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Ping Pong on CAT(0) cube complexes
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Abstract. Let G be a group acting properly and essentially on an irreducible, non-Euclidean
finite dimensional CAT(0) cube complex X without a global fixed point at infinity. We show
that for any finite collection of simultaneously inessential subgroups fH1; : : : ;Hkg in G, there
exists an element g of infinite order such that8i , hHi ; gi Š Hi �hgi. We apply this to show that
any group, acting faithfully and geometrically on a non-Euclidean possibly reducible CAT(0)
cube complex, has property Pnaive i.e. given any finite list fg1; : : : ; gkg of elements from G,
there exists g of infinite order such that 8i , hgi ; gi Š hgi i � hgi. This applies in particular to
the Burger–Mozes simple groups that arise as lattices in products of trees. The arguments utilize
the action of the group on the boundary of strongly separated ultrafilters and moreover, allow
us to summarize equivalent conditions for the reduced C�-algebra of the group to be simple.
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1. Introduction

Felix Klein’s Ping Pong Lemma is a widely used criterion for determining if
a collection of group elements generate a non-abelian free subgroup and more
generally, for constructing subgroups which are non-trivial free products. In this
paper, we employ the ping pong lemma in the setting of groups acting on CAT(0)
cube complexes to construct subgroups which split as non-trivial free products, as
described below in the Main Theorem.

An action of a group G on a CAT(0) cube complex X is said to be essential
if for any given orbit of G, there are orbit points which are arbitrarily deep inside
any half space of X . A collection of groups G1; : : : ; Gk acting on X are said
to be simultaneously inessential if there is a half space h and a vertex v 2 X

such that [iGi .v/ � h. A large class of examples of simultaneously inessential
subgroups arise when G is Gromov hyperbolic and acts properly cocompactly on X
and theGi ’s are a finite collection of infinite index quasi-convex subgroups ofG (see
Proposition 2.1). Our goal is the following.
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Main Theorem. Let X be a finite dimensional, irreducible, non-Euclidean CAT(0)
cube complex and let G be a group acting essentially and properly on X , without a
global fixed point at infinity. Assume further that G has no finite normal subgroup.
Let A1; : : : ; An be a collection of simultaneously inessential subgroups of G. Then
there exists g 2 G of infinite order, such that for each i , hg;Ai i Š hgi � Ai :

If H is a quasi-convex subgroup in a non-elementary hyperbolic group G, then
Theorem 1 holds and there exists g 2 G such that the subgroup generated by g andH
is the free product hgi �H ; this was proved by Arzhantseva in [1].

The key step in the proof of the Main Theorem that allows us to play ping pong
is Proposition 3.4 which says that for any collection A1; : : : ; An of simultaneously
inessential subgroups, one can find a half space h in X such that ah is contained in
the complement of h, for all nontrivial a 2 [iAi .

In the process of proving the Proposition, we construct a new ultrafilter
boundary S.X/ built out of strongly separated ultrafilters of X . The strongly
separated ultrafilters have nice properties. For example, the median of three strongly
separated ultrafilters is a vertex of X . We use this to show that the fixed set of every
non-trivial element of the group has empty interior on the boundary. We summarize
this into the proposition below, which is proved at the end of Section 3.

Proposition 1.1. Let X be a non-Euclidean irreducible CAT(0) cube complex X .
Suppose a group G is acting essentially on X without a global fixed point at infinity.
Then, the compact G-space S.X/ is minimal and strongly proximal and hence, a
G-boundary. Moreover, if the action of G on X is proper and G has no non-trivial
finite normal subgroups, then the action of G on S.X/ is topologically free.

When X splits into irreducible direct factors X1 � � � � � Xn and each factor Xi

is non-Euclidean then S.X/ decomposes as a direct product of the S.Xi / and
Proposition 1.1 naturally extends to the reducible case. A similar ultrafilter boundary
was studied by Fernos in [8].

An application of theMain Theorem: propertyPnaive. We use theMain Theorem
to study property Pnaive for groups acting on CAT(0) cube complexes.

Property Pnaive was introduced by Bekka, de la Harpe and Cowling [3] to study
the ideal structure of group C �-algebras. We give a brief introduction to Pnaive in
Section 4.

Definition 1.2. A group G has property Pnaive if for every finite subset F � G there
exists an element y 2 G of infinite order such that given g 2 F , the subgroup hg; yi
is canonically isomorphic to the free product hgi � hyi.

Corollary 1.3. Suppose a group G is acting properly and cocompactly on a finite
dimensional non-Euclidean CAT(0) cube complex. If G has no non-trivial finite
normal subgroups then G has property Pnaive.
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In the irreducible case, property Pnaive is a direct consequence of the Main
Theorem, as given by Corollary 3.2. When the underlying CAT(0) cube complex
is reducible, we prove property Pnaive for lattices in Aut.X/, where X is locally
finite, co-compact and has no Euclidean factor (see Theorem 4.1). Examples of
groups satisfying the hypotheses of Theorem 4.1, which were not known up to now
to satisfy Pnaive, are the Burger–Mozes simple groups [5], which arise as lattices in
products of trees.

The study of property Pnaive was initiated by Bekka, Cowling and de la Harpe as a
means to establish C �-simplicity of group C �-algebras. Here, we use property Pnaive
from the above Corollary and several previously known results to provide necessary
and sufficient conditions for the reducedC �-algebra of a CAT(0) cube complex group
to be simple. This last property is commonly referred to as C �-simplicity.

Corollary 1.4. The following are equivalent for a group G acting properly and
co-compactly on a finite dimensional CAT(0) cube complex X .

(1) G has property Pnaive.

(2) G is C �-simple.

(3) Every non-trivial conjugacy class of G is infinite.

(4) The amenable radical of G is trivial.

