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On the strong orderability of overtwisted 3—folds
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Abstract. In this article we address the existence of positive loops of contactomorphisms in
overtwisted contact 3—folds. We present a construction of such positive loops in the contact
fibered connected sum of certain contact 3—folds along transverse knots. In particular, we obtain
positive loops of contactomorphisms in a class of overtwisted contact structures.
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1. Introduction

Let (M, £) be a connected contact manifold with a cooriented contact structure. In [9],
Y. Eliashberg and L. Polterovich observed that the universal cover Cont (M, &) of
the identity component of the group of contactomorphisms carries a natural non—
negative normal cone. This structure induces a partial binary relation on the groups
Conty (M, §) and Conty(M, &). This relation is naturally reflexive and transitive but
not necessarily anti-symmetric. In case it is anti—symmetric it provides a partial
order on these groups. This has been of central interest [8,9, 12] in contact topology.

The existence of this partial order in Conty (M, &) can be stated in terms of the
non—existence of positive contractible loops of contactomorphisms, confer Section 2
below. In particular, this leads to the study of positive loops of contactomorphisms
and that of positive Legendrian isotopies (see for instance [4—6]). A significant part
of the current knowledge on the subject can be subsumed as follows. The contact jet
spaces J ! (R") and J ! (R", S') along with the spaces of cooriented contact elements
do not admit a positive contractible loop of contactomorphisms [2,5, 6,8, 14]. The
standard contact structure on a sphere S?* 1, different from S!, does admit a positive
contractible loop of contactomorphisms [8, 12, 13].

The method used in [5] also implies that the space of contact elements
of T? is strongly orderable, that is, it does not even admit a positive loop of
contactomorphisms. In general, [5, Corollary 9.1] implies that the cosphere bundle
of a manifold with infinite fundamental group does not admit a positive loop of
contactomorphisms. In [1, Theorem 7.1] the cosphere bundle of a manifold with
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finite fundamental group (and rational cohomology ring with at least two generators)
is also shown to be strongly orderable. In this direction, P. Weigel [15] shows that
the existence of a non—standard symplectic ball whose Rabinowitz Floer homology
growth rate is superlinear can be used to locally perturb any higher—dimensional
Liouville fillable contact structure to a strongly orderable contact structure.

The canonical contact structures on J ' (R) and J ' (R, S') and those obtained as
the space of cooriented contact elements of a surface are tight contact structures. Thus
the list above does not include any overtwisted contact 3—fold. This article presents
the first examples of positive loops in overtwisted contact 3—folds. The first result
towards the understanding of positive loops of contactomorphisms in overtwisted
3—folds appears in [3]. There, the non—existence of positive loops generated by a
Hamiltonian with a small C°—norm has been proven. This statement sided with the
folklore conjecture that overtwisted contact manifolds do not admit positive loops of
contactomorphisms. Surprisingly, Theorem 1.1 below provides a counter—example
to the conjecture.

In the present article, we prove that there exist overtwisted contact structures
admitting positive loops of contactomorphisms. This is achieved with an explicit
construction involving the fibered connected sum with (S! xS?, £;,) along a transverse
knot. Denote by (M, £¥) the contact structure obtained from (M, £) by performing
a half Lutz twist along a transverse knot k. The main result we shall provide is the
following

Theorem 1.1. Let (M,§) be a contact 3—fold that admits a positive loop of
contactomorphims {¢;}. Suppose that there exists a locally autonomous orbit k
of {¢:}. Then the overtwisted contact 3—fold (M, ) admits a positive loop of
contactomorphisms.

In conjuction with [3, Theorem 1], the Hamiltonians generating such positive
loops cannot be C °—small. That is, given a contact structure (M, ker o) there exists a
positive constant C (o) such that for any Hamiltonian H : M x S! — R generating
a positive loop, we have | H ||co > C(w).

The notion of a locally autonomous orbit appearing in Theorem 1.1 is introduced
in Section 3. For instance, the Boothby—Wang manifold associated to a surface
conforms the hypothesis of Theorem 1.1.

