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Abstract. We study the birational geometry of some moduli spaces of abelian varieties with
extra structure: in particular, with a symmetric theta structure and an odd theta characteristic.
For a .d1; d2/-polarized abelian surface, we show how the parities of the di influence the
relation between canonical level structures and symmetric theta structures. For certain values
of d1 and d2, a theta characteristic is needed in order to define Theta-null maps. We use these
Theta-null maps and preceding work of other authors on the representations of the Heisenberg
group to study the birational geometry and the Kodaira dimension of these moduli spaces.
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1. Introduction

Moduli spaces of polarized abelian varieties are one of the subjects with the longest
history in algebraic geometry. Very often their study has proceeded along with
that of theta functions, in a mingle of analytic and algebraic techniques. Classical
results of Tai, Freitag, Mumford and more recent results of Barth [2], O’Grady [51],
Gritsenko [20, 21], Gritsenko and Sankaran [22], Hulek and Sankaran [29] agree on
the fact that moduli spaces of polarized abelian varieties are very often of general
type. Anyway, some exceptions can be found, especially for abelian varieties of
small dimension and polarizations of small degree. In these cases the situation has
shown to be different and the corresponding moduli spaces are related to beautiful
explicit geometrical constructions. For example, the moduli space of principally
polarized abelian varieties of dimension g is of general type if g � 7, and its
Kodaira dimension is still unknown for g D 6. On the other hand the picture is clear
for g � 5. See for instance the work of Katsylo [33] for g D 3, van Geemen [16] and
Dolgachev–Ortland [13] for g D 3 with a level 2 structure, Clemens [9] for g D 4,
and Donagi [14], Mori–Mukai [46] and Verra [59] for g D 5.
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Moreover, the geometry of polarized abelian varieties is so rich that one can
append many further structures to the moduli functors, obtaining finite covers of
the moduli spaces with beautifully intricate patterns, and curious group theory
coming into play. One first example of such constructions is the so-called level
structure (see Section 2.0.2) which endows the polarized abelian variety with some
discrete structure on certain torsion points related to its polarization. In the case
of abelian surfaces with a polarization of type .1; d/, moduli spaces of polarized
abelian surfaces with a level structure have been studied by Gritsenko [20,21], Hulek
and Sankaran [29], Gross and Popescu [24–27], in particular with respect to their
birational geometry (rationality, unirationality, uniruledness, andKodaira dimension)
and the general picture seems quite clear. The Kodaira dimension of moduli spaces
of .1; d/-polarized abelian surfaces has been studied extensively by Sankaran [57],
Erdenberger [15] and by Hulek, Kahn and Weintraub in [28], where polarizations
with level structure are also investigated. In particular, Gritsenko has shown that the
moduli spaceA2.1; d/ of polarized abelian surfaces of type .1; d/ is not unirational
if d � 13 and d ¤ 14; 15; 16; 18; 20; 24; 30; 36. Furthermore, thanks again to
the results in [20] and [29] it is now proven that the moduli space of principally
polarized abelian surfaces with a level structure A2.1; p/lev is of general type for all
primes p � 37.

The aim of this paper is to go a little further in this study of the birational
geometry of finite covers ofmoduli of .1; d/-polarized abelian surfaces, concentrating
in particular on some spaces that cover finitely the moduli spaces with level structure.
In fact, we add to the moduli functor the datum of a symmetric theta structure (see
Section 2.0.3), that is an isomorphism of Mumford’s Theta group and the abstract
Heisenberg group that commutes with the natural involution on the abelian surface.
This aspect seems to have been studied quite deeply in the case of a polarization
of type 2, 3 or 4 (for instance see [6, 12, 17, 50, 55, 56] and [5] for applications to
non-abelian theta functions). However, up till now, to the best of our knowledge, it
seems to have been ignored for other polarizations. Our study will be mainly aimed
at understanding the birational geometry of moduli spaces and will be performed via
theta-constant functions. In order to have well-defined theta-constants, it often turns
out to be very important to add to our moduli space the choice of a theta characteristic,
seen as the quadratic form induced on the points of 2-torsion by a symmetric line
bundle in the algebraic equivalence class of the polarization. For our goals, the
choice of the theta characteristic will be equivalent to the choice of the symmetric
line bundle. The main results in Section 4 can be summarized as follows.

Theorem 1. Let d1; d2 be positive integers such that d1jd2, and letA2.d1; d2/lev be
the moduli space of .d1; d2/-polarized abelian surfaces with a level structure.

– If d1 is odd then there exist two quasi-projective varieties A2.d1; d2/�sym
and A2.d1; d2/Csym parametrizing polarized abelian surfaces with level
.d1; d2/-structure, a symmetric theta structure and an odd, respectively even
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theta characteristic. Furthermore, there are natural morphisms

f � W A2.d1; d2/�sym ! A2.d1; d2/lev; f C W A2.d1; d2/Csym ! A2.d1; d2/lev

forgetting the theta characteristic. If d1; d2 are both odd then f � and f C have
degree 6 and 10 respectively. If d2 is even then f � has degree 4, while f C

has degree 12.

– If d1 and d2 are both even then there exists a quasi-projective va-
riety A2.d1; d2/sym parametrizing polarized abelian surfaces with level
.d1; d2/-structure, and a symmetric theta structure. Furthermore, there is
a natural morphism

f W A2.d1; d2/sym ! A2.d1; d2/lev

of degree 16 forgetting the theta structure.

In this paper we concentrate on abelian surfaces with an odd theta characteristic
and on the moduli spaces A2.1; d/�. The case of even theta characteristic will
be addressed in our forthcoming paper [7]. The structure of A2.1; d/� is slightly
different depending on whether d is even and f � has degree 4, or d is odd and f �
has degree 6.

In Section 5 we study the birational geometry of these moduli spaces using objects
and techniques coming from birational projective geometry such as varieties of sums
of powers, conic bundles, and the Segre criterion for the unirationality of smooth
quartic 3-folds.

Our main results in Theorems 6.8, 6.10, 6.18, 6.15, Propositions 6.12, 6.19, and
Paragraphs 6.1.4, 6.2.2, 6.2.4, can be summarized as follows.
Theorem 2. Let A2.1; d/�sym be the moduli space of .1; d/-polarized abelian
surfaces, endowed with a symmetric theta structure and an odd theta characteristic.
Then

– A2.1; 7/�sym is birational to the variety of sums of powers VSP6.F; 6/ (see
Definition 6.5), where F 2 kŒx0; x1; x2�4 is a general quartic polynomial. In
particular A2.1; 7/�sym is rationally connected.

– A2.1; 9/�sym is rational.

– A2.1; 11/�sym is birational to a sextic pfaffian hypersurface in P4, which is
singular along a smooth curve of degree 20 and genus 26.

– A2.1; 13/�sym is birational to a 3-fold of degree 21 in P5, which is scheme-
theoretically defined by three sextic pfaffians.

– A2.1; 8/�sym is birational to a conic bundle over P2 whose discriminant locus
is a smooth curve of degree 8. In particular,A2.1; 8/�sym is unirational but not
rational.
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– A2.1; 10/�sym is rational.

– A2.1; 12/�sym is unirational but not rational.

– A2.1; 14/�sym is birational to a 3-fold of degree 16 in P5, which is singular
along a curve of degree 24 and scheme-theoretical complete intersection of
two quartic pfaffians.

– A2.1; 16/�sym is birational to a 3-fold of degree 40, and of general type in P6.

Plan of the paper. In Section 2 we introduce most of our base notation and make a
quick summary of the results we will need about level structures, the Theta and
Heisenberg group, theta structures, theta characteristics and quadratic forms on
Z=2Z-vector spaces. Section 3 is devoted to the study of linear systems on abelian
surfaces. Since we need an intrinsic way to compute the dimension of the spaces
of sections for the objects of our moduli spaces, we make use of the Atiyah–Bott–
Lefschetz fixed point formula, and deduce these dimensions for different choices of
the line bundle representing the polarization. The goal of Section 4 is the construction
of the arithmetic groups that define our moduli spaces as quotients of the Siegel half-
space H2. Once these subgroup are defined, we display the theta-constant maps that
yield maps to the projective space. These maps, and their images, are studied in
Section 5, by tools of projective and birational geometry, and several results about
the birational geometry and Kodaira dimension of A2.d1; d2/�sym are proven.

Acknowledgements. First of all, we want to heartfully thank the anonymous
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us to bring this paper to a better form. We gratefully acknowledge G. van der Geer,
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was a Post-Doctorate at IMPA, funded by CAPES-Brazil. The first named author is
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2. Notation and preliminaries

The main references for this section are [4] and [28]. Let A be an abelian variety of
dimension g over the complex numbers. The varietyA is a quotient V=ƒ, where V is
a g-dimensional complex vector space andƒ a lattice. LetL be an ample line bundle
on A, and let us denote by H the corresponding polarization, i.e. the first Chern
class of L. We denote by PicH .A/ the set of line bundles whose polarization is H .
The polarization H induces a positive-definite Hermitian form, whose imaginary
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part E WD Im.H/ takes integer values on the lattice ƒ. There exists a natural map
from A to its dual, �L W A ! OA, defined by L as x 7! t�xL ˝ L, where tx is the
translation in A by x. We denote the kernel of �L by K.L/. It always has the form
K.L/ D .Z=d1Z ˚ � � � ˚ Z=dgZ/˚2, where d1jd2j � � � jdg . The ordered g-tuple
D D .d1; : : : ; dg/ is called the type of the polarization. For sake of shortness, we
will write Zg=DZg for Z=d1Z˚� � �˚Z=dgZ. The formE defines theWeil pairing
onK.L/ as eH .x; y/ WD exp.2�iE.x; y// for x; y 2 K.L/. A decomposition of the
lattice ƒ D ƒ1 ˚ƒ2 is said to be a decomposition for L if ƒ1 and ƒ2 are isotropic
for E. This induces a decomposition of real vector spaces V D V1˚ V2: Let us now
define ƒ.L/ WD fv 2 V j E.v;ƒ/ � Zg. Since K.L/ D ƒ.L/=ƒ, a decomposition
of ƒ also induces a decomposition

K.L/ D K1.L/˚K2.L/; (2.1)

where both subgroups are isotropicwith respect to theWeil pairing and are isomorphic
to .Zg=DZ/g .

2.0.1. Theta characteristics. Let .A;H/ be a polarized abelian variety and let
{ W A! A be the canonical involution. A line bundle L is symmetric if {�L Š L.
If L is symmetric, a morphism ' W L ! L is called an isomorphism of L over { if
it commutes with { for every x 2 A, and the induced map '.x/ W L.x/! L.�x/ is
C-linear. The isomorphism is normalized if '.0/ is the identity. The following result
is well known, [49, Section 2], [4, Lemma 4.6.3].
Lemma 2.1. Any symmetric line bundle L 2 Pic.A/ admits a unique normalized
isomorphism ' W L! L over {.

