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Degree three cohomological invariants of reductive groups
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Abstract.We study the degree 3 cohomological invariants with coefficients inQ=Z.2/ of a split
reductive group over an arbitrary field. As an application, we compute the group of reductive
indecomposable degree 3 invariants of all split simple algebraic groups.
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1. Introduction

Let G be a linear algebraic group over a field F . Consider a functor

G- torsors W FieldsF �! Sets;

where FieldsF is the category of field extensions of F , taking a field K to the set of
isomorphism classes of G-torsors over SpecK. Let

ˆ W FieldsF �! Abelian Groups

be another functor. According to [8], a ˆ-invariant of G is a morphism of functors

I W G- torsors �! ˆ;

viewed as functors to Sets . We write Inv.G;ˆ/ for the group of ˆ-invariants of G.
An invariant I 2 Inv.G;ˆ/ is called normalized if I.E/ D 0 for every trivial

G-torsorE. The normalized invariants form a subgroup Inv.G;ˆ/norm of Inv.G;H/
and

Inv.G;ˆ/ ' ˆ.F /˚ Inv.G;ˆ/norm:

We will be considering the cohomology functors ˆ taking a field K=F to the
Galois cohomology Hn

�
K;Q=Z.j /

�
(see Section 3.1) and write Invn

�
G;Q=Z.j /

�
for the group of cohomological invariants of G of degree n with coefficients
in Q=Z.j /.
�The work of the second author has been supported by the NSF grant DMS #1160206.
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If G is connected, then Inv1
�
G;Q=Z.j /

�
normD 0 by [13, Proposition 31.15].

The degree 2 cohomological invariants with coefficients inQ=Z.1/ (equivalently, the
invariants with values in the Brauer group Br) of a reductive group were determined
in [2, Theorem 2.4]: the group Inv2

�
G;Q=Z.j /

�
norm is isomorphic to the character

group of the kernel C of the universal cover of G.
The group of degree 3 invariants Inv3

�
G;Q=Z.2/

�
was determined by Rost

in the case when G is simply connected (see [8, Part II]). If G is a
split simply connected group, the group Inv3

�
G;Q=Z.2/

�
norm is isomorphic to

S2.T �/W =Dec.G/, where T � is the character group of a split maximal torus T � G,
W is the Weyl group of G and Dec.G/ is the subgroup of the “obvious” elements in
S2.T �/W (see §5).

The case of an arbitrary semisimple groupG was considered in [20]. IfG is split,
there is an exact sequence

0 �! C � ˝ F � �! Inv3.G;Q=Z.2//norm �! S2.T �/W =Dec.G/ �! 0;

where C is the kernel of the universal cover of G. If G is simply connected,
the group C is trivial and we get Rost’s result. The image of C � ˝ F � in
Inv3.G;Q=Z.2//norm is the subgroup of decomposable invariants. These invariants
are obtained from the degree 2 invariants by the cup-product with an element in F �.

The group of degree 3 invariants of algebraic tori was computed in [2] (this group
is trivial for split tori).

In the present paper we consider the case of a split reductive group G, i.e., we
generalize [20] in the split case. Our main result is the following theorem
(see Theorem 5.1). Note that the exact sequence is the same as in the split semisimple
case.
Theorem. Let G be a split reductive group, T � G a split maximal torus, W the
Weyl group andC the kernel of the universal cover of the commutator subgroup ofG.
Then there is an exact sequence

0 �! C � ˝ F � �! Inv3.G;Q=Z.2//norm �! S2.T �/W =Dec.G/ �! 0:

Note that neither of the approaches of [20] nor [2] could be used in the reductive
case. Instead, we employ another method, relating the étale motivic cohomology
of the classifying spaces of G and of its Borel subgroup B . The difficult part of
the proof is the exactness at the term S2.T �/W =Dec.G/, i.e., to show that every
W -invariant quadratic form (on the dual of T �) gives rise to an invariant of G of
degree 3.

We give an application in Section 7. We compute the subgroup of reductive
invariants of all split (almost) simple groups. The reason we are interested in the
reductive invariants is that the group of unramified invariants (an important birational
invariant of the classifying space of the group, see [19]) is contained in the group of
reductive invariants [19, (10.1)]. In some cases, the group of reductive invariants is
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trivial (for example, case An�1, see Section 7), and this allows one to conclude that
the group of unramified invariants is also trivial.

We don’t impose any characteristic restriction on the base field F , and we take
care of the p-part of the group of invariants when p D char.F / > 0 even if F is
imperfect. One should be careful since certain étale motivic cohomology groups of
algebraic varieties over an imperfect field are not homotopy invariant. The proofs of
some statements (e.g., Theorem 3.7) can be simplified if we invert p D char.F / > 0.
In this case all the functors considered in the paper are homotopy invariant.

Acknowledgements. We thank the referee for valuable comments.

2. Preliminary results

2.1. K -cohomology and Rost’s spectral sequence. Let X be a smooth algebraic
variety over F . For any i � 0, let X .i/ be the set of points in X of codimension i .
Write Kd .L/ for the Milnor K-group of a field L and define the K-cohomology
groups Ai .X;Kd / as the homology group of the complex (see [22])a

x2X.i�1/

Kd�iC1
�
F.x/

� @
�!

a
x2X.i/

Kd�i
�
F.x/

� @
�!

a
x2X.iC1/

Kd�i�1
�
F.x/

�
:

In particular, Ai .X;Ki / D CHi .X/ is the Chow group of classes of algebraic cycles
on X of codimension i and A0.X;K1/ D F ŒX�� is the group of invertible regular
functions on X .

Let f W X �! Y be a flat morphism. For every point y 2 Y write Xy for the
fiber X �Y SpecF.y/ over y. There is Rost’s spectral sequence [22, §8]

E
p;q
1 D

a
y2Y p

Aq.Xy ; Kn�p/) ApCq.X;Kn/ (2.1)

for every n.

2.2. K -cohomology of G , G=T and G=B. Wewill be using the following notation
in the paper. Let

G be a (connected) split reductive group over a field F ,
T � G a split maximal torus,
T � WD Hom.T;Gm/ the character group of T ,
W the Weyl group of G,
B � G a Borel subgroup containing T (we have B� D T �),
H the commutator subgroup of G,
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Q D G=H a split torus,
� W eH �! H the simply connected cover of G,
C D Ker.�/, thus C is a finite diagonalizable group (not necessarily smooth),
ƒw the weight lattice of eH (the character group of a maximal split torus of eH ).

The kernel of the natural homomorphism � W T � �! ƒw is isomorphic to Q�
and its cokernel is isomorphic to C �.

The smooth projective variety G=B is the flag variety for the simply connected
group eH . By [8, Part 2, §6], there is natural isomorphism

ƒw
�
�! CH1.G=B/: (2.2)

This isomorphism extends to a ring homomorphism S�.ƒw/ �! CH�.G=B/,
where S� stands for the symmetric ring.

Let E �! Y be a G-torsor and J the pull-back E �Y Spec.K/ for a point
y W Spec.K/ �! Y , so J is a G-torsor over K. Write f W E=B �! Y for the
morphism induced by the torsor E �! Y . The fiber of f over y is the (smooth
projective) flag variety J=B overK for the group AutG.J / overK, which is a twisted
form of GK .

In the following proposition we collect known results on K-cohomology.
Proposition 2.1. Let G be a split reductive group, T � G a split maximal torus
and B a Borel subgroup containing T . Let E �! Y be a G-torsor with Y a smooth
variety. Then

(1) The pull-back homomorphism A�.E=B;K�/ �! A�.E=T;K�/ induced by the
natural morphism E=T �! E=B is a ring isomorphism.

