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Abstract. In [7], product Lagrangian tori in standard symplectic space R2n were classified up
to symplectomorphism. We extend this classification to symplectically aspherical symplectic
manifolds that embed in a tame symplectic manifold. We show by examples that the asphericity
assumption cannot be omitted.

Mathematics Subject Classification (2010). 53D35; 37B40, 53D40.

Keywords. Lagrangian tori.

1. Introduction and main results

The properties of the Lagrangian submanifolds of a symplectic manifold .M;!/
shed light on both the topological and dynamical characteristics of .M;!/. The
study of Lagrangian submanifolds is therefore a central topic of symplectic topology,
with many facets: construction of examples, classification, persistence of Lagrangian
intersections, etc. Many results can be found in [3, 14, 27, 28].

The classification problem decomposes into several subproblems: One problem
is to understand which smooth manifolds P embed as Lagrangian submanifold
of a given symplectic manifold .M;!/. If such an embedding P � M exists,
one then tries to classify these embeddings, up to various equivalence relations:
isotopy, Lagrangian isotopy, symplectic isotopy, Hamiltonian isotopy, or up to
symplectomorphism.

Of particular interest from a dynamical viewpoint are Lagrangian tori, that arise as
invariant sets of integrable systems and their perturbations. The simplest Lagrangian
tori are product tori inR2n, that (suitably scaled) embed into any symplectic manifold
via Darboux charts, but there are also many “exotic” Lagrangian tori, that are not
symplectomorphic to any product torus, see for instance [1, 4, 5, 7, 10, 13, 15, 16, 31,
37, 38]. In this paper we look at product tori, and study their classification up to
symplectomorphism and Hamiltonian isotopy.
�Yu. C. partially supported by RFBR grant NSh-5138.2014.1.
��F. S. partially supported by SNF grant 200020-144432/1.
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Let T .a/ denote the boundary of the disc of area a > 0 inR2 centred at the origin.
Let a D .a1; : : : ; an/ be a vector with positive components. We call the n-torus

T .a/ D T .a1/ � � � � � T .an/ � R2n

a product torus. Product tori are Lagrangian with respect to the standard symplectic
form !n D

Pn
iD1 dxi ^ dyi , that is, the restriction of !n to each product torus

vanishes.
Let .M;!/ be a symplectic manifold. We assume throughout the paper that M

is connected. Denote by B2n.b/ the closed ball of radius
p
b=� in R2n centred

at the origin. The torus T .a/ lies on the boundary of the ball B2n.jaj/, where
jaj D

Pn
iD1 ai . By a symplectic chart we understand a symplectic embedding

'WB2n.b/ ! .M;!/. Given a symplectic chart 'WB2n.b/ ! .M;!/ and a torus
T .a/ � B2n.b/, we write T'.a/ D ' .T .a//. A Lagrangian torus in .M;!/ is called
a product torus if it is of the form T'.a/ for some symplectic chart '.

We study the classification problem for product Lagrangian tori with respect to
the action of the group Symp.M;!/ of symplectomorphisms ofM (diffeomorphisms
preserving the symplectic form !) as well as the group Ham.M;!/ of Hamiltonian
symplectomorphisms. Hamiltonian symplectomorphisms are defined as follows.
Let fHtg be a family of smooth functions onM smoothly depending on the parameter
t 2 Œ0; 1�. This family defines a family of Hamiltonian vector fields fXtg by
!.Xt ; � / D dHt . � /. Assume that the time t flow ‰t of fXtg is a well-defined
diffeomorphism for each t 2 Œ0; 1�. Then each ‰t is a symplectomorphism. The
family f‰tg is then called a Hamiltonian isotopy; symplectomorphisms‰t arising in
this way form the subgroup Ham.M;!/ � Symp.M;!/.

Given Lagrangian submanifoldsL;L0 in a symplectic manifold .M;!/, we write
L � L0 (resp. L � L0) if there is a symplectomorphism (resp. a Hamiltonian
symplectomorphism) of .M;!/ that maps L to L0. In the particular case where
.M;!/ D .R2n; !n/, we say that L is Hamiltonian isotopic to L0 in the ball B2n.b/
if there is a Hamiltonian isotopy fˆsg, s 2 Œ0; 1�, of R2n such that ˆ0 D id,
ˆ1.L/ D L

0, and ˆs.L/ � B2n.b/ for all s 2 Œ0; 1�.
Given a vector a D .a1; : : : ; an/ with positive components, denote

a D min
1�i�n

.ai /; m.a/ D # fi j ai D ag ; jaj D
nP
iD1

ai ; kak D jaj C a:

Let �.a/ denote the subgroup of R formed by all integer combinations of the
numbers a1 � a; : : : ; an � a. We write a ' a0 when the following holds: a D a 0,
m.a/ D m.a0/, and�.a/ D �.a0/. It was proved in [7] that for product tori inR2n the
conditions T .a/ � T .a0/, T .a/ � T .a0/, a ' a0 are equivalent one to another. The
following theorem gives an upper bound on the size of the support of a Hamiltonian
isotopy between product tori when such an isotopy exists.
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Theorem 1.1. (i) If a and a0 are related by a permutation of the components, then
the tori T .a/ and T .a0/ are Hamiltonian isotopic in the ball B2n.jaj/.

(ii) If a ' a0, then the tori T .a/ and T .a0/ are Hamiltonian isotopic in the ball
B2n

�
max.kak; ka0k/

�
.

Assertion (i) of the theorem is, of course, rather obvious. It seems likely that
Theorem 1.1 gives a sharp bound for the ball size. However, we can prove the
sharpness only under the additional assumption that jaj ¤ ja0j:
Theorem 1.2. If b < max.kak; ka0k/ and jaj ¤ ja0j, then the tori T .a/ and T .a0/
are not Hamiltonian isotopic in the ball B2n.b/.

It will sometimes be necessary to assume that the geometry of the symplectic
manifold .M;!/ is not too wild. Following [3, 17, 35], we say that .M;!/ is tame
if M admits an almost complex structure J and a complete Riemannian metric g
satisfying the following conditions:
(T1) J is uniformly tame, i.e., there are positive constants C1 and C2 such that

! .X; JX/ � C1 kXk
2
g and j! .X; Y /j � C2 kXkg kY kg

for all tangent vectors X and Y onM .

(T2) The sectional curvature of .M; g/ is bounded from above and the injectivity
radius of .M; g/ is bounded away from zero.

Some examples of tame symplectic manifolds are as follows: (1) closed symplectic
manifolds; (2) cotangent bundles over arbitrary manifolds; (3) twisted cotangent
bundles over closed manifolds; (4) symplectic manifolds such that the complement
of a compact subset is symplectomorphic to the convex end of the symplectization of
a closed contact manifold. The class of tame symplectic manifolds is closed under
taking products and coverings. To save words we make the
Definition. A symplectic manifold (with or without boundary) is subtame if it
symplectically embeds into a tame symplectic manifold.

Symplectic manifolds that are not subtame can be considered exotic. An example
is the symplecticR6 constructed in [30]. It is the symplectization of an exotic contact
structure on R5 and contains a Lagrangian sphere, and therefore cannot be subtame,
see [9, § 4].

Recall that .M;!/ is called symplectically aspherical if Œ!�j�2.M/ D 0 and
c1j�2.M/ D 0. Here, c1 D c1.!/ is the first Chern class of TM with respect to
an (arbitrary) almost complex structure J taming ! as in (T1), and the restriction
to �2.M/ is understood as the restriction to the image of the natural map �2.M/!

H2.M IZ/ � H2.M IR/.
Given a symplectic chart 'WB2n.b/! .M;!/, we write b' D b. The following

theorem shows that the invariants of product tori in R2n extend to certain other
symplectic manifolds.
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Theorem 1.3. Assume that T'.a/ � T'0.a0/, where T'.a/; T'0.a0/ � .M;!/.

(i) If .M;!/ is symplectically aspherical, then �.a/ D �.a0/.

(ii) If .M;!/ is subtame, kak � b' , and ka0k � b'0 , then a D a 0 and
m.a/ D m.a0/.

A symplectic manifold .M;!/ is called a Liouville manifold if it admits a vector
fieldX such that LX! D ! (where LX is the Lie derivative with respect toX ). IfX
can be chosen in such a way that its time t flow map is well-defined for each t � 0,
we call .M;!/ forward complete. Examples of tame forward complete Liouville
manifolds are cotangent bundles and, more generally, Stein manifolds, see [12].
Product tori in such manifolds can be completely classified:
Theorem 1.4. Let T'.a/, T'0.a0/ be Lagrangian product tori in a subtame forward
complete Liouville manifold .M;!/. Then the conditions a ' a0, T'.a/ � T'0.a0/,
T'.a/ � T'0.a

0/ are equivalent one to another.

The assumption kak � b' , ka0k � b'0 in Theorem 1.3 (ii) cannot be omitted, as
the following simple example shows. Let S2 be the round 2-sphere, endowed with
the Euclidean area form of total area 2. Let pN ; pS 2 S2 be the north pole and the
south pole. Choose " 2 � 0; 1

2
Œ, and let '; '0WB2.2 � "/ ! S2 be Darboux charts

such that '.0/ D pN , '0.0/ D pS , and such that concentric circles are mapped
to circles of latitude. Then T'.12 / D T'0.