We will denote by AŒn� the set of n-torsion points of the abelian variety A. Our
next goal is to define theta characteristics via the theory of quadratic forms over the
Z=2Z-vector space AŒ2�. Given a polarization H 2 NS.A/, we define a symmetric
bilinear form qH W AŒ2� � AŒ2�! f˙1g by qH .v; w/ WD exp.�iE.2v; 2w//.
Definition 2.2. A theta characteristic is a quadratic form q W AŒ2�! f˙1g associated
to eH , that is:

q.x/q.y/q.x C y/ D qH .x; y/;

for all x; y 2 AŒ2�.
We denote the set of theta characteristics by#.A/. Every symmetric line bundleL

defines a theta characteristic as follows.
Definition 2.3. Let L 2 PicH .A/ be a symmetric line bundle, and x 2 AŒ2�. We
define eL.x/ as the scalar ˇ such that '.x/ W L.x/

�
! .{�L/.x/ D L.{.x// D L.x/

is multiplication by ˇ.
Let D be the symmetric divisor on A such that L Š OA.D/. The quadratic

form eL can be also defined as follows:

eL.x/ WD .�1/multx.D/�mult0.D/: (2.2)



568 M. Bolognesi and A. Massarenti CMH

From [4, Lemma 4.6.2] one sees that the set of theta characteristics for an abelian
surface is a torsor under the action of AŒ2� and hence it has cardinality 16. For a nice
and general introduction to the finite geometries in the theory of theta characteristics,
the reader may check [54].

2.0.2. Level structures and theta structures. If x 2 K.L/, then x induces an
isomorphism t�xL Š L, so we get a representationK.L/! PGL.H 0.A;L//: This
representation does not come from a linear representation of K.L/, but it lifts to a
linear representation of the central extension ofK.L/ defined by the following exact
sequence:

1! C� ! G.L/! K.L/! 0:

The commutator of G.L/ is exactly the Weil pairing eH . The group G.L/ is called
the theta group of L. As an abstract group, G.L/ is isomorphic to the Heisenberg
group H.D/ of type D. The group H.D/ as a set is equal to C � K.D/, where
K.D/ D Zg=DZg ˚Zg=DZg . The group structure ofH.D/ is defined as follows.
Let f1; : : : ; f2g be the standard basis of K.D/. We define an alternating form
eD W K.D/ �K.D/! C� on this basis as follows:

eD.f˛; fˇ / WD

8̂<̂
:
exp.�2�i=d˛/ if ˇ D g C ˛;
exp.2�i=d˛/ if ˛ D g C ˇ;
1 otherwise:

(2.3)

The group structure ofH.D/ is defined via eD . Given .a; x1; x2/; .b; y1; y2/ 2 H.D/
we have .a; x1; x2/; .b; y1; y2/ WD .abeD.x1; y2/; x1 C y1; x2 C y2/. Similarly to
the case of the theta group, the Schur commutator is given by the pairing eD . An
isomorphism � W G.L/ �! H.D/ that restricts to the identity on C� is called a theta
structure. Any theta structure induces a symplectic isomorphism between K.L/
and K.D/, with respect to the alternating forms eL and eD . A symplectic
isomorphismK.L/

�
! K.D/ is traditionally called a level-D structure (of canonical

type).
As we have already observed, the theta group has a natural representation

� W G.L/! GL.H 0.A;L// which lifts in a unique way the representationK.L/!
PGL.H 0.A;L//. The choice of a theta structure induces an isomorphism between �
and a certain representation of H.D/ called Schrödinger representation. Let us
outline its construction. Let Vg.D/ WD Map.Zg=DZg ;C/ be the vector space of
complex functions defined on the set Zg=DZg . The Schrödinger representation
� W H.D/! GL.Vg.D// is irreducible and defined as follows:

�.˛; a; b/.v/ WD ˛eD.�; b/v.�C a/:

The center C� clearly acts by scalar multiplication, hence � induces a projective
representation of K.D/. If A is a surface and D D .d1; d2/, a basis of V2.D/ is
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given by the the functions ıx , for x 2 Z2=DZ2, defined by ıx.y/ WD ıxy , where ıxy
is the Kronecker delta

ıxy WD

(
1 if x D y;
0 otherwise:

(2.4)

Given an ample line bundle L and a decomposition for L, there is a unique basis
f#x j x 2 K1.L/g (see the decomposition in equation (2.1) of canonical theta
functions of the space H 0.A;L/ [4, Section 3.2]. Hence, a canonical basis of theta
functions, indexed by K1.L/ Š Z2=DZ2, for H 0.A;L/ yields an identification
of H 0.A;L/ and V2.D/ such that the two representations H.D/ ! GL.Vg.D//

and G.L/ ! GL.H 0.A;L// coincide. The projective image of A in P.Vg.D//
will be equivariant under the Schrödinger representation, and also all the spaces
H 0.A;IA.n// will be representations of the Heisenberg group. It will be useful for
the rest of the paper to define the finite Heisenberg group.
Definition 2.4. We will denote by Hd1;d2

the subgroup of H.D/ generated by
�1 D .1; 1; 0; 0; 0/, �2 D .1; 0; 1; 0; 0/, �1 D .1; 0; 0; 1; 0/ and �2 D .1; 0; 0; 0; 1/.
Let x D .i; j / 2 Z2=DZ2, the elements �i and �i act on V2.D/ via

�1.ı.i;j // D ı.i�1;j /; �2.ı.i;j // D ı.i;j�1/;

�1.ı.i;j // D �
�i
1 ı.i;j /; �2.ı.i;j // D �

�j
2 ı.i;j /;

where �k WD exp.2�i=dk/.
In particular, if d1 D 1, �1 and �1 act both as the identity, so for shortness we

will denote by � and � the generators �2 and �2, and not consider the first index on
the variables.

2.0.3. Symmetric theta structures. Whenever we talk about symmetric theta struc-
tures, we will implicitly assume that L is a symmetric line bundle. First of all, recall
that K.L/ acts on A via translations. In turn, the involution { acts on K.L/ as �1.
Hence we can define the extended group K.L/e WD K.L/ Ì { and the extended
theta group G.L/e as a central extension of K.L/e by C�. More precisely we set
G.L/e WD G.L/ Ì {L, where {L is the obvious extension of {L to G.L/ acting as
the identity on C�. In a similar way, we introduce the extended Heisenberg group
H.D/e WD H.D/e Ì {D , where {D.z; x1; x2/ D .z;�x1;�x2/. By extended theta
structure we mean an isomorphism of H.D/e with G.L/e inducing the identity
on C�. Any extended theta structure induces a theta structure, but on the other hand
a theta structure � can be extended if and only if it is a symmetric theta structure, that
is if � ı {L D {D ı � .

In particular, the Schrödinger representation � extends to a representation �e
of H.D/e . When A is a surface the action of {D is �e.{D/.ı.i;j // D ı.�i;�j /. The
involution {D acts on the space V2.D/ spanned by delta functions and decomposes
it into an invariant and an anti-invariant eigenspace. We will denote by Pn

C and Pm
�
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the corresponding projective spaces. The dimensions n and m will be computed in
the next section. If D D .1; d/, then Pn

C is given by the equations xi D x�i , for
i 2 Z=dZ, and Pm

� by the equations xi D �x�i , for i in the same range.
Definition 2.5. Let Aut.H.D// be the group of automorphisms of the Heisenberg
groupH.D/. We will denote

AutC�.H.D// WD f� 2 Aut.H.D// j �.t; 0; 0/ D .t; 0; 0/; 8t 2 C�g:

The set of all theta structures for a line bundle L of type D is a principal
homogeneous space under the action of AutC�.H.D//. Let Sp.D/ denote the group
of all automorphisms of K.D/ that preserve the alternating form eD . The set
of all level D structures is a principal homogeneous space for the group Sp.D/.
From [4, Lemma 6.6.3] one sees that any element of AutC�.H.D// induces a
symplectic automorphism of K.D/. Moreover, for all z 2 K.D/ we define an
element 
z.˛; x1; x2/ WD .˛eD.z; x1 C x2/; x1; x2/ 2 AutC�.H.D//. This yields
an injective homomorphism 
 W K.D/ ! AutC�.H.D//. From [4, Lemma 6.6.6]
we obtain the following
Lemma 2.6. There exists an exact sequence

1! K.D/


! AutC�.H.D//! Sp.D/! 1: (2.5)

Remark 2.7. If ' 2 AutC�.H.D//, then � ı ' is also an irreducible level one
representation, that is a central element z 2 C� acts by multiplication with itself.
Hence by the Schur lemma there exists a unique linear map G' W V2.D/! V2.D/,
such that G'.�.h// D �.'.h// for all h 2 H.D/. In this way we obtain a
representation eG W AutC�.H.D//! GL.Vg.D//

' 7! G' :
(2.6)

Lemma 2.8. Let C{D � AutC�.H.D// be the centralizer subgroup of {D , Vg.D/C

and Vg.D/� the eigenspaces of Vg.D/ with respect to the standard involution
on .Z=DZ/g . Then the restriction of the representation eG to C{D splits into two
representations eGC W C{D ! GL.Vg.D/

C/; and eG� W C{D ! GL.Vg.D/
�/:

Theorem 2.9 ([4, Theorem 6.9.5]). LetA be an abelian variety of dimension g andH
be a polarization of type D D .d1; : : : ; dg/ with d1; : : : ; ds odd and dsC1; : : : ; dg
even. There are 22s symmetric line bundles in PicH .A/, each admitting exactly
22.g�s/ �#.Sp.D// symmetric theta structures. The remaining symmetric line bundles
in PicH .A/ do not admit any symmetric theta structure.
Remark 2.10. More precisely, if L 2 PicH .A/, the symmetric theta structures
inducing a given D-level structure correspond to elements of K.L/ \ AŒ2� Š
.Z=2Z/2.g�s/: On the other hand, the symmetric line bundles admitting symmetric
theta structures are represented by elements of AŒ2�=.K.L/ \ AŒ2�/ Š .Z=2Z/2s:
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From Theorem 2.9 and Remark 2.10 we obtain a straightforward version of
Lemma 2.6 for symmetric theta structures.
Lemma 2.11. There exists an exact sequence

1! K.D/ \ AŒ2�! C{D ! Sp.D/! 1 : (2.7)

3. Theta characteristics and linear systems on abelian surfaces

Let .A;H/ be a .d1; d2/-polarized abelian surface and L 2 PicH .A/ a symmetric
line bundle. The normalized isomorphism induces an involution {# W H 0.A;L/ !