(2) For every smooth varietyZ overF , the external productmap yields isomorphisms

A�.Z;K�/˝ CH�.G=T /
�
�! A�.Z � .G=T /;K�/;

A�.Z;K�/˝ CH�.G=B/
�
�! A�.Z � .G=B/;K�/:

(3) There are natural isomorphisms ƒw
�
�! CH1.G=T / ' CH1.G=B/.

(4) The kernel of the surjective homomorphism

S2.ƒw/ �! CH2.G=T / ' CH2.G=B/

is equal to the group ofW -invariant elements S2.ƒw/W in S2.ƒw/. Therefore,
CH2.G=T / ' CH2.G=B/ ' S2.ƒw/=S2.ƒw/W .

Proof. (1) The fibers of E �! E=B over a field K are B-torsors and hence
are split and isomorphic to BK since B is a special group (all B-torsors over fields
are trivial). It follows that the fibers of the natural morphism E=T �! E=B
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over K are isomorphic to .B=T /K and hence are affine spaces over K. By the
Homotopy Invariance Property ofK-cohomology [6, Theorem 52.13], the pull-back
homomorphism is an isomorphism.

(2) It follows from (1) that for the rest of the proof we may consider only the
variety G=B . Since G=B is cellular, the statement follows from [7, Proposition 3.7,
Lemma 3.8].

(3) follows from (2.2).

(4) was proved in [8, Part 2, Theorem 6.7 and Corollary 6.12].

Remark 2.2. There is a natural W -action on G=T . By functoriality of the Chow
groups, the groups CHi .G=T / and hence CHi .G=B/ are naturally W -modules.
Moreover, the maps in (2.2), .3/ and .4/ in Proposition 2.1 are homomorphisms of
W -modules.

2.3. K -cohomology of varieties associated to a torsor. LetE �! Y be aG-torsor
over a smooth variety Y over F . Set X D E=T or X D E=B and let f W X �! Y

be the natural morphism. Note that in the case X D E=B , the fiber Xy of f over a
point y 2 Y is a projective homogeneous variety over the field F.y/.

Proposition 2.3. Let E �! Y be a G-torsor with Y a smooth variety, X D E=T

or X D E=B and f W X �! Y the induced morphism.

(1) The natural homomorphism

A0.Y;K2/ �! A0.X;K2/

is an isomorphism.

(2) There is a natural complex

0 �! A1.Y;K2/ �! A1.X;K2/
˛
�! ƒw ˝ F ŒY �

�
�! 0:

The complex is acyclic if the torsor E is trivial.

Proof. By Proposition 2.1(1), it suffices to consider the case X D E=B .

(1) Rost’s spectral sequence (2.1) for the morphism f yields an exact sequence

0 �! A0.X;K2/ �!
a

y2Y .0/

A0.Xy ; K2/ �!
a

y2Y .1/

A0.Xy ; K1/:

The fiber Xy is a projective homogeneous G-variety over the field F.y/. Therefore,
the natural homomorphism Ki .F.y// �! A0.Xy ; Ki / is an isomorphism if i � 2
by [23, Corollary 5.6]. It follows that A0.X;K2/ ' A0.Y;K2/.
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(2) Rost’s spectral sequence yields a complex

A1.Y;K2/ �! A1.X;K2/ �!
a

y2Y .0/

A1.Xy ; K2/
@
�!

a
y2Y .1/

A1.Xy ; K1/:

As Xy is a projective homogeneous G-variety over F.y/, by [16, §3], the natural
map

A1.Xy ; Ki / �! A1..Xy/sep; Ki / D ƒw ˝Ki�1.F.y/sep/

is injective and it identifies the group A1.Xy ; Ki / with a subgroup of

CH1.G=B/˝Ki�1.F.y// D ƒw ˝Ki�1.F.y//

for i � 2. It follows that there is a natural map from Ker.@/ to

A0.Y;ƒw ˝K1/ D ƒw ˝ A
0.Y;K1/ D ƒw ˝ F ŒY �

�:

This defines the map ˛.
If E is a trivial torsor, we have X ' Y � .G=B/. By Proposition 2.1,

A1.X;K2/ ' A
1.Y;K2/˚ .ƒw ˝ F ŒY �

�/:

Note that the projection of A1.X;K2/ onto ƒw ˝ F ŒY �� coincides with the map ˛.

2.4. K -cohomology of classifying spaces. Let G be an algebraic group. In [24],
Totaro defined the Chow ring CH�.BG/ of the “classifying space” of G and more
generally, Guillot in [10] defined the ringA�.BG;K�/ as follows. Fix an integer i � 0
and choose a generically free representation V ofG such that there is aG-equivariant
open subset U � V with the property codimV .V nU/ � i C 1 and a versalG-torsor
f W U �! U=G (see [24, Remark 1.4] or [5, Lemma 9]). Then set

Ai .BG;K�/ WD Ai .U=G;K�/:

This is independent of the choice ofU since theK-cohomology groups are homotopy
invariant.

Let T � B be a split maximal torus and a Borel subgroup respectively in a split
reductive group G. As in the proof of Proposition 2.1(1), the fibers of the natural
morphisms U=T �! U=B are affine spaces. By the homotopy invariance property,

Ai .BB;Kj /
�
�! Ai .BT;Kj /:

The next statement follows from the Künneth formula [7, Prop. 3.7] (see [2,
Example A.5]).
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Proposition 2.4. Let T � B be a split maximal torus and a Borel subgroup in G,
respectively. Then

Ai .BB;Kj / ' Ai .BT;Kj / ' S i .T �/˝Kj�i .F /:

More generally if G acts on a variety X over F , one can define the equivariant
K-cohomology groups AiG.X;Kj / (see [10]). In particular, if X D Spec.F / (with
trivialG-action), we have AiG.X;Kj / ' A

i .BG;Kj / and ifX �! Y is aG-torsor,
then AiG.X;Kj / ' A

i .Y;Kj /.
The structure morphism G �! SpecF yields then a homomorphism

Ai .BB;Kj / D AiB.SpecF;Kj / �! AiB.G;Kj / D A
i .G=B;Kj /:

The following statement is a consequence of [7, §3] and (2.2).
Lemma 2.5. The composition

T � ˝Kj�1.F / ' A
1.BB;Kj / �! A1.G=B;Kj / ' CH1.G=B/˝Kj�1.F /

' ƒw ˝Kj�1.F /

coincides with � ˝ 1.

3. The motivic cohomology of weight � 2

3.1. The complexes Q=Z.j /. Let X be a smooth variety over F . For every j 2 Z,
the complex Q=Z.j / is defined in the derived category DC ShKet.X/ of étale sheaves
of abelian groups on X as the direct sum of two complexes. The first complex is
given by the locally constant étale sheaf (placed in degree 0) the colimit over n prime
to char.F / of the Galois modules �˝jn , where �n is the Galois module of nth roots
of unity. The second complex is nontrivial only in the case p D char.F / > 0 and it
is defined as

colim
n

Wn�
j
logŒ�j �

if j � 0, with Wn�
j
log the sheaf of logarithmic de Rham–Witt differentials

(see [11, I.5.7], [12]). The second complex is defined to be zero if j < 0.
We write Hm

�
X;Q=Z.j /

�
for the étale cohomology of a scheme X with values

in Q=Z.j /. Then

Hm
�
X;Q=Z.j /

�
fpg D colim

n
Hm

�
X;�

˝j
pn

�
if p ¤ charF and

Hm
�
X;Q=Z.j /

�
fpg D colim

n
Hm�j

�
X;Wn�

j
log
�



500 D. Laackman and A. Merkurjev CMH

if p D charF > 0. In the latter case, we have (e.g., see [2])

Hm
�
F;Q=Z.j /

�
fpg D

8̂<̂
:
KMj .F /˝ .Qp=Zp/; if m D j ;
H 2

�
F;KMj .Fsep/

�
fpg; if m D j C 1;

0; otherwise,
(3.1)

where KMj are Milnor’s K-groups.
We write Hn.Q=Z.j // for the Zariski sheaf on X associated to the presheaf

Z 7! Hn
et .Z;Q=Z.j //.