Corollary 1.2. Let (X, w) be a symplectic 2—dimensional orbifold. The contact
structure obtained by a half Lutz twist along a positive transverse regular fibre of the
circle orbibundle S(X, w) admits a positive loop of contactomorphisms.

This yields a positive loop of contactomorphisms for the overtwisted contact
structures (S>, &) corresponding to positive integers k € Z%1 representing the
homotopy classes k € H3*(M, n3(S?)) = Z.

Theorem 1.1 also applies to the (unique) tight contact structure £&; on S! x S2.
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Corollary 1.3. The contact structure (S xS?, £€) obtained by a half Lutz twist along
the positive transverse knot k = S! x {(0,0,1)} C (S! x S?, &) admits a positive
loop of contactomorphisms.

The existence of such positive loops implies squeezing phenomena on the
aforementioned contact 3—folds. Nevertheless we cannot conclude its contractibility
and thus the squeezing in the isotopy sense does not follow [8]. Similarly, Theorem 1.1
implies that the binary relation [9] is not a partial order in Conty(M, &) for these
overtwisted manifolds, but the lift to the universal cover might still be a partial order.
See Subsection 2.4 for details.

The article is organized as follows. Section 2 contains the required preliminaries
in contact topology. The construction used in order to prove Theorem 1.1 involves
a fibered connected sum with S! x S?. Section 3 presents this contact manifold and
describes a certain non—negative loop of contactomorphisms. In Section 4 we prove
Theorem 1.1 using the tools in Section 2 and the loop in Section 3.
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2. Preliminaries

In this section we briefly introduce the basic ingredients involved in Theorem 1.1.
Subsections 2.1, 2.2 and 2.3 can be essentially extracted from [10]. The reader is
referred to [8, 12] for Subsection 2.4. In this article (M, §) denotes a contact 3—fold.

2.1. Fibered connected sum. Let us consider the 3—fold
S'x D2(R) = {(6;x,y) : x>+ y? < Ry ={(0;r,¢) : 7 < R}

with the contact structure £y defined by the contact form ag = d6 + r2de.

Suppose that y : S' — (M,§) is a transverse knot with a fixed frame
7:S! — p*E. Then, for R > 0 small enough, there exists a unique (up to contact
isotopy) contact embedding

¢ : (S x D*(R)., &) — (#(S' x D*(R)).£) C (M.§)

such that ¢ (6, 0,0) = y(6) and the frame ¢*7 : S! — £ is equal to dy.
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Given two framed transverse knots (y1, t1) and (y2, 72) in two contact 3—folds
(M1, &) and (M3, &), we can define the fibered connected sum along these knots.
It is described as follows.

Consider the domain Ag = S x (—R?, R?) x S! with coordinates (6, v, ¢) and
the contact form n = d6 + vdg. Then the pair of gluing maps:

g1 : S x (D%(R) \ {0}) — S!' x (0, R?) xS! C Ag
(0.r.¢0) —> (6.7%,¢)

g2 : S x (D?(R) \ {0}) — S! x (=R%,0) x S! C Ag
(0’ r, gD) > (97 _’,.2’ _(/))

satisfy g7n = g51 = o and thus are strict contact embeddings. Then the contact
fibered connected sum along (Y1, 71) and ()2, 72) is the smooth manifold

(M1, E)#(M2, &) := (M1 \ y1(Sh)) Ugropr! AR Ugyogst (M2\ y2(Sh)

where ¢; and ¢, are the contact embeddings corresponding to (y1, t1) and ()2, 12).
This 3—fold is endowed with a contact structure in each piece and, since these are
glued with g; and g5, there exists a contact structure on (M1, &1)#(M>, &>).

Observe that an isotopy of framed transverse knots preserves the isotopy class of
the resulting contact structure (by Gray’s stability). Also, the isotopy class of the
contact structure does not depend on each of the frames (1, 72) but only on their
sum:

Lemma 2.1. The contact structure on the fibered connected sum (M1, &1)#(M>, &)

along (y1, t1) and (y2, 12) is isotopic to the contact structure on the fibered connected
sum (M1, E1)#(M>, &) along (y1, 11 + k) and (y2, 75 — k) for any k € Z.