H 0.A;L/ defined by {#.s/ D {�.'.s//. In the rest of the paper we will need
an intrinsic computation of the dimensions of the eigenspaces H 0.A;L/C and
H 0.A;L/�. In the same spirit of [6, Section 2.1] we will compute this via the
Atiyah–Bott–Lefschetz fixed point formula [19, p. 421]). Suppose that L admits a
symmetric theta structure (see Theorem 2.9). Denote by AŒ2�C (respectively AŒ2��)
the set of 2-torsion points where eL takes the valueC1 (respectively �1).
Proposition 3.1. Let H be a polarization of type .d1; d2/, with d1jd2 as usual, and
L 2 PicH .A/ a symmetric line bundle admitting a symmetric theta structure. Then
for the theta characteristic eL, we have:

– if both d1 and d2 are odd then #.AŒ2�C/ D 10 and #.AŒ2��/ D 6 (in which
case we say that eL is an even theta characteristic), or #.AŒ2�C/ D 6 and
#.AŒ2��/ D 10 (in which case we say that eL is an odd theta characteristic),

– if d1 is odd and d2 is even then #.AŒ2�C/ D 12 and #.AŒ2��/ D 4 (eL is an
even theta characteristic), or #.AŒ2�C/ D 4 and #.AŒ2��/ D 12 (eL is an odd
theta characteristic),

– if both d1 and d2 are even, then #.AŒ2�C/ D 16 and #.AŒ2��/ D 0, for all
theta characteristics.

Proposition 3.1 follows immediately from [4, Proposition 4.7.5]. We will simply
say that a symmetric line bundle is odd (respectively even) if it induces an odd
(respectively even) theta characteristic eL.
Proposition 3.2. LetA be an abelian surface andL a symmetric line bundle inducing
a polarization of type .d1; d2/ on A, and admitting a symmetric theta structure.

(1) If d1, d2 are odd, and if L is even then

h0.A;L/C D
d1d2 C 1

2
; h0.A;L/� D

d1d2 � 1

2
I

if L is odd then

h0.A;L/� D
d1d2 C 1

2
; h0.A;L/C D

d1d2 � 1

2
:
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(2) If d1 is odd and d2 even, and if L is even then

h0.A;L/C D
d1d2

2
C 1; h0.A;L/� D

d1d2

2
� 1I

if L is odd then

h0.A;L/� D
d1d2

2
C 1; h0.A;L/C D

d1d2

2
� 1:

(3) If d1 and d2 are even, whatever the parity of L, we have

h0.A;L/C D
d1d2

2
C 2; h0.A;L/� D

d1d2

2
� 2:

Moreover, whatever the parity ofL, in the first two cases, the base locus of the invari-
ant linear system is AŒ2�� (hence A \ P.H 0.A;L/C/�DAŒ2�C), and the base locus
of the anti-invariant linear system isAŒ2�C (henceA \ P.H 0.A;L/�/�DAŒ2��). By
definition 0 2 AŒ2�C. When both the coefficients are even, H 0.A;L/C is base point
free, the base locus ofH 0.A;L/� is AŒ2� and hence A \ P.H 0.A;L/C/�DAŒ2�.

Proof. We will use the Atiyah–Bott–Lefschetz fixed point formula. The fixed points
of { are precisely the 2-torsion points, hence the formula gives

2X
jD0

.�1/j Tr.{# W H j .A;L// D
X
˛2AŒ2�

Tr.{ W L˛ ! L˛/

det.Id�.d {/˛/
:

Now we remark that .d {/ D � Id, hence det.Id�.d {/˛/ D 4 for all ˛ 2 AŒ2�. Now,
if L is even X

˛2AŒ2�

Tr.{ W L˛ ! L˛/ D

8̂<̂
:
4 in case (1);
8 in case (2);
16 in case (3):

: (3.1)

If L is odd then these quantities equal �4;�8 and 16, respectively. Then, we
observe that hp.A;L/ D 0 for p > 0 by Kodaira vanishing. By the definition of the
eigenspaces, this in turn means that

2X
jD0

.�1/j Tr.{# W H j .A;L// D h0.A;L/C � h0.A;L/�:

This implies that, if L is an even line bundle representingH , we have

h0.A;L/C C h0.A;L/� D d1d2;

h0.A;L/C � h0.A;L/� D

8̂<̂
:
1 in case (1);
2 in case (2);
4 in case (3):

(3.2)
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which implies the claim. On the other hand, ifL is an odd line bundle representingH ,
then

h0.A;L/C C h0.A;L/� D d1d2;

h0.A;L/C � h0.A;L/� D

8̂<̂
:
�1 in case (1);
�2 in case (2);
4 in case (3):

(3.3)

hence in the first two cases the dimensions of the eigenspaces are interchanged, and
in the third case they stay the same.

Let us now come to the base locus. The same argument works for the three cases.
The union of the base loci of H 0.A;L/C and H 0.A;L/� is AŒ2�, and by definition
of normalized isomorphism the origin is contained in AŒ2�C. Given an invariant
section s 2 H 0.A;L/C and a 2-torsion point z 2 AŒ2��, by definition of eL, we
have s.z/ D .{#.s//.z/ D �s.z/, and thus s vanishes at z. The same argument
shows that all anti-invariant sections vanish at points of AŒ2�C. The claims about the
intersections of A with the eigenspaces are a straightforward consequence of those
about the base loci.

4. The arithmetic groups for moduli of abelian surfaces with symmetric theta
structure

This section is devoted to the construction of the arithmetic groups that are needed
in order to construct moduli spaces of polarized abelian surfaces, endowed with a
symmetric theta structure plus a symmetric line bundle representing the polarization,
as quotients of the Siegel half-space H2. Theta characteristics are reasonably
manageable group theoretically, since Sp4.Z=2Z/ (the reduction modulo 2 of
the modular group Sp4.Z/) naturally acts on quadratic forms on a 4-dimensional
Z=2Z-vector space. For simplicity we state these results only for abelian surfaces
but the same proofs give analogous statements for abelian varieties of any dimension
and polarization type. First, we want to study the action of arithmetic subgroups on
subsets or quotients of AŒ2�. In order to do this, we need to introduce half-integer
characteristics.

A half-integer characteristic m is an element of .1
2
Z4=Z4/. The set AŒ2�

of 2-torsion points is in bijection (non-canonically) with the set of half-integer
characteristics [30, Section 2]. Moreover, the natural action of Sp4.Z/ onH2 induces
a transformation formula for theta functions with half-integer characteristics [30,
Section 2]. The zero loci of theta functions with half-integer characteristics are
symmetric theta divisors. These divisors define in turn quadratic forms on AŒ2�
via the identification (2.2), thus yielding a (non-canonical) bijection between half-
integer characteristics and #.A/. The action on theta functions induces an action on
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half-integer characteristics, which is given by taking the formula

M �

�
a

b

�
D

�
D �C
�B A

��
a

b

�
C

�
diag.CDt /
diag.ABt /

�
; (4.1)

modulo 2, forM 2 Sp4.Z/ and a; b 2 .12Z
2=Z2/.

4.0.1. The odd case. The goal of this subsection is to show how, when d1 and d2
are odd, a levelD structure induces uniquely a symmetric theta structure. In the odd
case, the claim of Lemma 2.6 is even simpler.

Lemma 4.1. The exact sequence (2.5) splits.

Proof. The proof of this Lemma follows closely the arguments of Sect. 2.2 of [6]. We
just remark that the centralizer subgroup C{D � AutC�.H.D// of {D is the section
from Sp.D/ that make the sequence split.

Moreover, by Remark 2.10, we have 16 such bundles that we identify with theta
characteristics by taking their associated quadratic forms on 2-torsion points. The
exact sequence (2.7) reduces to an isomorphism C{D Š Sp.D/, so the symmetric
theta structure is completely determined once the line bundle is chosen, and the
action of Sp.D/ on the line bundles corresponds to the action (4.1) on the half-
integer characteristics.

4.0.2. The congruence subgroups in the odd case. We will denote byMg.Z/ the
space of g � g matrices with entries in Z and by �g the symplectic group Sp2g.Z/.
We will now introduce arithmetic subgroups of �2 that are extensions of subgroups
of Sp4.Z=2Z/. Similar groups have been described in [28, Chapter 1]. As it is
customary, we will denote by �2.d/ the level d subgroup, that is the kernel of the
reduction modulo d morphism rd W Sp4.Z/ ! Sp4.Z=dZ/. The following result
is probably well known to experts of the field, but we haven’t been able to find a
reference.

Lemma 4.2. Let d be an odd integer. Then we have the following exact sequence

1! �2.2d/
i
�! �2.d/

r2
�! Sp4.Z=2Z/! 1

Proof. Clearly �2.2d/ is a subgroup of �2.d/ and i.�2.2d// D Ker.r2/. Therefore,
it is enough to prove that r2 is surjective. To do this we use the following formula [30,
p. 222]:

j�2 W �2.h/j D h
10
Y

pjh;p¤1

Y
1�k�2

.1 � p�2k/:
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We have

j�2 W �2.d/j D d
10
Y

pjd;p¤1

.1 � p�2/.1 � p�4/;

j�2 W �2.2d/j D .2d/
10
Y

pj2d;p¤1

.1 � p�2/.1 � p�4/

D 210d10.1 � 2�2/.1 � 2�4/
Y

pjd;p¤1

.1 � p�2/.1 � p�4/:

Therefore
j�2 W �2.2d/j

j�2 W �2.d/j
D 210.1 � 2�2/.1 � 2�4/ D 720:

Finally, since jSp4.Z=2Z/j D 720 we conclude that r2 is surjective.