3
2
/, but a D 1

2
¤

3
2
D a 0. Note that

ka0k D 3 > 2 � " D b'0 .
The assumption in Theorem 1.3 (i) that .M;!/ is symplectically aspherical cannot

be omitted either, as the next theorem shows. Recall that the cohomology class Œ!�
of the symplectic form gives rise to the homomorphism � W�2.M/ ! R, and the
first Chern class c1 gives rise to the homomorphism c1W�2.M/! Z. Given a > 0,
define the homomorphism

�aW�2.M/! R; S 7! �.S/ � c1.S/a:

With a > 0 and a symplectic manifold .M;!/ we associate the group

Ga D Ga.M;!/ WD �a.�2.M// � R:

Note that .M;!/ is symplectically aspherical if and only if Ga is trivial for
all a > 0. We call the symplectic manifold .M;!/ special if the rank of the
group �

�
�2.M/

�
� R is 1 and c1 is not proportional to � . We associate with each

S0 2 �2.M/ and each a > 0 the subgroup Ga.S0/ D Ga.S0;M; !/ of Ga which is
the image under �a of the subgroup generated by S0.
Theorem 1.5. Let .M;!/ be a symplectic manifold; if .M;!/ is special, we also fix
an element S0 2 �2.M/. Let 'WB2n.b/! .M;!/ be a symplectic chart. For every
real number c > 0 there exists A > 0 such that for all a 2 �0; A� the following holds.
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If d1; : : : ; dk and e1; : : : ; ek for all j 2 f1; : : : ; kg satisfy the conditions dj � c,
ej � c, then

dj � ej 2

(
Ga.S0/ if .M;!/ is special,
Ga otherwise;

and the tori T'.a; : : : ; a; aC d1; : : : ; aC dk/, T'.a; : : : ; a; aC e1; : : : ; aC ek/ are
contained in B'.b/, then

T'.a; : : : ; a; aC d1; : : : ; aC dk/ � T'.a; : : : ; a; aC e1; : : : ; aC ek/:

Example. Given v > 0, we denote by S2.v/ the 2-sphere of area v. There exists
a symplectic embedding B4.b/ ! S2.v1/ � S

2.v2/ whenever b < min.v1; v2/.
The homomorphism c1 on �2.S2.v1/ � S2.v2// D Z˚ Z is given by .m1; m2/ 7!
2.m1 Cm2/. For S0 D .1;�1/ we have

Ga
�
S0; S

2.v1/ � S
2.v2/

�
D .v1 � v2/Z:

(Note that S2.v1/ � S2.v2/ is special if and only if v1=v2 2 Q and v1 ¤ v2.)
Theorem 1.5 implies, in particular, that in S2.3/ � S2.4/ the tori T .a; a C 1/ and
T .a; aC2/ are Hamiltonian isotopic for all sufficiently small a, whereas .a; aC1/ 6'
.a; aC 2/.

The paper is organized as follows. In Section 2, we describe the invariants that
are used in the proof of Theorems 1.2 and 1.3, and derive Theorem 1.3. In Section 3
we prove a version of Theorem 1.3 for generalized Clifford tori in CPn, and use it to
prove Theorem 1.2. In Section 4 we construct Hamiltonian isotopies that provide a
proof of Theorem 1.1. In Sections 5 and 6, we prove finer versions of Theorems 1.4
and 1.5, respectively. Appendix A contains a refinement of Lelong’s inequality for
the area of holomorphic curves passing through the centre of a ball, that we use in
Section 2. Appendix B describes an algebraic result used in Section 4.

Acknowledgements. The first draft of this paper was written in Spring 2005, when
the first author visited Max Planck Institute Leipzig and the second author was a
PostDoc at Leipzig University. The paper was finalized during our stay at FIM of
ETH Zürich in 2008 and 2010 and during the first author’s stay at Université de
Neuchâtel in 2009 and 2011. We wish to thank these institutions and in particular
Dietmar Salamon and Matthias Schwarz for their warm hospitality. We also thank
the referee for many useful remarks.

2. Symplectic invariants

2.1. Displacement energy and J -holomorphic discs. The first Ekeland–Hofer
capacity was a key tool used in [7] for the classification of product tori in R2n.



450 Yu. Chekanov and F. Schlenk CMH

This capacity is defined only for subsets of the standard symplectic space R2n. We
shall work with the displacement energy capacity instead, which is defined for all
symplectic manifolds. In the process of computing the displacement energy for
Lagrangian tori, we bring J -holomorphic discs into play, and it is here that we need
the assumption that .M;!/ be tame.

Consider the set H.M/ of smooth functions H W Œ0; 1� �M ! R with compact
support. Denote by ˆH the time 1 map of the Hamiltonian flow generated by H .
Following Hofer [18], we define a norm onH by

kHk D

Z 1

0

�
max
x2M

H.t; x/ � min
x2M

H.t; x/

�
dt;

and the displacement energy of a compact subset A �M by

e .A;M/ D inf
H2H

n
kHk j ˆH .A/ \ A D ¿

o
;

assuming inf.¿/ D1.
Assume that .M;!/ is tame. Denote by D the closed unit disc in the complex

plane C, and by J D J .M;!/ the set of almost complex structures J on M for
which there exists a complete Riemannian metric g such that J and g satisfy (T1)
and (T2). Let L be a closed Lagrangian submanifold of .M;!/. Given J 2 J ,
we define �.L;M IJ / to be the minimal symplectic area

R
D
u�! of a non-constant

J -holomorphic map uW .D; @D/! .M;L/ if suchmaps exist, and set �.L;M IJ / D
1 otherwise. Since .M;!/ is tame, Gromov’s compactness theorem implies that
the minimal area is indeed attained and thus positive [28]. Define

� .L;M/ D sup
J2J

�.L;M IJ /;

allowing �.L;M/ to be infinite as well. It was proved in [8] that

� .L;M/ � e .L;M/ : (2.1)

Recall that a D min1�i�n.ai /, kak D a C
Pn
iD1ai .

Proposition 2.1. If .M;!/ is tame and kak � b' , then e
�
T'.a/;M

�
D a.

Proof. First we prove that e
�
T'.a/;M

�
� a. We can assume that a1 D a. We

write D.a/ for the polydisc B2.a1/ � � � � � B2.an/. Let U be a neighbourhood
of B2n.b/ such that 'WU ! M is well defined. Choose " > 0 such that
B2n

�
kaCn"k

�
� U . The torus T .a/ can be displaced from itself by the time 1 flow

map of a Hamiltonian functionH 2 H .D .2a1 C "; a2 C "; : : : ; an C "// such that
kHk < a C ", see e.g. [19, p.171]. The polydisc D .2a1 C "; a2 C "; : : : ; an C "/

is contained in the ball B2n.kak C n"/ and hence in U . Transferring H to .M;!/
by means of the chart ', we obtain a Hamiltonian function H' 2 H.M/ such that
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kH'k < a C " and the time 1 flow generated by H' disjoins the torus T'.a/ from
itself. Since " can be chosen arbitrarily small, it follows that e

�
T'.a/;M

�
� a.

Denote by J0 the standard complex structure on Cn.

Lemma 2.2. LetL be a closed Lagrangian submanifold inB2n.b�/ � Cn, and let '
be a symplectic chart such that b' > b�. Then

�
�
'.L/;M

�
� min

�
� .L;CnIJ0/; b' � b�

�
:

Proof. It suffices to find an almost complex structure J 2 J such that the symplectic
area of each non-constant J -holomorphic map uW .D; @D/ ! .M; '.L// is at least
min

�
� .L;CnIJ0/; b' � b�

�
. We construct such a J as follows. Transferring the

complex structureJ0 bymeans of the chart', we obtain a complex structureJ '0 onB' .
We claim that J '0 extends to an almost complex structure J 2 J on M . Indeed,
pick an arbitrary J1 2 J . For each x 2 M , the space of complex structures J.x/
on the tangent space TxM satisfying !.�; J.x/�/ > 0 for all � 2 TxM n f0g is
contractible [27]. Thus there is an almost complex structure J onM that coincides
with J '0 on B' , and with J1 outside a relatively compact neighbourhood of B' .
Then J 2 J .

LetuW .D; @D/! .M; '.L// be a non-constantJ -holomorphicmap. If the image
of u is contained in B' , then u' D '�1 ı uW .D; @D/ ! .Cn; L/ is a non-constant
holomorphic map. Hence

R
D
u�! D

R
D
u�'!n � � .L;CnIJ0/.

If the image of u is not contained in B' , then the set V' D '�1.u.D// is a real
analytic subvariety in B.b'/ intersecting the sphere @B.b�/. Applying Theorem A.1
from Appendix A (with b� D �r2�, b' D �r2C), we infer that the Riemannian area
of V' is at least b' � b�. Since the Riemannian area of a holomorphic curve in Cn
equals its symplectic area, and the symplectic area of u is not less than the symplectic
area of V' , it follows that the symplectic area of u is at least b' � b�. �

We claim that � .T .a/;CnIJ0/ � a. Let uW .D; @D/ ! .Cn; T .a// be a non-
constant holomorphic map. Write u D .u1; : : : ; un/, where each uj W .D; @D/ !�
C; T .aj /

�
is a holomorphic map. The symplectic area of u is positive,

and it equals the sum of the symplectic areas of the maps uj . Since the
symplectic area of uj is a non-negative integer multiple of aj , the symplectic
area of u is at least a. The torus T .a/ is contained in the ball B2n.jaj/. By
Lemma 2.2, �

�
T'.a/;M

�
� kak � jaj D a. In view of (2.1), we conclude that

e
�
T'.a/;M

�
� a. This completes the proof of Proposition 2.1. �

2.2. Deformations. Let .M;!/ be a symplectic manifold. Denote by L the
space of closed embedded Lagrangian submanifolds in .M;!/ endowed with the
C1-topology. Given a Ham.M;!/-invariant function f on L taking values in a
set X , we associate with each L 2 L a function germ S

f
L WH

1.LIR/ ! X at the
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point 0 2 H 1.LIR/ following [7]. This construction provides additional invariants
of Lagrangian submanifolds. We use it to prove Theorem 1.3 (ii).

