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Abstract. Let (2, p) be a pointed Riemann surface and k > 1 an integer. We parametrize the
space of meromorphic quadratic differentials on X with a pole of order k + 2 at p, having
a connected critical graph and an induced metric composed of k Euclidean half-planes. The
parameters form a finite-dimensional space £ =~ R¥ x S! that describe a model singular-flat
metric around the puncture with respect to a choice of coordinate chart. This generalizes an
important theorem of Strebel, and associates, to each point in 7g 1 X £, a unique metric spine
of the surface that is a ribbon-graph with k infinite-length edges to p. The proofs study and
relate the singular-flat geometry of the quadratic differential, and the infinite-energy harmonic
map from X \ p to a k-pronged tree, having the same Hopf differential.
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1. Introduction

Holomorphic quadratic differentials on compact Riemann surfaces are central
objects in classical Teichmiiller theory; for example, they provide coordinates for
the Teichmiiller space of a compact surface in a number of settings. Such a
differential induces a singular-flat metric and a measured foliation on the underlying
Riemann surface; the projection map to the leaf-space of this foliation is harmonic.
These associated constructions (detailed in §2) provide alternative descriptions of
these differentials: for example the Hubbard—Masur theorem [13] asserts that a
holomorphic quadratic differential on a given Riemann surface is uniquely determined
by the measured foliation, and one of us [28] showed that the lift of the differential to
the universal cover can be recovered from the equivariant harmonic map to the leaf-
space (an R-tree) by taking its Hopf differential. Much of the power and usefulness
of these tensors in the theory derive from these equivalent holomorphic, geometric
and analytic perspectives.

For surfaces with punctures, the theory extends to the case of “integrable”
quadratic differentials (with poles of order at most one) and “Strebel” differentials
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with poles of order two (see below), but is incomplete in general. In this article
we develop these equivalences for certain meromorphic quadratic differentials with
higher order poles, whose corresponding singular-flat metrics of infinite area are
analogous to the case of Strebel differentials.

Let ¥ be a compact Riemann surface of genus g > 1 and p a marked point.
Our study is inspired by the following theorem of Strebel (see Theorem 23.5 in [25])
which parameterizes a certain geometrically special subclass of the space of quadratic
differentials with poles of order 2:

Theorem (Strebel). Let (X, p) be a pointed Riemann surface as above. Given a
constant ¢ € Ry, there is a unique meromorphic quadratic differential with a pole
of order 2 at p satisfying the following equivalent properties:

* (Analytic) The residue at the pole is —c, the critical graph connected, and all
the non-critical leaves of the (horizontal) measured foliation are closed.

¢ (Geometric) In the induced singular-flat metric, the punctured surface X\ p
is a half-infinite Euclidean cylinder of circumference 2mc, with an isometric
identifications of intervals on its boundary that yields the critical graph.

The connected critical graphs (see §2 for definitions) in these cases are also
called “ribbon graphs”, and have proved useful in works from Harer—Zagier [11] and
Penner [23] to Kontsevich [17] and others.

In this article we generalize Strebel’s result to the case of poles of higher order.

A half-plane differential of order k > 1 on a pointed Riemann surface (X, p) is
a meromorphic quadratic differential on X with a single pole at p of order (k + 2)
and a connected critical graph whose complement is a collection of k Euclidean half-
planes (what we shall call a half-plane structure). Our main result parameterizes the
space HP (X, p) of such half-plane differentials in terms of “local data” at the pole
measured with respect to a choice of coordinate chart.

The collapsing map to the leaf-space of the horizontal foliation for a half-plane
structure defines a harmonic map from X\ p to a metric tree X comprising k infinite
rays (prongs) meeting at a single vertex 0. The asymptotic behavior of this map on
the chosen coordinate chart shall characterize the differential. The “model” is that of
a k-planar-end, which is a conformal punctured disk obtained by gluing k£ Euclidean
half-planes by isometries along their boundaries (see Definition 3.1). As we shall
see, the parameters determining this model map are then the “local data” at the pole.
Our main result is

Theorem 1.1. Let (X, p) be a pointed Riemann surface of genus g > 1, and U = D
a choice of coordinate chart around p. For any k > 1 there is a space P(k) = R¥
of “k-planar-ends” and a family M(k) = R x S of harmonic maps from D*
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to Xy obtained as their collapsing maps, such that the following three spaces are
homeomorphic:

e (Complex-analytic) HPr (X, p) = {half-plane differentials of order k
on (%, p)},

¢ (Synthetic-geometric) Py (X, p) = {singular-flat surfaces obtained by
an isometric identification of intervals on the boundaries of k Euclidean
half-planes, such that the resulting surface is ¥ \ p},

¢ (Geometric-analytic) Hg (X, p) = {harmonic maps from X\ p to Xy,
asymptotic (bounded distance) to some m € M(k) on U \ p}.

Here, the maps between the spaces extend standard constructions: (C-a) — (S-g)
assigns the induced metric of the differential, (S-g) — (G-a) assigns the collapsing-
map, and (G-a) — (C-a) assigns the Hopf differential of the harmonic map.

In particular, given any m € N(k), there is a unique g € HPy (X, p) whose half-
plane structure has a collapsing map asymptotic to m. This yields a parameterization

Uy : HPR(Z, p) — M(k) = RF x SL.

The parameters for the space NM(k) are the (combinatorial) data of edge-lengths
of the metric graph that form the spine for the corresponding k-planar-end, and the
additional S factor represents the angle at which the planar end sits relative to the
chosen coordinate chart.

Remarks. 1. For this case of higher order poles, in contrast with Strebel’s theorem
stated earlier, specifying the “residue” at the pole no longer suffices to uniquely
determine the half-plane differential. Instead, one needs to specify the model map,
which is a choice of an element in M(k), at the pole. This involves k + 1 additional
parameters (the combinatorial edge-lengths and angle) that depend on the choice of
a co-ordinate chart around the pole: these constitute the local data at the pole.

2. The horizontal trajectories at the pole p form k “spokes” emanating from p at

angles {ei(z%—w)}lS <k with respect to the chosen local coordinate; the S!-factor
in Theorem 1.1 then represents the angle 6. In particular, Theorem 1.1 asserts that
there is a meromorphic quadratic differential with a connected critical graph and
prescribed structure of a k-planar-end, for each such angle 8. (See also the last
paragraph of the following example.)

Example. We provide a quick example to illustrate the well-known “standard
constructions” alluded to above (see §2 for details and definitions): for k > 2
consider the surface CP! = C U {oo} with the quadratic differential zZK~2dz2. This
has a pole of order (k + 2) at oo, and is a half-plane differential of order k: there is a
single zero at 0 € C, and k critical horizontal trajectories into oo that are rays from
the zero at angles of {2”7'1}05 j<k—1. This complex-analytic object then induces a
singular-flat metric | zX~2||dz2| comprising k half-planes: namely, in this metric each
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sector between critical rays is isometric to a Euclidean half-plane ({‘Ts{ > 0},]d¢? |)
by the map z + z¥/2 = ¢. This is the synthetic-geometric half-plane structure;
the subset C \ {0} is then a k-planar end, being a conformal punctured disk built
out of half-planes. The map & : C — Xj defined by collapsing to the leaf-space
of the horizontal foliation is defined locally by ¢ +— ¢ where { is the coordinate
on each half-plane as above. This is the geometric-analytic harmonic map to the
k-pronged tree, whose restriction to C \ {0} is a “model map”. Finally, its Hopf
differential 4(h,, h,)dz? (see Definition 2.6) recovers the differential z€~2dz2 (up
to a real constant multiple) returning us to the complex-analytic setting. The maps
between the spaces in Theorem 1.1 extend these basic constructions to the setting of
half-plane differentials on punctured Riemann surfaces of genus g > 1.

Note that the quadratic differential ¢?27%K¢ k=222 arises from the coordinate-
change z > ¢z, and hence also has a connected critical graph, with trajectories that
are rays at angles of {Z’TT'] +6}0<j<k—1. Varying the angle 6, we see that the space of
quadratic differentials on CP! with this fixed critical graph (isometric to a k-spoked
star), is parameterized by S!'. We see in Theorem 1.1 that the analogue of this remains
true for higher genus; namely, although there is then no global conformal “rotation”
of the Riemann surface, for each angle in S 1 there exists a half-plane differential with
a given planar-end.

Descriptions of the spaces M(k) and P(k) appear in §3, and details of the other
spaces in Theorem 1.1 appear in §5. As mentioned earlier, the correspondences
in Theorem 1.1 are known in the context of integrable holomorphic quadratic
differentials. Even for the case of differentials with poles of higher order,
the correspondence between the “complex-analytic” and “synthetic-geometric”
descriptions can be easily derived. Such differentials have also been studied from the
point of view of extremal problems (see, for example [20]). What this present work
accomplishes is to identify the correct set of local data, at a pole of higher order, that
suffices to describe all possible half-plane differentials on a given pointed Riemann
surface. The difficult part of the theorem is to show that any choice of such local data
is (uniquely) achieved. For this we use the “geometric-analytic” characterization of
half-plane differentials, involving harmonic maps to the graph X.

The critical graph of a half-plane differential in HPy (X, p) forms a metric spine
of ¥\ p, with k infinite rays to the puncture. As we vary the local data, and
the underlying (marked) pointed Riemann surface in 7, 1, these data vary in the
“combinatorial” space MS;I of all possible such marked metric graphs (see §6).
Conversely, changing the lengths of the edges in such a metric spine can change the
underlying conformal structure as well as the local data at the pole. Hence, as a
consequence of Theorem 1.1, we establish:

Corollary 1.2. The map ® : Tz x R x ST — MS’;,I that assigns to a pointed
Riemann surface and local data the metric spine of the corresponding half-plane
differential, is a homeomorphism.
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The space on the left hand side can be identified with the total space of half-plane
differentials of order k, as a subset of the corresponding bundle of meromorphic
quadratic differentials over 74,1 (see §6 for details). The homeomorphism @
may be thought of as a correspondence between Teichmiiller space with “higher”
decoration, and metric spines on the punctured surface: from that perspective, this
corollary generalizes the Penner—Strebel parametrization of decorated Teichmiiller
space (see [23]). We remark that by an Euler-characteristic count, a generic (namely,
trivalent) metric graph in the space MS ’;,1 has precisely 6g — 6 + k + 3 finite-length
edges, whose lengths serve as local parameters; this matches with the dimension of
the space T.; x RF x S,

The results in this paper generalize in the obvious way to the case of finitely many
poles on a compact Riemann surface (and to CP! with more than two poles). The
existence of half-plane differentials on a given Riemann surface with prescribed order
and residue at the poles was first shown in [9]. This article provides a different proof
of that existence result, and completely answers the question of uniqueness raised in
that paper. One way to interpret our result is that we have completely answered the
question:

In how many ways can you glue k Euclidean half-planes by isometries
along intervals on their boundaries, to obtain a given punctured
Riemann surface?

Half-plane differentials arose in previous work of one of us [10] as representing
“limits” of singular-flat surfaces along Teichmiiller geodesic rays (see Figure 1 for an
example).

I S

Figure 1. (An example of a half-plane structure.) The genus-2 surface (on the left) is obtained
by an isometric identifications on sub-intervals of a slit of irrational slope on a flat torus. The
corresponding Teichmiiller ray “stretches” the singular-flat metric in the horizontal direction.
A half-plane differential of order 2 on a punctured torus (on the right) then arises as the
Gromov—Hausdorff limit when basepoints are taken to lie on the critical graph.