(5) The G-action is faithful and X is non-Euclidean.

Recent research has yielded more sophisticated techniques for establishing
C �-simplicity. Kalantar and Kennedy [11] have brought in dynamical techniques
showing that a group G is C �-simple if and only if there exists a G-boundary on
which theG-action is topologically free. Using Proposition 1.1, we get an application
of their Theorem to groups acting properly (not necessarily, co-compactly) on CAT(0)
cube complexes (refer to Proposition 1.1) without a global fixed point at infinity.

Kalantar and Kennedy’s methods were developed further by Breuillard, Kalantar,
Kennedy and Ozawa [4]. Recall [4, Theorem 3.1] which says that if a discrete
group G has countably many amenable subgroups, then G is C �-simple if and only
if the amenable radical is trivial. In [15], Sageev and Wise showed that groups
acting on finite dimensional CAT(0) cube complexes satisfy the Tits Alternative so
long as one knows the action is proper and there is a bound on the size of the finite
subgroups. Their proof works equally well if the existence of a bound on the size
of finite subgroups is replaced by the weaker condition that, every locally finite
subgroup is finite. Therefore, if G is acting properly on a finite dimensional CAT(0)
cube complex and every locally finite subgroup ofG is finite, then the Tits Alternative
for G implies that every amenable subgroup is finitely generated virtually abelian.
Consequently, if G is countable, then G can have only countably many amenable
subgroups. We get the following interesting application of [4, Theorem 3.1].
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Proposition 1.5. Let G be a countable discrete group such that every locally finite
subgroup is finite. Suppose G acts properly on a finite dimensional CAT(0) cube
complex. Then, G is C �-simple if and only if its amenable radical is trivial.

This generalizes Le Boudec’s Proposition 3.2 from [10], which deals with the case
when X is a product of trees. When the locally finite subgroups are not necessarily
finite, groups acting properly on finite dimensional CAT(0) cube complexes can have
uncountably many amenable subgroups. For instance, one can make a direct sum of
infinitely many copies of a finite cyclic group act properly on a tree.

Acknowledgements. We would like to thank Moose, Luna and Shurjo, without
whom this paper would have been possible. We would like to thank Emmanuel
Breuillard, Pierre de la Harpe and the anonymous referee for their comments and
suggestions for improving the paper.

2. Preliminaries

In this section, we collect some relevant notions and results on CAT(0) cube
complexes, as well as introducing a few new notions. We refer the reader to [6, 12]
and [14] for details on the relevant backgroundmaterial. In particular, we will assume
familiarity with hyperplanes and halfspaces. We will always assume thatX is a finite
dimensional CAT(0) cube complex. Wewill use h (and other gothic letters) to refer to
a halfspace, h� to refer to the complementary halfspace and Oh to refer to a hyperplane.

2.1. Essentiality. A CAT(0) cube complex is called essential if every halfspace h
contains arbitrarily large metric balls. This is the same as saying that every halfspace
contains arbitrarily deep points: points arbitrarily far away from its bounding
hyperplane.

If Aut.X/ acts on X without a global fixed point either in X or at infinity (the
visual boundary), then X contains an Aut.X/ invariant essential core. Thus, it is
reasonable to discuss only essential CAT(0) cube complexes, and we shall assume
this from now on.

An action of a groupG onX is said to be an essential action if for any given orbit,
there are orbit points arbitrarily deep inside every halfspace. WhenX is essential and
the action is inessential there exists a halfspace h and a vertex v such that G.v/ � h.
A collection of subgroups G1; : : : ; Gn < Aut.X/ are said to be simultaneously
inessential if there exists halfspace h and a vertex v in X such that [iGi .v/ � h.

A large class of examples of simultaneously inessential subgroups arises in the
context of hyperbolic groups.

Proposition 2.1. LetG be a hyperbolic group which acts properly, cocompactly and
essentially on a CAT(0) cube complex X . Let G1; : : : ; Gn be a finite collection
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of infinite index quasiconvex subgroups. Then G1; : : : ; Gn are simultaneously
inessential.

We delay the proof of Proposition 2.1 until Section 3.

2.2. Products. Wesay thatX is reducible if it admits a decomposition as a product of
two non-trivial CAT(0) cube complexes. A finite dimensional CAT(0) cube complex
always admits a canonical decomposition as a product of irreducible complexes.

If X is essential then each irreducible factor of X is also essential. Those
irreducible factors that are not quasi-isometric to a real line are called non-Euclidean
factors. More explicitly, an irreducible, essential CAT(0) cube complex is called non-
Euclidean if it is not quasi-isometric to a real line. A (possibly reducible) essential
CAT(0) cube complex is called non-Euclidean if all of its factors are non-Euclidean.
Essential, irreducible, non-Euclidean complexes will be the subject of Section 3.

2.3. Facing triples and strongly separated hyperplanes. The notion of a non-
Euclidean CAT(0) cube complex can be characterized in terms of facing triples of
hyperplanes. By a facing triple of hyperplanes we mean a pairwise disjoint triple of
hyperplanes that bound halfspaces which are also pairwise disjoint. Equivalently, no
hyperplane of the triple separates the other two from one another. We then have the
following lemma.

Lemma 2.2 (Facing Triples). Let X be an essential, non-Euclidean CAT(0) cube
complex such that Aut.X/ acts with no global fixed point at infinity. Then for every
halfspace h, there exists a facing triple Oh; Ok; Om with Ok; Om � h.

An important lemma for us regarding irreducible cube complexes involves
strongly separated pairs. A pair of disjoint hyperplanes Oh and Ok are called strongly
separated if there are no hyperplanes that intersect both Oh and Ok. We will also refer
to the corresponding nested pair of halfspaces h � k as being strongly separated. We
then have the following lemma.