By Weinstein’s Lagrangian Neighbourhood Theorem, there is a symplectomor-
phism g from a neighbourhood of L in M to a fibrewise convex neighbourhood of
the zero section of T �L such that the image of L is the zero section [42]. There
is a neighbourhood V of the point L in the space L such that each L0 2 V

is mapped to the graph of a closed 1-form ˛L0 on L. Consider the mapping
wL;V WV ! H 1.LIR/ that sends L0 2 V to the cohomology class of the form ˛L0 .
This mapping is locally surjective at L. Denote bywL the germ ofwL;V at L. If two
Lagrangian submanifolds L0; L1 2 V are mapped by wL;V to the same cohomology
class � 2 H 1.LIR/, then they are Hamiltonian isotopic. Indeed, consider the
family of Lagrangian submanifolds fLtg such that g.Lt / is the graph of the 1-form
˛t D t˛L1

C .1� t /˛L0
for each t 2 Œ0; 1�. Since Œ˛t � D � for all t , the family fLtg

is a Hamiltonian isotopy between L0 and L1. Therefore, one can define a mapping
germ S

f
L WH

1.LIR/ ! X at the point 0 2 H 1.LIR/ by SfL .�/ D f .L0/, where
wL.L

0/ D �. In order to prove that the definition of SfL does not depend on the choice
of the symplectomorphism g, it suffices to give a description of the mapping germwL
that does not use g. This description goes as follows: the evaluation of wL.L0/ on a
1-homology class � 2 H1.LIZ/ equals

R
Œ0;1��S1 h

�!, where hW Œ0; 1� � S1 !M is
a smooth map with image in a tubular neighbourhood of L such that h.f0g � S1/ is
a loop in L representing the class � and h.f1g � S1/ � L0.

It immediately follows from the definition that SfL is Ham.M;!/-invariant in the
following sense: for each  2 Ham.M;!/, we have

S
f

 .L/
D S

f
L ı . jL/

� ; (2.2)

and if, moreover, f is Symp.M;!/-invariant, then (2.2) holds for each  2
Symp.M;!/. The displacement energy function e .L/ D e .L;M/ takes values
in Œ 0;1 Œ [ f1g and is Symp.M;!/-invariant.

Proposition 2.3. LetL D T'.a/ be a product Lagrangian torus in a tame symplectic
manifold. Assume that kak � b' . Then

SeL.�/ D e.L/Cmin
�
l1.�/; : : : ; lm.a/.�/

�
;

where l1; : : : ; lm.a/ are independent linear functions onH 1.LIR/.

Proof. Consider the mapping germ � W .Rn; 0/ ! .L; L/, s 7! T'.a C s/. The
composition A D wL ı � W .Rn; 0/ ! .H 1.LIR/; 0/ is a linear isomorphism germ.
Choose " > 0 so small that 'WB2n.b' C "/ ! M is defined. For s small enough,
we have kaC sk � b' C " and hence, by Proposition 2.1,

e
�
T'.aC s/

�
D min

�
a1 C s1; : : : ; an C sn

�
: (2.3)
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We can assume, after reordering the coordinates, that

a D a1 D � � � D am.a/ < am.a/C1 � � � � � an:

For s sufficiently small (say, such that the absolute values of all its components do
not exceed 1

2
.am.a/C1 � am.a//), in view of (2.3) we have

e
�
T'.aC s/

�
D a Cmin

�
s1; : : : ; sm.a/

�
D e.L/Cmin

�
�1.s/; : : : ; �m.a/.s/

�
;

(2.4)
where �i WRn ! R is the projection onto the i -th coordinate axis, �i .s/ D si . Since
SeL.�/ D e

�
T'.aC A

�1.�//
�
, it follows from (2.4) that

SeL.�/ D e.L/Cmin
�
l1.�/; : : : ; lm.a/.�/

�
where l1 D �1 ı A

�1; : : : ; lm.a/ D �m.a/ ı A
�1 are independent linear functions

onH 1.LIR/.

Proof of Theorem 1.3 (ii). We can clearly assume that .M;!/ is tame. Denote
L D T'.a/, L0 D T'0.a

0/. It follows from Proposition 2.1 and the symplectic
invariance of displacement energy that

a D e .L;M/ D e
�
L0;M

�
D a 0:

According to Proposition 2.3, the cohomology classes � 2 H 1.LIR/ such that
SeL.�/ D a form a vector space germW of dimension n�m.a/, and the cohomology
classes �0 2 H 1.L0IR/ such that SeL0.�

0/ D a form a vector space germ W 0 of
dimensionn�m.a0/. IfL0 D  .L/ for some 2 Symp.M;!/, thenSeL0 D S

e
LıA ,

where A D . jL/
� is a linear isomorphism between H 1.LIR/ and H 1.L0IR/.

Hence A .W / D W 0, and therefore m.a/ D m.a0/.

2.3. Symplectic area class and Maslov class. Given a Lagrangian submanifold L
of a symplectic manifold .M;!/, one can consider two relative cohomology classes:
the symplectic area class �L 2 H 2.M;LIR/ represented by the 2-form !, and
the Maslov class �L 2 H 2.M;LIZ/, defined as in [40]. Both � and � are
symplectically invariant in the sense that � .L/ D  ��L and � .L/ D  ��L for
each symplectomorphism  . These classes define homomorphisms from �2.M;L/

to R that we shall also denote by �L and �L. Define the subgroup �.L/ � R
to be the image of the subgroup ker.�L/ � �2.M;L/ under the homomorphism
�LW�2.M;L/! R. Since �L and �L are symplectically invariant, so is �.L/:

Lemma 2.4. Let L;L0 be Lagrangian submanifolds of .M;!/. If L � L0, then
�.L/ D �.L0/.
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Theorem 1.3 (i) is a corollary of Lemma 2.4 and the following assertion:

Lemma 2.5. Let T'.a/ be a product Lagrangian torus in a symplectically aspherical
symplectic manifold .M;!/. Then �

�
T'.a/

�
D �.a/.

Proof. For i 2 f1; : : : ; ng, let Di be a disc in R2n with boundary on T .a/ such that
the projection of Di to the i -th factor in R2 � � � � � R2 D R2n is the disc in R2
bounded by the circle T .ai /, and the projections to other factors are points. Denote
by ODi the element of �2

�
R2n; T .a/

�
represented by Di . The classes OD1; : : : ; ODn

generate the free Abelian group �2
�
R2n; T .a/

�
. Denote QDi D '� ODi 2 �2.M;L/

where L WD T'.a/. For each i , we have �T.a/. ODi / D ai , �T.a/. ODi / D 2,
and hence �L. QDi / D ai , �L. QDi / D 2. The group �2 .M;L/ is the direct sum
of �2.M/ and the subgroup generated by the elements QDi . Since .M;!/ is
symplectically aspherical and �LjH2.M IZ/ D 2c1.!/ (see [40]), both �L and �L
vanish on �2.M/. The kernel of �L is the direct sum of �2.M/ and the subgroup
generated by the differences QDi � QDj , where i; j 2 f1; : : : ; ng and j is such that
a D aj . Therefore, �L.ker�L/ consists of all integer combinations of the numbers
ai � a D �. QDi � QDj /.

3. Proof of Theorem 1.2

3.1. Generalized Clifford tori in CPn. We consider a certain class of product
Lagrangian tori in the complex projective space, the so-called generalized Clifford
tori. Identify the symplectic space .R2n; !n/ with Cn, the complex coordinates
being z1 D x1C iy1; : : : ; zn D xnC iyn. Consider the diagonal action of the Lie
group U.1/ on the space Cn. For each b > 0, the sphere S2n�1.b/ D @B2n.b/

is invariant under this action. Denote by CPn�1.b/ the quotient S2n�1.b/=U.1/.
The restriction of the symplectic form !n to S2n�1.b/ is the pullback of a certain
symplectic form !bn�1 on CPn�1.b/. This form is a multiple of the Fubini–Study
form.

If a 2 RnC and jaj D b, then the torus T .a/ is contained in the sphere S2n�1.b/.
Moreover, T .a/ is invariant under the action ofU.1/. Therefore, the quotientbT .a/ D
T .a/=U.1/ is a Lagrangian .n � 1/-torus in CPn�1.b/. It is called a generalized
Clifford torus.

Denote by Zn.b/ the complex hypersurface�
S2n�1.b/ \ fzn D 0g

�
=U.1/ Š CPn�2

in CPn�1.b/, and by
ı

B2n�2.b/ the open ball Int.B2n�2.b//.
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The tori bT .a/ are product tori:
Proposition 3.1. There is a symplectomorphism

'bn�1W
� ı
B2n�2.b/; !n�1

�
!
�
CPn�1.b/ nZn.b/; !bn�1

�
that maps each product torus T .a1; : : : ; an�1/ contained in

ı

B2n�2.b/ to the torusbT .a1; : : : ; an/, where an D b � a1 � � � � � an�1.
Proof. Denote by W the subset of S2n�1.b/ formed by points with zn coordinate
positive real. Consider the projection of Cn onto Cn�1 defined by forgetting
the last coordinate. Restricting this projection to W be obtain a diffeomorphism
 WW !

ı

B2n�2.b/. We claim that  is a symplectomorphism from .W; !njW / onto� ı
B2n�2.b/; !n�1

�
. This statement is equivalent to the assertion that the restriction

of the 2-form dxn ^ dyn toW vanishes. The latter follows since yn vanishes onW .
The manifold S2n�1.b/ n fzn D 0g is foliated by the orbits of the U.1/-action.

Each of these orbits intersects W exactly once, and the intersection is transverse.
Therefore, symplectic reduction gives rise to a canonical symplectomorphism  0

from .W; !njW / onto
�
CPn�1.b/ nZn.b/; !bn�1

�
.

The composition 'bn�1 D  0 ı �1 is the required symplectomorphism. To prove
the assertion concerning Lagrangian tori, it suffices to observe that the image of
T .a1; : : : ; an�1/ under the symplectomorphism  �1 is the torus T .a1; : : : ; an�1/ �p
an=� , and that the U.1/-orbits passing through the latter torus form the torus

T .a1; : : : ; an/.

Proposition 3.2. Let a; a0 2 RnC be such that jaj D ja0j. Consider the Lagrangian
tori bT .a/, bT .a0/ in CPn�1.jaj/. If bT .a/ � bT .a0/, then a ' a0.

Proof. By Theorem 1.3 (ii) we have a D a 0 and m.a/ D m.a0/. In view of
Lemma 2.4, it remains to show that �.bT .a// D �.a/. Let OD1; : : : ; ODn�1 be
the elements of the group �2

�
R2n�2; T .a1; : : : ; an�1/

�
defined as in the proof

of Lemma 2.5. The symplectomorphism '
jaj
n�1 sends these classes to the classes

QD1; : : : ; QDn�1 in �2.CPn�1.jaj/;bT .a//. For each i , we have �bT .a/. QDi / D ai ,
�bT .a/. QDi / D 2. The free Abelian group �2.CPn�1.jaj/;bT .a// is generated by
the classes QD1; : : : ; QDn�1 and the class ŒCP1� represented by a complex line in the
complex projective space.