An arbitrary meromorphic quadratic differential with higher order poles may
have a disconnected critical graph, which decomposes the surface into “horizontal
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strips” and “spiral” or “ring” domains in addition to half-planes. In fact a generic such
differential would have no critical trajectories between zeros (viz. are saddle-free) and
such a decomposition comprises only horizontal strips and half-planes (see also [3]).
The present work thus concerns trajectory structures in the “most degenerate” case.
In forthcoming work we aim to handle all trajectory structures and provide a full
generalization of the Hubbard—Masur theorem [13].

QOutline of the paper. The main result of the paper is the correspondence between the
“complex-analytic” and “geometric-analytic” spaces in Theorem 1.1. The technique
of using harmonic maps to trees to produce prescribed holomorphic quadratic
differentials was developed by one of us in [28]. A principal difficulty in the present
work is that the harmonic maps in the “geometric-analytic” characterization have
infinite energy. The argument for proving the existence of such a map involves
taking a compact exhaustion of the punctured surface, and an appropriate sequence of
harmonic maps that converges to it. The convergence is guaranteed by a priori energy
bounds obtained by comparing the maps with the solutions of a certain “partially free
boundary” problem on an annulus. This occupies an entire section (§4): we prove
that under an additional assumption of symmetry of the annuli the approximating
maps (defined on the compact exhaustion) have uniformly controlled behavior.

A feature of this paper is that we refrain from working in the universal cover: our
arguments exploit the “half-plane structure” on the surface. In particular, a crucial
challenge is to control the topology of the foliations of the Hopf differentials of the
limiting harmonic maps — for this we use properties of the foliations that are specific
to a half-plane structure. For example, the Topological Lemma in §3.2 crucially uses
a property of the collapsing map that we call “prong duplicity”.

After some preliminaries in §2, we introduce the notion of planar-ends and their
model maps in §3. After the discussion of the approximating maps in §4, the proof
of Theorem 1.1 is assembled in §5. In §6 we introduce the space of metric spines
MS’;’I and provide the proof of Corollary 1.2.
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2. Preliminaries

In this section we provide some basic background that is relevant to the rest of the
paper, including some analytical results concerning harmonic maps that we shall be
using later.

Notation. Throughout the article, J(z) and 9 (z) shall denote the imaginary and real
parts, respectively of a complex number z.

2.1. Quadratic differentials. In this paper (X, p) shall denote a Riemann surface
of genus g > 1 and a marked point p.

Definition 2.1. A meromorphic quadratic differential with a pole of order m > 1
at p is a (2, 0)-tensor that is locally of the form ¢(z)dz? where ¢(z) is holomorphic
away from p, while at p has a pole of order m.

Remark. By the Riemann—Roch theorem, the meromorphic quadratic differentials
on (X, p) with a pole of order at most m > 1 is a complex vector space of dimension
3g—3+m.

We shall often be thinking of this analytic object in terms of the geometry it
induces on the Riemann surface:

Definition 2.2 (Singular-flat metric). The singular flat metric induced by a
meromorphic quadratic differential is the conformal metric locally defined as
|g(2)||dz?| (the singularities are at the zeros of the differential). The horizontal
and vertical components of the distance along an arc « shall be the absolute values
of the real and imaginary parts, respectively, of the complex-valued integral f o V4

Definition 2.3 (Horizontal measured foliation). The horizontal foliation induced
by such a differential ¢ is the singular foliation on the surface obtained locally
by pulling back the horizontal lines on the &-plane where the coordinate change
z > £ transforms the differential to d£2. (A more intrinsic description is that the
leaves are integral curves for directions where the quadratic form takes positive real
values.) Moreover this is a measured foliation (see [7]), equipped with a measure on
transverse arcs coming from the vertical distance along any such an arc. (Since g is
holomorphic, this measure is invariant under a homotopy through transverse arcs.) A
similar definition holds for the vertical foliation - this time we pull back the vertical
lines by the change-of-coordinate map. The foliation around a zero of the differential
has a “branched” structure that we shall refer to as a prong-singularity; the order of
the zero shall be referred to as the order of such a prong-singularity. Around a pole
of order (k 4 2), however, the foliation has a structure with k “petals” (see Figure 2).

In classical Teichmiiller theory, meromorphic quadratic differentials with a pole
of order at most 1 at p appear as the cotangent space to the Teichmiiller space 7Ty 1 at
(2, p). These are called integrable quadratic differentials as the area form |¢||dz?| is
integrable on X, that is, the total singular flat area is finite. For quadratic differentials
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with poles of order m > 2, the induced singular flat metric has infinite area. We
briefly recall the metric structure around the poles (see [9,25] for details):

 an infinite cylinder for m = 2,

¢ aneighborhood of infinity of a k-planar end with k = m — 2 form > 2 (see
Definition 3.1) comprising k Euclidean half-planes.

Figure 2. The differential dz% on C has a pole of order 4 at infinity, this figure shows the
horizontal foliation around the pole.

2.2. Half-plane differentials. In this article we shall be concerned with quadratic
differentials with poles of higher order (that is, of order m > 3), and in the special
case that the critical graph (see the following definition) is connected.

As mentioned in § 1, we call such a differential a half-plane differential of order k,
where k = m — 2, and its induced singular-flat geometry a half-plane structure.

Definition 2.4 (Critical graph). The critical graph of a holomorphic quadratic
differential comprises the zeros of the differential as well as the horizontal trajectories
(leaves of the horizontal foliation) emanating from them.

In the case of higher-order poles, when the critical graph is connected, that graph
forms a spine of the punctured surface. It follows from the classification of the
trajectory structure of horizontal foliations (see [25]) that the complement of such a
graph is then a collection of Euclidean upper half-planes with the horizontal foliation
precisely the horizontal lines on each half-plane. (In particular, in this case spiral
domains, ring domains or horizontal strips do not occur.) Retracting each half-plane
to its boundary along the vertical direction then defines a retraction of the punctured
surface to the spine. This describes the induced half-plane structure.

2.3. Harmonic maps to trees. Our main analytical tool will be harmonic maps from
the punctured Riemann surface to the k-pronged tree Xi. For the general theory of
harmonic maps to singular spaces, we refer to [18,19] and [8]. For the discussion in
this paper, the following definition will suffice.
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Definition 2.5. A harmonic map # : ¥ \ p — Xy is a continuous and weakly
differentiable map with L2-derivatives that is a critical point of the energy-functional

E() =5 [[1vs1Paa
Z\p

for any compactly supported variation. (Note that by the above regularity assumptions
the energy density is locally integrable.) Alternatively, for this case where the target
is a tree, we equivalently require that the pullback of germs of convex functions
should be subharmonic (see §3.4 of [6] and Theorem 3.8 of [4]).

The relation to quadratic differentials comes from the following construction:

Definition 2.6. The Hopf differential of a harmonic map & : X \ p — Xy is the
(2, 0)-part of the pullback of the metric on X, namely is the quadratic differential
locally of the form 4(h, h,)dz? (where the scalar product is with respect to a choice
of conformal background metric).

The main observation (see [28], and Lemma 1 of [24]) that we use throughout in
this paper, is that the Hopf differential is holomorphic. Moreover, for a 1-dimensional
target as in our case, the harmonic map projects along the leaves of the vertical
foliation of the Hopf differential. In other words, the level sets of the harmonic map
form the vertical foliation of the Hopf differential.

Definition 2.7 (Collapsing map). Given a half-plane differential ¢ € HPr (X, p) its
collapsing map ¢ = ¢(q) : £\ p — Xi collapses the horizontal foliation of ¢ to its
leaf-space, which is a tree with a single vertex O and k infinite-length prongs. The
critical graph is mapped to the vertex O. Moreover, the collapsing map is harmonic,
and its Hopf differential is —g (up to a positive real multiple) . We shall sometimes
refer to the horizontal foliation above as the collapsing foliation.

Remark. The extra negative sign above arises because of our choice of realizing
the horizontal foliation instead of vertical. This agrees with the convention chosen
in [13], but is opposite to that of [28].

We note two further analytical results. First, a standard argument using the chain-
rule (see [15] equation (5.1.1) for Riemannian targets and [18] for tree-targets) or by
the [4] argument above, using the convexity of distance on a tree, yields:

Lemma 2.8. Let (T, d) be a (locally finite) metric tree with a basepoint O. Then for

a harmonic map h : £\ p — T, the distance function from the basepoint, defined
on X\ pasd(h(z),0): X\ p — R, is subharmonic.

Second, the following convergence criteria follows from a standard argument
using, for two-dimensional domains, the Courant-Lebesgue Lemma, a uniform lower
bound on the injectivity radius of the domain surface ¥ and Ascoli-Arzela. (See [15]
or [28] for dimension two; for an analogous result that holds for higher-dimensional
domains see [18].)



326 S. Gupta and M. Wolf CMH

Lemma 2.9. Let 3 be a compact Riemann surface (possibly with boundary) and let
(T, d) be a (locally finite) metric tree. Fori > 1let h; : ¥ — T be a sequence of
harmonic maps:

(a) with uniformly bounded energy, and
(b) whose images have uniformly bounded distance from a fixed base-point on T .

Then there is a convergent subsequence with a limiting harmonicmap h : ¥ — T.

2.4. More examples. We have already given a family of examples on the genus-zero
surface CP! in §1, following the statement of Theorem 1.1.

More generally, a one-parameter family of differentials in H Py (CP!, co) for
an even integer k > 2, is given by

(zF + iazk/z_l)dz2 for a € R.

Here the critical graph has finite-length edges in addition to the k infinite prongs
(see [13] or Lemma 1.1 of [2]). For more examples, see §2 of [9].

3. Planar ends and model maps

In this section we introduce the space of k-planar ends P(k) and their harmonic
collapsing maps to the graph Xj (that has a single vertex O and k infinite-length
prongs). Together with an angle of rotation, these will form the space of model
maps M(k) around the puncture p, for the collapsing maps of half-plane differentials
on the punctured Riemann surface ¥\ p. In §3.2 we highlight a topological property
of these model maps that shall be useful later.

3.1. Definitions. Throughout, we fix an integer k > 1.

Definition 3.1 (Planar end). A k-planar end P is conformally a punctured disk with
a singular-flat metric, obtained by gluing & Euclidean upper half-planes to each other
by isometric identifications of a finite number of subintervals of their boundaries,
where conical singularities of angle 7 in the resulting metric are not allowed (see
Figure 3).

Figure 3. A fold is not allowed in the gluing on the boundaries.
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The unglued intervals form the boundary of the resulting punctured disk (see
Figure 4). The resulting surface has infinite area, with k rays incident to the puncture
at infinity; each ray corresponds to a pair of rays on the boundaries of two half-planes
that are identified by the gluing.

Figure 4. A 2-planar end has two possible patterns of metric spines. The non-negative edge
lengths (a, b) for each pattern parametrize cells that fit together to form R? (see Prop. 3.3).

(Note that since there are only finitely many intervals, each half-plane boundary
has two half-infinite rays, and because the result of the gluing is to be a punctured
disk, the Definition 3.1 implicitly requires each half-infinite ray to be glued to another
in a manner that induces a cyclic ordering on the half-planes.)

Definition 3.2. We define P(k) to be the space of planar ends, in the topology
induced by the metric: two planar ends are close if there is a bi-Lipschitz map of
small distortion between them.

Proposition 3.3. The space P(k) of k-planar ends is homeomorphic to
RF1 xR, ~ Rk

The idea of the proof (given below) is as follows: the gluings of the boundaries of
the k half-planes yields a planar metric graph that forms a spine for the punctured disk
(and includes its boundary). We describe the parameter space of such graphs, using
a result in [22]. Briefly, there are different combinatorial possibilities of the metric
graph, one obtainable from another by Whitehead moves along the finite-length edges.
For each combinatorial type, the lengths of the finite edges parametrize a simplicial
cone, and these piece together to give a space homeomorphic to R¥~! x R, where
the positive real factor determines the overall “scaling”.

