma in group theory