We have �bT .a/�ŒCP1�� D 2n, since the value of the Maslov class on CP1 is
twice the value of c1.T CPn�1/. We claim that �bT .a/�ŒCP1�� D jaj. Indeed, let
CP1 � CPn�1 be the quotient of the sphere fz2 D � � � D zn�1 D 0g \S2n�1.jaj/ by
the diagonal action ofU.1/. The symplectomorphism'jajn�1 identifies the complement
of a point inCP1 with the open symplectic disc

ı

B2n�2.jaj/\fz2 D � � � D zn�1 D 0g.
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This disc has area jaj, and hence the integral of the symplectic form !
jaj
n�1 over CP

1

equals jaj.
Define QDn D ŒCP1� �

Pn�1
iD1
QDi . The group �2.CPn�1.jaj/;bT .a// is generated

by the classes QD1; : : : ; QDn, and we have �bT .a/. QDn/ D an, �bT .a/. QDn/ D 2. The
kernel of �bT .a/ is generated by the differences QDi � QDj , where i; j 2 f1; : : : ; ng
and j is such that a D aj . Therefore, �bT .a/.ker�bT .a// consists of all integer
combinations of the numbers ai � a D �. QDi � QDj /.

3.2. Proof ofTheorem1.2. Arguing by contradiction, we suppose thatT .a/ � T .a0/
in B2n.b/. By Theorem 1.3 (ii), with .M;!/ a large ball and '; '0 the identity
embeddings, we have a D a 0. We can assume that kak � ka0k. Since a D a 0 and,
by hypothesis, jaj ¤ ja0j, we have kak � ka0k D jaj � ja0j > 0. By hypothesis we
have jaj � b < kak. Thus ja0j < jaj � b < jaj C a. Choose c0 < c such that

b < c0 < c < jaj C a:

Define anC1 WD c � jaj and a0nC1 WD c � ja0j. Then anC1 < a0nC1 and anC1 D
c � jaj < a. Therefore,

minfa1; : : : ; an; anC1g D anC1 < minfa; a0nC1g D minfa01; : : : ; a
0
n; a
0
nC1g: (3.1)

Recall that T .a/ � T .a0/ in B2n.b/. Cutting off the Hamiltonian func-
tion that generates this isotopy, we construct a Hamiltonian isotopy supported
in B2n.c0/ that moves T .a/ to T .a0/. The symplectomorphism 'cn from
Proposition 3.1 transfers this isotopy to a Hamiltonian isotopy of CPn.c/.
It moves bT .a1; : : : ; an; anC1/ to bT .a01; : : : ; a0n; a0nC1/. By Proposition 3.2,
minfa1; : : : ; an; anC1g D minfa01; : : : ; a0n; a0nC1g, in contradiction to (3.1).

4. Constructions of Hamiltonian isotopies

4.1. Proof of Theorem 1.1 (i). The unitary group U.n/ acts on Cn preserving the
symplectic form !n. Since a permutation of coordinates z1; : : : ; zn is a unitary map
and the group U.n/ is path-connected, there is a smooth family fˆtg, t 2 Œ0; 1�;
of unitary maps such that ˆ0 D id and ˆ1.T .a// D T .a0/. The flow fˆtg is
Hamiltonian because Cn is simply-connected.

4.2. The proof of Theorem 1.1 (ii) relies on the following lemma, which represents
a special case of Theorem 1.1 (ii).

Lemma 4.1. For any positive numbers a, c, and d , the tori T .a; aC c; aC d/ and
T .a; aC c C d; aC d/ are Hamiltonian isotopic in the ball B6.4aC c C 2d/.
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Proof. Let W D
˚
.z1; z2/2 C2

ˇ̌
jz1j< jz2j

	
. Consider the map

‰WW ! C2; .z1; z2/ 7!

 
z1z2

jz2j
;
z2
p
jz2j2� jz1j2

jz2j

!
:

It is injective, and its image is the complement of the complex line fz2 D 0g. We
claim that ‰ preserves the symplectic form !2 D dx1 ^ dy1 C dx2 ^ dy2. Indeed,
write z1 D e2�i �1

p
�1=� , z2 D e2�i �2

p
�2=� , with �1; �2 in S1 D R=Z and �1; �2

non-negative real. For nonzero values of z2, we have !2 D d�1 ^ d�1 C d�2 ^ d�2
and

‰.�1; �1; �2; �2/ D .�1; �1 C �2; �2 � �1; �2/:

Clearly,‰ is symplectic outside the complex line fz2 D 0g, and hence, by continuity,
on the whole of W . A product torus T .a0; a0 C b0/ � W is mapped by ‰ to the
torus T .a0; b0/.

The torus T .a; a C c C d; a C d/ is Hamiltonian isotopic, through a unitary
isotopy, to the torus T .aCd; aC cCd; a/ in the ball B6.3aC cC 2d/. Therefore,
it suffices to prove that the tori T .a; a C c; a C d/ and T .a C d; a C c C d; a/ are
Hamiltonian isotopic in B6.4aC c C 2d/.

Consider themap‰C D ‰�idWW�C! C3. We have‰C.T .a; aCc; aCd// D
T .a; c; aCd/ and‰C.T .aCd; aC cCd; a// D T .aCd; c; a/. The Hamiltonian
function H D �

2
.x1y3 � x3y1/ gives rise to a unitary Hamiltonian flow fˆtg that

does not change the complex coordinate z2. We haveˆ1.z1; z2; z3/ D .z3; z2;�z1/.
In particular, ˆ1 maps T .a; c; a C d/ to T .a C d; c; a/. Multiplying H by an
appropriate cutoff function, we construct a HamiltonianH 0, compactly supported in
C3 n fz2 D 0g, whose flow fˆ0tg moves the torus T .a; c; aC d/ in exactly the same
way as the flow fˆtg. Consider the Hamiltonian flow fˆCt g on C3 generated by the
Hamiltonian function H 0 ı‰C. This flow is compactly supported in W � C, where
ˆCt D ‰

�1
C ıˆ

0
t ı‰C. In particular,

ˆCt .T .a; aC c; aC d// D ‰
�1
C .ˆt .T .a; c; aC d///

for all values of t , and ˆC1 .T .a; aC c; aC d// D T .aC d; aC c C d; a/. It
remains to show that each torus ˆCt .T .a; a C c; a C d// is contained in
B6.4aC c C 2d/.

Let .z1; z2; z3/ 2 ˆCt .T .a; aC c; aC d//. We are to prove that

�.jz1j
2
C jz2j

2
C jz3j

2/ � 4aC c C 2d:

The point‰C.z1; z2; z3/ D .z01; z02; z3/ belongs to the torusˆt .T .a; c; aCd//. Since
T .a; c; aCd/ is contained in the sphere @B6.2aCcCd/ andˆt is unitary, it follows
that .z01; z02; z3/ 2 @B6.2aC cCd/. Hence �.jz01j2Cjz02j2Cjz3j2/ D 2aC cCd .
By the construction ofˆt , we have �jz02j2 D c. The definition of the map‰C implies
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that jz01j D jz1j and jz2j2 D jz01j2C jz02j2. Therefore,

�.jz1j
2
C jz2j

2
C jz3j

2/ D 2aC c C d C �jz01j
2

D 4aC 2c C 2d � �jz02j
2
� �jz3j

2

D 4aC c C 2d � �jz3j
2
� 4aC c C 2d;

as we wished to show.

Lemma 4.2. Let c D .c1; : : : ; ck/ and c0 D .c01; : : : ; c
0
k
/ be vectors in RkC, k � 2,

such that, for some different indices i; j 2 f1; : : : ; kg, we have c0i D ci C cj ,
and c0

l
D cl for l ¤ i . For each n > k and each positive a, the n-dimensional tori

T .p/ D T .a; : : : ; a; aCc1; : : : ; aCck/ andT .p0/ D T .a; : : : ; a; aCc01; : : : ; aCc
0
k
/

are Hamiltonian isotopic in the ball B2n.kp0k/.

Proof. We may assume that i D 1 and j D 2 after applying to the tori T .p/
and T .p0/ unitary isotopies that swap the complex coordinates zn�kC1 and zn�kCi ,
zn�kC2 and zn�kCj . By Lemma 4.1, there is a Hamiltonian isotopy onC3 that moves
the torusL0 D T .a; aCc1; aCc2/ toL1 D T .a; aC c1 C c2; aC c2/ through tori
Lt belonging toB6.4aCc1C2c2/. The toriL00 D T .p/ andL01 D T .p0/ are Hamil-
tonian isotopic through the familyL0t D T .a; : : : ; a/ � Lt � T .aC c3; : : : ; aC ck/.
All the tori L0t are contained in the ball

B2n
�
.nC 1/aC jcj C c2

�
D B2n

�
kp0k

�
:

4.3. Proof of Theorem 1.1 (ii). After applying appropriate unitary isotopies to the
tori T .a/ and T .a0/, we may assume that the firstm.a/ components of both a and a0

equal a. Let k D n �m.a/. Write

T .a/ D T .a; : : : ; a; a C d1; : : : ; a C dk/;

T .a0/ D T .a; : : : ; a; a C e1; : : : ; a C ek/;

where d D .d1; : : : ; dk/ and e D .e1; : : : ; ek/ are vectors in RkC. If k equals 1,
then the hypothesis �.a/ D �.a0/ implies that a D a0, and there is nothing to prove.
Assume that k � 2.