Following [22] we first define:

Definition 3.4. An expansion of a graph G at a vertex of degree d > 3 is a new graph
obtained by replacing the vertex by a tree (with each new vertex of degree greater
than two) that connects with the rest of the graph. (See Figure 5 for an example.) A
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metric expansion of G is an expansion of G together with an assignment of lengths
to the resulting edges.

Figure 5. A metric expansion at a vertex of degree 5.

The following proposition is culled from Theorem 3.3 of [22]. We give a
condensed proof, and refer to that paper for details.

Proposition 3.5. The space of metric expansions of a d-pronged tree X; is
homeomorphic to R?3.

Proof. Consider the set V of d points on a coordinate plane in R, and a
function f :V — R. The top boundary of the convex hull of the graph
{(v, f(v))|v € V} C R? then comprises different facets (or flats, each lying on a
common plane). For a generic function, each facet is a triangular region, since no
four points of the graph would lie on a common plane. Projecting the facets back to
the plane then yields a triangulation of the convex polygon determined by the points
of V. One can form a trivalent graph dual to this triangulation; this gives a (generic)
expansion of the d-pronged tree X;. For certain (non-generic) functions, four or
more points in the graph would lie on a common plane; this corresponds to adjacent
triangular facets flatten to lie on a common plane, and hence, expanded edges of the
dual graph being contracted back. As an extreme example, for a constant function,
there is only one facet; this has a dual graph X;. This is also true for any affine
map Aff(R?, R) when restricted to V. In general, two functions that are related by a
post-composition with an affine map in Aff(R?, R) yields the same dual graph.

The set of functions {f : V — R} = R? after quotienting with the affine
equivalence determined by Aff(R?,R) =~ R? yields R?3. The above discussion
thus yields a map n : R9™3 — X >xd where X4 is the space of all expansions
of Xz. It can be checked that 7 is surjective: one can construct a function yielding
a convex hull with facets corresponding to any given configuration of diagonals.
Furthermore, the preimage of any graph in X .4 is an m-dimensional convex cone,
where 0 < m < d — 3 is the number of expanded edges: This is true form = d — 3
(the generic case) by the above argument. For m < d — 3, for each edge contracting
back, adjacent facets of the convex hull of the graph line up to a common plane, and
there is an additional linear relation amongst the values of the function. Hence the
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preimage of a tree T € Xy44 is homeomorphic to R"?, which coincides with the
space of assignments of (positive) lengths to the expanded edges of T. Hence the
total space R 3 is identified with the space of metric expansions, as required. [

Proof of Proposition 3.3. For each a € R, consider the single-vertex graph I',
consisting of a loop of length @ and k (infinite-length) rays from the vertex. Next
consider the space of metric expansions of I'; for each a € R. Since the vertex has
valence (k + 2), (see Figure 5 for the case k = 3), by Proposition 3.5 the space of
metric expansions of T, is homeomorphic to R¥~! for each choice of a. The total
space S of such metric expansions (when we vary a) is then RE~! x R .

Finally, note that for any such metric graph, one can attach k half-planes to obtain
a k-planar end, and conversely, the metric spine of a k-planar end is a graph in S.
These maps are clearly inverses of each other, and each is continuous: this thus
establishes a homeomorphism between S and P (k). O

In what follows we shall need:

Definition 3.6. The collapsing map of a planar end P is the harmonic map to the
k-pronged tree Xy
cp: P — X

obtained by mapping each half-plane to a prong by the map z + J(z) taking the
imaginary part of z, that collapses the horizontal foliation to its leaf space. Note that
this map takes the boundary of the planar end, and the k arcs to the puncture, to the
vertex O of the tree Xj.

Definition 3.7 (Model maps). Let P € P(k) be a planar end (with a puncture
at oo) and @ € [0,27/k) be an angle, which we shall henceforth consider as
lying on a circle S'. Consider the conformal (uniformizing) homeomorphism
¢ : P U {oco} — D such that:

* ¢ takes the puncture co to 0, and

* ¢ takes the k boundary rays to arcs incident at the puncture oo at (asymptotic)
angles exp(i0), exp(i6 + ’ZT”), oo exp(if + %).

(Note that the first condition determines such a uniformizing map ¢y up to rotation,
and the latter determines it uniquely.) Then the model map for this local data
L = (P,0) € P(k) x S! is the harmonic map

m=cpogpy' :D* > Xy (3.1)
where cp is the collapsing map for P. The collection of such model maps with the

compact-open topology shall be denoted by M (k).

By definition, the assignment L = (P, 6) — m above provides a homeomor-
phism P(k) x S! = M(k). Hence by Proposition 3.3 we have the homeomorphism
M(k) = R* x S which is part of the statement of Theorem 1.1. As a remark, we
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can also write the right-hand side R¥ x S of this homeomorphism as R¥~1 x C*
by conflating R, x S! to C* (together they represent the “complex scale” of the
differential at the pole).

Two properties. (1) First, we note that a model map is harmonic in the sense of
Definition 2.5. In particular, consider an annular subsurface S of the planar end P
with a one boundary component 3S = S! that surrounds (or formally, links) the
puncture, and the other boundary component equal to dP. Then, the restriction of
the collapsing map of P to the subsurface S defines a harmonic map to a (finite)
subtree, say y, that takes dP to the vertex O along with some boundary map 05 — y.
The uniqueness of harmonic maps to trees (or more generally, non-positively curved
targets — see [21]) then implies that the collapsing map in fact solves the Dirichlet
problem (and is the energy minimizer) for these induced boundary maps. See
Lemma 4.2 for an instance of this.

(2) The collapsing map from S to y as in (1) has the feature that any interior
point of a prong of y has exactly two pre-images on the boundary component distinct
from dP. We shall call this property “prong duplicity”. Note that this property holds
not just for a model map, but also for the collapsing map for any half-plane differential
on (X, p), when restricted to such an annulus S around p in the corresponding planar-
end.

We shall exploit these properties in Lemma 3.8 of the next section.

3.2. Topology of the collapsing foliation. As we saw in the previous section, the
model maps collapse along the leaves of a foliation on the punctured disk (or its
restriction to an annular subsurface §). This foliation has finitely many prong-type
singularities, with the property that all these singularities lie on a connected “critical
graph”. In subsequent constructions (in Proposition 5.2 and Lemma 5.4), we will
need to ensure that this connectedness holds for the critical graphs for the Hopf
differentials for a sequence of harmonic maps, and for the limiting map. To this end,
we shall use the following technical lemma. It shows that the connectedness is forced
by the two properties — harmonicity and the “prong-duplicity” property — of the
maps (see the end of §3.1).

The underlying reason for this is as follows: the prong-duplicity condition rules
out any “folding” of the map (which would have generated more pre-images) - the
prong-singularities (see Definition 2.3) are then forced to map to the vertex as it is
the only “singular” point of the target; finally, the Maximum Principle implies that
the preimage of the vertex is connected (this implicitly uses the feature that the target
is a tree).

Lemma 3.8 (Topological lemma). Let A be an annulus with boundary components
0T A, and x be a finite k-pronged tree with a single vertex O. Let f : A — y be a
harmonic map collapsing along the leaves of a foliation F on A that is smooth except
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Sor finitely many prong-singularities. Further, assume that f satisfies the following
conditions:

e (Prong Duplicity) Each interior point of a prong of y has precisely two
preimages on 0% A, and

e 0~ A maps to the vertex O of y.

Then the preimage f~1(0O) is a connected graph that contains all the singularities
of F.

Proof. As we shall see, the harmonicity and the conditions above place restrictions
on the possible behaviors of the level sets, which are leaves of F.

First, note that as a consequence of the fact that f is harmonic, by the Maximum
Principle, no leaf of F' can bound a simply connected region in A.

The argument for the connectedness of ~!(0) also uses the Maximum Principle:

Consider the level set f~!(0), and assume it is not connected. Let I'; and ', be
two disjoint connected components of f~!(0), with T'; containing 9~ A. We may
choose the “innermost” such pair, so that, together with arc(s) on 9+ A4, the graphs
I'; and T'; bound a region of A without any preimage of the vertex in its interior.

NN
9

Figure 6. The (hypothetical) case when f~1(0) is disconnected. Here the inner boundary of
the annulus A (shown on the left) is 91 A and the outer boundary is 9~ A.

Consider a path o connecting I'; and I';. Since the image of o does not cross
the vertex, the loop f(0) C y remains on one prong. Let y be the point on f(o) at
maximum distance from the vertex, and let x € o0 map to y (see Figure 6). Consider
a small disk D centered at x contained in the interior of the region of A bounded
by I'y and I';. The restriction of the harmonic map f to U yields a subharmonic
distance function d( f(z), O) on U with a maximum achieved in its interior. By the
Maximum Principle, this forces f to be constant on U, which is absurd, since its
level sets are leaves of F.
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Moreover, for an interior point of a prong, we can also show:

Claim. If y € Xy is an interior point of a prong, then the preimage f~'(y) is a
smooth arc without singularities and has exactly two endpoints on 37 A.

Proof of claim. Otherwise, there will be a singularity, and hence some branching at
some point x’ € f~1(y). Consider two of the branches of the preimage: if they
meet each other at an interior point, the resulting closed curve will either enclose a
simply connected region, which is not allowed by the Maximum Principle, or separate
the boundary components 9+ 4 which contradicts the fact that the preimage of the
vertex O is connected and intersects both. The same argument rules out the two
branches reaching the same point on 3 A. Hence they reach two distinct points of
9T A. Then, the third branch will either

(1) reach 9% A, which will violate prong-duplicity (see Figure 7). Note that it
must reach a point distinct from the other two branches as otherwise the two
branches from x’ with the same endpoint on 3" A4 will create a bigon, also
disallowed by the Maximum Principle.

(2) close up, violating the Maximum Principle, as mentioned before,

(3) reach 0~ A, which will violate the fact that 9~ A maps to O.

Figure 7. A hypothetical singularity at x” in A (left) is mapped to an interior of a prong in Xy
(right).

Hence in each possibility we get a contradiction. O

The claim just proved then implies that all the singularities must lie on the
preimage of the vertex f~!(0), which we also showed was connected. O

3.3. Bounded distance = identical. Lastly, we observe:

Lemma 3.9. A distinct pair of model maps my,m, € M(k) are an unbounded
distance from each other, namely the distance function d : D* — R defined by
d(z) = dx, (m1(z), mz(z2)) is unbounded.
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Proof. Assume that d is bounded. Since the distance function
dx, () : X x X = R
is convex, the pullback d by the harmonic map
(my,my) : D* - X x Xi

is subharmonic. Moreover, since any model map takes dD* to the vertex of Xy,
we have that d|yp+ = 0. As D* is parabolic (in the potential-theoretic sense), a
bounded non-negative subharmonic function on D* that vanishes on the boundary is
identically zero (see IV. §1 6C,7E and §2 9 of [1] or Theorem X.7 and X.17 of [26]).
Thus d vanishes identically, contradicting the fact that m; and m, are distinct.  [J

Remark. This last lemma explains why the “geometric-analytic” space in Theo-
rem 1.1 involves the asymptotic behavior of harmonic maps upto “bounded distance”.
In particular, for any fixed model map, there is a unique harmonic map on the surface
asymptotic to it in this sense. This shall be used in §5.2.