Lemma 2.3 (Strongly Separated Pairs). LetX be an essential non-EuclideanCAT(0)
cube complex such that Aut.X/ acts without a global fixed point at infinity. Then
for every halfspace h there exists a halfspace k � h such that Oh and Ok are strongly
separated.

2.4. Skewering. A halfspace h is said to be skewered by an automorphism
g 2 Aut.X/ if gh � h. We say that g skewers the hyperplane Oh if g skewers h
or h�. The relevant lemma for us regarding skewering is the following.

Lemma 2.4 (Double Skewering). Let X be essential and G act on X either
cocompactly or without a global fixed point at infinity. Then for every pair of
halfspaces h � k, there exists g 2 G such that gk � h.
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As a corollary of the Double Skewering Lemma, we have that every halfspace is
skewered by some element. For given a halfspace h, there exists some h � k and then
the element ensured by the Double Skewering Lemma skewers h.

In fact, a generalization of this for products can be established. More precisely
(Theorem C of [6]), one can show the following.

Theorem2.5. LetX D X1�� � ��Xn be a product of infinite, locally compactCAT(0)
cube complexes such thatAut.Xi / acts cocompactly onXi for each i . Suppose thatG
is a lattice in Aut.X/. Suppose that hi � ki are nested halfspaces in each factor Xi .
Then there exists g 2 G which simultaneously double skewers these hyperplanes.
That is to say, for each i , gki � hi .

2.5. The Roller Boundary. As before, let X be essential. We will consider here a
certain part of the Roller boundary which will be useful to us (see [14] for basics on
ultrafilters and the Roller boundary). LetH denote the collection of halfspaces ofX .
Recall that an ultrafilter onH is a subset ˛ � H satisfying

(1) (Choice) For each pair h; h�, exactly one of h or h� is in ˛.

(2) (Consistency) If h � k and h 2 ˛ then k 2 ˛.

The collection of all ultrafilters U.X/ has a natural topology induced by the
Tychonoff topology on 2H. This has as a basis the collection of halfspace
neighborhoods, where a halfspace neighborhood is a subset of U.X/ of the form

Uh � f˛ 2 U.X/jh 2 ˛g

One can show that the collection of ultrafilters is then closed in 2H. The vertices
ofX correspond to those ultrafilters satisfying the descending chain condition (DCC).
The Roller Boundary is defined to be the complement inU.X/ of the DCC ultrafilters.
It is closed in U.X/ as well and is therefore compact.

On the opposite side of the spectrum for ultrafilters, we have what we call strongly
separated ultrafilters.

Definition 2.6. An ultrafilter ˛ is strongly separated if there exists an infinite nested
sequence of halfspaces h1 � h2 � � � 2 ˛ such that hi and hiC1 are strongly separated.
We call such a sequence of halfspaces a strongly separated sequence of halfspaces.

It is easy to see that there are strongly separated sequences of halfspaces, since
by Lemma 2.3, any halfspace h contains a halfspace strongly separated from it. In
fact, by employing the Facing Triple Lemma, there exist uncountably many strongly
separated sequences. A key observation is that a strongly separated sequence uniquely
determines an ultrafilter.

Lemma 2.7. For every strongly separated sequence of halfspaces h1 � h2 � � � , there
exists a unique ultrafilter ˛ such that hi 2 ˛.
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Proof. We define an ultrafilter as follows.

˛ D fhjhi � h for infinitely many ig

By definition hi 2 ˛ for each i . We are left to check that ˛ satisfies the two
conditions necessary for an ultrafilter (choice and consistency) and then that it is
unique. Any given hyperplane Ohmay intersect at most one of the Ohi ’s. It follows that
exactly one of the halfspaces h, h� contains infinitely many hi ’s, thus precisely one
of h; h� is in ˛. The consistency condition is immediate since if infinitely many hi

satisfy hi � h and h � k then hi � k for infinitely many i .
To see uniqueness, let ˇ be an ultrafilter such that hi 2 ˇ for all i . Then for

any h 2 ˇ, observe that Oh may intersect at most one Ohi . Consequently, either h
contains infinitely many hi ’s or h� contains infinitely many hi ’s. Choose one such hi .
Since h; hi 2 ˇ, by the consistency condition we have that hi � h (and not hi � h�).
This means that h 2 ˛. So ˛ and ˇ make the same choices for each pair h; h� and
hence ˛ D ˇ.

We define S.X/ to be the closure in U of the collection of strongly separated
ultrafilters. It is a compact subspace of the Roller Boundary.

Next we see that strongly separated utrafilters behave nicely with respect to
medians. Recall that given three ultrafilters ˛; ˇ; 
 , the median of ˛; ˇ and 
 is
defined as

med.˛; ˇ; 
/ � .˛ \ ˇ/ [ .ˇ \ 
/ [ .
 \ ˛/:

Lemma 2.8. Let ˛; ˇ; 
 be distinct strongly separated ultrafilters. Then the
med.˛; ˇ; 
/ satisfies DCC and hence is a vertex of X .

Proof. We need to show that � D med.˛; ˇ; 
/ satisfies the descending chain
condition (see Figure 1). Suppose that h1 � h2 � � � is an infinite sequence of
halfspaces such that hi 2 �. Then after passing to a subsequence, we may assume
that hi 2 ˛ \ ˇ for all i . Since ˛ and ˇ are distinct strongly separated ultrafilters,
there exist h 2 ˛ and k 2 ˇ such that h \ k D ; and Oh and Ok are strongly separated.
Since hi 2 ˛, we have that hi \ h 6D ; and hi \ k 6D ;. But if fhig is an infinite
descending sequence of hyperplanes, wemust have that for i sufficiently large, hi � h
or Ohi \

Oh 6D ;. Similarly, for i sufficiently large, we must have hi � k or Ohi \
Ok 6D ;.