We call a sequence d D d0;d1;d2; : : : ;d` D e of vectors in RkC
an admissible path from d to e if for each s 2 f1; : : : ; `g, the vector
ds D .d s1 ; : : : ; d

s
k
/ is obtained from the vector ds�1 either by swapping two

of the components, or by adding to the i -th component the j -th component,
or by subtracting from the i -th component the j -th component. Given such
a path, define as D .a; : : : ; a; a C d s1 ; : : : ; a C d s

k
/ for s 2 f0; : : : ; `g and

consider the sequence of tori T .a/ D T .a0/; T .a1/; : : : ; T .a`/ D T .a0/. For each
s 2 f1; : : : ; `g, the tori T .as�1/ and T .as/ are Hamiltonian isotopic inside the
ball B2n

�
max.kas�1k; kask/

�
. Indeed, if ds�1 and ds are related by a swap
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of components, then there is a unitary isotopy; otherwise, we apply Lemma 4.2
with either c D ds�1, c0 D ds , or c D ds , c0 D ds�1. It thus suffices to
show that there exists an admissible path d D d0;d1;d2; : : : ;d` D e with the
property that kask � max .kak; ka0k/ for each s. The latter property is equivalent to
jdsj � max .jd j; jej/ for each s.

Let hdi and hei be the freeAbelian subgroup inR generated overZ by the numbers
d1; : : : ; dk and e1; : : : ; ek , respectively. The condition �.a/ D �.a0/ means exactly
hdi D hei. Thus Theorem B.1 from Appendix B guarantees the existence of an
admissible path d D d0;d1;d2; : : : ;d` D e such that jdsj � max .jd j; jej/ for
each s. The proof of Theorem 1.1 is complete.

5. Spaces of symplectic charts and product tori

Given b > 0, denote by Emb
�
B2n.b/;M;!

�
the space of symplectic charts

'WB2n.b/ ! .M;!/, endowed with the C1-topology. By Darboux’s theorem,
this space is nonempty at least for sufficiently small b. The Gromov radius �.M;!/
of .M;!/ is defined as the supremum of all b such that Emb

�
B2n.b/;M;!

�
is

nonempty (we allow �.M;!/ D 1). For computations and estimates of �.M;!/
we refer to [34] and the references therein. It has been conjectured that the space
Emb

�
B2n.b/;M;!

�
is connected for all closed symplectic manifolds and all b > 0.

This has been proved for certain closed 4-manifolds and also for the symplectic
4-ball

ı

B.c/, see [26].

Theorem 5.1. Let T'.a/ and T'0.a
0/ be two Lagrangian product tori in a

symplectically aspherical subtame symplectic manifold .M;!/.

(i) Let b� D min
˚
b' ; b'0

	
and bC D max

˚
b' ; b'0

	
. Assume that the space

Emb
�
B2n.b�/;M;!

�
is path-connected and that max

˚
kak; ka0k

	
� bC. Then the

conditions a ' a0, T'.a/ � T'0.a0/, T'.a/ � T'0.a0/ are equivalent one to another.

(ii) Assume that the space Emb
�
B2n.b/;M;!

�
is path connected for all

values of b and that max
˚
kak; ka0k

	
< �.M;!/. Then the conditions a ' a0,

T'.a/ � T'0.a
0/, T'.a/ � T'0.a0/ are equivalent one to another.

Proof. First we prove statement (i). If T'.a/ � T'0.a
0/, then T'.a/ � T'0.a

0/ by
definition. We can assume that b� D b' and bC D b'0 . Since Emb

�
B2n.b�/;M;!

�
is path-connected, there exists a smooth family f'sg, s 2 Œ0; 1�, of symplectic
embeddings B2n.b�/ ! .M;!/ such that '0 D ' and '1 coincides with '0
onB2n.b�/. Then there is a Hamiltonian isotopy f‰sg, s 2 Œ0; 1�, of .M;!/ such that
‰sı' D 's for all s. In particular,‰1ı' D '0 onB2n.b�/, and hence we can extend
'WB2n.b�/!M to Q' D ‰�11 ı '0WB2n.bC/!M . Assume that T'.a/ � T'0.a0/.
Since T Q'.a/ D T'.a/, we have T Q'.a/ � T'0.a0/. Theorem 1.3 applied to Q' and '0
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yields a ' a0. Let a ' a0. It follows from Theorem 1.1 that T'0.a/ � T'0.a
0/.

Since ‰1.T'.a// D T'0.a/, we also have T'.a/ � T'0.a/ � T'0.a0/.
The statement (ii) will follow from the statement (i) if we show that, for each b; b0

satisfying 0 < b < b0 < �.M;!/, every symplectic embedding B2n.b/ ! .M;!/

extends to a symplectic embedding B2n.b0/! .M;!/. Since Emb
�
B2n.b/;M;!

�
is path-connected, this follows from the argument above.

Proposition 5.2. For a forward complete Liouville manifold .M;!/, the space
Emb

�
B2n.b/;M;!

�
is nonempty and path-connected for each b > 0.

Proof. Let X be a forward complete Liouville field on .M;!/. Denote by fftg,
t � 0, its forward flow. Assume that the space Emb

�
B2n.b/;M;!

�
is nonempty

and pick ' 2
�
B2n.b/;M;!

�
. Since .ft /� ! D et! for all t � 0, the map

B2n.e2tb/!M; x 7! f2t .'.e
�tx//

is a symplectic embedding, and hence the space Emb
�
B2n.bC/;M;!

�
is nonempty

for all bC > b.
Let '; '0WB2n.b/ ! .M;!/. We prove that ' and '0 are homotopic through

symplectic embeddings. After composing '0 with an appropriate Hamiltonian
symplectomorphism of .M;!/, we can assume that '.0/ D '0.0/. Since each
element of the linear symplectic group Sp.2nIR/ can be realized as linearization of
a Hamiltonian symplectomorphism preserving the point '.0/, we can also assume
that d'.0/ D d .0/. There is a symplectic isotopy fFtg, t 2 Œ0; 1�, of B2n.b/ such
that F0 D id and  ı F1 coincides with ' on B2n.b0/ for some b0 2 �0; bŒ, see e.g.
Appendix A.1 of [19] or the proof of Lemma 2.2 in [33]. Therefore, we may assume
that ' D  on B2n.b0/.

Consider smooth families fˆtg; f‰tg, t � 0, of embeddings B2n.b/ ! .M;!/

defined by

ˆt .x/ D .f2t ı '/ .e
�tx/; ‰t .x/ D .f2t ı  / .e

�tx/:

Since .ft /� ! D et!, the embeddings ˆt ; ‰t are symplectic. Moreover, ˆ0 D '

and ‰0 D  . For T > 0 so large that e�TB2n.b/ � B2n.b0/, we have ˆT D ‰T .
Concatenating the path of embeddings ˆt , t 2 Œ0; T �, from ' to ˆT with the path of
embeddings ‰T�t , t 2 Œ0; T �, from ˆT D ‰T to  , we obtain a required path of
symplectic charts from ' to  .

Remark. In the case where .M 2n; !/ is a cotangent bundle .T �Q;d�/, a parametric
version of the above argument gives a description of the homotopy type of the space
Emb

�
B2n.b/; T �Q

�
: the map Emb

�
B2n.b/; T �Q

�
! Q defined by projecting

the center of the ball to the base is a Serre fibration with fibre homotopy equivalent
to U.n/.
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Proof of Theorem 1.4. If we prove that .M;!/ is symplectically aspherical, then the
theorem will follow from Proposition 5.2 and Theorem 5.1. Let X be a forward
complete Liouville field on .M;!/. Denote by fftg, t � 0, its forward flow. Let
gWS2 !M be a smooth map. Denote gt D ft ıg. Since ! is closed and all maps gt
are homotopic, we haveZ

S2

g�! D

Z
S2

g�t ! D

Z
S2

g�.f �t !/ D e
t

Z
S2

g�!

for each t > 0. Thus
R
S2 g

�! vanishes, and .M;!/ is symplectically aspherical.

If the space Emb
�
B2n.b/;M;!

�
is not connected, the classification of product

tori can be more complicated:

Example 5.3. The camel space with eye of size c > 0 is the open subset

C2n.c/ D fx1 < 0g [ fx1 > 0g [
ı

B2n.c/

of .R2n; !n/. Fix b > 0 and define the symplectic embeddings '˙WB2n.b/ !
C2n.c/ by

'˙.x1; y1; : : : ; xn; yn/ D
�
x1 ˙

p
b=�; y1; : : : ; xn; yn

�
:

If b � c, then the maps '˙ are not homotopic through symplectic embeddings by
the Symplectic Camel Theorem [12, 29, 41], and hence Emb

�
B2n.b/; C2n.c/; !n

�
has at least two components. Let a 2 R2nC be such that T .a/ � B2n.b/. The
symplectomorphism

.x1; y1; : : : ; xn; yn/ 7! .�x1;�y1; x2; y2; : : : ; xn; yn/

maps '�
�
T .a/

�
to 'C

�
T .a/

�
, and hence '�

�
T .a/

�
� 'C

�
T .a/

�
. However, if a is

such that a � c, then '�
�
T .a/

�
6� 'C

�
T .a/

�
by the Lagrangian Camel Theorem

of [36]. As subsets of .R2n; !n/, camel spaces are symplectically aspherical
and subtame. It follows that the connectedness requirement cannot be omitted in
Theorem 5.1, and while camel spaces are Liouville manifolds, they are not forward
complete Liouville manifolds by Theorem 1.4 (or directly by Proposition 5.2 and
the Symplectic Camel Theorem). The classification of product tori in C2n.c/ up
to Hamiltonian isotopy may be difficult. Indeed, there might exist a symplectic
embedding 'WB2n.b/! C2n.c/ whose image is so tangled up in the eye of C2n.c/
that '

�
T .a/

�
is Hamiltonian isotopic to neither of '˙

�
T .a/

�
.

6. Proof of Theorem 1.5

6.1. Consider symplectic polar coordinates .�; �/ on PR2 WD R2 n f0g defined by

.x; y/ D
�p

�=� cos 2��;
p
�=� sin 2��

�
; � > 0; � 2 S1 D R=Z:
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For s 2 R and m 2 Z, define the domain

Dm;s D f.�1; �1; �2; �2/ j �2 C s > m�1g � R4

and the map ‰m;sWDm;s ! R4,

‰m;s.�1; �1; �2; �2/ D .�1; �1 Cm�2; �2 C s �m�1; �2/:

The map‰m;s is a smooth symplectic embedding (for the same reasons as the map‰
in the proof of Lemma 4.1).