4. Symmetric annuli and estimates for least-energy maps

Recall that Xy, is a tree with a single vertex O and k prongs of infinite-length. In
what follows, a finite k-pronged subtree of X (usually denoted by y) will mean a
subset of X with the single vertex O and k finite prongs obtained by truncating each
prong of Xp.

Consider the following two boundary-value problems. Here, and subsequently in
the paper, we shall implicitly assume that maps considered are continuous with weak
derivatives locally in L? (see Definition 2.5).

Problems. Find the energy-minimizing map from a conformal (round) annulus A to
a finite k-pronged sub-tree of X with a prescribed map on the boundary component
9T A, and with either:

e a prescribed map on the boundary component 0~ A ( a Dirichlet boundary
problem); when this is equal to the constant map to the vertex O we call it a
Dirichlet-O boundary problem, or

¢ no requirement on the boundary component 0~ A (a partially free boundary
problem).

Remark. We note that there exists a solution to the partially free boundary problem
for each annulus A: consider solutions of Dirichlet problems for different boundary
problems and then restrict to a sequence of those whose energy tends to an infimum.
Since there is an overall energy bound, the Courant-Lebesgue Lemma provides for
the equicontinuity of that sequence. Because the boundary component 9 A4 has fixed
image, Lemma 2.9 applies, and shows that there is a convergent subsequence.
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In this section we show that under certain symmetry assumptions, the energies
of the solutions of these two problems differ by a bounded amount (Proposition 4.6).
This comparison shall be crucial in the final section of §5 in proving a uniform energy
bound.

Outline of the section. The results of this section shall be used later (§5.4) to extract
a convergent subsequence from a sequence of harmonic maps to X defined on a
compact exhaustion of our punctured Riemann surface ¥ \ p. Such a convergence is
not obvious, as the images of such a sequence of maps are not uniformly bounded -
they lie in the graph Xk, and, as the sequence progresses, the images cover arbitrarily
large portions of the infinite-length prongs. In this section we shall focus on an
exhaustion of a planar end by symmetric annuli (defined in §4.1) and eventually
derive uniform bounds on compact sets, for the energy and diameter of the partially
free boundary solution for any such annulus in our exhaustion. The main comparison
results are stated in §4.2, where we compare the solutions to the Dirichlet and the
partially free boundary value problems on the annuli (Propositions 4.7 and 4.6).

The first key observation (§4.3) for the proof is that the partially free boundary
problem on an annulus reduces to a Dirichlet problem on the doubled annulus (where
the doubling is across the “free” boundary). Then in §4.4, we use a standard decay
for harmonic functions defined on a cylinder (here the decay is towards the central
circle of A) to uniformly bound — with a quantitative decay estimate — the image
of the “central” curve of the cylinder. Finally, in §4.5, we apply this estimate in our
setting to show that this decay compensates enough for the growth of the image of
the maps resulting from the growth of the compact subsurfaces: this last balance of
inequalities uses the additional symmetry we have assumed.

4.1. Exhaustion by symmetric annuli. We begin with some definitions.

Definition 4.1 (Rectangular annulus). A rectangular annulus A in a planar end P is
an annular subsurface with a core curve linking (or surrounding) the puncture, whose
boundary consists of alternating horizontal and vertical edges on each half-plane. A
truncation of a planar end P is a rectangular annulus with one boundary component
precisely equal to the boundary of P.

Let A be a rectangular annulus in a planar end P. Then the restriction of the
collapsing map cp (as in Definition 3.6) to A is a harmonic map to its image in Xy
(see Property (1) following Definition 3.7). In particular, if A4 is a truncated planar
end, then cp is a harmonic map to the finite k-pronged subtree y with prong lengths
given by the lengths of the horizontal edges in the outer boundary. In this case, the
collapsing map c p takes the boundary component 9~ A4 to the vertex O, and so solves
the “Dirichlet-O boundary” problem. We summarize the discussion in the following
lemma.
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Lemma 4.2. The collapsing map cp restricted to a truncated planar end A in a
planar end P is the least energy map amongst those maps to Xy with same values
on the (outer) boundary component 3 A, and which map the (inner) boundary 3~ A
to O.

Remark. The energy of the collapsing map is equal to one-half the total area of the
rectangles constituting A.

Definition 4.3. A symmetric rectangular annulus in a k-planar end is a rectangular
annulus that uniformizes to a round annulus such that the restriction of the collapsing
map to the boundary components have a k-fold rotational symmetry when & is odd,
and k /2-fold rotational symmetry when k is even (see Figure 8). In particular, if the
subtree y C X is the image of cp, then y has that same order of symmetry.

Figure 8. A symmetric rectangular annulus (shaded) in a 4-planar end P has at least a 2-fold
symmetry. Here the boundary of the half-planes for the planar end are shown dotted, and the
two sides of a horizontal slit in the middle (in bold) form its boundary dP.

Finally, we shall need the following notion:

Definition 4.4 (Symmetric exhaustion). A symmetric exhaustion of a planar end P
is a sequence of nested symmetric rectangular annuli whose union includes a
neighborhood of the puncture at infinity.

Example. We refer to the example in §1 following Theorem 1.1. On the complex
plane C consider the quadratic differential zX~2dz2 where k > 2. This has a pole of
order k at infinity. The induced metric is that of a k-planar end, and clearly has a k-
fold rotational symmetry (multiplying z by a k-th root of unity leaves the differential
invariant). In particular, we can choose a sequence of closed curves with alternating
vertical and horizontal segments, having this symmetry, that exhaust the end and
bound a sequence of symmetric annuli. It is well known that any odd higher-order
pole has a coordinate chart where the differential is of this form (around co) — see
Theorem 6.1 of [25]. Hence, by the above description, has a symmetric exhaustion.
On the other hand, an even higher-order pole has a coordinate chart around the pole
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where the differential is of the form (22’" + az’”_l) dz?, where a is the “residue” of
the quadratic differential and 2m 42 = k (¢f. Theorem 6.4 of [25]). This differential
has a k /2-fold rotational symmetry, and one can obtain a corresponding symmetric
exhaustion.

In what follows we give an independent synthetic-geometric proof of the existence
of a symmetric exhaustion, that works in general.

Lemma 4.5. Any planar end P has a symmetric exhaustion.

Proof. We shall work with the metric spines of the planar ends - the latter is easily
recovered from the former by attaching half-planes. A symmetric exhaustion is
obvious for a “symmetric k-planar end”, that is, one with a critical spine having the
required symmetry (as for zZK~2dz2 in the preceding example). In what follows, we
reduce the general case to this.

A “truncation” of a metric spine S of P shall mean the subgraph obtained by
cutting off an end of each infinite-length ray. An H -thickening of such a truncated
metric spine (for some H > 0) is obtained by taking the points in P whose vertical
distance from the truncated spine is not greater than H. This is then a subsurface
of P comprising rectangles of height H on each half-plane.

Figure 9. As in Figure 8, a planar-end can be obtained by introducing a slit (shown in bold) on a
conformal copy of C obtained by gluing half-planes. Given a 4-planar end (left) one can always
choose a symmetric 4-planar end (right) and truncations of each, such that their complements
are isometric.

The main observation is that, given an arbitrary planar end P, we can choose a
symmetric k-planar end Py, ., and truncations of their metric spines, such that the
complements of their H -thickenings are isometric.

To see this, we apply the proof of Lemma 3.15 in [13]: namely, by elementary
linear algebra (Lemma 3.13 of [13]) we choose the edge-lengths of the symmetric
k-planar end Pg)p,, and distances along the rays for truncating both P and Py,
such that for any thickening the edge-lengths of the resulting rectangles would match
(see Figure 9).

Pulling back a symmetric exhaustion of the latter by this isometry then produces
the desired exhaustion on the planar end P we started with. O
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4.2. Comparing solutions of Dirichlet and partially free boundary value
problems. The setting for this subsection is the following. Suppose {4;}i>1 is
a symmetric exhaustion of a planar end P. Let h; : A; — X} be the harmonic map
that solves the partially free boundary problem with the map on the outer boundary
being the restriction of the collapsing map cp (see Def. 3.6). Also, letc; : A; — X
be the restriction of cp to the annuli; we have already seen that they solve the
corresponding Dirichlet boundary problem on A4; (see Lemma 4.2 for the case when
the exhaustion is by truncations of P). Our aim in this section is to compare these
two harmonic maps; in particular, our main goal in this section §4 is to prove

Proposition 4.6. Let {A;};>1 be a symmetric exhaustion of a planar end P. Let
¢;i : Aj — Xy be the restrictions of the collapsing map cp, and h; : A; — Xy be
the solutions of the partially free boundary problem as above. Then their energies
satisfy:

E(hi) = &(ci) =€hi)+ K (4.1)

where K is independent of i.

This proposition will be used in the final section of §5 to prove an important part
of the main theorem.
The key ingredient in the proof of Proposition 4.6 is

Proposition 4.7. Suppose {A;}i>1 is a symmetric exhaustion of a planar end P.
Let h; : A; — Xy be the harmonic map that solves the partially free boundary
problem with the map on the outer boundary being the restriction of the collapsing
map cp. Then the distance from the image under h; of the common (inner) boundary
component to the vertex O is uniformly bounded (independent of i ).

The proof of this proposition will occupy subsections §4.3—4.5. The k-fold
symmetry of the symmetric annuli plays a crucial role in §4.4, to guarantee the
uniform bound for any (k-) planar end: essentially, the argument then reduces to that
of a 2-planar end, with a general case being a finite cover.

Given Proposition 4.7, the proof of Proposition 4.6 is straightforward, so we give
it now.

Proof of Proposition 4.6. Consider a fixed symmetric collar neighborhood N of the
common (inner) boundary I of A;. (We shall assume, for convenience, that [/
coincides with dP.) Then Proposition 4.7 applied to the symmetric exhaustion
starting from the outer boundary of N implies that the image of this collar
neighborhood by the sequence /; has a uniform diameter bound, say by C.

As before, let ¢; : A; — Xj be the restriction of the collapsing map cp.

We construct a candidate map g : A; — y; for the “Dirichlet-O boundary
problem” by

* setting g to equal to /; away from the fixed collar N.
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e interpolating the map on N so that the inner boundary / is mapped by g to the
vertex O. (In case the boundary / does not coincide with the boundary dP of
the planar end, the image will be a (fixed) finite k-pronged subtree of Xy, and
we instead interpolate to the corresponding map to it.)

For such a map g, we see that g agrees with ¢; on the boundary 0A4; and is
a candidate for the Dirichlet boundary problem whose energy is minimized by c;.
Hence we may conclude that

E(ci) = &€(8).

On the other hand, since the diameter of the collar is bounded (with bound independent
of the index i), the interpolation of the map g over the neighborhood N can be done
with a bounded cost of energy, independent of ;. Hence

E(g) =&(hi)+ K

which gives the right-hand inequality of (4.1) once we apply the previous inequality.

To conclude, we note that the left-hand inequality in (4.1) is immediate: since the
collapsing map ¢; is a candidate for the partially free boundary minimizing problem
solved by h;, we find £(h;) < E(¢;). O

4.3. Doubling trick. Our goal then is to prove Proposition 4.7. We first show:

Proposition 4.8. Let A be a conformal annulus and let x be a finite k-pronged subtree
of Xx. Fixa continuous map ¢ : 9t A — y on one boundary component that takes on
each value only finitely often, and consider the solutionh : A — y to the partially free
boundary problem that requires h to agree with ¢ on that boundary component 0T A.
Then this map h extends by symmetry to a solution h of the symmetric Dirichlet-
problem on a doubled annulus A=A" Uy_4 A~ where one requires a candidate ¢

to be the map on both boundary components of A. In particular, we have h = ﬁ| A+-

Note that the solution to the partially free boundary value problem exists (see the
beginning of §4).