But this contradicts the fact that Oh and Ok are strongly separated.

We will also need the following lemma telling us that halfspace neighborhoods
form a basic collection of open neighborhoods for the strongly separated ultrafilters.

Lemma 2.9. Let U � S.X/ be an open neighborhood of ˛ 2 S.X/, where ˛
is a strongly separated ultrafilter. Then there exists a halfspace h such that ˛ 2
.Uh \ S.X// � U .
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Proof. Since the halfspace neighborhoods Uh serve as a collection of sub-basic open
sets for the topology on U.X/ and hence of S.X/, it suffices to prove this whenU is a
finite intersection of halfspace neighborhoods of ˛. That is, we assume that there exist
halfspaces h1; : : : ; hn such that U D \Uhi

\ S.X/. Since ˛ is a strongly separated
ultrafilter, there exists a strongly separated sequence k1 � k2 � � � with ki 2 ˛. For
each hi , we then know that there exists a tail of the strongly separated sequence
contained in hi . Consequently, there exists a single kj such that kj � hi for all i . We
then have that ˛ 2 Ukj

\ S.X/ � U as required.

Figure 1. The median of strongly separated ultrafilters satisfies DCC.

2.6. Ping Pong. We will use the following version of the Ping Pong Lemma.

Lemma 2.10 (Ping-Pong Lemma). Let S be a set and let G be a group acting on S .
Let H;K < G be subgroups of G. Suppose that there exist two disjoint subsets
U; V � S such that for all for all 1 6D h 2 H , we have hU � V and for all
1 6D k 2 K, kV � U . Then < H;K >Š H �K.

3. Irreducible complexes

In all that follows, wewill assume thatX is a finite dimensional, irreducible, essential,
non-Euclidean CAT(0) cube complex, and that G is a group acting on X essentially,
properly, and without global a fixed point at infinity. We also assume that G has no
finite normal subgroup.
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Theorem 3.1 (Main Theorem). Let A1; : : : ; An be a collection of simultaneously
inessential subgroups of G. Then there exists g 2 G of infinite order, such that for
each i ,

hg;Ai i Š hgi � Ai :

Corollary 3.2. Suppose that a group G is acting on a finite-dimensional irreducible
non-Euclidean CAT(0) cube complex X . If the action of G on X is essential, proper
and has no global fixed point at infinity, and, G has no non-trivial finite normal
subgroups then G has property Pnaive.

First of all, we will need the following lemma.

Lemma 3.3. Suppose that a 2 G is nontrivial. Then Fix.a/ � S.X/ has empty
interior.

Proof. Suppose that a is non-trivial and fixes an open subset U � S.X/. By
Lemma 2.9, there exists a half space h such that the halfspace neighborhood
Uh � S.X/. Consider three strongly separated ultrafilters in Uh and let v denote
their median. By Lemma 2.8, the ultrafilter v is a vertex in X . Since the action
is essential, there exists g 2 G such that g skewers h, so that gh � h. By the
Lemmas 2.3 and 2.4, we may further assume that g Oh and Oh are strongly separated.

We now consider the elements an � g
�nagn. Let hn D g

�nh. Note that by our
choice of g above, the sequence fh�ng is a strongly separated sequence of halfspaces.

Note that an fixes Un � Uhn
. Since v 2 h � g�nh it follows that v is the

median of three points contained in Un, and therefore anv D v. By the properness
of the action, there are only finitely many possibilities for an, so that we may pass to
a subsequence of fang such that an D b for all n. We then have[

n

Un � Fix.b/ D fy 2 S.X/jby D yg:

Because the action is proper, the kernel of the action on S.X/ is a finite normal
subgroup and because G has no finite normal subgroup, we have Fix.b/ 6D S.X/.
But now Fix.b/ is closed. So there exists a halfspace k such thatUk � S.X/�Fix.b/.
Consequently, we have that Ok\ h�n, for all n. But this is a contradiction, since fh�ng is
a strongly separated sequence of halfspaces.

The key to proving the main theorem is the following proposition, which will
allow us to play ping-pong.

Proposition 3.4. Let A1; : : : An be a collection of simultaneously inessential
subgroups of G. Then there exists a halfspace k in X , such that ak � k� for all
non-trivial a 2

S
i Ai .
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Proof. To avoid writing indices, we will first give the proof for the case of a single
subgroup A and then later explain how this is done for finitely many subgroups.

We will construct a combinatorial convex hull for A.v/, where v is some vertex
of X . For a halfspace h, let C.h/ denote the carrier of h, namely the union of cubes
that intersect h non-trivially. It is easy to see that that C.h/ is a convex subcomplex
of X (see [9]). Now, given a halfspace h such that A.v/ � h, we define

Ch D

\
a2A

C.ah/:

The inessentiality assumption tells us that there exists such an h, and since Ch is
the intersection of convex subcomplexes, it is convex. Also, Ch is invariant under A.

Remark. It is convex in both the usual CAT(0) sense but also in the `1 sense: every
combinatorial edge-geodesic between vertices in Ch remains in Ch.

Choose some halfspace k1 � h� such that Oh and Ok1 are strongly separated.
We observe that every hyperplane which intersects Ch does not intersect Ok1, since

Ch � h and Oh and Ok1 are strongly separated.

Figure 2. A convex hull for A.v/.

Now we consider the natural combinatorial projection of Ok1 onto Ch. Namely,
consider all the hyperplanes intersecting Ch. As observed, for every such
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hyperplane Om, we have Ok1 � m or Ok1 � m�. This thus defines an ultrafilter on
the collection of hyperplanes meeting Ch, since it is a choice of halfspaces which
satisfies the standard consistency conditions necessary for an ultrafilter. It also
satisfies the DCC condition (see, for example, [14]). Thus, it determines a vertex w
in Ch. This is the unique vertex of Ch that can be joined by a path to Ok1 without
crossing any hyperplane that meets Ch.