LetD2Mg.Z/ be a diagonal g�gmatrix. We define the subgroup�D�M2g.Z/
as:

�D WD

�
R 2M2g.Z/ j R

�
0 D

�D 0

�
Rt D

�
0 D

�D 0

��
; (4.2)

and the subgroup �D.D/ � �D as:

�D.D/ WD

��
A B
C D

�
2 �D j A � I � B � C � D � I � 0 mod .D/

�
; (4.3)

where M � 0 mod .D/ if and only if M 2 D �Mg.Z/. See [4, Sect. 8.3.1] for
details on this group.
Lemma 4.3. Let D D diag.d1; d2/, where d1; d2 are odd integers. Then the
reductionmodulo 2morphism r2 W �D ! GL4.Z=2Z/ is surjective onto Sp4.Z=2Z/.
The restriction morphism r2 W �D.D/! Sp4.Z=2Z/ is also surjective, and we have
the following exact sequence

1! �D.2D/! �D.D/
r2
�! Sp4.Z=2Z/! 1: (4.4)

Proof. Since d1; d2 are odd we have�
0 D

�D 0

�
�

�
0 I

�I 0

�
mod .2/:

Furthermore, if R 2 �D the equality

R

�
0 D

�D 0

�
Rt D

�
0 D

�D 0

�
yields

r2.R/

�
0 I

�I 0

�
r2.R/

t
D

�
0 I

�I 0

�
;
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hence r2 is well defined. Let d D d1d2. By Lemma 4.2 the reduction modulo
two �2.d/ ! Sp4.Z=2Z/ is surjective. Now, let us take a symplectic matrix
M 2 Sp4.Z=2Z/, and let N 2 �2.d/ � Sp4.Z/ be a symplectic matrix such that
N �M mod .2/. Since N 2 �2.d/ we may write

N D

0BB@
dx11 C 1 dx12 dy11 dy12
dx21 dx22 C 1 dy21 dy22
dz11 dz12 dw11 C 1 dw12
dz21 dz22 dw21 dw22 C 1

1CCA
Let us consider the group

�D.Q/ WD
�
R 2M4.Q/ j R

�
0 D

�D 0

�
Rt D

�
0 D

�D 0

��
;

the rational analogue of �D . Then we have an isomorphism fD W �D.Q/! Sp4.Q/;
defined by

fD.R/ D

�
I 0

0 D�1

�
R

�
I 0

0 D

�
:

Therefore the matrix

R D f �1D .N / D

0BB@
d1d2x11 C 1 d1d2x12 d2y11 d1y12
d1d2x21 d1d2x22 C 1 d2y21 d1y22
d21 d2z11 d21 d2z12 d1d2w11 C 1 d21w12
d1d

2
2 z21 d1d

2
2 z22 d22w21 d1d2w22 C 1

1CCA
is in �D D �D.Z/ because N is a matrix with integer entries. It is easy to see that
R � N � M mod .2/; and the reduction modulo two r2 W �D ! Sp4.Z=2Z/ is
surjective.

Now, byLemma4.2 the reductionmodulo two�2.d2/! Sp4.Z=2Z/ is surjective
since d2 is an odd integer. We proceed as before. Let M 2 Sp4.Z=2Z/ be a
symplectic matrix, and let N 0 2 �2.d2/ � Sp4.Z/ be a symplectic matrix such that
N
0

�M mod .2/. Since N 0 2 �2.d2/ we may write

N
0

D

0BB@
d2x11 C 1 d2x12 d2y11 d2y12
d2x21 d2x22 C 1 d2y21 d2y22
d2z11 d2z12 d2w11 C 1 d2w12
d2z21 d2z22 d2w21 d2w22 C 1

1CCA
Therefore

R
0

Df �1D .N
0

/D

0BB@
d21 d

2
2 x11 C 1 d21 d

2
2 x12 d1d

2
2 y11 d21 d2y12

d21 d
2
2 x21 d21 d

2
2 x22 C 1 d1d

2
2 y21 d21 d2y22

d31 d
2
2 z11 d31 d

2
2 z12 d21 d

2
2w11 C 1 d21 d2w12

d21 d
3
2 z21 d21 d

3
2 z22 d1d

3
2w21 d21 d

2
2w22 C 1

1CCA
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is in�D D �D.Z/. In particular, simply by checking the definition, one sees thatR0 is
actually in �D.D/. Hence we conclude that r2 W �D.D/! Sp4.Z=2Z/ is surjective.
Now, let us consider the group

�D.2D/ WD

��
A B
C D

�
2 �D j A � I � B � C � D � I � 0 mod .2D/

�
:

Clearly, �D.2D/ is a subgroup of �D.D/. A matrixM D
�
A B
C D

�
2 �D.D/ lies in

Ker.r2/ if and only if A � D � I mod .2/, and B � C � 0 mod .2/. Therefore,
sinceM 2 �D.D/, we see thatM 2 Ker.r2/ if and only if A � D � I mod .2D/,
and B � C � 0 mod .2D/, that is M 2 �D.2D/. We conclude that Ker.r2/ D
�D.2D/. Hence we get the exact sequence in the statement.

4.0.3. The moduli spaces A2.d1; d2/�sym and A2.d1; d2/Csym. Let us consider
the Siegel upper half-space H2. As before, let D D diag.d1; d2/ with d1; d2
odd. By [4, Section 8.2] and the Baily–Borel theorem [1], since �D is an
arithmetic congruence subgroup, the quasi-projective variety AD D Hg=�D is
the moduli space of abelian varieties with a polarization of of type D: see also [28,
Proposition 1.21]. Furthermore, by [4, Section 8.3] and [1], the quasi-projective
variety AD.D/ D Hg=�D.D/ is the moduli space of polarized abelian varieties of
type D with level D structure. Since by Lemma 4.1 a level structure is equivalent
to a symmetric theta structure, we are now going to investigate the action of these
arithmetic subgroups on the set #.A/ of the 16 theta characteristics (equivalently
the set of symmetric line bundles). Each of them admits a unique symmetric theta
structure.

The set of symmetric theta divisors is in bijection with the set of half-integer
characteristics (see [30, Section 2] or [4, Sections 4.6 and 4.7]) and the action of �2
on H2 induces an action on characteristics given by the formula (4.1).

Lemma 4.4 ([30, Section 2]). The action of�2 on half-integer characteristics defined
by formula (4.1) has two orbits distinguished by the invariant

e.m/ D .�1/4abt

2 f˙1g:

We say that m D .a; b/ 2 1
2
Z4=Z4 is an even (respectively odd) half-integer

characteristic if e.m/ D 1 (respectively e.m/ D �1). Since AŒ2� is a Z=2Z-vector
space of dimension 4,�2 D Sp4.Z/ operates on the set of theta characteristics through
reduction modulo 2, hence via Sp4.Z=2Z/. Now, recall from Lemma 4.3 the exact
sequence (4.4). Let O�4 .Z=2Z/ � Sp4.Z=2Z/ be the stabilizer of an odd quadratic
form. We have an isomorphism Sp4.Z=2Z/ Š S6, where S6 is the symmetric group,
under which Sp4.Z=2Z/ acts on the set of odd quadratic forms by permutations. As
a consequence, for the stabilizer subgroup of an odd theta characteristic we also have
O�4 .Z=2Z/ Š S5 � S6.
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Definition 4.5. We denote by �2.d1; d2/� the group

�2.d1; d2/
�
WD r�12 .O�4 .Z=2Z// � �D.D/

that fits in the exact sequence

1! �D.2D/! �2.d1; d2/
�
r2
�! O�4 .Z=2Z/! 1

Explicitly, we can write

�2.d1; d2/
�
D

�
Z 2 �D.D/ j Z mod .2/ � †; † 2 O�4 .Z=2Z/

�
:

Therefore, we have �D.2D/ � �2.d1; d2/� � �D.D/. Furthermore,

j�D.D/ W �D.2D/j D 6Š and j�2.d1; d2/
�
W �D.2D/j D 5Š

imply that
j�D.D/ W �2.d1; d2/

�
j D 6:

Since �2.d1; d2/� is an arithmetic congruence subgroup, thanks to the Baily–Borel
theorem [1], we have that the quotient

A2.d1; d2/�sym WD H2=�2.d1; d2/�

is a quasi-projective variety. The variety A2.d1; d2/�sym is the moduli space of
polarized abelian surfaces .A;H/ with level .d1; d2/ structure, a symmetric theta
structure and an odd line bundle in PicH .A/. The morphism

f � W A2.d1; d2/�sym ! AD.D/

that forgets the choice of the odd line bundle is of degree j�D.D/ W �2.d1; d2/�j D 6.
Let OC4 .Z=2Z/ � Sp4.Z=2Z/ be the stabilizer of an even quadratic form. The

proofs in the even case are very similar to the odd case.
Definition 4.6. We denote by �2.d1; d2/C the group

�2.d1; d2/
C
WD r�12 .OC4 .Z=2Z// � �D.D/

that fits in the exact sequence

1! �D.2D/! �2.d1; d2/
C

r2
�! OC4 .Z=2Z/! 1

The stabilizer OC4 .Z=2Z/ � Sp4.Z=2Z/ of an even quadratic form has order
jOC4 .Z=2Z/j D 72 and j�D.D/ W �2.d1; d2/Cj D 10: Using again the Baily–Borel
theorem [1], we get that the quotient

A2.d1; d2/Csym WD H2=�2.d1; d2/C
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is a quasi-projective variety. By construction, it is the moduli space of polarized
abelian surfaces .A;H/ with level .d1; d2/ structure and an even theta characteristic.
The morphism

f C W A2.d1; d2/Csym ! AD.D/

forgetting the even theta characteristic has degree j�D.D/ W �2.d1; d2/Cj D 10.
Remark 4.7. A particular case of �2.d1; d2/C in the case of .3; 3/-level structure is
the group �2.3; 6/ studied by G. van der Geer in [17]. In that case the moduli space
A2.3; 3/Csym turned out to be a degree 10 cover of the Burkhardt quartic hypersurface
in P4. The moduli space A2.3; 3/�sym was proven to be rational in [6].
Remark 4.8. The results in this section hold in greater generality for any g. In
particular, arguing as in the proof of Lemma 4.3, if D D diag.d1; : : : ; dg/, where
the di ’s are odd integers, we have the same exact sequence (4.4) with 2g instead of 4.
The other definitions are completely analogous.

4.0.4. The even case. In this section we will quickly investigate, since in the end our
focus is on .1; d/ polarizations, the case where d1 and d2 are both even. Contrary
to the odd case, if D D diag.d1; : : : ; dg/ and di is even for some i , the reduction
modulo two of a matrix in �D is not necessarily an element of Sp2g.Z=2Z/. The
following elementary example shows one instance of this phenomenon.
Example 4.9. For instance, if g D 2 and d1 D 1, d2 D 2 the matrix

M D

0BB@
1 1 1 1

2 1 2 1

2 0 1 1

0 2 2 1

1CCA
is in �D . However, if we denote by N its reduction modulo two we have

N �

0BB@
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1CCA �N t
D

0BB@
0 0 0 1

0 0 1 1

0 1 0 0

1 1 0 0

1CCA :

Hence N … Sp2.Z=2Z/.
Hence the action on theta-characteristics is not well defined, and we will shortly

find a modular reason for this. In fact we will see that in this case we do not need to
keep track of the symmetric line bundles representing the polarization.