Warmup to the proof of Proposition 4.8. We begin by assuming that the solution 4
to the partially free boundary problem described above has image h(0~ A) of the
boundary component 0~ A disjoint from the vertex of y.

By this assumption, near the boundary 0~ A, we have that /4 is a harmonic map to
a smooth (i.e. non-singular) target isometric to a segment.

First, we show that for the solution of the partially free-boundary problem, the
normal derivative at the (free)boundary component 0~ A vanishes. We include the
elementary computation below for the sake of completeness.
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Consider a family of maps u; : A — R defined for t € (—e,¢€). Amapug = h
in this family is critical for energy if

_d
_dt

(ur)
dlt 02/ |Vu,|?dvol 4
:// Vi - Vugdvol 4
A
. .0
= —// uAugdvol 4 —i—/ u—1ugdvolyy

where the last equality is obtained by an integration by parts. (Here 3% indicates the
outward normal derivative to the boundary.)

. . _ d
Thus, since u = dt‘ 3

where the value of u is ﬁ;ed), we see that the necessary conditions for a solution u¢
to the partially free boundary value problem are that

u; is arbitrary (and vanishes on the boundary component

Aug = 0 (in the interior of A)

0
a—uo = 0 (on the free boundary). 4.2)
v

We then show that the partially free boundary solution 4 is “half” of a Dirichlet
problem on a doubled annulus. We follow an approach developed by A. Huang in his
Rice University thesis [12]: Let A be the annulus obtained by doubling the annulus A
across its boundary component d~ A. That is, if we denote, as usual, the boundary
components 94 = 3T A LI 9~ A, then we set A to be the identification space of two
copies of A, where the two copies of 0~ A are identified. We write this symbolically
as A=A Ua—4 A, where A refers to A equlpped with its opposite orientation.

Let h A — Xy denote the map defined on A that restricts to / on the inclusion
AcC A and, in the natural reflected coordinates, on the inclusion A C A. By
the continuity of 7 on A and its closure, it is immediate that h is continuous
on A. The vanishing of the normal derivative at the boundary (4.2) implies that
the gradient Vh[s- 4 is parallel to 3~ A. As that gradient is continuous on A up to
the boundary (see e.g. [5, Theorem 6.3.6]), we see that 4 has a continuously defined
gradient on the interior of the doubled annulus A

Next, note that because hisClon A , we have that h i is weakly harmor}ic on A.
In particular, we can invoke classical regularity theory to conclude that % is then
smooth and harmonic on A. Thus, since Xy is an NPC space, the map 4 is the
unique solution to the Dirichlet harmonic mapping problem of taking A to Xi with
boundary values /|y+ 4. O
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Next, we adapt this argument to the general case when the image of the boundary
h(0~ A) might possibly contain the vertex O of the tree y.

To accomplish the extension to the singular target case, we first analyze the
behavior of the level set 471(0) of the vertex O within the annulus A, particularly
with respect to its interaction with the ‘free’ boundary 0~ A.

Lemma 4.9. Under the hypotheses above, any connected component of the level set
h=Y(0) of the vertex O within the annulus A meets the free boundary 3~ A in at most
a single point.

Proof. We begin by noting that the proof of the Courant-Lebesgue lemma, based on
an energy estimate for 4 on an annulus (see, for example, Lemma 3.2 in [28]) extends
to hold for half-annuli, centered at boundary points of 0~ A. Applying that argument
yields a uniform estimate on the modulus of continuity of the map % on the closure
of A only in terms of the total energy of /4. Thus there is a well-defined continuous
extension of the map A to 0~ A. We now study this extension, which we continue to
denote by A.

First note that there cannot exist an arc ' C A N h~1(0) in the level set for O
in A for which I" meets 0~ A in both endpoints of dI". If not, then since A is an
annulus, some component of A4 \ I is bounded by arcs from 0~ A and I". Butas 9~ A4
is a free boundary, we could then redefine 4 to map only to the vertex O on that
component, lowering the energy. This then contradicts the assumption that % is an
energy minimizer.

Focusing further on the possibilities for the level set =1 (0), we note that by the
assumption on the boundary values of 4 on 3™ A4 being achieved only a finitely many
times, the level set 4~ 1(0) can meet 3™ A in only a finite number of points (in fact
the number of them is also fixed and equal to k in subsequent applications, since the
boundary map would be a restriction of the collapsing map for a k-planar end).

Therefore, with these restrictions on the topology of A7~1(0) in A in hand, we
see that by the argument in the previous two paragraphs, each component of 2~1(0)
then must either be completely within, or have a segment contained in 0~ A4, or - the
only conclusion we wish to permit - connects a single point of 9~ A with a preimage
of the vertex on 1 A.

Consider the first case where a component of 2~!(0) is completely contained
within 0~ A. A neighborhood N of a point in such a component then has image /(N)
entirely within a single prong, so the harmonic map on that neighborhood agrees with
a classical (non-constant) harmonic function to an interval. Thus in a neighborhood
of the boundary segment, say on a coordinate neighborhood {3J(z) = y € [0,§)},
the requirements from equation (4.2) and that 4#(0) = O and non-constant imply
that the harmonic function / to (i) is expressible locally as J(az*) + O(|z|k+!) for
some k > 1 and some constant a € C, (ii) be real analytic, and (iii) satisfy % =0
(where z = x 4 iy). It is elementary to see that these conditions preclude this
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segment 4~ !(0) from being more than a singleton: that 4~!(0) contains a segment
defined by {y = 0, x € (—¢, €)} implies that the constant a in condition (i) is real.
Butthen0 = % = R(akz*"1)4+ O0(|z|*) also on that segment {y = 0, x € (—¢, €)}:
thus @ = 0, and so the map / must be constant, contrary to hypothesis.

The same argument rules out the case when the level set /=1 (0) meets the free
boundary 9~ A4 in a segment, and that segment is connected by an arc of h~1(0)
to 3T A. Namely, for this situation, we apply the argument of the previous paragraph
to a subsegment of 4~1(0) on 3~ A with a neighborhood whose image meets only
an open prong, concluding as above that such a segment on 9~ A is not possible.

Thus the intersection of such a component of the level set A~ (0O) with the free
boundary 0~ A4 is only a singleton, as needed. O

Conclusion of the proof of Proposition 4.8. It remains to consider the case when the
image of the boundary d~ A by & contains the vertex O. It is straightforward to adapt,
as follows, the argument we gave in the warmup for the smooth case to the singular
setting.

Consider a neighborhood of a point on 4~1(0Q) N 3~ A. Doubling the map on that
half-disk across the boundary 9~ A yields a harmonic map from the punctured disk
to the tree (defined everywhere except at the isolated point h~1(0) N 9~ A). That
harmonic map is smooth on the punctured disk and of finite energy, and hence has a
Hopf differential of bounded L!-norm. The puncture is then a removable singularity
for that holomorphic differential, and hence for the harmonic map.

The extended map /4 is then harmonic on the doubled annulus, and is the (unique)
solution to the corresponding Dirichlet problem, as required.

(Note that the normal derivative of the map may have a vanishing gradient at
the boundary prior to doubling; this results in a zero of the Hopf differential on the
central circle of the doubled annulus.) ]

By the uniqueness of the solution of the Dirichlet problem on the doubled annulus,
we obtain the following immediate corollary of Proposition 4.8:

Corollary 4.10. The solution h : A — y of the partially free boundary problem as
in Proposition 4.8 is unique.

4.4. A decay estimate. We now use Proposition 4.8 to gain uniform control on the
image under the harmonic map /4 of the free boundary 0~ A (which is the central
circle in the doubled annulus ff).

In what follows we will denote by C(L) a cylinder of circumference 1 and height L,
parametrized by cylindrical coordinates (x, 6) where x € [0, L] and 8 € [0, 27). The
central circle is the set {(L/2,0)|6 € [0,27)}.

Proposition 4.11. Ler L > 1 and h : C(L) — R be a harmonic function with
identical maps f : S' — R on each boundary that satisfy:

e the maximum value of | f'| is M, and
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e the average value of f on each boundary circle is 0.

Then the maximum value of the restriction of h to the central circle is bounded by
O(Me™L12), i.e there is a universal constant Kg so that |h(L/2,0)| < KoMe™L/2
independent of the boundary values f of h.

Proof. Consider first the special case when f(0) = Me!"® wheren > 1 and M is a
real coefficient.
We compute that the Laplace equation Ak = 0 has solution

h(x.8) = (sinhnx + sinhn(L — x)) Meind

sinhnL

where we have used the boundary conditions 4(0,-) = h(L,-) = f.
Thus, at x = L /2 we then obtain

\h(L/2,0)| < K - Me™I"L/2 (4.3)

for some (universal) constant K.
For general boundary values f, we have the Fourier expansion

£O) =Y Mye™
n#0

where note that there is no constant term because the mean of the boundary map f
vanishes. The coeflicients of f satisfy

S IMu P =113 < M? (4.4)
n#0
and the general solution is:

h(x.0) = Z sinhnx + sinhn(L — x) M, "
o sinhnL

From (4.3) we find:

Ih(L/2.6)| <> K- Mye "L/ (4.5)
n#0
Note that the geometric series
00 oL
Y et = (1 - e—L) < (K')?e 7L (4.6)
n=1

for the constant K’ = (1 —e~1)"1/2 & 1.26 (once we assume that L > 1).
By the Cauchy—Schwarz inequality on (4.5) and using (4.4) and (4.6) , we then
get:
|h(L/2,0)| <2K-M - K'e"L/?

which is the required bound. O
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4.5. Completing the proof. To finish the proof of Proposition 4.7, we apply the
results of §4.3 and §4.4 to the case of harmonic maps from annuli in a symmetric
exhaustion of a k-planar end to the corresponding finite k-pronged subtrees of Xy.

In what follows, let A be a symmetric rectangular annulus in a symmetric
exhaustion {4;};>; in a k-planar end P. (Recall that these were defined in §4.1.)
The restriction of the collapsing map for P to the “outer” boundary 31 A forms the
boundary condition for the partially free boundary problem. We need to ensure that
the image of the “inner” boundary 0~ A is uniformly bounded, in terms of distance
from the vertex O.

Consider first the case when the number k of prongs is even. In this case, by the
k /2-fold symmetry of the domain (see Definition 4.3), the solution / to the partially
free boundary problem is the k/2-cover of the solution %, of the corresponding
problem of a quotient annulus A to a 2-pronged tree X,. This is because, by the
uniqueness of the solution to the partially free boundary problem (Corollary 4.10)
on A, the solution acquires the same symmetries of the problem, and then descends
to the quotient annulus A.

On X3, one can define a signed distance function dy, from the vertex, which is
linear. The composition d, = dx, oh_z then pulls back to a harmonic function d(z) =
+dx, (h(z), O) on the annulus A. As we shall quantify below, by Proposition 4.11
of the previous section, the function h, will have an absolute-value bound on the
boundary component 9~ A. By the symmetry, on passing to the k /2-fold cover, this
bound will then be acquired by the absolute value of d, which is the (usual) distance
function of the lifted map.

2M

Figure 10. For large M the extremal length of the family of arcs between the arcs shown in bold
is ~ 2In M + D for some real (universal) constant D. A truncated k-planar end is a k /2-fold
branched cover of this.