Let .M;!/ be a symplectic manifold, and let 'WB2n.bC/ ! .M;!/ be a
symplectic chart. We denote by 02j the origin in R2j . The key step in the proof of
Theorem 1.5 is the following proposition.

Proposition 6.1. Let k � 1, d1; : : : ; dk; bC > 0. Let S 2 �2.M/ be such that
s WD �.S/ is positive and

d1 C � � � C dk C s < bC:

Then there exist a neighbourhood Uk of the isotropic k-torus

T ki .d1; : : : ; dk/ WD 02n�2k�2 � T .d1; : : : ; dk�1/ � 02 � T .dk/

in the open ball
ı

B2n.bC/ and a Hamiltonian symplectomorphism  k of .M;!/ such
that . k ı '/.Uk/ �

ı

B2n' .bC/ and the map  '
k
WD '�1 ı  k ı ' coincides with

id2n�4 �‰m;s on Uk , where m D c1.S/.

We will need the following lemma.

Lemma 6.2. Given positive numbers d1; : : : ; dk�1, for each " > 0 there is a
Hamiltonian flow f„tg, t 2 Œ0; 1�, on R2k such that „1 maps the torus

T D T .d1; : : : ; dk�1/ � 02

into
� ı
B2."/

�k and „t maps T into
ı

B2.d1 C "/ � � � � �
ı

B2.dk�1 C "/ �
ı

B2."/ for
all t .

Proof. We start with the following

Lemma 6.3. Given a positive number d > 0, for each "0 > 0 there exist ı D
ı.d; "0/ > 0 and a Hamiltonian flow f„d;"0

t g, t 2 Œ0; 1�, on R4 with the following
properties:

„
d;"0
t maps T .d/ �

ı

B2.ı/ into
ı

B2.d C "0/ �
ı

B2."0/ for all t 2 Œ0; 1�;

„
d;"0

1 maps T .d/ �
ı

B2.ı/ into
ı

B2."0/ �
ı

B2."0/.



Vol. 91 (2016) Lagrangian product tori in symplectic manifolds 463

Proof. For each t 2 Œ0; 1� and for ` 2 N, define the map Et;`WS1 ! C2 D R4 by

Et;`.�/ D
�p

.1 � t /d=�e2�i � ;
p
t d=.`�/e2�i`�

�
:

Then E0;` is a diffeomorphism onto T .d/ � 02. For t < 1, the map Et;` is an
embedding because its first component is. The integral over S1 of the 1-form E�

t;`
�,

where � D x1dy1 C x2dy2 is a primitive of !2, does not depend on t becauseZ
S1

E�t;`� D

Z
S1

E�t;`.x1dy1/C

Z
S1

E�t;`.x2dy2/ D .1 � t /d C t d D d:

It follows that for each q 2 �0; 1Œ there is a Hamiltonian flow fˆq;`t g, t 2 Œ0; 1�,
such that ˆq;`t .T .d/ � 02/ D Eqt;`.T .d/ � 02/ for all t 2 Œ0; 1�. The absolute
value of the first component of the map Et;` is decreasing with respect to t ; the
second component of Et;` tends uniformly to zero as ` ! 1. Therefore, after
choosing ` large enough, we can assume that the tori Et;`.T .d/ � 02/ are contained
in B2.d/ �

ı

B2."0/ for all t 2 Œ0; 1� and that the torus E1;`.T .d/ � 02/ is contained
in
ı

B2."0/ �
ı

B2."0/. Then, after choosing q sufficiently close to 1, we can achieve
that the torus Eq;`.T .d/� 02/ D ˆq;`1 .T .d/� 02/ is contained in

ı

B2."0/�
ı

B2."0/

as well. Let f„d;"0
t D ˆ

q;`
t g. By continuity, there exists ı D ı.d; "0/ > 0 such

that„d;"0
t maps T .d/�

ı

B2.ı/ into
ı

B2.d C "0/�
ı

B2."0/ for all t 2 Œ0; 1�, and„d;"0

1

maps T .d/ �
ı

B2.ı/ into
ı

B2."0/ �
ı

B2."0/.

If k D 2, then Lemma 6.2 immediately follows from Lemma 6.3. Otherwise,
applying Lemma 6.3 k � 1 times, we construct positive numbers

"1 D min
�
ı.dk�1; "/; "

�
; "2 D min

�
ı.dk�2; "1/; "

�
; : : : ; "k�1 D min

�
ı.d1; "k�2/; "

�
and Hamiltonian flows f„dk�1;"

t g; f„
dk�2;"1
t g; : : : ; f„

d1;"k�2
t g with the prescribed

properties. Consider the Hamiltonian flows fˆ1t g; fˆ2t g; : : : ; fˆk�1t g on R2k such
that

ˆ1t D id2k�4 �„
dk�1;"
t ; ˆ2t D id2k�6 �„

dk�2;"1
t � id2; : : : ;

ˆk�1t D „
d1;"k�2
t � id2k�4 :

For each j 2 f1; : : : ; k � 1g, we have

ˆ
j
t

�
T .d1; : : : ; dk�j /�

ı

B2."j /
�
�
� ı
B2."/

�j
� T .d1; : : : ; dk�j�1/ �

ı

B2.dk�j C "j�1/ �
� ı
B2."/

�j
for all t 2 Œ0; 1�, and

ˆ
j
1

�
T .d1; : : : ; dk�j /�

ı

B2."j /
�
�
� ı
B2."/

�j
� T .d1; : : : ; dk�j�1/ �

ı

B2."j�1/ �
� ı
B2."/

�j
;
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where "0 D ". Concatenating the flows fˆ1t g; fˆ2t g; : : : ; fˆk�1t g (and reparametriz-
ing the result to make it smoothly depending on t ), we obtain the required
flow f„tg.

6.2. Proof of Proposition 6.1 for k D 1. Denote D D R2n�4 �Dm;s ,

‰ D id2n�4 �‰m;sWD! R2n:

Let e1 D d1 C s. Consider the maps f0; f1WS1 ! R2n;

f0.�/ D 02n�2 � .d1; �/; f1.�/ D 02n�2 � .e1; �/;

where we use symplectic polar coordinates .�; �/ on the last R2-factor. We have
T 1i .d1/ D f0.S

1/, T 1i .e1/ D f1.S
1/, and ‰ ı f0 D f1. Let f '0 D ' ı f0,

f
'
1 D ' ı f1.
First we prove that there is O 1 2 Ham.M;!/ such that O 1 ı f '0 D f

'
1 . Denote

Z D Œ0; 1� � S1. Consider the map F WZ ! R2n;

F .v; �/ D 02n�2 � .d1 C vs; �/:

We have f0 D F.0; � /, f1 D F.1; � /, andZ
Z

.' ı F /�! D

Z
Z

F �!n D

Z
S1

f �1 .�d�/ �

Z
S1

f �0 .�d�/ D s:

Taking the connected sum of ' ı F with a map S2 !M representing the class �S ,
we obtain a smoothmapbF WZ !M such thatbF coincides with 'ıF at the boundary
of Z (that is, f '0 D bF .0; � /, f '1 D bF .1; � /) andZ

Z

bF �! D 0:
Then, according to [22, Appendix A], there exists a Hamiltonian flow f O tg on .M;!/
such that the map eF WZ !M; .v; �/ 7! O v.f

'
0 .�//

is homotopic to bF relative to the boundary. In particular, this implies

O 1 ı f
'
0 D f

'
1 D ' ı‰ ı f0;

as required. It follows that '�1 ı O 1 ı 'jT 1
i .d1/

D ‰jT 1
i .d1/

. Pick a neighbourhood
W �

ı

B2n.bC/ of the circle T 1i .d1/ such that themaps W WD'�1ı O 1ı'jW and‰jW
are well defined. We shall prove that there is a Hamiltonian symplectomorphism ˆ

with support in W and a neighbourhood U1 of the circle T 1i .d1/ in W such that

ˆjU1
D  �1W ı‰jU1

: (6.1)
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Then the symplectomorphism 1 2 Ham.M;!/ that coincides with O 1 ı' ıˆı'�1
on '.W / and coincides with O 1 outside '.W / will satisfy '�1 ı  1 ı 'jU1

D ‰jU1

as required.
Trivialize the tangent bundle of R2n�2 � PR2 using the symplectic frame

� D
�
@x1
; @y1

; : : : ; @xn�1
; @yn�1

; @�n
; @�n

�
:

Denote by
�w WR2n! Tw

�
R2n�2 � PR2

�
; w 2 R2n�2� PR2

the corresponding trivialization maps. Let Sp.2n/ denote the group of linear
symplectomorphisms of R2n. Consider the loop

gWS1 ! Sp.2n/; g.�/ D ��1f0.�/
ı d

�
 �1W ı‰

�
ı �f0.�/

:

Recall that the fundamental group of Sp.2n/ is isomorphic to Z; this gives rise to a
function � called theMaslov index assigning to each continuous map S1 ! Sp.2n/
an integer (see [27, p.48]).

Lemma 6.4. The Maslov index of g vanishes.

Proof. Define the maps g0; g1WS1 ! Sp.2n/,

g0.�/ D �
�1
f1.�/

ı d‰ ı �f0.�/
; g1.�/ D �

�1
f1.�/

ı d W ı �f0.�/
:

Since � is additive with respect to the multiplication in Sp.2n/ [27, Theo-
rem 2.29], we have �.g/ D �.g0/ � �.g1/. By the definition of ‰, we have
g0.�/ D id2n�4 �A� � id2, where A� acts on C D R2 as complex multiplication
by e2�im� . Hence, according to [27, p.49], �.g0/ D m.

In order to compute the Maslov index of g1, consider the torus K constructed
from two copies, †1 and †2, of the annulus Z D Œ0; 1� � S1 by gluing together the
respective boundary components. Define the map uWK ! M that coincides with
' ı F on †1, and with bF on †2. Orient K by the volume form dv ^ d� on †2.
Then the homology class of u.K/ is S . Consider the symplectic vector bundle
u�TM over K. Trivialize it over †1 by means of the frame '�� , and over †2, at the
point .v; �/, by means of the frame . O v ı '/�� . Then it follows from [27, p.75] that
�.g1/ D c1.u.K// D m. Hence �.g/ D 0.