Following Theorem 2.9, we observe that the situation in the even case is somehow
opposite to the odd one. In fact, there exists only one symmetric line bundle
representing the polarization that admits a symmetric theta structure. On the other
hand, if we fix a level structure, there are 16 symmetric theta structures that induce
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that level structure, corresponding to the elements of AŒ2� \ K.L/ D AŒ2� (see
Remark 2.10). The prototypical example of such a moduli space is A2.2; 4/, the
moduli space of abelian surfaces with a .2; 2/-polarization with level structure, plus
a symmetric theta structure. It is well known, see for instance [13], that the Satake
compactification ofA2.2; 4/ is isomorphic to P3. More generally, when d1 ¤ d2 are
even, one can naturally generalize the definition of �2.2; 4/ and define an arithmetic
subgroup, which we denote by �2.D; 2D/, as follows:

�2.D; 2D/ WD

��
A B
C D

�
2 �D.D/ j diag.B/ � diag.C/ � 0 mod .2D/

�
(4.5)

Note that this consists of �2.d1; d2/ \ �2.1; 2/. The fact that the quotient
of H2 via this group parametrizes .d1; d2/-polarized abelian surfaces with a
symmetric theta structure is equivalent to the fact that in this case, as explained
in Theorem 2.9, symmetric theta structures correspond to points of AŒ2�, that are
in (non- canonical) bijection with half-integer characteristics. In fact, thanks to the
action on characteristics of equation (4.1), we see that �2.D; 2D/ is the stabilizer
inside �2.d1; d2/ of the zero characteristic. On the other hand, in this case the
action of the corresponding level group �2.d1; d2/ on the set of characteristics is
transitive, as it operates through the quotient �2.d1; d2/=�2.D; 2D/ Š .Z=2Z/4.
Since �2.D; 2D/ is an arithmetic congruence subgroup, thanks to the Baily–Borel
theorem [1], we have that the quotient

A2.d1; d2/sym WD H2=�2.D; 2D/

is a quasi-projective variety. By construction it is the moduli space of polarized
abelian surfaces with level .d1; d2/ structure and a symmetric theta structure. The
following Lemma is straightforward.
Lemma 4.10. The 16 different symmetric theta-structures that induce a given level
structure in the even case are a principal homogeneous space under the action
of .Z=2Z/4, embedded in the centralizer subgroup C{D � AutC�.H.D// via the first
arrow of the exact sequence (2.6).

In fact the exact sequence (2.7) reduces to the sequence

1! AŒ2�! C{D ! Sp.D/! 1

when both the coefficients di are even, and we have seen that the 2-torsion points
correspond to the symmetric theta structures compatible with a given level structure.
Remark 4.11. It is straightforward to check that there exists a forgetful map

A2.d1; d2/sym ! A2.d1; d2/;

forgetting the theta structure, which has degree 16 D #.Z=2Z/4.
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4.0.5. The intermediate case. Let us now come to the intermediate type. By
this we mean polarizations where d1 is odd and d2 is even. Following as usual
Theorem 2.9, we have four symmetric line bundles inside the equivalence class
of the polarization that admits a symmetric theta structure. Each of them admits
four symmetric theta-structures that induce a given level structure. In fact (see
Remark 2.10) the 4 symmetric line bundles correspond to elements of the quotient

AŒ2�=.K.L/ \ AŒ2�/ Š Z=2Z � Z=2Z: (4.6)

Lemma 4.12. Among the symmetric line bundles of the set (4.6), there are 3 inducing
an even quadratic form and 1 an even form.

Proof. In order to show this it is enough to consider and abelian surfaceA D E1�E2,
with E1 an odd d1-polarized elliptic curve and E2 a second elliptic curve with an
even d2-polarization. This is a specialization of the general case, and clearly the
quotient mods out the 2-torsion points of the second elliptic curve and the claim
follows.

On the other hand (see Remark 2.10) the 4 symmetric theta-structures inducing a
given level structure correspond to the points of .K.L/\AŒ2�/. It is easy to see that
this subgroup is isomorphic once again toZ=2Z�Z=2Z. Our goal is then to construct
moduli spaces for the datum of a symmetric line bundle representing the polarization
plus the choice of a compatible symmetric theta structure. Of course, because of
Lemma 4.12, we will need to consider two different moduli spaces according to the
parity of the theta characteristic.

Note that the rank two subgroup K.L/ \ AŒ2� � AŒ2� induces a decomposition
of AŒ2� as .K.L/ \ AŒ2�/ � .AŒ2�=.K.L/ \ AŒ2�//. Of course both groups are
isomorphic to .Z=2Z/2, and in the construction of the arithmetic group we will
want to distinguish the action of the group on each one. The action of the group
will basically imitate the odd case on AŒ2�=.K.L/ \ AŒ2�/ and the even case
on K.L/ \ AŒ2�. The reason is once again the exact sequence of Lemma 2.11. Here
one copy of .Z=2Z/2 � C{D comes from AŒ2� \K.L/ and operates transitively on
the 4 symmetric theta structures. The second copy of .Z=2Z/2 lifts up from Sp.D/
and it operates on the four symmetric line bundles (admitting a symmetric theta
structure) preserving the parity. More concretely, wewant to construct two subgroups
(distinguished by the parity of the theta characteristics) of �D.D/ with the following
features:

(a) since the four theta characteristics of Lemma4.12 are in bijectionwith elements
of .Z=2Z/2, the action of each subgroup onƒ, reducedmodulo 2,must descend
to the action ofO˙2 .Z=2Z/ (depending on the parity of the theta characteristic
that we want) on AŒ2�=.K.L/ \ AŒ2�/. This implies that the corresponding
moduli spaces parametrize one (even or odd) symmetric line bundle among
the four.
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(b) On the other hand, by imitating the action of the arithmetic group of the
even case, we need both our subgroups to operate as �1.d2; 2d2/ when acting
on K.L/ \ AŒ2�. This in turn implies that the quotient by our arithmetic
subgroups will also keep track of the four symmetric theta structures.

There exists only one odd symmetric line bundle representing a polarization of
intermediate type that admits a symmetric theta structure. On the group theoretical
side this is equivalent to the fact that the subgroup O�2 .Z=2Z/ is isomorphic
to Sp2.Z=2Z/. Things are a little more complicated in the even case, since in that case
we reallywant the induced action onAŒ2�=.K.L/\AŒ2�/ to factor throughOC2 .Z=2Z/
which is a proper subgroup of index 3 of Sp2.Z=2Z/, as it is explained in the following
remark.
Remark 4.13. Let us outline briefly the relations between O˙2 .Z=2Z/ and
Sp2.Z=2Z/. From [34, Proposition 2.9.1] we see that O�2 .Z=2Z/ Š D6 is the
dihedral group of order six, and OC2 .Z=2Z/ is cyclic of order two. In particular
jSp2.Z=2Z/ W O�2 .Z=2Z/j D 1 and jSp2.Z=2Z/ W O

C
2 .Z=2Z/j D 3.

Following (a) and (b) above, we define two arithmetic groups, for odd d1 and
even d2:

�2.d1; d2/
C
sym WD

˚
N 2 �D.D/ j NjAŒ2�=.K.L/\AŒ2�/ 2 O

C.2;Z=2Z/;

NjK.L/\AŒ2� 2 �1.d2; 2d2/
	
;

�2.d1; d2/
�
sym WD

˚
N 2 �D.D/ j NjK.L/\AŒ2� 2 �1.d2; 2d2/

	
:

Moreover, since d1jd2, in this case d2 must be an even multiple of d1. By the Baily–
Borel theorem [1], and since �2.d1; d2/˙sym are arithmetic congruence subgroups, we
get two quasi-projective varieties

A2.d1; d2/Csym WD H2=�2.d1; d2/Csym;
A2.d1; d2/�sym WD H2=�2.d1; d2/�sym;

parametrizing abelian surfaces with a polarization of type .d1; d2/, a symmetric theta
structure and an even (respectively odd) theta characteristic.
Remark 4.14. By Proposition 3.1, it is straightforward to see that A2.d1; d2/Csym
(respectively A2.d1; d2/�sym) is a 12 to 1 (respectively 4 to 1) cover of the moduli
space of polarized abelian surfaces with a level structure A2.d1; d2/lev.

5. Moduli of .1; d/-polarized surfaces, with symmetric theta structure and a
theta characteristic: the theta-null map

In the rest of the paper we are going to study the birational geometry of some moduli
spaces of abelian surfaces with a level .1; d/-structure, a symmetric theta structure
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and an odd theta characteristic, which will encode the choice of a symmetric line
bundle representing the polarization. The study of abelian surfaces with an even
theta characteristic will be the object of further work [7]. Our main tool will be theta
functions, more precisely theta constants mapping to the projective space. Before
we start a case-by-case analysis, let us make a useful observation that holds for any
polarization type .d1; d2/. The following remark is due to an anonymous referee.

Remark 5.1. Two abelian surfaces with the same level structure have different images
inside Pd1d2�1 (in fact they can be identified only when they are endowed with a theta
structure), but their intersections with the projective eigenspaces P.H 0.A;L/˙/�

are two (possibly empty) finite sets determined uniquely by the level structure
because they are exactly the base points of the linear systems P.H 0.A;L/�/�. See
Proposition 3.2 for more details.

5.1. The odd case. When d1 and d2 are odd, the general construction of the
map from the moduli spacesA2.d1; d2/˙sym is the following. We start from the datum
.A;H;L; / of an abelian surface with a .d1; d2/-polarizationH , a level structure 
and L 2 PicH .A/ symmetric (in fact the datum of H is redundant and we will omit
it in the following). As we have seen, there exists 16 symmetric line bundles, 10 even
and 6 odd, representing the polarization. On the other hand, thanks to Lemma 4.1
we know that there is only one symmetric theta structure ‰ that induces  . Let us
denote it by ‰. This means that we can take canonical bases for the eigenspaces of
the space of delta functions V2.D/ with respect to the action of the involution {D
defined in Section 2. From Section 3 we recall that the eigenspaces of the projective
space P.V2.D// of delta functions are respectively P.d1d2�1/=2

C and P.d1d2�3/=2
� .

IfL is even (respectively odd), the symmetric theta structure gives an identification
of P.H 0.A;L/C/� with P.d1d2�1/=2

C (respectively, P.d1d2�3/=2
� ). Similarly, we

identify P.H 0.A;L/�/� with P.d1d2�3/=2
� (respectively, P.d1d2�1/=2

C ) if L is even
(respectively, odd).

Let .A; / 2 A2.d1; d2/lev be a polarized abelian surface with level structure.
Then, recalling Proposition 3.2, we have that A \ P.d1d2�3/=2

� D AŒ2�C if L is odd,
and it equals AŒ2�� if L is even. On the other hand A \ P.d1d2�1/=2

C D AŒ2�C

if L is even, and AŒ2�� if L is odd. As we have pointed out in Remark 5.1, the
sets AŒ2�C and AŒ2�� are uniquely determined by the level structure. Recall that
the origin 0 belongs to AŒ2�C, and in fact the different choices of L among the
even (respectively, odd) symmetric line bundles make the origin move along the
intersection A \ P.d1d2�1/=2

C (respectively, P.d1d2�3/=2
� ), which in fact is made up

of 10 (respectively, 6) points. Hence finally we can define two maps

ThC
.d1;d2/

W A2.d1; d2/Csym ! P
d1d2�1

2

C

.A;L; / 7! ‰C.‚d1;d2
.0//

(5.1)
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and

Th�.d1;d2/
W A2.d1; d2/�sym ! P

d1d2�3

2
�

.A;L; / 7! ‰�.‚d1;d2
.0//:

(5.2)

Here‚d1;d2
is the map to P.H 0.A;L//� given by the global sections of the polariza-

tion (in fact all anti-invariant sections vanish at zero), and‰C (respectively,‰�) is the
identification of P.H 0.A;L/C/� with P.d1d2�1/=2

C (respectively, with P.d1d2�3/=2
� )

induced by the symmetric theta structure ‰ corresponding to  when L is even
(respectively, odd).