To determine this bound M of the distance function, we examine the collapsing
map of A to X, on its boundary. The distance bound M is given by the largest
“height” of the two rectangles constituting A. By its symmetry and well-known
estimates (cf. Prop. 4.4.6 and the proof of Lemma 4.5.5 in [14]), the modulus of A
is In M up to a bounded additive error, for all large M (see Figure 10).
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Hence the cylinder A in the previous section that we obtained by doubling across
the “free” boundary of A has height L = 2In M + D for some real (universal)
constant D. The partially free boundary problem on A restricts to the collapsing map
on the other boundary. Since exactly half of this (rectangular) boundary component
collapses to each prong of X,, the (signed) distance function d, then has mean
value zero on this boundary. Proposition 4.11 then gives the following bound on the
harmonic map d, restricted to the middle circle:

ld2(L/2,-)| < KoMe™2/2 = KgMe 2" M =D — Kpe P M1

This, we see, is uniformly bounded for any modulus M large enough (and in fact
tends to zero as i — oo in the symmetric exhaustion by {4;}i>1).

Hence the map hy : A — X, takes the “free” boundary to a uniformly bounded
subset of X5, as A ranges over all the symmetric annuli in the exhaustion. As noted
above, the same bound holds for the map 4 : A — X} which is a k/2-fold cover of
the map hy: A — Xo.

When k is odd, one needs a small additional step: the partially free boundary
solution 1 : A — X first lifts to a double cover & : A — X,i. The k-fold symmetry
for odd k lifts to a k-fold symmetry in this cover. The tree X,; now has an even
number of prongs and the above argument gives a uniform bound on the image in X
of the boundary component d~ A by £, that is also acquired by the quotient map 4.

This completes the proof of Proposition 4.7.

5. Proof of Theorem 1.1

In this section, we prove the main theorem. Recall we need to establish homeo-
morphisms between the following spaces:

* (Complex-analytic) The space of half-plane differentials HPr (X, p).
* (Synthetic-geometric) The space of singular-flat half-plane structures Py (X, p).

* (Geometric-analytic) The space H (X, p) of harmonic maps asymptotic to
some model map in M(k).

Here the space of model maps M(k) (see Definition 3.7) are defined relative to
a uniformization of a neighborhood U = D of the puncture p. By “asymptotic” we
mean the distance function between the maps is bounded on U. Throughout, the
choice of U shall be fixed, and implicit in our discussion.

The spaces above can be given the obvious topologies: the “complex-analytic”
space H'Py (X, p) acquires the topology induced as a subset of the corresponding
complex vector space of meromorphic quadratic differentials on X; the “synthetic-
geometric” space P (X, p) can be given a topology that measures how close the
singular-flat metrics are on compact subsets of X \ p (see also Definition 3.2);
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the “geometric-analytic” space of maps H (X, p) can be given the compact-open
topology.

The maps between these spaces, that we shall subsequently discuss, would all
be continuous in these topologies; hence we shall henceforth concern ourselves with
showing they define bijective correspondences.

We shall dispense with the easier correspondence in §5.1. To complete the proof
of Theorem 1.1, we will then be left with showing:

Proposition 5.1. The following bijective correspondences hold:

¢ (Synthetic-geometric — Geometric-analytic) The collapsing map for a half-
plane structure in Py (X2, p) yields a harmonic map in Hi (X, p).

¢ (Geometric-analytic — Complex-analytic) For each model map m € M(k),
there exists a unique harmonic map h € Hy (X, p) that is asymptotic to m,
whose Hopf-differential is in HP (2, p).

In §5.2, we show that the first part of Proposition 5.1, in §5.3 we show the
uniqueness statement of the second part, while in §5.4, we complete the proof of the
existence statement of the second part, namely, that of a harmonic map asymptotic
to a given model map. This is where we use the energy estimates and the a priori
bounds established in §4.

5.1. Complex-analytic < Synthetic-geometric. Since this part of Theorem 1.1 is
already well known, our discussion will be brief.

Recall from §2 that a half-plane differential g € H P (X, p) defines a flat singular
metric |¢| on the surface ¥ \ p that restricts to that of a Euclidean half-plane on
each complementary component of the metric spine, hence defining an element
of Pr(X, p).

Conversely, given a half-plane structure S € Py (X, p), the quadratic differen-
tial d ¢? in the natural ¢-coordinate on each Euclidean half-plane {J¢ > 0} defines a
global holomorphic quadratic differential on the punctured Riemann surface X \ p
obtained by an isometric identifications of intervals on their boundaries. (Note that
the maps in the interval-identifications are semi-translations z — £z + ¢.) The
image of the boundary-lines of the half-planes after the identifications forms the
critical graph of this resulting differential, which is connected and forms a metric
spine (see the discussion following Definition 2.4). Hence we obtain a half-plane
differential g € HPr (X, p).

Clearly, if two such half-plane structures in P (X, p) are isometric, then the
isometry is also a biholomorphism between the underlying Riemann surfaces that
also identifies the corresponding half-plane differentials.

It is straightforward to check this bijection is also continuous: the singular-flat
metrics depend continuously on the half-plane differential.
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Thus, what remains for the proof of Theorem 1.1 is the verification of
Proposition 5.1. That proof occupies the next three sections.

5.2. Synthetic-geometric — Geometric-analytic. Recall that for a half-plane
differential, and its corresponding half-plane structure, the collapsing map of the
horizontal foliation to its leaf-space defines a harmonic map 4 : ¥\ p — X
(see Definition 2.7). Recall that in Theorem 1.1 we fix a coordinate chart U =~ D
around p. In this subsection, we show that there is a unique model map asymptotic
to that collapsing map on U, that is:

Proposition 5.2. The restriction of the harmonic map h to U is bounded distance from
a unique model map m € M(k) on U. Moreover, as q above (and consequently h)
varies continuously, so does this model map m.

This proposition provides that the association in the second part of Proposition 5.1
is well defined, namely, there is a well-defined map

Uy : HPr(Z, p) - M(k) (5.1)

that assigns Wy (h) = m in the notation of the above Proposition.

In what follows g € HPr (X, p) shall be the half-plane differential corresponding
to the half-plane structure (we have already established in the previous section that
they are in bijective correspondence).

Note that for Proposition 5.2 we are assuming that / is already a collapsing map
of some half-plane differential (and hence of some planar end P). The difficulty is
that the (arbitrary) choice of the disk U means that its boundary may not coincide
with that of the planar end P. In particular, the harmonic map 4 may not take dU to
the vertex O of Xj, as a model map should. The assertion of Proposition 5.2 is that
nevertheless, the map / is bounded distance from such a model map.

The strategy of the proof is the following: exhaust the punctured disk U \ p
with a sequence of annuli A; C A, C ---A, C ---, for which one boundary
component d~ A agrees with dU. Then, for each such annulus, solve a Dirichlet
problem to get a harmonic map m, : A, — X} that maps 0~ 4 = dU to O, and
which restricts to 4 on the (other) truncated boundary 9t A. We then show that
this sequence of harmonic maps m,, will converge uniformly on compact sets to the
required model mapm : U \ p — Xg.

In the above construction, we need to ensure that the critical graphs for the Hopf
differentials for each m,,, and the limiting map m, remain connected. Of course, this
application is what we had in mind in stating the Topological Lemma 3.8. (We recall
that this lemma exploits the “prong-duplicity” property (see §3.1) of the collapsing
map h.)

Proof of Proposition 5.2. Recall that h : ¥\ p — Xy is the collapsing map for a
half-plane differential on ¥ \ p, and U = D is a fixed disk centered at the puncture.
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We shall construct a model map m : U — Xj as a limit of maps m,, defined on
compact annuli exhausting U \ p. Asusual we identify U =~ ID. Consider the annulus
A, =D\ B(0, 1/n). We denote the boundary component 0D as 0~ A, and the other
boundary circle dB(0, 1/n) as 07 4,,.

Let m, : A, — Xi be the energy-minimizing map amongst continuous maps
with weak L2-derivatives that:

e restrictto 4 on 97 A4,, and
e map 0D = 9~ A4, to the vertex O.

Note that there is such an energy-minimizing map since any minimizing sequence
will have a uniform energy bound, and the image of 9~ A, is always the vertex, so
Lemma 2.9 applies. Since any reparametrization of the domain annulus preserves
the above properties, the limiting map is stationary (i.e. energy minimizing for all
reparametrizations of the domain), and by an argument of Schoen (Lemma 1 of [24]),
the Hopf differential is then holomorphic. Since # is a collapsing map of a half-plane
differential, its restriction to 01 A, satisfies the prong-duplicity condition. By the
Topological Lemma 3.8, these imply that m,, is a collapsing map for a foliation whose
singularities all lie on a connected graph mapping to the vertex O of Xj. That is, the
Hopf differential of m, has a connected critical graph.

Next, let the maximum distance of #(d~ A,) from O be denoted by B > 0. The
distance function d,, : A, — R defined by

dn(2) = d(mn(z), h(2))

is then subharmonic, uniformly bounded by B on 0D = 9~ A4, and (by construction)
equal to zero on 1 A,. Hence by the Maximum Principle, the distance function d,,
is bounded (by B) on A,. Hence we have that all distance functions are uniformly
bounded on any compact set in D*.

In fact, the sequence of harmonic maps m, are boundedly close to the fixed
harmonic map 4. Thus, since the map m, takes the boundary dDD to the vertex
of Xy for each n, then for any compact subset K C D* — noting that 4(K) is fixed
independently of n — we see that there is a uniform bound on the diameter of its
image m, (K) under m, (note that K belongs to the domain of m, for all large n).
Hence there is a convergent subsequence m, — m (see Lemma 2.9 in §2.3) where
m : D* — Xy is harmonic and, indeed, still at bounded distance from #.

We need to show that m is a model map in M(k). We first show:

Claim. The critical graph of the Hopf differential of m is connected, and is the
preimage of the vertex of Xy.

Proof of claim. We have noted above that the critical graph for each model map m,, is
connected. The uniform convergence m, — m implies that the Hopf differentials of
m,, converge uniformly on compact sets, and so do the horizontal foliations of those
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Hopf differentials of m,, (convergence here is in the Hausdorff topology). Let F be
the horizontal foliation for the Hopf differential of m.

The above convergence implies, in particular, that the singularities of the Hopf
differentials of m, converge to singularities of F. These account for all the
singularities on the punctured disk: each approximate has precisely k preimages
of O on the boundary component 3™ 4,, (that shrink to the puncture), and in the limit
the Hopf differential has a pole of order (k + 2) at the puncture, so by considering
the Euler characteristic, sum of the orders of the limiting prong-singularities (i.e. the
total order of zeros) is the same for m as it was for the approximates mi,,.

Since for each n, the singularities of m,, are mapped to the vertex O of X, hence
so are their limits, which are all of the singularities of F by the argument above.

The same argument as in the proof of Lemma 3.8 then completes the proof of
the claim: if there are two components of the critical graph (each mapping to O)
then one gets a maximum point of the subharmonic distance function from O in the
interior of a region of A bounded by them; a contradiction. O

Thus, the preimage of any interior point of a prong by m contains no singularities,
and is then a bi-infinite leaf with ends in the puncture. The complement of the critical
graph of the Hopf differential of m is then necessarily a collection half-planes (swept
out by the bi-infinite leaves). Moreover the number of such half-planes is precisely k
since the model map m is at most a bounded distance away from the harmonic map &
which is itself a collapsing map for some ¢ € HPy (X, p). Finally, the map m
takes dID to the vertex (since each m,, does). Hence m € M(k).