3.2. Unramified cohomology. For a schemeX and a closed subschemeZ � X we
write H�Z

�
X;Q=Z.j /

�
for the étale cohomology group of X with support in Z and

values in Q=Z.j / [21, Ch. III, §1]. For a point x 2 X .1/ set

H�x
�
X;Q=Z.j /

�
D colim

x2U
H�
fxg\U

�
U;Q=Z.j /

�
;

where the colimit is taken over all open subsets U � X containing x. If X is a
variety, write

@x W H
n
�
F.X/;Q=Z.j /

�
�! HnC1

x

�
X;Q=Z.j /

�
for the boundary homomorphisms arising from the coniveau spectral sequence [4, 1.2].

It follows from [4, §6, Examples 7.3(1), 7.4(3)] that the cohomology groups
Hn.X;Q=Z.j // satisfy the purity property (see [3, §2]) and the sequence

0 �! H 0
Zar
�
X;Hn.Q=Z.j //

�
�! Hn

�
F.X/;Q=Z.j /

� @
�!

a
x2X.1/

HnC1
x

�
X;Q=Z.j /

�
;

where @ D
`
@x , is exact for every smooth irreducible variety X . For every

irreducible smooth projective variety X , we have

H 0
Zar.X;Hn.Q=Z.j /// D Hn

nr.F.X/;Q=Z.j //;

the group of elements unramified with respect to all discrete valuations of the field
F.X/ over F (see [3, Proposition 2.1.8]). This group is a birational invariant of a
smooth projective variety.

The following two statements are consequences of a more general theorem
[4, Theorem 8.6.1]. We give shorter proofs here of our special cases.
Proposition 3.1. LetX be a smooth irreducible projective rational variety. Then the
natural homomorphism

Hn.F;Q=Z.j // �! H 0
Zar.X;Hn.Q=Z.j /// D Hn

nr.F.X/;Q=Z.j //

is an isomorphism.
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Proof. The statement is well known (see [3, Theorem 4.1.5]) if one deletes the
p-primary component from Q=Z.j / in the case char.F / D p > 0.

In general, we argue by induction on dim.X/. Since the groupH 0
Zar.X;Hn.Q=Z.j ///

is a birational invariant, we may assume that X D Pn�1 � P1. Take an element

˛ 2 H 0
Zar.X;Hn.Q=Z.j /// D Hn

nr.F.X/;Q=Z.j // � H
n.F.X/;Q=Z.j //:

Pulling back with respect to the morphism Pn�1
F .P1/

�! X , we have

˛ 2 H 0
Zar.P

n�1
F .P1/

;Hn.Q=Z.j /// D Hn.F.P1/;Q=Z.j //

by the induction hypothesis. By [2, LemmaA.6], applied to the projectionX �! P1,
˛ 2 H 0

Zar.P1;Hn.Q=Z.j ///. The rest of the proof is as in [2, Proposition 5.1]. The
coniveau spectral sequence for the projective line P1 (see [2, Appendix A]) yields a
surjective homomorphism

Hn.P1;Q=Z.j /
�
�! Hn

nr

�
F.P1/;Q=Z.j //:

By the projective bundle theorem (classical for the p-primary component if p ¤
char.F / and [9, Th. 2.1.11] if p D char.F / > 0), we have

Hn.P1;Q=Z.j // D Hn.F;Q=Z.j //˚Hn�2.F;Q=Z.j � 1//t;

where t is a generator of H 2.P1;Z.1// D Pic.P1/ D Z. As t vanishes over the
generic point of P1, the result follows.

The following statement is a generalization of Proposition 3.1.
Corollary 3.2. For any smooth irreducible variety Z and a smooth irreducible
projective rational variety P , the pull-back homomorphism

H 0
Zar.Z;Hn.Q=Z.j /// �! H 0

Zar.P �Z;Hn.Q=Z.j ///

is an isomorphism.

Proof. Consider the commutative diagram

H 0
Zar.Z;Hn.Q=Z.j ///� _

��

// H 0
Zar.P �Z;Hn.Q=Z.j ///� _

��

� y

++
Hn.F.Z/;Q=Z.j // i //

��

H 0
Zar.PF.Z/;Hn.Q=Z.j /// �

� // Hn.F.P �Z/;Q=Z.j //

��`
z2Z.1/ HnC1

x

�
X;Q=Z.j /

�
,!

`
z2Z.1/ H

nC1
P�y

�
P �Z;Q=Z.j /

�
with the exact left column. The map i is an isomorphism by Proposition 3.1. The
bottommap is injective by [2, LemmaA7]. By diagram chase, the top homomorphism
in the diagram is an isomorphism.
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Lemma 3.3. The étale sheaf on a smooth variety Y associated to the presheaf

Z 7! H 0
Zar.Z;Hn.Q=Z.j ///

is trivial if n ¤ 0 and n ¤ j .

Proof. Let y 2 Y and let Osh
Y;y be the strict henselization of Y at y. Then the stalk

at Osh
Y;y of the sheaf in the statement is equal to

Hn.Q=Z.j //.Osh
Y;y/ D H

n
Ket .O

sh
Y;y ;Q=Z.j //:

If p is a prime integer different from char.F /, then the p-component of this group is
trivial since n ¤ 0 and the complexQp=Zp.j / is given by a sheaf placed in degree 0.
If p D char.F /, the complexQp=Zp.j / is given by the de Rham–Witt sheaf shifted
by �j , hence

Hn
Ket .O

sh
Y;y ;Q=Z.j //fpg D 0

since n ¤ j .

Let G be a split reductive group and B � G be a split Borel subgroup.

Proposition 3.4. Let E �! Y be a G-torsor and f W X D E=B �! Y the natural
morphism. Then the étale sheaf associated to the presheaf

Z 7! H 0
Zar.f

�1

.Z/;Hn.Q=Z.j ///

on Y is trivial if n > j � 0.

Proof. As the G-torsor f is trivial locally in the étale topology, we may assume that
the torsorE is trivial, i.e., f �1

.Z/ ' .G=B/�Z. It follows from Corollary 3.2 that

H 0
Zar.f

�1

.Z/;Hn.Q=Z.j /// ' H 0
Zar.Z;Hn.Q=Z.j ///:

The statement now follows from Lemma 3.3.

3.3. The complexes ZX .j /. Let X be a smooth variety over F . We consider the
motivic complexes ZX .j / of weight j D 0; 1 and 2 in the categoryDC ShKet.X/. The
complex ZX .0/ is Z (placed in degree 0) and Z.1/ D GmŒ�1�. We write ZX .2/ for
the motivic complex �X .2/ defined in [14] and [15]. This complex is conjecturally
quasi-isomorphic to Voevodsky’s complex ZX .2/.

We use the following notation for the étale motivic cohomology of weight j � 2:

Hn;j .X/ WD Hn
et .X;Z.j //:
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By [12, Theorem 1.1], we have the following isomorphisms for the étale motivic
cohomology of weight 2:

Hn;2.X/ D

8̂̂̂̂
<̂
ˆ̂̂:
0; if n � 0;
K3.F.X//ind; if n D 1;
A0.X;K2/; if n D 2;
A1.X;K2/; if n D 3,

(3.2)

where
K3.L/ind WD Coker

�
K3.L/ �! K

Q
3 .L/

�
for a field L and KQ3 .L/ is Quillen’s K-group of L.

We will be using the following proposition proved in [12, Theorem 1.1].
Proposition 3.5. There is a natural exact sequence

0 �! CH2.X/ �! H 4;2.X/ �! H 0
Zar.X;H3.Q=Z.2/// �! 0

for a smooth variety X .