5.2. The even case. As we have said in Section 4, when d1 and d2 are both even,
the right moduli space to consider is slightly different. In fact, we will consider the
moduli space of abelian surfaces with a polarization H of even type .d1; d2/ and a
symmetric theta structure. Therefore, the map is the following:

Th.d1;d2/ W A2.d1; d2/
sym
! P

d1d2
2 C1

C

.A;‰/ 7! ‰C.‚d1;d2
.0//:

(5.3)

where ‚d1;d2
.0/ is the image of the origin through the map induced by the unique

symmetric line bundle L in the equivalence class of the polarization, ‰ is the
symmetric theta structure that induces the identification ‰C W P.H 0.A;L/C/� !

P.d1d2/=2C1
C .
Recalling Proposition 3.2, we have that A \ P.d1d2=2/C1

C D AŒ2�. Moreover
(see Section 4), given a level structure  there exist 16 symmetric theta structures
inducing  , and (Remark 5.1) the level structure completely defines the set A \
P.d1d2=2/C1
C , in this case the full set AŒ2�. The different choices of symmetric theta

structuremake the originmove along the 16 points of the intersectionA\P.d1d2=2/C1
C .

The subgroup .Z=2Z/4 of the centralizer C{D � AutC�.H.D// of the involution {D
has a natural representation eGC on P.d1d2=2/C1

C (see Lemma 2.8) and it operates
transitively on the set of symmetric theta structures inducing  via this projective
representation. This action induces the 16 W 1 forgetful map

A2.d1; d2/sym ! A2.d1; d2/lev:

5.3. The intermediate case. Nowwe come towhat we feel to be themost interesting
case. In the intermediate case (see Section 4), we have two theta-null maps:

ThC
.d1;d2/

W A2.d1; d2/Csym ! P
d1d2

2

C

.A;L;‰/ 7! ‰C.‚d1;d2
.0//

(5.4)
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and

Th�.d1;d2/
W A2.d1; d2/�sym ! P

d1d2�3

2
�

.A;‰/ 7! ‰�.‚d1;d2
.0//:

(5.5)

Here ‰ is a symmetric theta structure, ‰˙ the identification of P.H 0.A;L/C/�

with the ˙1-eigenspace, L an even or odd (in the odd case there is no choice,
since there is only one) line bundle and ‚d1;d2

.0/ the image of the origin via the
map induced by L. Recall from Remark 5.1 that the intersection sets of A with
the eigenspaces depend only on the level structure. Thanks to Proposition 3.2, we
have that A \ P.d1d2�3/=2

� D AŒ2�C if L is odd, and it equals AŒ2�� if L is even.
On the other hand A \ P.d1d2=2/

C D AŒ2�C if L is even, and AŒ2�� if L is odd.
The origin belongs to AŒ2�C, and in fact the different choices of the 4 symmetric
theta structure and of the line bundle make the origin move along the intersection
of A with the eigenspaces. If L is the unique odd line bundle only the action
of Z=2Z2 � C{D operates transitively onA\P.d1d2�3/=2

� , via the representation eG�
(see Lemma 2.8) and induces the natural 4 to 1 forgetful map of the symmetric
theta structureA2.d1; d2/�sym ! A2.d1; d2/lev. On the other hand, if we concentrate
on the even moduli space, then the cardinality of A \ P.d1d2=2/

C equals 12 (see
Proposition 3.1) and this equals in fact #.Z=2Z/2 times the 3 choices of even line
bundles. The moduli map that forgets the even theta characteristic and the symmetric
theta function is in fact the 12 to 1 map A2.d1; d2/Csym ! A2.d1; d2/lev.

6. Moduli of .1; d/ polarized surfaces, with symmetric theta structure and a
theta characteristic: birational geometry

In this section we study the birational geometry of some of the moduli spaces of
polarized abelian surfaces introduced in Section 4.

6.1. Polarizations of type .1; n/ with n odd. First we need to recall from [26,
Section 6] a few results about the Heisenberg action on the ideal of a .1; 2d C 1/-
polarized abelian surface embedded in P.H 0.A;L//� Š P2d . In fact, the group
H1;2dC1 (see Definition 2.4) acts naturally onH 0.P2d ;OP2d .2// and it decomposes
it into d C1mutually isomorphic irreducible representations ofH1;2dC1. Gross and
Popescu construct a .d C 1/ � .2d C 1/ matrix

.Rd /ij D xjCixj�i ; 0 � i � d; 0 � j � 2d; (6.1)

where the indices are modulo 2d . Each row of .Rd /ij spans an irreducible sub-
representation insideH 0.P2d ;O.2//, and this way we obtain the decomposition into
.d C 1/ irreducible sub-representations.
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Definition 6.1. We shall indicate by Di � Pd�1� the locus in Pd�1� where the
restriction of Rd has rank � 2i .

Since x0 D 0 and xi D �x�i on Pd�1� , we can use coordinates x1; : : : ; xd . By
substituting these coordinates inside the matrix (6.1), one sees that the j th and the
.2d C 1� j /th column coincide on Pd�1� , if j ¤ 0. In the same way we see that the
leftmost .d C 1/ � .d C 1/ block of Rd is anti-symmetric. Let us denote by Td the
restriction of this block to Pd�1� . HenceDi is exactly the locus of Pd�1� where Td is
rank � 2i . The following result can be found in [26, Lemma 6.3].
Lemma 6.2. For a generalH1;2dC1-invariant abelian surface A � P2d , d � 3, we
have A \ Pd�1� � D2 and A \ Pd�1� 6� D1.

6.1.1. The case n D 7. In order to analyze this case, we need to give a short intro-
duction to varieties of sums of powers (VSP for short). These varieties parametrize
decompositions of a general homogeneous polynomial F 2 kŒx0; : : : ; xn� as sums
of powers of linear forms. They have been widely studied from both the biregular
[31, 47, 48, 53] and the birational viewpoint [40, 41].

Let �n
d
W Pn ! PN.n;d/, with N.n; d/ D

�
nCd
d

�
� 1 be the Veronese embedding

induced by OPn.d/, and let V n
d
D �n

d
.Pn/ be the corresponding Veronese variety.

Let F 2 kŒx0; : : : ; xn�d be a general homogeneous polynomial of degree d .
Definition 6.3. Let F 2 PN.n;d/ be a general point of V n

d
. Let h be a positive integer

and Hilbh.Pn�/ the Hilbert scheme of sets of h points in .Pn�/. We define

VSP.F; h/o WD
˚
fL1; : : : ; Lhg 2 Hilbh.Pn�/ j F 2 hLd1 ; : : : ; L

d
h ig � Hilbh.Pn�/

	
;

and VSP.F; h/ WD VSP.F; h/o by taking the closure of VSP.F; h/o in Hilbh.Pn�/.
Suppose that the general polynomial F 2 PN.n;d/ is contained in a .h� 1/-linear

space h-secant to V n
d
. Then, by [11, Proposition 3.2] the variety VSP.F; h/ has

dimension h.nC 1/ �N.n; d/ � 1. Furthermore, if n D 1; 2 then for F varying in
an open Zariski subset of PN.n;d/ the variety VSP.F; h/ is smooth and irreducible.

In order to apply this object to the study of abelian surfaces, we need to construct
similar varieties parametrizing the decomposition of homogeneous polynomials as
sums of powers of linear forms and admitting natural generically finite rational maps
onto VSP.F; h/.
Definition 6.4. Let F 2 PN.n;d/ be a general point. We define

VSPord.F; h/o WD
˚
.L1; : : : ; Lh/ 2 .Pn�/h j F 2 hLd1 ; : : : ; L

d
h i
	
� .Pn�/h;

andVSPord.F; h/ WD VSPord.F; h/o by taking the closure of VSPord.F; h/o in .Pn�/h.
Note that VSPord.F; h/ is a variety of dimension h.n C 1/ � N.n; d/ � 1.

Furthermore, two general points of VSPord.F; h/ define the same point of VSP.F; h/
if and only if they differ by a permutation in the symmetric group Sh. Therefore, we
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have a generically finite rational map � W VSPord.F; h/ Ü VSP.F; h/ of degree hŠ
Now we consider the rational action of Sh�1 on VSPord.F; h/ defined as follows:

� W Sh�1 � VSPord.F; h/ Ü VSPord.F; h/
.�; .L1; : : : ; Lh// 7�! .L1; .�.L2; : : : ; Lh///

Definition 6.5. We define the variety VSPh.F; h/ as the quotient

VSPh.F; h/ D VSPord.F; h/=Sh�1

under the action of Sh�1 via �.
Note that VSPh.F; h/ admits a generically finite rational map

 W VSPh.F; h/ Ü VSP.F; h/

of degree h. By definition of the action �, the h points on the fiber of over a general
point fL1; : : : ; Lhg 2 VSP.F; h/ can be identified with the linear forms L1; : : : ; Lh
themselves. Furthermore we have the following commutative diagram of rational
maps

VSPord.F; h/

VSPh.F; h/

VSP.F; h/
 

�

�

The variety VSPh.F; h/ can be explicitly constructed in the following way. Let us
consider the incidence variety

J WD
˚
.l; fL1; : : : ; Lhg/ j l 2 fL1; : : : ; Lhg 2 VSP.F; h/o

	
� Pn� �VSP.F; h/o:

Then VSPh.F; h/ is the closure J of J in Pn� � VSP.F; h/.
Remark 6.6. In [47] Mukai proved that if F 2 kŒx0; x1; x2�4 is a general polynomial
then VSP.F; 6/ is a smooth Fano 3-fold V22 of index 1 and genus 12. In this case we
have a generically 6 to 1 rational map

 W VSP6.F; 6/ Ü VSP.F; 6/:

By [39] and [24, Corollary 5.6], under the same assumptions on F , the moduli
spaceA2.1; 7/lev of .1; 7/-polarized abelian surfaces with canonical level structure is
birational to VSP.F; 6/. Other interesting results on this moduli space are contained
in [42] and [45]. Our aim is now to give an interpretation of the covering VSP6.F; 6/
in terms of moduli of .1; 7/-polarized abelian surfaces with a symmetric theta
structure and an odd theta characteristic.
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Given an irreducible, reduced, non-degenerate variety X � PN of dimension n,
and a positive integer h � N we denote by Sech.X/ the h-secant variety of X .
This is the subvariety of PN obtained as the closure of the union of all .h � 1/-
planes hx1; : : : ; xhi spanned by h general points of X . The expected dimension
of Sech.X/ is expdim.Sech.X// D minfhn C h � 1;N g. However, its actual
dimension might be smaller. In this case X is said to be h-defective, and the number
ıh.X/ D nh C h � 1 � dimSech.X/ > 0 is called the h-secant defect of X . We
recall that a proper varietyX over an algebraically closed field is rationally connected
if there is an irreducible rational curve through any two general points x1; x2 2 X .
Furthermore, rational connectedness is a birational property and indeed, if X is
rationally connected and X Ü Y is a dominant rational map, then Y is rationally
connected as well. By [18, Corollary 1.3], if f W X ! Y is a surjective morphism,
where Y and the general fiber of � are rationally connected, then X is rationally
connected.
Theorem 6.7. The variety VSP6.F; 6/ is rationally connected.