Denote by Sp1.2n/ the subgroup of the group Sp.2n/ consisting of the maps
sending the vector .0; : : : ; 0; 1/ to itself. The loop g takes values in Sp1.2n/.
By Lemma 6.4, g is contractible in Sp.2n/. We claim that it is also contractible
in Sp1.2n/. Indeed, the inclusion i WSp1.2n/ ,! Sp.2n/ is the fiber of the smooth
fibration

� WSp.2n/! R2n nf0g; A 7! A.0; : : : ; 0; 1/:
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It follows from the long exact sequence of � that i induces an isomorphism
of fundamental groups when n � 2. Thus there is a smooth family of maps
gt WS1 ! Sp1.2n/, t 2 Œ0; 1�, such that g0 D id and g1 D g.

There is a linear isomorphism I from the space of quadratic forms on R2n to
the Lie algebra sp.2n/ of the Lie group Sp.2n/ that assigns to a quadratic form h

the Hamiltonian vector field generated by h. The quadratic forms that vanish on
the line f.0; : : : ; 0; �/g are isomorphically mapped by I to the Lie algebra sp1.2n/
of Sp1.2n/. From the family fgtg we construct a smooth family of Hamiltonian
functions fHtg with support in W such that

��1w
�
d2.Ht /

�
D I�1

�
Pgt .�n/

�
for all w D .x1; y1; : : : ; xn�1; yn�1; �n; �n/ 2 T

1
i .d1/, t 2 Œ0; 1�. Then the time 1

flowˆC generated by fHtg fixes each pointw 2 T 1i .d1/ and has the same differential
as  �1W ı‰ at w.

The symplectomorphism ‡ WD ˆ�1C ı  
�1
W ı ‰ fixes T 1i .d1/ pointwise and

satisfies d‡.w/ D id for allw 2 T 1i .d1/. We shall prove that there is a Hamiltonian
symplectomorphism ˆ1 with support in W coinciding with ‡ near T 1i .d1/. Then
ˆ D ˆC ıˆ1 is as required.

To construct ˆ1, we use generating functions (cf. [2, Section 48], [19,
Appendix A.1]). Consider the graph � � R2n � R2n of the map ‡ . Denote by
T � � � the circle consisting of the points .w;w/, where w 2 T 1i .d1/. Denote by
p D .p1; : : : ; pn/, q D .q1; : : : ; qn/ the symplectic coordinates on the first copy
of R2n, and by p0 D .p01; : : : ; p

0
n/; q D .q01; : : : ; q

0
n/ those on the second copy. By

construction, � is tangent to the diagonal � � R2n� R2n along T �. Hence there is
a tubular neighbourhood V of T � in � such that the map

� WV ! R2n; .p; q; p0; q0/ 7! .p0; q/

is a diffeomorphism onto a neighbourhoodU of T 1i .d1/ inW . Since‡ is symplectic,
V is Lagrangian with respect to the symplectic form

� D �dp ^ dq C dp0 ^ dq0 D dq ^ dp C dp0 ^ dq0:

The 1-forms ˛ D �pdq C p0dq0, ˛0 D q dp C p0dq0 satisfy d˛ D d˛0 D � and
˛ D ˛0 � d.pq/. Thus the restrictions of ˛ and ˛0 to V are closed. They are exact
because the restriction of ˛ to the diagonal �, and hence to the circle T � � V \�,
vanishes. Let hWV ! R be a primitive of ˛0. Define F W �.V / ! R, F D h ı ��1.
Then F is a generating function for V , namely, V is given by the equations

q D
@F.p0; q/

@p0
; p0 D

@F.p0; q/

@q
:

Note that p0q is a generating function for �.
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Since � is tangent to � along T �, the functions F.p0; q/ and p0q have the same
respective first and second partial derivatives at the points of the circle T 1i .d1/ D
�.T �/. Thus the function f .p0; q/ WD F.p0; q/� p0q is C 2 small near T 1i .d1/, and
there exists a family of C1 smooth functions fı WR2n ! R, defined for sufficiently
small positive ı, such that the function fı has support in the ı-neighbourhood Wı
of T 1i .d1/, coincides with f on a smaller neighbourhood of T 1i .d1/, and tends
to zero in the C 2 topology as ı tends to zero. (To explicitly construct such a
family, we can proceed as follows. Pick a family of smooth compactly supported
functions �ı W Œ0; ıŒ ! Œ0; ıŒ such that �ı is identity near 0 and its first and second
derivatives are bounded uniformly over ı. Given x 2 Wı , denote by x0 the point
of T 1i .d1/ closest to x and draw the ray starting at x0 and passing through x. Let
Gı WWı ! Wı be the map that sends x to the point y such that y lies on this ray and
dist.y; x0/ D �ı .dist.x; x0//. Define fı to coincide with f ıGı on Wı .)

Denote byLt
ı
the Lagrangian submanifold inR2n�R2n defined by the generating

function p0q C tfı.p0; q/. Picking ı sufficiently small, we can assume that each of
the manifolds Lt

ı
is sufficiently C 1 close to � and hence is a graph of a compactly

supported symplectomorphism ˆt . The symplectomorphism ˆ1 is Hamiltonian
becauseˆ0 D id andH 1.R2n/ D 0. Making ı smaller if necessary, we can assume
that eachˆt has support inW . Since p0qCfı.p0; q/ coincides with F near T 1i .d1/,
the symplectomorphisms ˆ1 and ‡ also coincide near T 1i .d1/. Thus ˆ1 is as
required, which concludes the proof of Proposition 6.1 for k D 1.

6.3. Proof of Proposition 6.1 for k > 1. Applying Proposition 6.1 for k D 1 to the
circle T 1i .dk/, we obtain a neighbourhood U1 of T 1i .dk/ and a Hamiltonian symp-
lectomorphism  1 such that  '1 jU1

D ‰jU1
. We shall construct a neighbourhood

Uk � D of the torus T ki WD T ki .d1; : : : ; dk/ and Hamiltonian symplectomorph-
isms ‚;‚? with support in

ı

B2n.bC/ such that

‚.Uk/ � U1; ‰ ı‚jUk
D ‚? ı‰jUk

:

Denote by ‚' (resp. ‚'? ) the Hamiltonian symplectomorphism of .M;!/ that
coincides with ' ı‚ ı '�1 (resp. ' ı‚? ı '�1) on B2n' .bC/ and with the identity
elsewhere. The symplectomorphism  k D .‚

'
? /
�1 ı  1 ı ‚

' will then have the
required property since

'�1 ı  k ı 'jUk
D ‚�1? ı  

'
1 ı‚jUk

D ‚�1? ı‰ ı‚jUk
D ‰jUk

:

It remains to construct ‚ and ‚?. Let " > 0. Applying Lemma 6.2, we obtain a
Hamiltonian flow f„tg onR2n such that„1maps the torusT D T .d1; : : : ; dk�1/�02
into

� ı
B2."/

�k and
„t .T / �

ı

B2.d1 C "/ � � � � �
ı

B2.dk�1 C "/ �
ı

B2."/ for all t 2 Œ0; 1�: (6.2)
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Consider the Hamiltonian flow

fPt D id2n�2k�2 �„t � id2g ; t 2 Œ0; 1�;

on R2n. Let b0 D bC� s. Clearly, the torus T ki is contained in D \
ı

B2n.b0/.
We claim that by choosing " sufficiently small we can achieve that Pt maps T ki into
D \

ı

B2n.b0/ for all t 2 Œ0; 1�, and that P1 maps T ki into U1. Indeed, if m" < dk ,
then the set

ı

B2."/ � T .dk/ D f�1 < "; �2 D dkg

is contained inDm;s . It follows from (6.2) that for all t the torus Pt .T ki / is contained
in R2n�4 �

ı

B2."/ � T .dk/, and hence in D. If d1 C � � � C dk C k" < b0, then
it follows from (6.2) that Pt .T ki / �

ı

B2n.b0/ for all t . Finally, for " such that
02n�2k�2 �

� ı
B2."/

�k
� T .dk/ is a subset of U1, we have P1.T ki / � U1.

It follows from the definition of themap‰ that‰.Pt .T ki // is contained in
ı

B2n.bC/

for all t 2 Œ0; 1�. Therefore, there is an open setW � D\
ı

B2n.b0/ that contains all the
tori‰.Pt .T ki // and satisfies‰.W /�

ı

B2n.bC/. Then there exists a neighbourhoodUk
of the torus T ki such that Pt .Uk/ � W for all t , and P1.Uk/ � U1.

Applying to fPtg an appropriate cut-off, we construct a Hamiltonian flow fP0tg,
t 2 Œ0; 1�, with support in W such that P0t jUk

D Pt jUk
for all t and P01.Uk/ � U1.

Define the Hamiltonian flow fP?t g, t 2 Œ0; 1�, with support in ‰.W / �
ı

B2n.bC/ by
P?t D ‰ ı P01 ı‰�1: Then ‚ D P01 and ‚? D P?1 are as required. �

6.4. Proof of Theorem 1.5. It suffices to prove the theorem under the additional
assumption that dj D ej for j < k. Indeed, in view of Theorem 1.1 (i), the claim
will then also hold for vectors that differ at only one component; after that the general
case follows by changing one component at a time.

We extend the symplectic chart ' from B2n.b/ to a larger ball B2n.bC/ with
bC> b, and keep the letter ' for this extension. Ford 0 D .d 01; : : : ; d

0
k
/, we abbreviate

T'.a; : : : ; a; aCd
0
1; : : : ; aCd

0
k
/ to T';a.d 0/. Given � 2

�
0;min.c; bC�b/

�
, denote

byV� the subset ofRk formed by vectors .d1; : : : ; dk/ such that d1C� � �Cdk � bC�
and dj � c � � for all j 2 f1; : : : ; kg. Pick ı 2

�
0;min.c; bC� b/

�
. Recall that

�a.S/ D �.S/ � c1.S/a.

Lemma 6.5. Let S 2 �2.M/. There exists AS > 0 such that for each a 2 �0; AS �
and for each pair of vectors

d D .d1; : : : ; dk�1; dk/ ; dS D .d1; : : : ; dk�1; dk C �a.S//

belonging to Vı , we have T';a.d/ � T';a.dS /.