The fibered connected sum along a framed transverse knot can be used to modify
the contact structure of a 3—fold (while preserving its diffeomorphism type). Indeed,
the connected sum M#(S! x S?) along the knot S' x {pt.} is diffeomorphic to M.
This operation yields a non—trivial operation from the contact topology viewpoint,
the half Lutz twist.

2.2. The half Lutz twist. Consider S' x R3 with coordinates (6;x,y,z) ~
(8; r, ¢, z) and the contact manifold

(S xS%, &) = {(O;7,9.2) : r? + 2% = 1}, ker{zdO + r?d¢}) C S x R3.

This is the unique tight contact structure on S x §2, see [11].
Let (T, 1) be the framed transverse knot on S! x S? defined by I'(9) = (0:0,0, 1)
and ((0) = 0.
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Definition 2.2. Let (M, &) be a contact 3—fold and (y, 7) a framed transverse knot.
The half Lutz twist of (M, &) along the transverse knot y is the contact fibered
connected sum (M, £)#(S! x S?, &) along (y, 7) and (T, 1).

The half Lutz twist of (M, &) along a transverse knot y is denoted by (M, 7).
Note that the action of Q250(3) C Diff(S! x S?) implies that the diffeomorphism
type of (M, £)#(S' x S?, &) is independent of the choice of frame ¢ and thus equal
to M. In terms of surgeries, it is a Dehn surgery in which the meridian is sent to
the meridian and thus the smooth type of the resulting manifold remains the same.
Similarly, the contact structure £ does not depend either on the choice of frame,
see [7,10].

There are two relevant features regarding (M, £7). First, it is an overtwisted
contact 3—fold. There is a family of overtwisted disks that appear from the family of
immersed overtwisted disks {6} x S? in the tight (S! x S?, &), whose boundaries
(collapsed at a point) form the knot I". In more detail, the family of immersed disks
in (S! x S?, &) is parametrized by € S!, and each immersion is given by

tg: D*(p.9) —> {0} x S%, 19(p. @) = (O:sin(mp). 9. 2p — 1)

where (p, ¢) € D? are polar coordinates in the unit disk. Note that ¢4 is an embedding
when restricted to Int D2(p, ¢), and it maps the boundary dD?(p, ¢) to the north pole
(9;0, ¢, 1), which is a point since ¢ collapses to one value in the axis {r = 0} € R3.
The characteristic foliation induced in (g (D?) is given by the equation

o = 13(zd0 + r*dy) = sin*(zp)dg,

whose kernel equals keryoe = (d,) at p € (0,1) and has {p = 0} U {p = 1} as
singular set. In particular, this defines overtwisted characteristic foliations on the
images of the unit 2-disk D?(p, ¢) via the maps t4. In the contact fibered sum along
(T, 1), the images of the boundary of the disk D?(p, ¢) become embedded, and hence
tg(D?(p, ¢)) define embedded overtwisted disks in (M, £)#(S! x S?, &;).

Second, the homotopy class of £ differs from that of &. The primary obstruction
is the class

d*(£.£7) = c1(§) — c1(§7) = =2PD([y]) € H*(M. 72(5?)).

See [10, Section 4.3] for details. The positive loop of contactomorphims obtained
in Theorem 1.1 is essentially built separately in the two pieces of a fibered connected
sum. The first piece is the given contact 3—fold (M, £) and the other corresponds
to (S' x S?,&;). The loop is constructed by gluing a positive loop in each of the
pieces, thus resulting in a positive loop of contactomorphims for the half Lutz twist
of (M, §).
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2.3. Loops of contactomorphisms. Let (M, £) be a contact structure and a 1-form o
such that & = ker . The choice of « uniquely determines a vector field R, such that

i, =1, ig,do =0.

A vector field X is said to be contact if Lya = f«, for some f € C*°(M). Given
a contact vector field X, the function H = a(X) € C°° (M) satisfies the equations

ixa = H,
idel = (dRaH)Ol—dH.

Conversely, given a function H € C° (M) there exists a unique contact vector
field X verifying the equations above. The function H is called the Hamiltonian
function associated to X. This establishes a linear isomorphism (depending on «)
between the vector space of contact vector fields and the vector space of smooth
functions.