The uniqueness follows from Lemma 3.9: two such maps m, m,, both a bounded
distance from /& would be a bounded distance from each other, and hence are
identical. The statement about continuity follows since the singular flat metrics
vary continuously when the quadratic differential is varied, and so do their collapsing
maps. O

Remark. This now shows that Yy : HPr(Z, p) — M(k) defined by Yy (q) = m
(see (5.1)) is well defined and continuous. To prove it is a homeomorphism (and
complete the proof of Theorem 1.1) it shall suffice to prove that it is a bijection, which
the subsequent sections shall accomplish.

5.3. Uniqueness of the half-plane differential. We next prove that the associa-
tion Wy of half-plane differential to the model map is injective, namely the uniqueness
in the second part of Proposition 5.1. The argument is straightforward:

Suppose there are two half-plane differentials ¢, g» € HPy (X, p) with harmonic
collapsing maps h1,h, : £\ p — Xj that are both asymptotic to the same model
map m. Then when restricted to U = D, by the triangle inequality the subharmonic
distance function d(z) = dx, (h1(z), h»(z)) between the maps is bounded.



Vol. 91 (2016) Quadratic differentials, half-plane structures, and harmonic maps 349

Since the punctured Riemann surface is parabolic in the potential-theoretic sense,
such a bounded subharmonic function must be constant, that is d = ¢ for some
non-negative real number c¢. (Compare the argument in Lemma 3.9.)

By definition, the preimage of the vertex O € Xy by A1 and &, are spines of the
punctured surface ¥ \ p. In particular, they must intersect (e.g. a pair of curves
of algebraic intersection number one cannot have disjoint representatives) and hence
the distance d = 0 on X. Note that this uses the assumption that ¥ has genus g > 1.

Hence i1 = h», as claimed. O

5.4. Geometric-analytic — Complex-analytic. In this section we prove the
surjectivity of the map Wy : HPr (X, p) — M(k) in (5.1), namely the surjectivity
of the second part of Proposition 5.1. We shall use here the results of §4.

Our goal here is to show that for each model map m € M(k), there exists a
harmonic map /4 : ¥\ p — X} of bounded distance to m, whose Hopf differential ¢
is half-plane, that is, ¢ € HPy (X, p). Note that the previous section §5.3 shows that
such a harmonic map /% is unique. This would conclude the proof of Proposition 5.1.

To this end, let (X, p), k > 2,and U = D be as in Theorem 1.1. Fix a planar end
and an angle (P,0) andlet m : U \ p — X be a model map in M(k) determined
by this data, as in Definition 3.7.

Figure 11. Part of the compact exhaustion used in Lemma 5.6.

By Lemma 4.4, we may choose a symmetric exhaustion of P
A1 CA C---CA, C---

such that the symmetric rectangular annuli are all contained in U.

Let X9 = (X \ U) UV, where V is the interstitial region between dU and the
inner boundary of A; (see Figure 11). For n > 1 define the sequence of Riemann
surfaces with boundary:

¥p=30UA,.
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Definition 5.3 (#,). For each n > 0 let H, be the set of continuous maps
h: X, — X; with weak derivatives in L? such that

(a) the restriction of any 4 to X, C U is the same as the restriction of the model
mapm : U — Xj, and

(b) each & is a collapsing map for a foliation that is smooth except for finitely many
singularities, all of which lie along a connected spine for 3, that is mapped
to O € Xg.

Define hy, : X, — Xj be an energy-minimizing map amongst all maps in H,,.

Note that an energy-minimizing map exists since by Lemma 2.9 any energy-
minimizing sequence in H, has a convergent subsequence (the images of such a
sequence contains the common point Q). Such a map has a holomorphic Hopf
differential as it is an energy minimizer for all reparametrizations of the domain. We
also note:

Lemma 5.4. The Hopf differential of h,, has a connected critical graph.

Proof. By construction, each &, restricts to the model map m on d%,. Recall that
the model map m (and consequently /,) has the “prong-duplicity property” on the
subsurface boundary, namely that any interior point of a prong of X has precisely
two preimages on 0%, (see Property (2) after Definition 3.7). In the Topological
Lemma 3.8 we showed that a harmonic map with this property has a Hopf differential
with a connected critical graph, in the case that the domain was an annulus with one
boundary component mapping to the vertex O € Xj. In the case at hand, the domain
is a compact surface with boundary, with a spine that maps to 0. However, we can
reduce to the case of a punctured disk by making slits along each finite-length edge
of the spine. Note that the resulting punctured disk has a boundary that maps to O
under /,. Applying the Topological Lemma then completes the proof. O

The main result of this section is:

Proposition 5.5. After passing to a subsequence, the harmonic maps h, converge
uniformly on compact sets to a harmonic map h : ¥ \ p — X, which is at bounded
distance from m on U, and whose Hopf differential g € HPr (X, p).

The key step in the proof is to show that the energy of the restriction of %, to 3¢
is uniformly bounded:

Lemma 5.6 (Energy bound). There exists a constant E > 0 such that the energy of
the restriction €(hy,|x,) < E for all n.

Proof. The strategy of proof follows that of [27], also used in [16]. We first describe
it in brief: Recall that %, is the energy-minimizing map amongst those in H,
(Definition 5.3). The energy £ (h,) can be expressed as a sum of the energies of the
restrictions of 4, to Xy and A,. We shall bound this energy in both directions: for
an upper bound we construct a “candidate” map g € #,, and for the lower bound we
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use the estimate on the energy of the partially free boundary problem obtained in §4
(Proposition 4.6). The two sides of the inequality shall then reduce to the required
uniform bound.

We denote by ¢, the restriction of the model (collapsing) map m to the symmetric
rectangular annulus A, forn > 1. Let ¢, be the energy of the solution of the partially
free-boundary problem on A, that is, the least energy map to the k-pronged tree Xy
amongst those that restrict to m on the outer boundary 9+ A.

By Proposition 4.6 we have:

E(cp) <en+K (5.2)

where K is independent of n.
Now let hg : £¢9 — X} the energy minimizing map as defined in Definition 5.3.
Forn > 1define g, : X, — Xj to be the map that restricts to £y on X and to ¢,
on the annular region A,: note that this map is well defined as

ho) —ho‘ =Cn‘

X0 o 0~ A a_Al.

Note that g, € H, and note that the energy £(g,) decomposes as
E(gn) = E(ho) + E(cn). (5.3)

Because &, is a minimizer for a problem for which g is a candidate, we have

E(hn) < E(gn)
and, for analogous reasons, we also have

en < E(hnla,)-
Combining these last four displayed inequalities, we obtain:

E(hnlzo) + en = E(hnlzo) + E(hnla,) = E(hn) < E(ho) +en + K

which implies

E(hnlz,) = E(ho) + K,
the required estimate. O
Remark. The same argument applies for the energy of the restriction of the map 4,
to any fixed subsurface X;, and hence to any compact set in X \ p.

Corollary 5.7. After passing to a subsequence, the sequence {h,} converges to a
harmonic map h : ¥\ p — X that is bounded distance from m on the disk U.
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Proof. As in Lemma 2.9, the convergence on any fixed compact set is via a standard
argument using the Courant-Lebesgue Lemma, using that the elements of the
sequence all have the vertex O in their image. A diagonal argument then provides
for convergence on the entire punctured surface X \ p.

Next, on the annulus A, U V, by construction we have that the distance function
dx, (hy,m) vanishes on the “outer” boundary 01 A,. By the convergence h, — h,
we have a uniform distance bound (say dx, (h,,m) < D) on the inner boundary dU .
Since the distance function is subharmonic on the annulus A4,, by the Maximum
Principle each map £, is then a uniformly bounded distance D from the model map m,
and hence the uniform limit / is also a uniformly bounded distance from . 0

Finally, we observe:

Lemma 5.8. The critical graph of the Hopf differential of h is connected, and the
Hopf differential is a half-plane differential in H'Py (X2, p).

Proof. Since the convergence of the harmonic maps 4, — & is uniform, so is the
convergence of the corresponding Hopf differentials. Since these are holomorphic
differentials, this convergence is in factin C 2 (and in factin C k for any k), and hence
their critical graphs converge to the critical graph in the limit. By construction, each
critical graph in the sequence is connected, and maps to the vertex O. We briefly
recount the argument, identical to that of the “Claim” in the proof of Propn. 5.2, that
implies that the limiting critical graph has the same property:

First, the singularities of the approximates limit to singularities of the limiting
foliation, with the order of the resulting singularity being (at least) the orders of the
approximates. The sum of the orders of these prong-singularities is determined by the
Euler characteristic of the punctured surface; the orders and hence the sum remains
the same for the limiting foliation, and hence accounts for all the singularities. There
are no other singularities by this Euler-characteristic count, and hence the entire
critical graph maps to O. Second, if the critical graph has more than one component,
the subharmonic distance function (from O) would have a maximum in the interior
of a region enclosed by them, violating the Maximum Principle.

Thus, the complementary regions of these spines are then necessarily half-planes
(see §2.2) and hence the Hopf differential is a half-plane differential. Moreover since
the harmonic map / is bounded distance from the model map m corresponding to a
k-planar end on their common domain near the puncture p, the Hopf differential of
the harmonic map / has a pole of order k + 2 at p, and hence is in HPr (X, p). O

These two preceding lemmas complete the proof of Proposition 5.5, and hence
the proof of Proposition 5.1, and hence the proof of Theorem 1.1. O
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6. Proof of Corollary 1.2

Definition 6.1 (Spaces of ribbon graphs). Let Msg’l denote the space of
marked metric graphs that form an embedded spine of a punctured surface (X, p)
of genus g > 1. These are also called ribbon-graphs or fat-graphs (see, for
example, [23]). For k > 1, let MS];,I denote the space of such marked metric
spines that, in addition, have precisely k edges of infinite length that are incident to
the puncture at p.

Remark. Graphsin MS ]g‘,,l are precisely the metric spines of half-plane differentials
in Hi (2, p), as (¥, p) varies over the Teichmiiller space 7T, 1, an observation which
we shall use below.

As a consequence of Proposition 3.5 we also have:
Lemma 6.2. The space of metric graphs /\/ng’1 is homeomorphic to R% =13, For
k > 1, the space of metric graphs /\/ISI;,l is homeomorphic to R68~6+k+2 » g1,

a :

)

Figure 12. A metric spine in MS%J before “expansion” as in the proof of Lemma 6.2.

Proof. The first statement concerns the space of ribbon graphs (with a punctured-disk
complement) that have been parameterized elsewhere (see, for example, [22,23]). In
fact, Strebel’s theorem (as in the Introduction) provides the isomorphism

MSY | = g1 x Ry x ROE76H3,

To obtain the second statement, we need to add in k infinite edges to such a
ribbon graph in MS g,l. The simplest way to do this is to add in an extra vertex vg
on the ribbon graph (viewed as the boundary of a disk punctured at p) such that the
additional k edges emerge from vg. There is then an S!-parameter space of choices
for placing the vertex vg. Any other graph in /\/lSIg,,1 is obtained by taking a metric
expansion at vy, in the sense of Definition 3.4 (see Figure 12). Since the degree of vy
is k + 2, we see by Proposition 3.5 that the total space MS];’I then is homeomorphic
to

Msg,l % Sl % Rk_l ~ R6g_6+k+2 X Sl

as required. O
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Remark. Alternatively, for the second statement, given a ribbon graph in ./\/ng,l,

one could replace the punctured disk in its complement by a k-planar end with a
choice of rotation, and hence the total space ./\/lS’gf’1 would also be seen from this
perspective as homeomorphic to MSy | x P(k) x ST = ROE~6FTk+2  §1 (where
we have invoked Proposition 3.3).