Note that for any a 2 A, aOk1 does not intersect any hyperplane that intersectsC.h/.
This is because if it did, say aOk1 \ Om 6D ;, then by applying a�1, we find
that Ok1 \ a

�1. Om/ ¤ ;. But by invariance of C.h/ under A, we have that
a�1. Om/ \ C.h/¤;, contradicting the strong separation of Ok1 and Oh.

Thus aOk1 projects to a vertex in C.h/, just as Ok1 does. Now by the naturality of
this construction, we have that for each a 2 A, the translate aOk1 projects to aw. But
if aOk1 \

Ok1 6D ; it must project to w as well.

Figure 3. The projection of Ok1 onto Ch.

This tells us that

S D fa 2 AjaOk1 \
Ok1 6D ;g � Stab.w/ :

By the properness of the action, we get that S is finite. For all elements a 62 S , we
have ak � k�, as required. We are thus left to prove the proposition for the elements
of S .

Let Uk1
denote the open subset of S.X/ determined by k1. By Lemma 3.3

we can find a point b 2 UOk1
which is not fixed by any element of S . Since S is

finite, there exists a neighborhood U � Uk1
of b such that U \ aU D ; for any

a 2 S . Since every open neighborhood contains a halfspace neighborhood, we have
a halfspace k2 � k1 such that aUk2

\ Uk2
D ; for all a 2 S . Thus, for any a 2 S ,
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we have that ak2 � k�2 for any a 2 S . Since this is already true for k1 for all other
elements of A, the hyperplane Ok2 is the desired hyperplane.

To show the proposition for the case of finitely many subgroupsA1; : : : ; An which
are simultaneously inessential, we start with a hyperplane h such that

S
i Ai .v/ � h.

Taking Ok1 as above we see that the set of elements S of
S

i Ai which carry Ok1 to a
hyperplane meeting Ok1 is finite. We then construct, as in the previous paragraph a
halfspace k2 � k1 such that ak2 � k�2 for any element of S . This Ok2 is the desired
hyperplane.

Proof of Theorem 3.1. ByProposition 3.4, there exists a halfspace k such that ak � k�

for all a 2
S

i Ai . We need to find our g 2 G which plays ping-pong with every Ai .
By the Facing Triples Lemma, there exists a pair of disjoint halfspaces m and n

with m [ n � k. By the Double Skewering Lemma, there exists g 2 G such
that gm� � n.

Figure 4. The construction of the ping pong pair.

We now construct two disjoint subsets U and V of X , such that aU � V for all
non-trivial a 2 Ai and gnV � U for all n 6D 0 and for all i . This will then give the
result by the Ping Pong Lemma. For each i , we define

U D
[

a 6D12Ai

ak and V D m [ gm� :
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Note that by construction, for each a 6D 1 2 Ai , we have ak � U , so we have
aV � U . For each n 6D 0, we obtain gn.gm/ � m or gnm� � gm�. Since U � m�

and U � gm, we have that gnU � V , as required.

We now prove Proposition 2.1.

Proof. We prove the proposition by induction on n. Let v be a vertex of X . In [16,
Proposition 3.3], it is shown that if H is a quasiconvex subgroup of G, there exists
a number C > 0 and a universal number D > 0 (depending only on the dimension
of the complex), such that if w is a vertex with d.w;H.v// > C , then there exists a
hyperplane Oh separating w andH.v/ and d.w; Oh/ < D.

Since points arbitrarily far away fromH.v/ are guaranteed to exist whenH is of
infinite index, this implies that the the proposition in the case n D 1.

We know assume that G1; : : : ; Gn�1 are simultaneously inessential. Let h be a
halfspace such that Gi .v/ � h� for i D 1; : : : ; n � 1. Note that since v � h�, the
orbit Gn.v/ is not entirely contained in h. We consider a halfspace k � h such that Ok
is strongly separated from Oh. SinceGn is of infinite index, there exists a vertexw 2 k
such that d.w;Gn.v// > C . We also choose w such that d.w; Ok/ > D. Now we
apply the above again and conclude that there exists a hyperplane Om separating w
and Gn.v/ and such that d.w; Om/ < D. Let m be the halfspace associated to Om
such that w 2 m and Gn.v/ � m�. Since d.w; Om/ < D, we have that Om \ k 6D ;.
Since Ok and Oh are strongly separated, we thus have that Om \ Oh D ;. Moreover, since
Gn.v/ \ h� 6D ;, we must have m � h and not m� � h. It follows that Gi .v/ � h
for all 1 D 1; : : : ; n, as required.

We complete the section with a proof of Proposition 1.1, which says that S.X/ is
a G-boundary, on which, if conditions are favourable, G acts topologically freely.

Proof of Proposition 1.1. Let X be a non-Euclidean irreducible CAT(0) cube
complex X . Suppose G is acting essentially on X without a global fixed point
at infinity. Then, we claim that S.X/ is a G-boundary. We first show that the
compact G-space S.X/ is minimal: given ˛ 2 S.X/ and U � S.X/ open, there
exists g 2 G such that g˛ 2 U . By Lemma 2.9, there exists some halfspace h such
that .Uh \ S.X// � U . If h 2 ˛ then we can take g D 1. Suppose then h … ˛.
By the Flipping Lemma [6], there exists g 2 G such that gh� � h and for this g,
h 2 g˛. This implies g˛ 2 .Uh \ S.X// � U .