The correspondence can be made time—dependent. Given a time—dependent flow
¢; : M x [0, 1] — M of contactomorphisms, its associated time—dependent vector
field is defined by

(i)t = X; o ¢y.

The function H; = a(X;) : M x [0, 1] —> R will be referred to as the Hamiltonian
generating the contact flow ¢, and denoted by H(¢;). It will we assumed to be
I—periodic in time. The flow of contactomorphisms ¢; is said to be a smooth
loop if ¢; = id and the quotient map ¢, : M x S' —s M is smooth. The
loop of contactomorphisms is positive if its generating Hamiltonian is positive, i.e.
H;(p,t) > 0atany (p,t) € M xS

There are two useful operations in the spaces of loops of contactomorphisms:
concatenation and composition. The concatenation is defined as follows. Let

(@ ..., @i} be a set of [ € ZT loops of contactomorphisms respectively generated
by Hamiltonians {F,', ..., F/}.
The concatenation of the loops {®! ..., CIDf} is defined as
<I>llt tel0,1/1],
<1>12t_1 tell/1,2/1],
00 = :

ol te[l—=2/1,1-1/1],

., tell—1/11].
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The generating Hamiltonian C : M x S — R for the concatenation is

IFY(.,It) telo,1/1],
IF2(-,1t — 1) tell/1,2/1],
C=H® 0 0= :
IF' =Y 0t —1+2) te[l—-2/1,1-1/1],
IF' (It —1+1) tel[l—1/1,1].

Let ®; and W, be two loops of contactomorphisms generated by F; and G;. The
second operation is the composition {®; o ¥, }; of ®; and ¥,. Suppose that the first
loop satisfies @ = e/t ., then the Hamiltonian generating the composition is

H(®; o W) (p,t) = Fi(p.t) + e TG (®] " (p).1).

In addition, the conjugation {y o ®; o ¥}, of the loop ®; by a contactomorphism
¥ € Cont(M, £), such that Y *a = e/ a, is a loop of contactomorphisms generated
by the Hamiltonian

H@ro® 0y N (p.t)=e T F(y " (p).1).

These operations will be used in Section 4.

2.4. Orderability. Let us consider the identity component of the group of

contactomorphisms G = Conty(M, £) and its universal cover G = Conto(M, §).
These groups are endowed with a natural relation. Given f, g € Conty(M, &), the
relation is defined as f > g if and only if there exists a path ¢; of contactomorphisms
such that ¢; = f og~! and its generating Hamiltonian is non—negative. This relation
is reflexive and transitive. Similarly, given two elements [¢;], [V¢] € G. The relation
[¢¢] > [¥:] if and only if [¢; o ¥; '] admits a representative generated by a non—
negative Hamiltonian is reflexive and transitive.

The contact manifold (M, &) is said to be strongly orderable if the relation (G, >) is
antisymmetric (and thus defines a genuine partial order). Itis said to be orderable if the
relation (5, >) is also antisymmetric. The following criterion relates the existence of
this genuine partial order with the existence of positive loops of contactomorphisms:

Proposition 2.3. [9, Criterion 1.2.C] The relation > is a non—trivial partial order
on G if and only if there are no loops of contactomorphisms of (M, §) generated by
a strictly positive Hamiltonian.

In addition, the relation > is a non—trivial partial order on G if and only if there
are no contractible loops of contactomorphisms of (M, &) generated by a strictly
positive Hamiltonian.

Theorem 1.1 implies the existence of overtwisted contact 3-folds that are not
strongly-orderable. This is the first result relating overtwisted 3—folds to orderability.
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3. Locally autonomous loops of contactomorphisms

Let (M, &) be a contact 3—fold and o an associated contact form. The fibered
connected sum along a tranverse knot has been described in Subsection 2.1. The aim
of this section is to introduce a property for a positive loop of contactomorphisms in
(M, &) that allows us to obtain a positive loop of contactomorphisms in the fibered
connected sum (M, £)#(S! x S?, &;). The notation Op(A) for a subset A C Y refers
to an arbitrary small but non—specified open neighborhood of A C Y.