3.4. Homology of the complex Zf .2/. Let G be a split reductive algebraic group
overF . Choose amaximal split torusT and a Borel subgroupB such thatT �B�G.
Let E �! Y be a G-torsor with Y a smooth variety, X D E=T or X D E=B and
f W X �! Y the induced morphism.

We write Zf .2/ for the cone of the natural morphism ZY .2/ �! Rf�.ZX .2// in
the category DC ShKet.Y /. Thus, we have an exact triangle

ZY .2/ �! Rf�.ZX .2// �! Zf .2/ �! ZY .2/Œ1�: (3.3)

We compute the cohomology sheaves Hn.Zf .2// of the complexes Zf .2/ for
small values of n.
Proposition 3.6. Let G be a split reductive algebraic group over F , ƒw the weight
lattice of the commutator subgroup of G. Let E �! Y be a G-torsor with Y
a geometrically irreducible smooth variety, X D E=T or X D E=B and let
f W X �! Y be the induced morphism. Then

Hn.Zf .2// D

(
0; if n � 2;
ƒw ˝Gm; if n D 3,

and there is an exact sequence of étale sheaves on Y

0 �!
�
S2.ƒw/=S

2.ƒw/
W
�
�! H4.Zf .2// �! N �! 0;

where N is the étale sheaf on Y associated to the presheaf

Z 7! H 0
Zar.f

�1.Z/;H3.Q=Z.2///:

The sheaf N is trivial if X D E=B .
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Proof. The complex Z.2/ is supported in degrees 1 and 2, hence Hn.Zf .2// D 0

if n < 0. The triangle (3.3) yields then an exact sequence

0 �! H0.Zf .2// �! H1.ZY .2//
s
�! R1f�.ZX .2// �!

H1.Zf .2// �! H2.ZY .2//
t
�! R2f�.ZX .2// �! H2.Zf .2// �! 0 (3.4)

of étale sheaves on Y and the isomorphisms

Rnf�.ZX .2// ' Hn.Zf .2// for n � 3:

By [21, Proposition III.1.13],Hn.ZY .2// andRnf�.ZX .2// are the étale sheaves
on Y associated to the presheaves

Z 7! Hn;2.Z/ and Z 7! Hn;2.f �1Z/;

respectively.
It follows from (3.2) that H1.ZY .2// and R1f�.ZX .2// are the étale sheaves

on Y associated to the presheaves

Z 7! K3F.Z/ind and Z 7! K3F.f
�1Z/ind;

respectively. To show that the map s in (3.4) is an isomorphism, we may assume
that the torsor E �! Y is trivial. The variety X is rational, hence the natural
homomorphism

K3F.Z/ind �! K3F.f
�1Z/ind

is an isomorphism by [17, Lemma 4.2] since the field extension F.f �1Z/=F.Z/ is
purely transcendental. Thus, themorphism s in the sequence (3.4) is an isomorphism.

By (3.2), the étale sheavesH2.ZY .2// and R2f�.ZX .2// on Y are associated to
the presheaves

Z 7! H 2;2.Z/ D A0.Z;K2/ and Z 7! H 2;2.f �1Z/ D A0.f �1Z;K2/;

respectively.
By Proposition 2.3(1), the morphism t in the sequence (3.4) is an isomorphism.

The exactness of (3.4) implies that

Hn.Zf .2// D 0; if n � 2:

The étale sheafH3.Zf .2// D R3f�.ZX .2// on Y is associated to the presheaf

Z 7! H 3;2.f �1Z/ D A1.f �1Z;K2/:

It follows from Proposition 2.3(2) that there is a natural isomorphism

H3.Zf .2// ' ƒw ˝Gm :
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Now consider the case n D 4. The étale sheafH4.Zf .2// D R4f�.ZX .2// on Y
is associated to the presheaf

Z 7! H 4;2.f �1Z/:

To study this sheaf, consider another étale sheafM associated to the presheaf

Z 7! CH2.f �1Z/:

Let z be a generic point of Z and L an algebraic closure of F.z/. The fiber f �1.z/
is split over L, i.e., it is isomorphic to .G=T /L if X D E=T and to .G=B/L if
X D E=B . The composition (see Proposition 2.1(4))

CH2.f �1Z/ �! CH2.f �1.z// �! CH2.G=D/L D S2.ƒw/=S
2.ƒw/

W

yields a morphism of M to the constant sheaf
�
S2.ƒw/=S2.ƒw/W

�
over Y . We

claim that this morphism is an isomorphism. It suffices to assume that E is trivial
over Z, i.e., f �1Z ' Z � .G=T / if X D E=T and f �1Z ' Z � .G=B/ if
X D E=B . By Proposition 2.1(2), we have

CH2.f �1Z/ ' CH2.Z/˚
�
CH1.Z/˝ CH1.G=T /

�
˚
�
CH0.Z/˝ CH2.G=T /

�
if X D E=T , and

CH2.f �1Z/ ' CH2.Z/˚
�
CH1.Z/˝ CH1.G=B/

�
˚
�
CH0.Z/˝ CH2.G=B/

�
if X D E=B . Note that the projection of CH2.f �1Z/ onto the last direct summand
coincides with the map M.Z/ �!

�
S2.ƒw/=S2.ƒw/W

�
. The sheaves associated

to the presheaves Z 7! CHi .Z/ are trivial for i > 0. The claim is proved.
By Proposition 3.5, M is a subsheaf of H4.Zf .2// and the quotient sheaf is

the sheaf N associated to the presheaf Z 7! H 0
Zar.f

�1
.Z/;H3.Q=Z.j ///. By

Proposition 3.4, the latter sheaf is trivial if X D E=B .

3.5. Motivic cohomology of varieties associated to a torsor. We study certain étale
motivic cohomology ofE=T andE=B for a torsorE under a split reductive groupG.
The groupH 4;2 is not homotopy invariant (for thep-component ifp D char.F /) and
the natural map H 4;2.E=B/ �! H 4;2.E=T / is not isomorphism in general. The
Weyl group W acts naturally on E=T and hence on H 4;2.E=T / (see Remark 2.2).
We will show thatH 4;2.E=B/ is isomorphic to a W -submodule ofH 4;2.E=T /.
Theorem 3.7. Let G be a split reductive group over a field F , B a Borel subgroup,
E �! Y a G-torsor with Y smooth connected variety and f W X D E=B �! Y

the induced morphism. Then there are exact sequences of W -modules

0 �! A1.Y;K2/ �! A1.X;K2/ �! ƒw ˝ F ŒY �
�

�! H 4;2.Y / �! H 4;2.X/ �! H 4.Y;Zf .2//
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and

0 �! ƒw˝CH1.Y / �! H 4.Y;Zf .2// �! S2.ƒw/=S
2.ƒw/

W
�! ƒw˝Br.Y /:

TheW -action onH 4;2.Y / is trivial andH 4;2.X/ is aW -submodule ofH 4;2.E=T /.

Proof. Let X 0 D E=T and g W X 0 �! Y the induced morphism. Since
Hn.Zf .2// D 0 D Hn.Zg.2// for n � 2 and

H3.Zf .2// D ƒw ˝Gm D H3.Zg.2// (3.5)

by Proposition 3.6, there are exact triangles in DC ShKet.Y /:

ƒw ˝GmŒ�3� �! ��4Zf .2/ �! H4.Zf .2//Œ�4� �! ƒw ˝GmŒ�2�; (3.6)
ƒw ˝GmŒ�3� �! ��4Zg.2/ �! H4.Zg.2//Œ�4� �! ƒw ˝GmŒ�2�; (3.7)

where ��4 is the truncation functor. It follows that

H 3.Y; ��4Zf .2// D H 3.Y;Zf .2// D ƒw ˝ F ŒY �� D H 3.Y;Zg.2//:

Applying the cohomology functor to the exact triangles 3.6 and 3.7, we get a
diagram with the exact rows induced by the morphism X 0 �! X :

0 // ƒw ˝ CH1.Y / // H 4.Y;Zf .2// //

˛

��

H 0.Y;H4.Zf .2/// //

ˇ

��

ƒw ˝ Br.Y /

0 // ƒw ˝ CH1.Y / // H 4.Y;Zg.2// // H 0.Y;H4.Zg.2/// // ƒw ˝ Br.Y /;

There is a natural W -action on X 0 and g is W -equivariant (with W acting trivially
on Y ). Therefore,W acts on the complex Zg.2/. It follows that the bottom sequence
in the diagram is a sequence of W -module homomorphisms.