Proof. Let us consider the Veronese variety V 24 � P14 D Proj.kŒx0; x1; x2�4/,
and let F 2 P14 be a homogeneous polynomial. If F admits a decomposition
as sum of powers of linear forms then its second partial derivatives have such a
decomposition as well. Therefore, the second partial derivatives of F are six points
in P5 D Proj.kŒx0; x1; x2�2/ lying on a hyperplane. Hence the determinant of the
6 � 6 catalecticant matrix

M D
�
@2F
@x0x0

@2F
@x0x1

@2F
@x0x2

@2F
@x1x1

@2F
@x1x2

@2F
@x2x2

�
is zero. It is well known that the secant variety Sec5.V 24 / � P14 is the irreducible
hypersurface of degree 6 defined by det.M/ D 0, see for instance [37]. Therefore V 24
is 5-secant defective and ı5.V 24 / D 14� 13 D 1. Let us define the incidence variety

X D
˚
.fL1; : : : ; L5g; F / j F 2

˝
L41; : : : ; L

4
5

˛ 	
� Hilb4.P2�/ � Sec5.V 24 /

Hilb5.P2�/ Sec5.V 24 / � P14

 �

The morphism � is surjective and there exists an open subset U � Hilb5.P2�/ such
that for anyZ 2 U the fiber ��1.Z/ is isomorphic to P4, so dim.��1.Z// D 4. The
morphism  is dominant and for a general point F 2 Sec5.V 24 / we have

dim. �1.F // D dim.X / � dim.Sec5.V 24 // D 1:

This means that through a general point of Sec5.V 24 / there is a 1-dimensional family
of 4-planes that are 5-secant to V 24 . This reflects the fact that the expected dimension
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of Sec5.V 24 / is expdim.Sec5.V 24 // D 14 while dim.Sec5.V 24 // D 13, that is the
5-secant defect of V 24 is ı5.V 24 / D expdim.Sec5.V 24 // � dim.Sec5.V 24 // D 1.

Now, Hilb5.P2�/ is smooth. The fibers of � over U are open Zariski subsets
of P4. So X is smooth and irreducible. Therefore, for F varying in an open Zariski
subset of Sec5.V 24 / the fiber  �1.F / is a smooth and irreducible curve. Now, for a
general F 2 kŒx0; x1; x2�4, let us consider the variety

VSP6.F; 6/ WD
˚
.l; fL1; : : : ; L6g/ j l 2 fL1; : : : ; L6g 2 VSP.F; 6/o

	
� P2� � VSP.F; 6/

P2� VSP.F; 6/

gf

Let l 2 P2� be a general linear form. Note that the fiber f �1.l/ consists of the points
fL1; : : : ; L6g 2 VSP.F; 6/ such that l 2 fL1; : : : ; L6g. Therefore, we can identify
f �1.l/ with the fL1; : : : ; L5g 2 Hilb5.P2�/ such that F � l4 can be decomposed
as a linear combination of L41; : : : ; L45. Note that, since F 2 P14 is general, we have
that also F � l4 is general in Sec5.V 42 /, and

f �1.l/ Š  �1.F � l4/:

In particular f �1.l/ is a smooth irreducible curve and, since dim.VSP6.F; 6// D 3,
we conclude that f W VSP6.F; 6/! P2� is dominant. Now, our aim is to study the
fiber of  over a general point G 2 Sec5.V 24 /. We can write

G D

5X
iD1

�iL
4
i ;

and let C � P2� be the conic through L1; : : : ; L5. Its image � D �24.C / � P14
is a rational normal curve of degree eight. Let h�i D H 8 Š P8 be its linear span.
Therefore, we have G 2

˝
L41; : : : ; L

4
5

˛
� H 8 � P14. Now, G is general in H 8 and

we can interpret it as the class of a general polynomial T 2 KŒz0; z1�8. The 4-planes
passing through G that are 5-secant to � are parametrized by VSP.T; 5/. Since any
such 4-plane is in particular 5-secant to V 24 , we have VSP.T; 5/ �  �1.G/.

Now, by [41, Theorem 3.1] we have VSP.T; 5/ Š P1. Since  �1.G/ is an
irreducible curve we conclude that  �1.G/ is indeed a rational curve.

Finally, since f W VSP6.F; 6/! P2� is dominant and its general fiber f �1.l/ Š
 �1.F � l4/ Š P1 is rational, by [18, Corollary 1.3] we have that VSP6.F; 6/ is
rationally connected.

Theorem 6.8. The moduli space A2.1; 7/�sym of .1; 7/-polarized abelian surfaces
with a symmetric theta structure and an odd theta characteristic is birational to
the variety VSP6.F; 6/ where F 2 kŒx0; x1; x2�4 is a general quartic polynomial.
In particular A2.1; 7/�sym is rationally connected, and hence its Kodaira dimension
is �1.
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Proof. By [24, Proposition 5.4 and Corollary 5.6] there exists a birational map

˛ W A2.1; 7/lev Ü VSP.F; 6/

forF the Klein quartic curve. As already observed in [24], the Klein quartic is general
in the sense of Mukai [47], hence the variety VSP.F; 6/ is isomorphic to the VSP
obtained for any other general quartic curve. The map ˛ is constructed as follows.
For a general .1; 7/-polarized abelian surface A with a level structure, embedded in
PH 0.A;L/ Š P6 the set of its odd 2-torsion points is exactly the intersectionA\P2�.
It turns out that the dual lines fL1;A; : : : ; L6;Ag in P2� are elements of VSP.F; 6/, and
this correspondence gives a birational map. By construction, there exists a morphism
f � W A2.1; 7/�sym ! A2.1; 7/lev of degree 6 forgetting the odd theta characteristic.
Moreover, from Section 5, we know that given .A; / 2 A2.1; 7/lev, the map Th�.1;7/
sends the 6 elements of f ��1.A; / to the six odd 2-torsion points in P2� using
the identification ‰� induced by the symmetric theta structure. Therefore there is a
commutative diagram

A2.1; 7/�sym

A2.1; 7/lev VSP.F; 6/

f �

˛

˛�

where ˛� D ˛ ıf � is a degree six dominant rational map sending a .1; 7/-polarized
abelian surface A with an odd theta characteristic to the set fL1;A; : : : ; L6;Ag
determined by its odd 2-torsion points.

Now, we have a degree six rational map  W VSP6.F; 6/ Ü VSP.F; 6/ whose
fiber over a general point fL1;A; : : : ; L6;Ag 2 VSP.F; 6/ consists of the six linear
forms Li;A in the decomposition of F given by fL1;A; : : : ; L6;Ag which in turn are
identified with the six odd 2-torsion points of the abelian surface A. Now, consider a
general point .A; ;L/ of A2.1; 7/�sym over .A; / 2 A2.1; 7/lev. Then there exists
a rational map

ˇ W A2.1; 7/�sym Ü VSP6.F; 6/

sending .A; ;L/ to the linear form in  �1.fL1;A; : : : ; L6;Ag/ that corresponds to
Th�.1;7/.A; ;L/ 2 P2�. Therefore, we have a commutative diagram

A2.1; 7/�sym VSP6.F; 6/

A2.1; 7/lev VSP.F; 6/

ˇ

f �  

˛

˛�

hence the map ˇ W A2.1; 7/�sym Ü VSP6.F; 6/ is birational. Finally, by Theorem 6.7
we have that A2.1; 7/�sym is rationally connected.
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6.1.2. The case n D 9. Let L be a symmetric line bundle on A representing a
polarization of type .1; 9/. The linear system jLj� embeds A in P8. This embedding
is invariant under the Schrödinger action of the Heisenberg group, and under the
involution {. More precisely, the space of quadrics on P8 is 45 dimensional and it
decomposes into five isomorphic irreducible representations ofH1;11. In particular,
the ideal of quadrics H 0.P8;IA.2// is a representation of weight 2 (the center C�
acts via its character t2) of the Heisenberg group. More precisely, A is embedded as
a projectively normal surface of degree 18 which is in fact contained in 9 quadrics.
However, these 9 quadrics do not generate the homogeneous ideal of A. The 5
irreducible representations are highlighted in the 5 � 9 matrix R4

R4 D

0BBBB@
x20 x21 x22 x23 x24 x25 x26 x27 x28
x1x8 x0x2 x1x3 x2x4 x3x5 x4x6 x5x7 x6x8 x0x7
x2x7 x3x8 x0x4 x1x5 x2x6 x3x7 x4x8 x0x5 x1x6
x3x6 x4x7 x5x8 x0x6 x1x7 x2x8 x0x3 x1x4 x2x5
x4x5 x5x6 x6x7 x7x8 x0x8 x0x1 x1x2 x2x3 x3x4

1CCCCA
We refrain from giving the details on the representation theoretical aspects of this
object, which are developed thoroughly in [27, Section 3]. We just need to know two
facts.

Proposition 6.9. Each 9-dimensional Heisenberg representation in the space of
quadrics is spanned by the quadrics obtained as v � R4 (v is a row vector) for some
v 2 P4C.

Furthermore, If p 2 P8 and v 2 P4C then v � R4.p/ D 0 if and only if p is
contained in the scheme cut out by the quadrics in the representation determined
by v.