Proof of Corollary 1.2. We begin with the bundle Q’;jz of meromorphic quadratic
differentials with a pole of order (k + 2) over the Teichmiiller space T, ;. In that
total space ngff of meromorphic quadratic differentials with a pole of order (k + 2),
consider the subset HPy ¢ consisting of half-plane differentials,, i.e.

HPre = | HPu(Z.p) C Q12
(Z,p)

where (X, p) varies over 7g,1.
By Theorem 1.1, we know that each HPy(Z, p) = R¥ x S! and hence

HPro = Tg1 x RE x ST

It remains to show that the map ® : HPy o — /\/ISI};1 that assigns the metric spine
of the corresponding half-plane differential, is a homeomorphism.

Any graphin MS ’;,1 corresponds to a unique pointed Riemann surface (X, p) and
half-plane differential in HP (X, p) by attaching to the spine k Euclidean half-planes
between the k infinite-length edges incident at the puncture. (The differential is then
the one induced by the standard differential ¢ ¢? in the usual complex coordinate ¢
on each half-plane (see §5.1 for a related discussion).) It is easy to see that this
assignment forms the inverse for the map .

Hence the map @ is a bijection. Moreover, the inverse map constructed above is
clearly continuous. Since the Teichmiiller space 7.1 is homeomorphic to R®8 =612,
applying Inv;ir_iﬂlf/e of Domain to the lift of ® to a map between the universal covers

HPp o and MS];’I (both homeomorphic to R%~6+%+3) completes the proof. [

References

[1] L. V. Ahlfors and L. Sario, Riemann surfaces, Princeton Mathematical
Series, 26, Princeton University Press, Princeton, N.J., 1960. Zbl 0196.33801
MR 0114911

[2] T.K.K. AuandT.Y. H. Wan, Images of harmonic maps with symmetry, Tohoku
Math. J. (2), 57 (2005), no. 3, 321-333. Zbl 1087.53059 MR 2154096

[3] T. Bridgeland and I. Smith, Quadratic differentials as stability conditions,
Publ. Math. Inst. Hautes Etudes Sci., 121 (2015), 155-278. Zbl 1328.14025
MR 3349833


https://zbmath.org/?q=an:0196.33801
http://www.ams.org/mathscinet-getitem?mr=0114911
https://zbmath.org/?q=an:1087.53059
http://www.ams.org/mathscinet-getitem?mr=2154096
https://zbmath.org/?q=an:1328.14025
http://www.ams.org/mathscinet-getitem?mr=3349833

Vol. 91 (2016) Quadratic differentials, half-plane structures, and harmonic maps 355

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]
[13]

[14]

[15]

[16]

(17]

(18]

[19]

G. D. Daskalopoulos and R. A. Wentworth, Harmonic maps and Teichmiiller
theory, in Handbook of Teichmiiller theory. Vol. 1, 33-109, IRMA Lect. Math.
Theor. Phys., 11, Eur. Math. Soc., Ziirich, 2007. Zbl 1161.30032 MR 2349668

L. C. Evans, Partial differential equations, second edition, Graduate Studies
in Mathematics, 19, American Mathematical Society, Providence, RI, 2010.
Zbl 1194.35001 MR 2597943

B. Farb and M. Wolf, Harmonic splittings of surfaces, Topology, 40 (2001),
no. 6, 1395-1414. Zbl 1001.58010 MR 1867250

A. Fathi, F. Laudenbach and V. Poénaru, Travaux de Thurston sur les surfaces,
Astérisque, 66, Société Mathématique de France, Paris, 1979.

M. Gromov and R. Schoen, Harmonic maps into singular spaces and p-adic
superrigidity for lattices in groups of rank one, Inst. Hautes Etudes Sci. Publ.
Math., 76 (1992), 165-246. Zbl 0896.58024 MR 1215595

S. Gupta, Meromorphic quadratic differentials with half-plane structures, Ann.
Acad. Sci. Fenn. Math.,39 (2014),no. 1,305-347.2Zbl 1288.30040 MR 3186818

S. Gupta, Asymptoticity of grafting and Teichmiiller rays. I, Geometriae
Dedicata, 176 (2015), 185-213. Zbl 1326.30042 MR 3347577

J. Harer and D. Zagier, The Euler characteristic of the moduli space of curves,
Invent. Math., 85 (1986), no. 3, 457-485. Zbl 0616.14017 MR 0848681

A. Huang, Rice University Ph.D, thesis (in preparation).

J. Hubbard and H. Masur, Quadratic differentials and foliations, Acta Math.,
142 (1979), no. 3-4, 221-274. Zbl 0415.30038 MR 0523212

J. H. Hubbard, Teichmiiller theory and applications to geometry, topology,
Matrix Editions, Ithaca, NY, 2006. Zbl 1102.30001 MR 2245223

J. Jost, Harmonic maps between surfaces, Lecture Notes in Mathematics, 1062,
Springer-Verlag, Berlin, 1984. Zbl 0542.58002 MR 0754769

J. Jost and K. Zuo, Harmonic maps of infinite energy and rigidity results
for representations of fundamental groups of quasiprojective varieties, J.
Differential Geom., 47 (1997), no. 3, 469-503. Zbl 0911.58012 MR 1617644

M. Kontsevich, Intersection theory on the moduli space of curves and the matrix
Airy function, Comm. Math. Phys., 147 (1992), no. 1, 1-23. Zbl 0756.35081
MR 1171758

N. J. Korevaar and R. M. Schoen, Sobolev spaces and harmonic maps for metric
space targets, Comm. Anal. Geom., 1 (1993), no. 3-4,561-659. Zbl 0862.58004
MR 1266480

N. J. Korevaar and R. M. Schoen, Global existence theorems for harmonic maps
to non-locally compact spaces, Comm. Anal. Geom., S5 (1997), no. 2, 333-387.
Zbl 0908.58007 MR 1483983


https://zbmath.org/?q=an:1161.30032
http://www.ams.org/mathscinet-getitem?mr=2349668
https://zbmath.org/?q=an:1194.35001
http://www.ams.org/mathscinet-getitem?mr=2597943
https://zbmath.org/?q=an:1001.58010
http://www.ams.org/mathscinet-getitem?mr=1867250
https://zbmath.org/?q=an:0896.58024
http://www.ams.org/mathscinet-getitem?mr=1215595
https://zbmath.org/?q=an:1288.30040
http://www.ams.org/mathscinet-getitem?mr=3186818
https://zbmath.org/?q=an:1326.30042
http://www.ams.org/mathscinet-getitem?mr=3347577
https://zbmath.org/?q=an:0616.14017
http://www.ams.org/mathscinet-getitem?mr=0848681
https://zbmath.org/?q=an:0415.30038
http://www.ams.org/mathscinet-getitem?mr=0523212
https://zbmath.org/?q=an:1102.30001
http://www.ams.org/mathscinet-getitem?mr=2245223
https://zbmath.org/?q=an:0542.58002
http://www.ams.org/mathscinet-getitem?mr=0754769
https://zbmath.org/?q=an:0911.58012
http://www.ams.org/mathscinet-getitem?mr=1617644
https://zbmath.org/?q=an:0756.35081
http://www.ams.org/mathscinet-getitem?mr=1171758
https://zbmath.org/?q=an:0862.58004
http://www.ams.org/mathscinet-getitem?mr=1266480
https://zbmath.org/?q=an:0908.58007
http://www.ams.org/mathscinet-getitem?mr=1483983

356

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

S. Gupta and M. Wolf CMH

G. V. Kuz’mina, On problems of extremal decomposition in families of systems
of domains of general form, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst.
Steklov. (POMI), 263 (2000), Anal. Teor. Chisel i Teor. Funkts. 16, 157-186,
240; translation in J. Math. Sci. (New York), 110 (2002), no. 6, 3121-3139.
Zbl 1008.30015 MR 1756344

C. Mese, Uniqueness theorems for harmonic maps into metric spaces, Commun.
Contemp. Math., 4 (2002), no. 4, 725-750. Zbl 1021.58011 MR 1938491

M. Mulase and M. Penkava, Ribbon graphs, guadratic differentials on Riemann
surfaces, and algebraic curves defined over Q, Asian J. Math., 2 (1998), no. 4,
875-920. Zbl 0964.30023 MR 1734132

R. C. Penner, The decorated Teichmiiller space of punctured surfaces, Comm.
Math. Phys., 113 (1987), no. 2, 299-339. Zbl 0642.32012 MR 0919235

R. M. Schoen, Analytic aspects of the harmonic map problem, in Seminar on
nonlinear partial differential equations (Berkeley, Calif., 1983),321-358, Math.
Sci. Res. Inst. Publ., 2, Springer, New York, 1984. Zbl 0551.58011 MR 0765241

K. Strebel, Quadratic differentials, Ergebnisse der Mathematik und ihrer
Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 5, Springer-
Verlag, 1984. Zbl 0547.30001 MR 0743423

M. Tsuji, Potential theory in modern function theory, Reprinting of the
1959 original, Chelsea Publishing Co., New York, 1975. Zbl 0322.30001
MR 0414898

M. Wolf, Infinite energy harmonic maps and degeneration of hyperbolic
surfaces in moduli space, J. Differential Geom., 33 (1991), no. 2, 487-539.
Zbl 0747.58026 MR 1094467

M. Wolf, On realizing measured foliations via quadratic differentials of
harmonic maps to R-trees, J. Anal. Math., 68 (1996), 107-120. Zbl 0862.30043
MR 1403253

Received May 18, 2015; revised February 02, 2016

S. Gupta, Department of Mathematics, Indian Institute of Science, Bangalore 560012, India

E-mail: subhojoy @math.iisc.ernet.in

M. Wolf, Department of Mathematics, Rice University, Houston, Texas 77005-1892, USA
E-mail: mwolf@rice.edu


https://zbmath.org/?q=an:1008.30015
http://www.ams.org/mathscinet-getitem?mr=1756344
https://zbmath.org/?q=an:1021.58011
http://www.ams.org/mathscinet-getitem?mr=1938491
https://zbmath.org/?q=an:0964.30023
http://www.ams.org/mathscinet-getitem?mr=1734132
https://zbmath.org/?q=an:0642.32012
http://www.ams.org/mathscinet-getitem?mr=0919235
https://zbmath.org/?q=an:0551.58011
http://www.ams.org/mathscinet-getitem?mr=0765241
https://zbmath.org/?q=an:0547.30001
http://www.ams.org/mathscinet-getitem?mr=0743423
https://zbmath.org/?q=an:0322.30001
http://www.ams.org/mathscinet-getitem?mr=0414898
https://zbmath.org/?q=an:0747.58026
http://www.ams.org/mathscinet-getitem?mr=1094467
https://zbmath.org/?q=an:0862.30043
http://www.ams.org/mathscinet-getitem?mr=1403253
mailto:subhojoy@math.iisc.ernet.in
mailto:mwolf@rice.edu

	Introduction
	Preliminaries
	Quadratic differentials
	Half-plane differentials
	Harmonic maps to trees
	More examples

	Planar ends and model maps
	Definitions
	Topology of the collapsing foliation
	Bounded distance -3mu identical

	Symmetric annuli and estimates for least-energy maps
	Exhaustion by symmetric annuli
	Comparing solutions of Dirichlet and partially free boundary value problems
	Doubling trick
	A decay estimate
	Completing the proof

	Proof of Theorem 1.1
	Complex-analytic  Synthetic-geometric
	Synthetic-geometric  Geometric-analytic
	Uniqueness of the half-plane differential
	Geometric-analytic  Complex-analytic

	Proof of Corollary 1.2