By Proposition 3.6,

H 0.Y;H4.Zf .2/// ' S2.ƒw/=S
2.ƒw/

W ;

ˇ is injective andH 0.Y;H4.Zf .2/// is isomorphic to the kernel of theW -equivariant
homomorphism

H 0.Y;H4.Zg.2/// �! N.Y /;

where N is defined in Proposition 3.6.
By 5-Lemma, ˛ is also injective and H 4.Y;Zf .2// is isomorphic to the kernel

of the W -equivariant composition

H 4.Y;Zg.2// �! H 0.Y;H4.Zh.2/// �! N.Y /:

It follows that the top row in the diagram is a sequence of W -equivariant
homomorphisms. This gives the second exact sequence in the statement of the
theorem.
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Applying the cohomology functor to the exact triangle (3.3) and using (3.2)
and (3.5) we get exact sequences

0 �! A1.Y;K2/ �! A1.X;K2/ �! ƒw ˝ F ŒY �
�
�! H 4;2.Y /

�! H 4;2.X/ �! H 4.Y;Zf .2// �! H 5;2.Y /;

(3.8)

0 �! A1.Y;K2/ �! A1.X 0; K2/ �! ƒw ˝ F ŒY �
�
�! H 4;2.Y /

�! H 4;2.X 0/ �! H 4.Y;Zg.2// �! H 5;2.Y /:

(3.9)

The first exact sequence in the statement of the theorem is (3.8). Comparing the exact
sequences (3.8) and (3.9) via themorphismX 0 �! X , we get a commutative diagram
similar to the one above. We have shown that H 4.Y;Zf .2// is a W -submodule
of H 4.Y;Zg.2//. Again, by 5-Lemma we see that H 4;2.X/ is a W -submodule
ofH 4;2.X 0/. It follows that (3.8) is an exact sequence ofW -module homomorphisms.

4. Cohomology of classifying spaces

4.1. Balanced elements. Let A� be a cosimplicial abelian group and write h�.A�/
for the homology groups of the associated complex of abelian groups. If A� is
a constant cosimplicial abelian group (all coface and codegeneracy maps are the
identity), we have h0.A�/ D A0 and hi .A�/ D 0 for all i > 0.

LetG be a split reductive group over F . Choose a generically free representation
V of G such that there is a G-equivariant open subset U � V with the property
codimV .V n U/ � 3 and a versal G-torsor f W U �! U=G (see [24, Remark 1.4]
or [5, Lemma 9]). Moreover, we may assume that .U=G/.F / ¤ ;.

Write U n for the product of n copies of U with the diagonal action of G. Let
H W SmVar.F / �! Ab be a contravariant functor from the category of smooth
varieties over F to the category of abelian groups. ThenH.U �=G/ is a cosimplicial
abelian group. We have the two maps

H.pi / W H.U=G/ �! H.U 2=G/; i D 1; 2;

where pi W U 2=G �! U=G are the projections. An element v 2 H.U=G/ is
called balanced if H.p1/.v/ D H.p2/.v/. We write H.U=G/bal for the subgroup
of balanced elements in H.U=G/. In other words, H.U=G/bal D h0

�
H.U �=G/

�
(see [2]).

We write H.X/ for the cokernel of the homomorphism H.SpecF / �! H.X/

for a smooth variety X over F induced by the structure morphism of X .

4.2. Cohomology of the classifying space. By [2, Corollary 3.5], the group

H 0
Zar
�
BG;Hn.Q=Z.j //

�
WD H 0

Zar
�
U=G;Hn.Q=Z.j //

�
bal
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is independent of the choice of U and we have an isomorphism

H 0
Zar
�
BG;Hn.Q=Z.j //

� �
�! Invn

�
G;Q=Z.j /

�
: (4.1)

By [20, §3d] and Proposition 3.5, the group

H 4;2.BG/ WD H 4;2.U=G/bal (4.2)

is also independent of the choice of U and there is an exact sequence

0 �! CH2.BG/ �! H 4;2.BG/ �! Inv3
�
G;Q=Z.2/

�
�! 0: (4.3)

Note that since the functorH 4;2 is not homotopy invariant in general, we cannot use
the machinery of [24] and [10] to defineH 4;2.BG/.
Theorem 4.1. LetG be a split reductive group over F , T � G a split maximal torus
and C the kernel of the universal cover of the commutator subgroup ofG. Then there
is an exact sequence

0 �! C � ˝ F � �! H
4;2
.BG/ �! S2.T �/W �! 0:

Proof. Applying Theorem 3.7 to the versal G-torsors f n W U n �! U n=G for all n
we get an exact sequence

A1.U n=B;K2/ �! ƒw ˝ F ŒU
n=G�� �! H 4;2.U n=G/

�! H 4;2.U n=B/ �! H 4.U n=G;Zf n.2// (4.4)

of W -modules. The W -action onH 4;2.U n=G/ is trivial. By Proposition 2.4,

A1.U n=B;K2/ D A
1.BB;K2/ D T � ˝ F �:

Note that
F � � F ŒU n=G�� � F ŒU n�� D F ŒV n�� D F �

by the assumption on the codimension of U in V , hence F ŒU n=G�� D F �.
Now we would like to determine the first homomorphism in the exact

sequence (4.4). Let Z be the generic fiber of U n=B ! U n=G. The variety Z
is a twisted form of G=B over the function field F.U n=G/, so ZL ' .G=B/L over
an algebraic closure L of F.U n=G/.

The pull-back map for the morphism Z �! U n=B yields a composition

T � ˝ F � ' A1.BB;K2/ D A1.U n=B;K2/ �! A1.Z;K2/

�! A1.ZL; K2/ ' A
1..G=B/L; K2/ D ƒw ˝ L

�:

By definition, the first homomorphism in the exact sequence (4.4) is given by this
composition. The composition coincides with

T � ˝ F � ' A1.BB;K2/ �! A1..BB/L; K2/
�
�! A1..G=B/L; K2/ D ƒw ˝L

�

with the map � induced by the structure morphism GL �! SpecL (see 2.4).
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ByLemma2.5, this composition is induced by the homomorphism � W T �! ƒw .
It follows that the first homomorphism in the exact sequence (4.4) is isomorphic to
�˝ 1 W T �˝F � �! ƒw ˝F

�. Therefore, its cokernel is isomorphic to C �˝F �
since C � D Coker.T � �! ƒw/. Thus, (4.4) yields an exact sequence

0 �! C � ˝ F � �! H 4;2.U n=G/

�! H 4;2.U n=B/ �! H 4.U n=G;Zf .2//: (4.5)

Since B is special (see proof of Proposition 2.1), every invariant of B is constant.
The exact sequence (4.3) for the group B and Proposition 2.4 then yield:

H
4;2
.BB/ ' CH2.BB/ ' S2.T �/: (4.6)

Taking the balanced elements in the exact sequence (4.5) of cosimplicial groups
and recalling the definitions of H 4;2.BG/ and H 4;2.BB/ given in (4.2), we get a
sequence of homomorphisms of W -modules

0 �! C � ˝ F � �! H
4;2
.BG/ �! H

4;2
.BB/ �! H 4.U=G;Zf .2//;

where f D f 1 W U �! U=G. Note that the sequence is exact by [2, Lemma A.2]
since the first term in (4.5) is a constant cosimplicial group.

We will use the following simple lemma.