This appropriate class of loops are the locally autonomous loops, described as
follows. Let p € M be a point and {¢,} a positive loop of contactomorphisms
generated by a Hamiltonian F;.

Definition 3.1. The loop {¢;} is said to be locally autonomous at p if there exists
Op(p) such that

F(¢:(q).10) = F(¢i(q).11). Vt.to,1; €S' and Ygq € Op(p)

and the map ¢, (p) : S' — M is an embedding.

Observe that this definition does not depend on the choice of contact form «
for £. The local autonomy at p is equivalent to ¢, being time—independent on the
trajectories passing through Op(p) and a positive loop that is locally autonomous at
any point of the manifold is time—independent.

There exists also a normal form in a neighborhood of the orbit of the point p. It
is used in order to glue the dynamics in a fibered connected sum. The normal form
is the content of the following

Proposition 3.2. Let {¢,} be a positive locally autonomous loop around p. Then
there exist a constant p € R, a tubular neighborhood T), of the orbit through p and
a contactomorphism

¥ o (S x D2(p), ker{ag = dO + r’dy}) — (Tp.§|1,) such that ag(Y* ;) = 1.

Proof. Consider the contact form n = «/ Fy. The contact Hamiltonian H; associated
to the loop {¢;} with respect to n satisfies Hy = 1, and thus the contact vector
field X; coincides with the Reeb field R, att = 0. The strict Darboux Theorem [10,
Section 2.5] implies the existence of a constant p € RT,a neighborhood U, and a
strict contactomorphism

f 1 ((=&.) x D*"(p), 0t9) —> (Up.m).

We can suppose that the neighborhood U, is contained in the neighborhood Op(p)
provided by Definition 3.1. Since the Reeb flow is a strict contactomorphism and the
flow ¢, is locally autonomous on Op(p), the flow ¢; coincides with the Reeb flow in
Op(p), and hence it is a strict contact flow.
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The positive loop W, generated by the Reeb field on (S! x D?"(p), ker{ag}) is
W (0, x) = (6 +1t, x). The neighborhood T, is obtained through the flow of U, and
the contactomorphism 1 is the strict contact embedding

Vv S'x D (p) — M
(0,x) > o (f (V—p(0, x))).

O

Consider two contact 3-folds (M,&) and (N,n) with positive loops of
contactomorphisms ®; and W, locally autonomous at p € M and ¢ € N. Let
y and k be the orbits of p and ¢ with respect to ®; and ¥;, which come equipped
with natural framings provided by Proposition 3.2. The fibered connected sum along
y and k, introduced in Subsection 2.1, admits a positive loop of contactomorphisms.

This positive loop is defined as ®; and ¥; in M \Op(y) and N \ Op(x), considered
as submanifolds of (M, &)#(N, n) and extended to the gluing region of (M, £)#(N, n)
with each of the two loops of contactomorphisms. In detail, Proposition 3.2 provides
a normal form for both neighborhoods Op(y) and Op(k). This allows us to glue the
two corresponding Hamiltonians H (®,) and H (¥;) in their local normal form, both
being constant on the gluing region and thus coinciding at S! x {0} x S C Ag. This
positive loop of contactomorphisms of (M, £)#(N, n) is denoted by O,#W;.

The proof of Theorem 1.1 consists of this construction applied to the manifold
(S! x 2, £5,) with an appropriate loop of contactomorphisms. The overtwistedness
of the resulting contact structure follows from Subsection 2.2. Section 4 provides
this loop and concludes Theorem 1.1.

4. Proof of the main result

In this section Propositions 4.1 and 4.2 are used to prove Theorem 1.1.

Consider coordinates (0;r, ¢,z) € S! x R3 and the contact form og; = zd6 +
r2d¢ on the manifold S! x S? = {(#;r,¢.z) : r?> + 2?2 = 1} C S! x R3. We can
define the two solid tori

T, = S! x D? ={(9;r,g0,z):r2+z2 =1,z> 0},
T, =S'xD? ={@;r.¢.2) : 1>+ 22 =1,z <0}

There exists a non-negative autonomous Hamiltonian R; : S! x §> — R defined
as R;(0;r, ¢, z) = r? which generates the non—-negative loop of contactomorphisms

{p:} given by
o:t(0:r,0,2) = (0;r,¢ +t,2).