We now show that the S.X/ is proximal: for any pair ˛; ˇ 2 S.X/ of points,
there exists a point 
 2 S.X/ such that for every open neighbourhood U of 
 there
exists g 2 G such that g˛; gˇ 2 U . Choose a strongly separated ultrafilter 
 which
is distinct from both ˛ and ˇ. Let U be any open set containing 
 . Note that S.X/
is Hausdorff and so we can find an open set V that contains 
 but does not contain ˛
and ˇ. The open set U \ V contains 
 and by Lemma 2.9, contains a half-space
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neighbourhood Uh. Now, h� 2 ˛; ˇ, so we use the Flipping Lemma to find g 2 G
such that gh� � h. Then, h 2 g˛; gˇ and therefore g˛; gˇ 2 U .

To ensure that the proximal minimal G space S.X/ is strongly proximal, we
need to check that S.X/ has contractible neighbourhoods. Let ˛ be a strongly
separated ultrafilter and let h be a halfspace contained in ˛. We claim that the open
neighbourhood V WD Uh\S.X/ of ˛ is contractible i.e. there exists ˇ 2 S.X/ such
that every open neighbourhood of ˇ contains a translate of V . Choose ˇ to be any
strongly separated ultrafilter distinct from ˛ and let U be an open set containing ˇ.
As before, choose a halfspace k such that k 2 ˇ, k � h� and Uk \ S.X/ � U . Use
the Flipping Lemma to choose g 2 G such that gk� � k. Then, gV � U .

This shows that S.X/ is a minimal and strongly proximal compact G-space.
Lemma 3.3 verifies that the action is topologically free whenever the action of G
on X is proper and G has no non-trivial finite normal subgroups.

4. Property Pnaive and C �-simplicity

Recall that a groupG has property Pnaive if for every finite subset F � G there exists
an element y 2 G of infinite order such that given g 2 F , the subgroup hg; yi is
isomorphic to the free product hgi � hyi.

The simplest example of a group possessing property Pnaive is a non-abelian free
group Fn. Property Pnaive was introduced by Bekka, Cowling and de la Harpe as part
of their programme to study simplicity of group C �-algebras [3]. Non-elementary
hyperbolic groups have property Pnaive; this was proved for torsion-free groups by
de la Harpe, and further generalized to relatively hyperbolic groups in [2]. In [3],
the authors established Pnaive for Zariski dense subgroups of connected simple Lie
groups with R-rank 1 and trivial center. More recently, property Pnaive was studied
by Tal Poznansky in the context of linear groups: he proved that every Zariski-dense
subgroup of a semisimple algebraic group (over any field), satisfies a weak version
of property Pnaive [13, Lemma 2.3].

Here, we study conditions under which groups acting on CAT(0) cube complexes
have property Pnaive. When the underlying complex is irreducible, property Pnaive
follows from the Main Theorem and is recorded as Corollary 3.2 above.

4.1. Products. In the case of products, we prove a result in a more restricted setting,
namely that of lattices in Aut.X/, where X is a locally finite, cocompact cube
complex.

Theorem 4.1. Let X be a locally finite, cocompact CAT(0) cube complex with no
Euclidean factors; let G be a lattice in Aut.X/ with no non-trivial finite normal
subgroup. Then G satisfies Pnaive.
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Proof. Let X D
Q

k Xk be the decomposition of X into irreducible factors. Let
g1; : : : ; gn denote a finite collection of elements of G.

We first observe that for each i , the action of < gi > on each irreducible factor
of X is inessential. This is simply because < gi > is cyclic and each factor is
non-euclidean.

Secondly, we observe that since the action of < gi > is proper, there exists a
factor of X on which the action of < gi > is proper. Otherwise, for each factor Xk

there exists an integer nk such that gnk fixes the ball of radius R in Xk . Taking
N D

Q
k nk , we obtain anN such that< gN

i > fixes the ball of radiusR in eachXk ,
which in the case that gi is infinite cyclic, would contradict the properness of the
action of < gi > on X .

For each factorXk for which< gi > acts properly onXk , Proposition 3.4 insures
that there exists a halfspace hk , such that ahk � h�

k
for all a 2< gi >. (If for some k,

there are no such gi ’s, we choose hk arbitrarily.) Following the proof of Theorem 3.1,
for each such k, we then choose halfspaces mk and nk , so that mk [ nk � hk .

Now we apply Theorem 2.5 to conclude that there exists g 2 G such that
gm�

k
� nk simultaneously for all k. The construction now of U and V for the

application of the Ping Pong Lemma proceeds as in the proof of Theorem 3.1.
More precisely, we need to show that < g; gi >�< g > � < gi >. Given such

an i , Let Xk denote an irreducible component on which < gi > acts properly. Then
set

U D
[

a 6D12<gi >

ahk and V D mk [ nk :

Then we obtain aV � U for any a 6D 1 and we have gnU � V for any n 6D 0, as
required.

4.2. Infinite conjugacy classes. Corollary 3.2 and Theorem 4.1 allow us to
determine necessary and sufficient conditions for a CAT(0) cube complex group
to be C �-simple. C �-simple groups are often icc: a group is icc if the conjugacy
class of every non-identity element is infinite. We will first identify the collection of
CAT(0) cubical groups which are icc.

Proposition 4.2. If a group G acts properly and co-compactly on a CAT(0) cube
complex thenG is icc if and only if no finite index subgroup ofG contains a non-trivial
virtually abelian normal subgroup.

Proof of Proposition. Suppose that G is not icc. Let H be the collection of all
elements g 2 G such that the conjugacy class of g is finite. It is easy to check thatH
is a characteristic subgroup of G. Let L be a subgroup generated by finitely many
elements x1; : : : ; xk ofH . For each i , the centralizer of xi inL is a subgroup of finite
index inL. Consequently, the centre ofL, which is the intersection of the centralizers
of the xi ’s has finite index in L. This implies that each finitely generated subgroup
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of H is virtually abelian. As every virtually abelian subgroup must stabilize a flat
and the dimension of flats in X is bounded,H is forced to be virtually abelian. This
shows, if G has a non-trivial finite conjugacy class, then G contains a non-trivial
virtually abelian normal subgroup.