Lemma 4.2. Let 0 �! A �! B �! C �! D be an exact sequence of W -
modules. Suppose that W acts trivially on A and B . Then the induced sequence
0 �! A �! B �! CW �! DW is exact.

Recall that W acts trivially on C � ˝ F � and H 4;2
.BG/. Taking into account

Lemma 4.2 and using (4.6) we get an exact sequence

0 �! C � ˝ F � �! H
4;2
.BG/ �! S2.T �/W �! H 4.U=G;Zf .2//W :

It suffices to show that the last term in the sequence is trivial. Recall thatwewriteQ for
the factor group ofG by the commutator subgroup. We haveQ� D G� D CH1.BG/.
The second sequence in Theorem 3.7 reads as follows:

0 �! ƒw ˝Q
�
�! H 4.U=G;Zf .2// �! S2.ƒw/=S

2.ƒw/
W ;

Since H 1.W;S2.ƒw/W / D 0, we have ŒS2.ƒw/=S2.ƒw/W �W D 0 and conclude
thatH 4.U=G;Zf .2//W D 0.
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5. Degree 3 invariants

Let G be a split reductive group over F and T � G a split maximal torus. We have
the following diagram

0

��
C � ˝ F �

�� ((
0 // CH2.BG/ //



&&

H
4;2
.BG/ //

��

Inv3
�
G;Q=Z.2/

�
norm

// 0

S2.T �/W

��
0

with the exact row and column by (4.3) and Theorem 4.1.
Let ZŒT �� be the group ring of T � and let

ci W ZŒT �� �! S i .T �/

be abstract Chern classes (see [20, 3c]). In particular, if a D
P
i e
xi 2 ZŒT �� (we

use the exponential notation for the elements in ZŒT ��), then

c1.a/ D
X
i

xi 2 S1.T �/ D T � and c2.a/ D
X
i<j

xixj 2 S2.T �/:

By [24, Corollary 3.2], the group CH2.BG/ is generated by the second Chern classes
of representations of G. Since the representation ring of G is equal to ZŒT ��W , the
commutativity of the diagram

ZŒT ��W //

c2

��

ZŒT ��

c2

��
CH2.BG/ // CH2.BT / S2.T �/

implies that the image of 
 , denoted Dec.G/, is generated by the image of the
restriction ZŒT ��W �! S2.T �/W of c2. As

c2.x C y/ D c2.x/C c2.y/C c1.x/c1.y/

for all x; y 2 ZŒT ��W , the square of .T �/W is in Dec.G/. The group ZŒT ��W is
generated by the sums

P
i e
xi , where fxig is theW -orbit of a character in T �. Since
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the composition

ZŒT ��W �! S2.T �/W �! S2.T �/W =.T �W /2

is a group homomorphism, the subgroup Dec.G/ � S2.T �/W is generated by
elements of the following types:

1)
P
i<j xixj , where fxig is the W -orbit of a character in T �,

2) xy, where x; y 2 .T �/W D Q�.

In other words, Dec.G/ is the subgroup of the “obvious” elements in S2.T �/W .

By [2, Theorem 2.4], the group of the Brauer invariants of G

Inv2
�
G;Q=Z.1/

�
normD Inv.G;Br/norm

is isomorphic to Pic.G/ D C �. The homomorphism

C � ˝ F � �! Inv3.G;Q=Z.2//norm

is given by the cup-product, and invariants in the image of this homomorphism are
called decomposable invariants (see [20]).

Theorem 5.1. Let G be a split reductive group, T � G a split maximal torus and C
the kernel of the universal cover of the commutator subgroup ofG. Then the sequence

0 �! C � ˝ F � �! Inv3.G;Q=Z.2//norm �! S2.T �/W =Dec.G/ �! 0

is exact.

Proof. Everything except the injectivity of the first homomorphisms follows from a
diagram chase. LetH be the commutator subgroup of G. The composition

C � ˝ F � �! Inv3.G;Q=Z.2//
res
�! Inv3

�
H;Q=Z.2/

�
is injective and it identifies C � ˝ F � with the decomposable invariants of H by
[20, Theorem 4.2]. The injectivity of the first homomorphism in the composition
follows.

Write Inv3.G;Q=Z.2//ind for the factor group of Inv3.G;Q=Z.2//norm by the
subgroup of decomposable invariants. We have a natural isomorphism

Inv3.G;Q=Z.2//ind ' S2.T �/W =Dec.G/: (5.1)
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6. Restriction to the commutator subgroup

LetG be a split reductive group andH its commutator subgroup. We shall study the
restriction homomorphism

Inv3.G;Q=Z.2// �! Inv3.H;Q=Z.2//:

Consider the polar homomorphism

pol W S2.ƒw/ �! ƒw ˝ƒw ; xy 7! x ˝ y C y ˝ x:

By [18, Proposition 2.2], pol.S2.ƒw/W / is contained in ƒw ˝ƒr , where ƒr is the
root lattice.

By [19, §9], the embedding of ƒr into ƒw factors as follows:

ƒr
�
�! T �

�
�! ƒw :

Let ˛ be the composition

S2.ƒw/
W pol
�! .ƒw ˝ƒr/

W 1˝�
�! .ƒw ˝ T

�/W :

Let S be a split maximal torus of H contained in T . The character group S� is
the image of � . We have a commutative diagram

S2.S�/W� _

��

pol
�! S� ˝ S�� _

��

� s

&&
S2.ƒw/W

˛ // .ƒw ˝ T
�/W

ˇ // ƒw ˝ S
� �
� // ƒw ˝ƒw :

Note that the kernel of the homomorphism ƒw ˝ T � �! ƒw ˝ S� is equal
to ƒw ˝Q

�, where Q D G=H D T=S . Since .ƒw ˝ Q�/W D 0, the
homomorphism ˇ is injective. Therefore, we have the following commutative key
diagram

S2.S�/W

''ww
S2.ƒw/W

˛ ''

.S� ˝ T �/W
� � //

� _

��

S� ˝ S�� _

��
.ƒw ˝ T

�/W
� � ˇ //

����

ƒw ˝ S
�

����
C � ˝Q�

� � // C � ˝ T � // // C � ˝ S�
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with vertical exact sequences, where C � D ƒw=S
� is the character group of the

kernel C of a universal cover eH �! H . A diagram chase yields a homomorphism

� W S2.S�/W �! C � ˝Q�: (6.1)

Lemma 6.1. An element u 2 S2.S�/W belongs to the image of

S2.T �/W �! S2.S�/W

if and only if pol.u/ belongs to the image of

.S� ˝ T �/W �! S� ˝ S�:

Proof. Let X be the kernel of the natural homomorphism S2.T �/ �! S2.S�/. We
have an exact sequence

0 �! S2.Q�/ �! X �! S� ˝Q� �! 0

and the following commutative diagram with exact rows

X
� � //

��

S2.T �/ // //

��

S2.S�/

pol
��

S� ˝Q�
� � // S� ˝ T � // // S� ˝ S�;

where the middle arrow is the composition of pol W S2.T �/ �! T � ˝ T � with the
natural homomorphism T � ˝ T � �! S� ˝ T �.

SinceW acts trivially on S2.Q�/, we haveH 1.W;S2.Q�// D 0. It follows that
the right vertical map in the commutative diagram

S2.T �/W //

��

S2.S�/W //

pol
��

H 1.W;X/� _

��
.S� ˝ T �/W // .S� ˝ S�/W // H 1.W; S� ˝Q�/

with exact rows is injective. The result follows by diagram chase.