Proof. Denote s D �.S/, m D c1.S/. Assume first that s � 0. It follows from
Proposition 6.1 and the definition of the map ‰m;s that for each d 2 Vı there
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exist a neighbourhood U of the isotropic k-torus T ki .d/ in
ı

B2n.bC/ and a map
 2 Ham.M;!/ such that for every torus T .a1; : : : ; an/ contained in U we have

 
�
T'.a1; : : : ; an�1; an/

�
D T'.a1; : : : ; an�1; an C s �man�1/:

Therefore, by Theorem 1.1 (i), for each d 2 Vı there are a positive number AS;d
and a neighbourhood WS;d of d in Vı such that for each d 0 2 WS;d and each
a 2

�
0; AS;d

�
we have T';a.d 0/ � T';a.d 0S /.

Since Vı is compact, there are d .1/; : : : ;d .l/ 2 Vı such that the sets WS;d.j /

cover Vı . LetAS be the smallest of the numbersAS;d.j / . Then T';a.d/ � T';a.dS /
for each d 2 Vı and each a 2 � 0; AS �. In particular, T';a.d/ � T';a.dS / for each
a 2 � 0; AS � when d ;dS 2 Vı . The latter statement is invariant under changing the
sign of S , and therefore we can drop the assumption that s � 0.

Assume first that .M;!/ is not special. Let S1; : : : ; Sr be elements of �2.M/

such that their classes form a basis of the free Abelian group �2.M/=
�
ker �\ker c1

�
.

We can assume that r � 1, otherwise the groups Ga are trivial and there is nothing
to prove. Consider the free Abelian group � .�2.M//. If it is trivial, then r D 1.
If its rank is 1, then r D 1 (otherwise .M;!/ would be special). If the rank of this
group is greater than 1, then r � 2 and we can choose S1; : : : ; Sr such that for all
j 2 f1; : : : ; rg the numbers sj D �.Sj / satisfy the inequality jsj j < ı. For each j
choose ASj

> 0 that fits the conclusion of Lemma 6.5 and denote mj D c1.Sj /.
Pick A > 0 such that for all j 2 f1; : : : ; rg we have

A � ASj
; jsj �mjAj < ı:

If .M;!/ is special, we set r D 1, S1 D S0 (or S1 D �S0), and A D AS1
with

AS1
> 0 as in Lemma 6.5.

Let a 2 �0; A�. Let

d D .d1; : : : ; dk�1; dk/ ; e D .d1; : : : ; dk�1; ek/

be vectors in Vı . We assume that the difference dk � ek is an element of Ga D
�a.�2.M// if .M;!/ is not special, and an element ofGa.S0/ D �a.hS0i/ if .M;!/
is special. Hence there are n1; : : : ; nr 2 Z such that

ek � dk D

rX
jD1

nj �a.Sj / D

rX
jD1

nj .sj �mja/:

After changing the signs of Sj if necessary, we can assume that all coefficients nj
are non-negative. We need to prove that T';a.d/ � T';a.e/.

Let u1; : : : ; uN be a sequence of numbers such that for each j 2 f1; : : : ; rg
exactly nj of them equal sj � mja. It gives rise to the sequence q0; q1; : : : ; qN ,
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where q0 D dk , ql D dk C
Pl
iD1 ui for all l 2 f1; : : : ; N g (and hence qN D ek).

Without loss of generality, we can assume that dk < ek . If

ql 2 Œdk � ı; ek C ı� for all l 2 f1; : : : ; N g; (6.3)

then each of the vectors ql D .d1; : : : ; dk�1; ql/ belongs to Vı . Since a � ASj
for

all j , it then follows from Lemma 6.5 that

T';a.d/ D T';a.q0/ � T';a.q1/ � � � � � T';a.qN�1/ � T';a.qN / D T';a.e/:

It remains to show that the sequence u1; : : : ; uN can be chosen to satisfy (6.3). For
r D 1, there is no choice involved in the construction of the sequence, and all ql
belong to Œdk; ek�. Let r > 1. Then jsj � mjaj < ı for all j since jsj j < ı and
jsj �mjAj < ı. We choose the numbers ul in succession, using the following rule:
if ql�1 > ek , then ul < 0, and if ql�1 < dk , then ul > 0. Then (6.3) will hold true.
This completes the proof of Theorem 1.5.

A. Areas of holomorphic curves in a hyperannulus

For r > 0, denote by Br (resp.
ı

Br ) the closed (resp. open) ball of radius r in the
complex vector space Cn centred at the origin. Denote B0 D f0g.

Theorem A.1. Let rC > r� � 0. Let V be a holomorphic curve (a 1-dimensional
analytic subvariety) in the hyperannulus

ı

BrC n Br� such that the closure of V
intersects @Br� . Then the area of V is at least �.r2C� r

2
�/.

If the area equals �.r2C� r
2
�/, then V is the intersection of a complex line in Cn

with the hyperannulus.

In the particular case where r� D 0, Theorem A.1 is equivalent to the
1-dimensional version of the Lelong theorem that gives a lower bound for the areas
of holomorphic curves in a ball passing through the centre. In this case the result
can be proven in many ways: Using currents [23, 39]; by blow-up [32, Lemma 4.2];
or, viewing V as a (singular) minimal surface, by using the monotonicity formula for
minimal surfaces [20, Theorem 3.2.4] or the isoperimetric inequality [6, § 7.4]. Each
of these proofs uses in an essential way that V passes through the centre. The general
case r� � 0 follows if one shows that for almost all r 2 Œr�; rC� the derivative F 0.r/
of the area F.r/ of V \ .

ı

Br nBr�/ is at least 2�r . This can be done by elementary
arguments, see [10, Appendix A].

B. Existence of low admissible paths

Let k � 2. Given an ordered pair of different numbers i; j 2 f1; : : : ; kg, consider
the operator Pij (resp.Mij , resp. Iij ) in GL.kIZ/ that adds to the i -th component of
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a vector in Rk its j -th component (resp. subtracts from the i -th component the j -th
component, resp. swaps the i -th component and the j -th component), and does not
change the other components.

Denote by RC the set of positive real numbers. A sequence d D d0, d1,
d2; : : : ;d` D e of vectors in RkC is called an admissible path from d to e if for
each s the vector dsC1 is obtained from ds by applying one of Pij ;Mij ; Iij . Given
vectors v;w 2 RkC, we write v � w if there is a permutation � of f1; : : : ; kg such that
vi � w�.i/ for all i 2 f1; : : : ; kg. We say that a pathd D d0;d1; : : : ;d` D e is low if
for each s 2 f0; 1; : : : ; lgwe have ds � d or ds � e. Given u D .u1; : : : ; uk/ 2 Rk ,
we write hui D hu1; : : : ; uki for the free Abelian subgroup in R generated over Z by
the numbers u1; : : : ; uk .

The following theoremmay be known to specialists in number theory or geometric
group theory, but we were unable to find it in the literature.

Theorem B.1. Given d D .d1; : : : ; dk/ and e D .e1; : : : ; ek/ in RkC such that
hdi D hei, there is a low admissible path from d to e.

In this appendix we outline a proof of this theorem. For the complete proof we
refer to [11, Appendix B]. We first notice that if the path d0;d1; : : : ;d`�1;d`

is admissible, then the path d`;d`�1; : : : ;d1;d0 is also admissible, because
M�1ij D Pij . Further, the concatenation of a low path from d to d 0 and a low
path from d 0 to d 00 does not have to be low. However, the concatenation is low when
d 0 � d or d 0 � d 00.

One readily sees that

Lemma B.2. Given d ; e 2 RkC such that hdi D hei and hdi has rank 1, there is a
low admissible path from d to e.

Lemma B.3. Given d ; e 2 R2C such that hdi D hei and hdi has rank 2, there is a
low admissible path from d to e.

Sketch of proof. Since hdi D hei, there exists A 2 GL.2IZ/ such that A.d/ D e.
It is not hard to see that there exists an admissible path from d to e. We call an
admissible path d D d0; : : : ;d` D e special if each of the moves from ds�1 to ds

is by one of P12, M12, I12 DW I . Since P21 D IP12I and M21 D IM12I , every
admissible path from d to e can be transformed into a special one. Hence there exist
special admissible paths from d to e. Let p be a special admissible path of minimal
length. One readily checks that p is low.

The key step in the proof of Theorem B.1 is the following special case.

Lemma B.4. Let d ; e be vectors in RkC satisfying hdi D hei. Assume that there is
i 2 f1; : : : ; kg such that di D ei , di � dj for all j , and di is primitive (indivisible)
in hdi. Then there is a low admissible path from d to e.
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Idea of proof. Assume for notational convenience that i D k. By repeatedly
subtracting the number dk D ek from the components of d that exceed dk , we
construct an admissible path d ;d1; : : : ;d`, where d � d1 � � � � � d` and d` is
such that d `

k
� d `j for all j . Using the same procedure, we obtain an admissible path

e; e1; : : : ; em, where e � e1 � � � � � em and em is such that em
k
� emj for all j .

One can now construct an admissible path from d` to em with the property that
the components of all the vectors in this path are � dk . By concatenating the path
d ; : : : ;d`, the path from d` to em, and the path em; : : : ; e, we then obtain a low
admissible path from d to e.

Theorem B.1 can now be proved by induction on k. Lemma B.2 and Lemma B.3
prove the statement for k D 1 and k D 2. We shall prove the statement for k � 3
assuming that it holds for k�1. In view of LemmaB.2, we can assume that rkhdi � 2.
Using the induction hypothesis, one proves

Lemma B.5. Let u 2 RkC with k � 3 and rkhui � 2. There is a low admissible
path from u to a vector uC 2 RkC such that uC � u, uC

k
� uCj for all j , and uC

k
is

indivisible in hui.

By this lemma we can assume that dk and ek are indivisible in hdi, dk � dj and
ek � ej for all j . If dk D ek , then Theorem B.1 follows from Lemma B.4 (with
i D k). Otherwise, the proof can also be completed with the help of Lemma B.4.
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