Suppose now that a finite index subgroup � of G contains a virtually abelian
normal subgroup K. If K is finite and g is a non-trivial element of K, then the
conjugacy class fxgx�1 j x 2 Gg of g is contained in [t2G=� tKt

�1. Evidently,
every conjugacy class of K is finite and so, G cannot be icc. If K is infinite,
then replace K by a characteristic subgroup K 0 which is free abelian of finite rank.
The action of � on K by conjugation fixes K 0 and so, � normalizes K 0. The
homomorphism from � to Aut.K 0/ Š GL.n;Z/ has finite image (in fact, it lies
insideO.n/\GL.n;Z// and so, a finite index subgroup of � (and hence, of G) that
centralizes K 0. Clearly, the conjugacy class of every element of K 0 in G is finite
andG cannot be icc.

The amenable radical of a group G, written AG is the largest amenable normal
subgroup of G. As amenability is closed under extensions, the amenable radical
exists and is easily shown to be a characteristic subgroup of G. Suppose a group G
has a finite index subgroup that contains a normal virtually abelian subgroup K.
Then, passing to a normal finite index subgroup, we can assume that G has a normal
subgroup H of finite index such that AH ¤ 1. As AH is characteristic in H , it is
normal in G and it follows, AG ¤ 1. Hence, the triviality of AG implies that G has
no finite index subgroups containing normal virtually abelian subgroups.

In groups acting geometrically onCAT(0) cube complexes the converse is true: the
amenable radical is trivial if no finite index subgroup ofG has normal virtually abelian
subgroups ¤ 1. This is because, CAT(0) cubical groups satisfy the Tits Alternative
[15, Main Theorem] and the amenable radical is virtually abelian. ThereforeAG ¤ 1

implies G has a normal virtually abelian subgroup. To summarise, we have the
following equivalence.

Lemma 4.3. Suppose that a group G is acting properly on a CAT(0) cube complex
andG has a bound on the size of its finite subgroups. Then the amenable radical AG

is trivial iffG has no finite index subgroups with normal non-trivial virtually abelian
subgroups.

The presence of virtually abelian subgroups inside finite index subgroups of G is
directly related to the existence of Euclidean factors in the Cartan decomposition of
the underlying space.

Lemma 4.4. Suppose a group G is acting geometrically and faithfully on a CAT(0)
cube complex X . If X has a Euclidean factor, then some finite index subgroup of G
contains a non-trivial virtually abelian normal subgroup. In particular, the amenable
radical of G is non-trivial.
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Proof. AsG is acting geometrically,X is finite dimensional andmoreover by passing
to an essential core, we may assume that the G-action on X is essential. Now, if X
is irreducible, then X is Euclidean, meaning, it is quasi-isometric to the real line. In
this case G itself is virtually infinite cyclic. If X is reducible, then it has a Cartan
decomposition into irreducible factors. We have X Š XP � XE , where XE is
the Euclidean part of X . Then, by Corollary 2.8 from [12], there is a finite index
subgroup H of G such that H D HE � HP , where HE acts properly and co-
compactly on XE . This implies that HE is virtually abelian and so, a finite index
subgroup contains a non-trivial virtually abelian normal subgroup.

C �-simple groups. Let G be a countable discrete group and let `2G be the Hilbert
space of square-summable functions on G. The group G acts on `2G via its left
regular representation as follows.

�g.f /.h/ D f .g
�1h/; 8g; h 2 G:

The map g 7! �g gives an injection of G into the space of bounded linear
operators B.`2G/. The closure of the linear span of image f�g W g 2 Gg in
the operator norm is called the reduced C �-algebra of G and written, C �r .G/.

A countable group is said to beC �-simple ifC �r .G/ is a simple algebra, i.e.C �r .G/
has no non-trivial two-sided ideals. The reduced C �-algebra carries information
about the representation theory of the group. One can show that simplicity of
the algebra C �r .G/ is equivalent to the following restriction on the representation
theory of G: every unitary representation of G which is weakly contained in the
left regular representation of G is actually equivalent to it. This means that a group
which is both amenable and C �-simple must be the trivial group. This statement in
turn generalizes to the fact that a C �-simple group cannot have non-trivial normal
amenable subgroups.

Many geometric classes of groups have been shown to be C �-simple. These
include all free products (except the infinite dihedral group), non-soluble subgroups
of PSL2.R/, torsion-free non-elementary hyperbolic groups and mapping class
groups of surfaces. More generally, acylindrically hyperbolic groups are C �-
simple [7].

A group acting geometrically on an irreducible CAT(0) cube complex has enough
rank one elements to make it acylindrically hyperbolic, using results from [17]. So
groups acting geometrically on irreducible CAT(0) cubical groups are C �-simple.
However a group acting geometrically on a non-trivial product of irreducibles is not
acylindrically hyperpbolic (for example, irreducible lattices in products of trees).
Here, we apply our theorems on property Pnaive to show that even in this setting, a
groupG acting properly and co-compactly on a CAT(0) cube complex is C �-simple.
We summarize this as follows.
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Theorem 4.5 (Corollary 1.4). Suppose that a group G is acting properly and co-
compactly on a CAT(0) cube complex X . The following are equivalent.

(1) G is C � simple.

(2) G is icc.

(3) No finite index subgroup of G has a non-trivial virtually abelian normal
subgroup.

(4) the amenable radical of G is trivial.

(5) The G-action is faithful and X is non-Euclidean.

(6) G has property Pnaive.

Proof. The implications (1) ) (2) and (6) ) (1) are well known, see [3].
Proposition 4.2 establishes the equivalence of (2) and (3). Lemma 4.3 shows (3)
and (4) are equivalent. That (4) implies (5) follows from Lemma 4.4.