The following statement is a consequence of Lemma 6.1 and the key diagram
chase.
Proposition 6.2. The sequence

S2.T �/W �! S2.S�/W
�
�! C � ˝Q�

is exact.
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The first homomorphism in the proposition takes Dec.G/ surjectively onto
Dec.H/ (see the proof of [19, Lemma 5.2]). It follows that �.Dec.H// D 0.
Theorem 5.1, applied toH , gives then a composition

Inv3.H;Q=Z.2// �! S2.S�/W =Dec.H/ �! C � ˝Q�:

The isomorphisms (5.1) forH and G, the injectivity of the map

S2.T �/W =Dec.G/ �! S2.S�/W =Dec.H/

(see [19, Lemma 5.2(2)]) and Proposition 6.2 yield the following theorem.

Theorem 6.3. Let G be a split reductive group, H � G the commutator subgroup,
Q D G=H and C the kernel of the universal cover eH �! H . Then the sequence

0 �! Inv3.G;Q=Z.2// �! Inv3.H;Q=Z.2// �! C � ˝Q�

is exact.

Corollary 6.4. If H is either simply connected or adjoint, then the restriction
homomorphism Inv3.G;Q=Z.2// �! Inv3.H;Q=Z.2// is an isomorphism.

Proof. If H is simply connected, then C � D 0. If H is adjoint, S� D ƒr , so
the surjection T � �! S� is split by the map ƒr �! T �. It follows that the map
S2.T �/W �! S2.S�/W is surjective, hence � is zero in Proposition 6.2.

7. Reductive invariants

Let H be a split semisimple group. A reductive group G is called a strict reductive
envelope of H (see [19, §10]), if H is the commutator subgroup of G and the
(scheme-theoretic) center of G is a torus. By [19, §10], if G is a strict reductive
envelope ofH , the restriction map

Inv3.G;Q=Z.2//ind �! Inv3.H;Q=Z.2//ind

is injective (see also Theorem 6.3) and its image Inv3.H;Q=Z.2//red is independent
of the choice of G. This is the subgroup of reductive indecomposable invariants
ofH .

By [8, Part II, 6.10], the group S2.ƒw/W is free abelian with canonical basis qj
indexed by the set of irreducible components of the Dynkin diagram of G.

We write ˛ij 2 ƒr for the simple roots of the j th component of the root system
of H and wij 2 ƒw for the corresponding fundamental weights. Let dij be the
square of the length of the co-root .˛ij /_.
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Proposition 7.1. Let q D
P
j kj qj 2 S2.S�/W � S2.ƒw/W with kj 2 Z. Let I 2

Inv3.H;Q=Z.2//ind be the element corresponding to q under the isomorphism (5.1).
Then I is reductive indecomposable if and only if the order of wij in C � divides
dijkj for all i and j .

Proof. By construction, the composition of � in (6.1) with the injective map
C � ˝Q� �! C � ˝ T � factors into the composition

S2.S�/W �! S2.ƒw/
W pol
�! ƒw ˝ƒr �! C � ˝ƒr �! C � ˝ T �:

As G is strict, ƒr is a direct summand of T �, hence the last map in the sequence is
injective. Therefore, the sequence

S2.T �/W �! S2.S�/W
� 0

�! C � ˝ƒr

is exact by Proposition 6.2.
It follows from Theorem 6.3 that I is reductive indecomposable if and only if q

belongs to the kernel of � 0. By [19, §10], the polar form of qj is equal toX
i

dijwij ˝ ˛ij 2 ƒw ˝ƒr :

Since the roots ˛ij form a Z-basis for ƒr , q belongs to the kernel of � 0 if and only if
the order of wij in C � divides dijkj for all i and j .

Remark 7.2. The implication “)” of Proposition 7.1 was earlier proved in [19,
Proposition 10.6].

We compute the group Inv3.H;Q=Z.2//red for a simple group H . If H is ether
simply connected or adjoint, then all invariants are reductive indecomposable by
Corollary 6.4. In what follows we consider all simple groups H that are neither
simply connected nor adjoint (thus, the order of the center of the simply connected
cover ofH is not a prime integer).

Case An�1. Let H be a split simple group of type An�1, i.e., H D SLn =�m for
some m dividing n. We claim that Inv3.H;Q=Z.2//red D 0. It is sufficient to show
that the p-primary component is trivial for every prime p. Let r be the largest power
of p dividing m. Note that the group GLn =�m is a strict envelope of H and the
kernel of the natural homomorphism GLn =�r �! GLn =�m is finite of degree
prime to p. It follows from [19, Proposition 7.1] that the p-primary components of
the groups of degree 3 invariants of H and SLn =�r are isomorphic. Replacing m
by r we may assume that m is a p-power.

Let q be the canonical generator of S2.S�/W . It is proved in [1, Theorem 4.1]
that if Inv3.H;Q=Z.2//norm is nonzero, then mq 2 Dec.H/. On the other hand, by
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Proposition 7.1, if I is a reductive indecomposable invariant of H corresponding
to a multiple kq of q, then k divides the order of the first fundamental weight in
C � D Z=mZ. The latter is equal to m, i.e., m divides k, hence kq 2 Dec.H/ and
therefore, the invariant I is trivial.

Remark 7.3. The group G D GLn =�m is a strict envelope of H D SLn =�m. A
G-torsor over a fieldK is a central simple algebraA of degree n overK and exponent
dividing m. Thus, every reductive indecomposable invariant of H is an invariant
of such algebras. We have shown that every normalized degree 3 invariant of A is
decomposable, i.e., it is equal to ŒA� [ .x/ 2 H 3.K;Q=Z.2// for some x 2 F �,
where ŒA� is the class of A in Br.K/ D H 2.K;Q=Z.1//. In other words, central
simple algebras of fixed degree and exponent have no nontrivial indecomposable
degree 3 invariants.

Case Dn. If H is the special orthogonal group OC2n, then Inv3ind.H;Q=Z.2// D 0

(see the proof of [19, Proposition 8.2]). FinallyH D HSpin2n is the half-spin group
when n � 4 is even. Let q be the canonical generator of S2.S�/W . It is shown
in [1, Theorem 5.1] that

Inv3.H;Q=Z.2//ind D

8̂<̂
:
0; if n � 2 modulo 4 or n D 4;
2Zq=4Zq; if n � 4 modulo 8 and n:4;
Zq=4Zq; if n � 0 modulo 8,

where q is the canonical generator of S2.ƒw/W . The orders of the fundamental
weights in C � D Z=2Z are equal to 1 or 2. By Proposition 7.1,

Inv3.H;Q=Z.2//red D

(
0; if n � 2 modulo 4 or n D 4;
2Zq=4Zq; if n � 0 modulo 4 and n > 4.

Remark 7.4. It is shown in [20, Section 4b] that the group

Inv3.H;Q=Z.2//ind D Inv3.H;Q=Z.2//red

for the split adjoint simple groupH of typeDn when n is divisible by 4, is isomorphic
to 2Zq=4Zq. Therefore, in this case the pull-back homomorphism

Inv3.H;Q=Z.2//red �! Inv3.H;Q=Z.2//red

is an isomorphism. In particular, the value of a reductive degree 3 invariant of the
half-spin groupH at anH -torsor depends only on the corresponding central simple
algebra of degree 2n with a quadratic pair (see [13]).