314 R. Casals and F. Presas CMH

A second autonomous Hamiltonian is also central to our construction. It is the
Hamiltonian Z; : S! x S — R defined as Z;(9;r,¢,z) = z whose associated
loop of contactomorphisms {;} is

G(Osr,0,2) = (0 +1:1,0,2).

It is a loop of strict contactomorphisms, i.e. {og; = ot

The loops p; and {; are autonomous and commute, however only p, is non—
negative. Let us construct a locally autonomous positive loop of contactomorphisms
in (S! x S?,&g). It is obtained in two steps corresponding to the two subsequent
Propositions.

Proposition 4.1. There exists a loop {B;} € Q Cont(S! x S?, &;,) which coincides
with {p; o p;} on the solid torus Ty and it is positive on the solid torus T.

The proof follows closely the argument of [9, Prop. 2.1.B] and [12, Prop. 2.3].

Proof. Consider the transverse knot y(6) = (—0;0,0, —1) in (S' xS?, &;,). Suppose
that for a small enough neighborhood Op(y) there exists a contactomorphism ¢ €
Cont(S! x S?, &) supported in Op(y) and such that y N ¥ (y) = @. Then the loop
B: = ps oY o p; o Yy~ ! coincides with p; o p; on Ty and its Hamiltonian

H(B:) = Ri(p.t) + H@ o pr oy oy (p). 1)
= Ri(p.t) + e Re((pr o) (p),1)

is positive on T, since at least one of the two summands is strictly positive.
In the above formula f € C°(M) is such that ¥*a = fo, and confer
Subsection 2.3 for the expression of the Hamiltonian. Let us show the existence
of the contactomorphism .

Let ¢ € Rt be small enough, (6,x,y) € St x Da2 local coordinates and
g :S'x D2 —> Op(y) a local chart such that ker g*ay; = ker{df + xdy}. It
suffices to construct the compactly supported contactomorphism v in this local model
S'x D?2. The contact vector field d,, is generated by the Hamiltonian H(0; x, y) = x.
This Hamiltonian can be cut—off to a smooth Hamiltonian

H:S'x D? — R
such that
H = H on S! x D@z/4 and H =0 on S! x (Df\D§S/4)-

The flow generated by H exists for T € RT small enough, and for one such v we can
define the contactomorphism ¥ to be the t—time flow. O

Proposition 4.2. The loop §; = {; o (B:O k. OP:) in Conty(S! x S, &) is locally
autonomous at any point of the open set T and positive on (S' x S?, &) fork € Z+
large enough.
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Proof. Theloop ¢; preserves the decomposition S! xS? = T; UT,. The Hamiltonian

associated to the loop {B;0 koo B:} is the smooth function kH(Br;). The
Hamiltonian H (B;) is positive on T? and thus for k large enough

H(@)(p.1) = z(p) + kH(Breo) (&' (p). 1) = =1 + kH(Bee) (5 (p). 1) > 0.

Therefore the Hamiltonian H (8;) is positive in Tj.
In the solid torus Ty, the Hamiltonian H (;)|r, (657, ¢,z) = z+ 2kr?is positive,
autonomous and its flow preserves T;. This concludes the statement. O

The existence of the loop §; € Q Cont(S! x S?, &) in Proposition 4.2 implies
Theorem 1.1.

Proof of Theorem 1.1. The loop of contactomorphisms §; constructed in Proposi-
tion 4.2 is positive and locally autonomous at p = (0; 0, 0, 1). Consider the transverse
knoty = {z = 1} = {(6;0,0, 1)}, this is coincides with the orbit of §; at p. Then the
loop of contactomorphisms ¢, #8; of the fibered connected sum (M, £)#(S! x S?, &)
along «#y is generated by a positive Hamiltonian. Subsection 2.2 implies that the
construction does not depend on the choice of frames and the resulting contact
manifold is (M, £¥). O

The geometric argument used to prove Theorem 1.1 should apply to higher
dimensional contact manifolds. There is however no explicit local model in order to
glue, neither a general notion of a higher dimensional Lutz twist.
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