The hypothesis that G acts properly and co-compactly implies that G is finitely
presented and moreover, X is finite-dimensional. The kernel of the action is finite
whenever the action is proper and so if the amenable radical is trivial, the action is
faithful. Now, to deduce (6) from (5), after passing to an essential core if needed, we
apply Corollary 3.2 and Theorem 4.1.

References

[1] G. Arzhantseva, On quasi-convex subgroups of word-hyperbolic groups,
Geometriae Dedicata, 87 (2001), 191–208. Zbl 0994.20036 MR 1866849

[2] G. Arzhantseva and A. Minasyan, Relatively hyperbolic groups are C �-simple,
J. Functional Analysis, 243 (2007), 345–351. Zbl 1115.20034 MR 2291441

[3] B. Bekka, M. Cowling and P. de la Harpe, Some groups whose reduced C �-
algebra is simple, Inst. Hautes Etudes Sci. Publ. Math., 80 (1994), 117–134.
Zbl 0827.22001 MR 1320606

[4] E. Breuillard, M. Kalantar, M. Kennedy and N. Owaza, C �-simplicity and the
unique trace property for discrete groups, 2014. arXiv:1410.2518

[5] M. Burger and S. Moses, Lattices in products of trees, Inst. Hautes Etudes Sci.
Publ. Math., 92 (2000), 151–194. Zbl 1007.22013 MR 1839489

[6] P. E. Caprace and M. Sageev, Rank rigidity for CAT(0) cube complexes,
Geometric and Functional Analysis, 21 (2011), 851–891. Zbl 1266.20054
MR 2827012

[7] F. Dahmani, V. Guirardel andD. Osin,Hyperbolically embedded subgroups and
rotating families in groups acting on hyperbolic spaces, 2011. arXiv:1111.7048

https://zbmath.org/?q=an:0994.20036
http://www.ams.org/mathscinet-getitem?mr=1866849
https://zbmath.org/?q=an:1115.20034
http://www.ams.org/mathscinet-getitem?mr=2291441
https://zbmath.org/?q=an:0827.22001
http://www.ams.org/mathscinet-getitem?mr=1320606
http://arxiv.org/abs/1410.2518
https://zbmath.org/?q=an:1007.22013
http://www.ams.org/mathscinet-getitem?mr=1839489
https://zbmath.org/?q=an:1266.20054
http://www.ams.org/mathscinet-getitem?mr=2827012
http://arxiv.org/abs/1111.7048


Vol. 91 (2016) Ping Pong on CAT(0) cube complexes 561

[8] T. Fernos, The Furstenberg Poisson Boundary and CAT(0) Cube Complexes,
arXiv:1507.05511

[9] F. Haglund, Finite index subgroups of graph products, Geom. Dedicata, 135
(2008), 167–209. Zbl 1195.20047 MR 2413337

[10] A. Le Boudec,Discrete groups that are notC �-simple, 2015. arXiv:1507.03452
[11] M. Kalantar and M. Kennedy, Boundaries of reduced C �-algebras of discrete

groups, 2014. arXiv:1405.4359
[12] A.Nevo andM. Sageev, Poisson boundaries ofCAT(0) cube complexes,Groups.

Geom. Dyn., 7 (2013), 653–695. Zbl 06220443 MR 3095714
[13] T. Poznansky, Characterization of Linear Groups whose Reduced C �-algebras

are simple, 2009. arXiv:0812.2486
[14] M. Sageev, CAT(0) cube complexes and groups, inGeometric Group Theory, 7–

53, IAS/Park CityMath Series, 21, AMS and IAS/PCMI, 2014. Zbl 1306.20002
MR 3329724

[15] M. Sageev andD.Wise, TheTits alternative for CAT(0) cubical complexes,Bull.
London Math. Soc., 37 (2005), no. 5, 706–710. Zbl 1081.20051 MR 2164832

[16] M. Sageev and D.Wise, Cores for quasiconvex actions, Proc. Amer. Math. Soc.,
143 (2015), no. 7, 2731–2741. Zbl 06428953 MR 3336599

[17] Alessandro Sisto, Contracting elements and random walks, 2011.
arXiv:1112.2666

Received June 29, 2015; revised March 24, 2016

A. Kar, Department of Mathematics, University of Southampton, Bldg. 54,
Southampton SO17 1BJ, UK
E-mail: a.kar@soton.ac.uk
M. Sageev, Mathematics Department, Technion - Israel Institute of Technology,
Haifa 32000, Israel
E-mail: sageevm@technion.ac.il

http://arxiv.org/abs/1507.05511
https://zbmath.org/?q=an:1195.20047
http://www.ams.org/mathscinet-getitem?mr=2413337
http://arxiv.org/abs/1507.03452
http://arxiv.org/abs/1405.4359
https://zbmath.org/?q=an:06220443
http://www.ams.org/mathscinet-getitem?mr=3095714
http://arxiv.org/abs/0812.2486
https://zbmath.org/?q=an:1306.20002
http://www.ams.org/mathscinet-getitem?mr=3329724
https://zbmath.org/?q=an:1081.20051
http://www.ams.org/mathscinet-getitem?mr=2164832
https://zbmath.org/?q=an:06428953
http://www.ams.org/mathscinet-getitem?mr=3336599
http://arxiv.org/abs/1112.2666
mailto:a.kar@soton.ac.uk
mailto:sageevmtx.technion.ac.il

	Introduction
	Preliminaries
	Essentiality
	Products
	Facing triples and strongly separated hyperplanes
	Skewering
	The Roller Boundary
	Ping Pong

	Irreducible complexes
	Property P`39`42`"613A``45`47`"603Anaive and C*-simplicity
	Products
	Infinite conjugacy classes