Vol. 91 (2016) Degree three cohomological invariants of reductive groups 517

References

[1] H. Bermudez and A. Ruozzi, Degree 3 cohomological invariants of split simple
groups that are neither simply connected nor adjoint, J. Ramanujan Math. Soc.,
29 (2014), no. 4, 465–481. Zbl 1328.20063 MR 3284049

[2] S. Blinstein and A. Merkurjev, Cohomological invariants of algebraic
tori, Algebra Number Theory, 7 (2013), no. 7, 1643–1684. Zbl 06226681
MR 3117503

[3] J.-L. Colliot-Thélène, Birational invariants, purity and the Gersten conjecture,
in K-theory and algebraic geometry: connections with quadratic forms and
division algebras (Santa Barbara, CA, 1992), 1–64, Amer. Math. Soc.,
Providence, RI, 1995. Zbl 0834.14009 MR 1327280

[4] J.-L. Colliot-Thélène, R. Hoobler and B. Kahn, The Bloch–Ogus–Gabber
theorem, in Algebraic K-theory (Toronto, ON, 1996), 31–94, Amer. Math.
Soc., Providence, RI, 1997. Zbl 0911.14004

[5] D. Edidin and W. Graham, Equivariant intersection theory, Invent. Math., 131
(1998), no. 3, 595–634. Zbl 0940.14003 MR 1614555

[6] R. Elman, N. Karpenko and A. Merkurjev, The algebraic and geometric theory
of quadratic forms, American Mathematical Society Colloquium Publications,
56, American Mathematical Society, Providence, RI, 2008. Zbl 1165.11042
MR 2427530

[7] H.Esnault, B.Kahn,M.Levine andE.Viehweg, TheArason invariant andmod 2
algebraic cycles, J. Amer. Math. Soc., 11 (1998), no. 1, 73–118. Zbl 1025.11009
MR 1460391

[8] R. Garibaldi, A. Merkurjev and J.-P. Serre, Cohomological invariants in
galois cohomology, American Mathematical Society, Providence, RI, 2003.
Zbl 1159.12311 MR 1999383

[9] M. Gros, Classes de Chern et classes de cycles en cohomologie de Hodge–
Witt logarithmique, Mém. Soc. Math. France (N.S.), (1985), no. 21, 87.
Zbl 0615.14011 MR 0844488

[10] P. Guillot, Geometric methods for cohomological invariants, Doc. Math., 12
(2007), 521–545 (electronic). Zbl 1137.14010 MR 2365912

[11] L. Illusie, Complexe de deRham-Witt et cohomologie cristalline, Ann. Sci.
École Norm. Sup. (4), 12 (1979), no. 4, 501–661. Zbl 0436.14007 MR 0565469

[12] B. Kahn, Applications of weight-two motivic cohomology, Doc. Math., 1
(1996), no. 17, 395–416. Zbl 0883.19002 MR 1423901

[13] M.-A. Knus, A. Merkurjev, M. Rost and J.-P. Tignol, The book of involutions,
with a preface in French by J. Tits, AmericanMathematical Society, Providence,
RI, 1998. Zbl 0955.16001 MR 1632779

https://zbmath.org/?q=an:1328.20063
http://www.ams.org/mathscinet-getitem?mr=3284049
https://zbmath.org/?q=an:06226681
http://www.ams.org/mathscinet-getitem?mr=3117503
https://zbmath.org/?q=an:0834.14009
http://www.ams.org/mathscinet-getitem?mr=1327280
https://zbmath.org/?q=an:0911.14004
https://zbmath.org/?q=an:0940.14003
http://www.ams.org/mathscinet-getitem?mr=1614555
https://zbmath.org/?q=an:1165.11042
http://www.ams.org/mathscinet-getitem?mr=2427530
https://zbmath.org/?q=an:1025.11009
http://www.ams.org/mathscinet-getitem?mr=1460391
https://zbmath.org/?q=an:1159.12311
http://www.ams.org/mathscinet-getitem?mr=1999383
https://zbmath.org/?q=an:0615.14011
http://www.ams.org/mathscinet-getitem?mr=0844488
https://zbmath.org/?q=an:1137.14010
http://www.ams.org/mathscinet-getitem?mr=2365912
https://zbmath.org/?q=an:0436.14007
http://www.ams.org/mathscinet-getitem?mr=0565469
https://zbmath.org/?q=an:0883.19002
http://www.ams.org/mathscinet-getitem?mr=1423901
https://zbmath.org/?q=an:0955.16001
http://www.ams.org/mathscinet-getitem?mr=1632779


518 D. Laackman and A. Merkurjev CMH

[14] S. Lichtenbaum,The construction ofweight-two arithmetic cohomology, Invent.
Math., 88 (1987), no. 1, 183–215. Zbl 0615.14004 MR 0877012

[15] S. Lichtenbaum, New results on weight-two motivic cohomology, in The
GrothendieckFestschrift. Vol. III, 35–55,BirkhäuserBoston,Boston,MA, 1990.
Zbl 0809.14004 MR 1106910

[16] A. Merkurjev, The group H 1.X;K2/ for projective homogeneous varieties,
Algebra i Analiz, 7 (1995), no. 3, 136–164. MR 1353493

[17] A. Merkurjev and A. A. Suslin, The groupK3 for a field, Izv. Akad. Nauk SSSR
Ser. Mat., 54 (1990), no. 3, 522–545. MR 1072694

[18] A. Merkurjev, Weight two motivic cohomology of classifying spaces for
semisimple groups, 2013. To appear in AJM.

[19] A. Merkurjev, Unramified degree three invariants of reductive groups, Adv.
Math., 293 (2016), 697–719. Zbl 06559625 MR 3474332

[20] A. Merkurjev, Degree three cohomological invariants of semisimple groups, J.
Eur. Math. Soc. (JEMS), 18 (2016), no. 3, 657–680. Zbl 06569454MR 3463420

[21] J. S. Milne, Étale cohomology, Princeton University Press, Princeton, N.J.,
1980. Zbl 0433.14012 MR 0559531

[22] M. Rost, Chow groups with coefficients, Doc. Math., 1 (1996), no. 16, 319–393
(electronic). Zbl 0864.14002 MR 1418952

[23] A. A. Suslin, Torsion in K2 of fields, K-Theory, 1 (1987), no. 1, 5–29.
Zbl 0635.12015 MR 0899915

[24] B. Totaro, The Chow ring of a classifying space, in Algebraic K-theory
(Seattle, WA, 1997), 249–281, Proc. Sympos. Pure Math., 67, Amer. Math.
Soc., Providence, RI, 1999. Zbl 0967.14005 MR 1743244

Received November 3, 2015; revised March 19, 2016

D. Laackman, Department of Mathematics, University of California, Los Angeles,
CA 90095-1555, USA
E-mail: dlaackman@math.ucla.edu
A. Merkurjev, Department of Mathematics, University of California, Los Angeles,
CA 90095-1555, USA
E-mail: merkurev@math.ucla.edu

https://zbmath.org/?q=an:0615.14004
http://www.ams.org/mathscinet-getitem?mr=0877012
https://zbmath.org/?q=an:0809.14004
http://www.ams.org/mathscinet-getitem?mr=1106910
http://www.ams.org/mathscinet-getitem?mr=1353493
http://www.ams.org/mathscinet-getitem?mr=1072694
https://zbmath.org/?q=an:06559625
http://www.ams.org/mathscinet-getitem?mr=3474332
https://zbmath.org/?q=an:06569454
http://www.ams.org/mathscinet-getitem?mr=3463420
https://zbmath.org/?q=an:0433.14012
http://www.ams.org/mathscinet-getitem?mr=0559531
https://zbmath.org/?q=an:0864.14002
http://www.ams.org/mathscinet-getitem?mr=1418952
https://zbmath.org/?q=an:0635.12015
http://www.ams.org/mathscinet-getitem?mr=0899915
https://zbmath.org/?q=an:0967.14005
http://www.ams.org/mathscinet-getitem?mr=1743244
mailto:dlaackman@math.ucla.edu
mailto:merkurev@math.ucla.edu

	Introduction
	Preliminary results
	K-cohomology and Rost's spectral sequence
	K-cohomology of G, G/T and G/B
	K-cohomology of varieties associated to a torsor
	K-cohomology of classifying spaces

	The motivic cohomology of weight 2
	The complexes Q/Z(j)
	Unramified cohomology
	The complexes ZX(j)
	Homology of the complex Zf(2)
	Motivic cohomology of varieties associated to a torsor

	Cohomology of classifying spaces
	Balanced elements
	Cohomology of the classifying space

	Degree 3 invariants
	Restriction to the commutator subgroup
	Reductive invariants