The anti-invariant eigenspace P3� is defined by the equations

fx0 D xi C x9�i D 0; 8 i D 1; : : : 8g;

hence we can take x1; : : : ; x4 as coordinates. A direct computation shows that, when
we restrict R4 to P3�, we get the following anti-symmetric matrix

R4jP3
�
D

0BBBB@
0 x21 x22 x23 x24
�x21 0 x1x3 x2x4 �x3x4
�x22 �x1x3 0 �x1x4 �x2x3
�x23 �x2x4 x1x4 0 �x1x2
�x24 x3x4 x2x3 x1x2 0

1CCCCA
Theorem 6.10. The moduli space A2.1; 9/�sym of .1; 9/-polarized abelian surfaces
with canonical level structure and an odd theta characteristic is rational.
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Proof. Let us consider the theta-null morphism

Th�.1;9/ W A2.1; 9/
�
sym �! P3�

.A;L; / 7�! ‰�.‚1;9.0//

It is clear that det.R4jP3
�
/ is identically zero. By Lemma 6.2 and what we have

observed in Section 5.1, we see that the closure ofD2 is the full P3� space and Th
�
.1;9/

is dominant, that is the general point of P3 is an odd 2�torsion point of a .1; 9/-
abelian surface with level structure embedded in P8. Following [27, Section 3] we
consider the Steinerian map (this is the classical name for a map mapping a linear
system of matrices to their kernels)

Stein1;9 W P3� Ü P4C
p 7�! Ker.R4jP3

�
.p//:

Let us recall from [26, Section 6] that for v 2 P4C, v � R4 D 0 if and only if
v � R4jP3

�
D 0. Hence, by Proposition 6.9 we see that the image of p 2 P3� is

the v 2 P4C that determines the unique H9-sub-representation of H 0.P8;OP8.2//

of quadrics containing p. The map Stein1;9 is given by the 4 � 4 pfaffians of the
matrix R4jP3

�
. In coordinates we have Stein.1;9/.x1; : : : ; x4/ D .y0; : : : ; y4/ where

y0 D �x
2
1x2x3 C x

2
2x3x4 C x1x3x

2
4 ;

y1 D x1x
2
3 � x2x

3
3 C x1x

3
4 ;

y2 D �x
3
1x2 C x

3
3x4 C x2x

3
4 ;

y3 D x
2
1x2x3 � x

2
2x3x4 � x1x3x

2
4 ;

y4 D x1x
3
3 � x

3
1x4 � x

2
3x4:

Therefore the image of Stein1;9 is contained in the hyperplane

… D fy0 C y3 D 0g Š P3

and the rational map Stein1;9 W P3� Ü … is dominant of degree 6. Now, by [27,
Theorem 3.3] the map Stein1;9 induces an isomorphism A2.1; 9/lev Š …, defined
by mapping an abelian surface A � P8 to the point corresponding to the unique
H9-sub-representation of H 0.P8;OP8.2// of quadrics containing A. Let p 2 … be
a general point, and .A; / the corresponding abelian surface with level structure.
By Section 5.1, the six points of the fiber Stein�11;9.p/ correspond to the images via
the theta-null map Th�1;9 W A2.1; 9/�sym ! P3� of the six possible choices of an odd
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theta characteristic for .A; /. Hence we have a commutative diagram

A2.1; 9/�sym P3�

A2.1; 9/lev … Š P3

Th�
9

f � Stein1;9

�

where f � is the 6 to 1 forgetful map. Therefore Th�.1;9/ is generically injective, and
thus a birational map.

6.1.3. The case n D 11. Let A be a general abelian surface with a symmetric
line bundle L representing a polarization of type .1; 11/ and with canonical level
structure  (by Lemma 4.1, equivalently, a symmetric theta structure ‰). The linear
system jLj� embeds A in P10 as a projectively normal surface of degree 22 and
sectional genus 12. This embedding is invariant under the action of the Schrödinger
representation of the Heisenberg group. The ideal of quadrics H 0.P10;IA.2// is
also a representation of weight 2 of the Heisenberg group. This in turn implies that
H 0.P10;IA.2// decomposes into irreducible components of dimension 11. More
precisely H 0.P10;OP10.2// has dimension 66 and decomposes into 6 irreducible
11-dimensional representation, isomorphic to the Schrödinger representation. As we
did in the d D 9 case, let us then consider the 6 � 11 matrix

R5 D

0BBBBBB@
x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 x210
x1x10 x0x2 x1x3 x2x4 x3x5 x4x6 x5x7 x6x8 x7x9 x8x10 x0x9
x2x9 x3x10 x0x4 x1x5 x2x6 x3x7 x4x8 x5x9 x6x10 x0x7 x1x8
x3x8 x4x9 x5x10 x0x6 x1x7 x2x8 x3x9 x4x10 x0x5 x1x6 x2x7
x4x7 x5x8 x6x9 x7x10 x0x8 x1x9 x2x10 x0x3 x1x4 x2x5 x3x6
x5x6 x6x7 x7x8 x8x9 x9x10 x0x10 x0x1 x1x2 x2x3 x3x4 x4x5

1CCCCCCA
Analogously to Proposition 6.9, we have the following.

Proposition 6.11. Any H11 irreducible sub-representation of H 0.P10;OP10.2// is
obtained by taking a linear combination of the rows with a vector of coefficients
v 2 P5C, and taking the span of the resulting 11 quadratic polynomials.

Moreover, if p 2 P10 and v 2 P5C, then v �R5.p/ D 0 if and only if p is contained
in the scheme cut out by theH11-sub-representation of quadrics determined by v.
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The anti-invariant subspace P4� is defined as usual by˚
x0 D xi C x11�i D 0; 8i D 1; : : : ; 10

	
and the restriction of R5 to P4� is the alternating matrix

R5jP4
�
D

0BBBBBB@
0 x21 x22 x23 x24 x25
�x21 0 x1x3 x2x4 x3x5 �x4x5
�x22 �x1x3 0 x1x5 �x2x5 �x3x4
�x23 �x2x4 �x1x5 0 �x1x4 �x2x3
�x24 �x3x5 x2x5 x1x4 0 �x1x2
�x25 x4x5 x3x4 x2x3 x1x2 0

1CCCCCCA
Proposition 6.12. The moduli space A2.1; 11/�sym of .1; 11/-polarized abelian
surfaces with canonical level structure and an odd theta characteristic is birational
to the sextic hypersurface X � P4 given by det.R5jP4

�
/ D 0.

Proof. As in the d D 9 case, there exists a rational map

Stein11 W X Ü G.2; 6/

mapping a point p 2 P3� to the pencil of H11-sub-representations of quadrics
containing p, that is to the kernel of the matrix R5jP4

�
evaluated in p. Recall from

Remark 5.1 that, for an abelian surface with a level structure .A; /, the intersection
set with each of the two eigenspaces is well defined. By Theorem 3.2, a general such
surface intersects P4� along the 6 odd 2-torsion points. By [26, Lemma 6.4], the six
odd 2-torsion points are mapped to the same point of G.2; 6/ via Stein11 (actually
they are the full fiber). Now, by Section 5.1 we know that these six points are the
images, via the theta-null map

Th�.1;11/ W A2.1; 11/
�
sym �! P4�;

of the six choices .A;‰;L/ of an odd theta characteristic on A. This means that
the hypersurface X D fdet.R5jP4

�
/ D 0g, that coincides with D2, is the image

of Th�.1;11/. By [27, Theorem 2.2], A2.1; 11/levsym is birational to the image

Im.Stein.1;11// � G.2; 6/:

Recalling now that f � W A2.1; 11/�sym ! A2.1; 11/lev is the forgetful map of the
odd theta characteristic, we have now the following commutative diagram

A2.1; 11/�sym X � P4�

A2.1; 11/lev Im � G.2; 6/

Th�
11

�

Stein.1;11/f �

Therefore, Th�11 is birational.
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6.1.4. The case n=13. By [26, Theorem 6.5], the map

‚13 W A2.1; 13/lev Ü G.3; 7/

mapping an abelian surface A to the sub-representation of H 0.A;OA.2// given
by H 0.A;IA.2//, is birational onto its image. As usual, we have the following
commutative diagram

A2.1; 13/�sym P5�

A2.1; 13/lev Im � G.3; 7/

Th�
.1;13/

‚13

6W1f �

and Th�13 is birational onto its image in P5�. In this case R6jP5
�

is a 7 � 7 anti-
symmetric matrix. In this case, D2 � P5� is the variety defined by the vanishing of
the 6 � 6 pfaffians of R6jP5

�
. Clearly, Im.Th�13/ � D2. Furthermore, a computation

in Macaulay2 [38] shows that D2 is an irreducible 3-fold of degree 21, scheme-
theoretically defined by the following three pfaffians

f1 D � x
2
1x
3
3x4 C x1x

3
2x
2
4 � x

4
1x4x5 C x1x2x3x

2
4x5 � x

3
2x3x

2
5 C x1x3x

4
5

� x2x3x
3
4x6 C x

2
1x
2
2x5x6 C x

4
3x5x6 � x1x

3
4x5x6 � x

2
1x3x

2
5x6

� x22x4x
2
5x6 C x

3
1x3x

2
6 C x1x

2
2x4x

2
6 C x2x

2
3x4x

2
6 ;

f2 D � x1x2x
4
3 C x

4
2x3x4 C x1x

2
3x
3
4 � x

3
1x2x3x5 � x

2
2x
2
3x4x5 � x2x

2
4x5

C x33x4x
2
5 C x

2
1x2x3x4x6 C x

3
1x4x5x6 C x1x

2
4x
2
5x6 � x1x

2
2x5x

2
6

� x2x
2
3x5x

2
6 C x1x3x

2
5x
2
6 � x

2
1x3x

3
6 � x

2
2x4x

3
6 ;

f3 D � x
2
1x2x

3
3 C x1x

4
2x4 � x

4
1x2x5 C x

2
1x2x4x

2
5 C x1x

2
3x4x

2
5 � x2x

2
4x
3
5

� x21x
2
3x4x6 � x

2
2x3x

2
4x6 C x

2
3x
2
4x5x6 � x

3
2x
2
5x6 C x1x

4
5x6

� x1x2x3x5x
2
6 C x

3
3x5x

2
6 C x2x3x4x

3
6 C x1x4x5x

3
6 :

Hence Im.Th�13/ D D2 and A2.1; 13/�sym is birational toD2.

6.2. Polarizations of type .1; n/ with n even. Let A be a .1; 2d/-polarized abelian
surfacewith a level structure. As it was pointed out inRemark 5.1, the two intersection
sets of A with the eigenspaces are well defined. Let H1;2d be the finite Heisenberg
group defined in Definition 2.4, � and � the two generators such that �.xi / D xi�1,
�.xi / D ��1xi with � D e�i=d , on the homogeneous coordinates x0; : : : ; x2d�1
on P.H 0.A;L//�.

Both �d and �d act on the �1-eigenspace P�, and this defines a Z=2Z � Z=2Z
action on P�. If A � P2d�1 is a Heisenberg invariant abelian surface, by
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Propositions 3.1 and 3.2 we have AŒ2�� D A \ P� and this set is a Z=2Z � Z=2Z
orbit on P�. Let us now define the d � d matrix

.Md /i;j WD xiCjyi�j C xiCjCdyi�jCd ; 0 � i; j � d � 1;

where the indices are modulo 2d . We will need to keep in mind the following [26,
Theorem 6.2].

Theorem 6.13. Let A � P2d�1 a general Heisenberg invariant, .1; 2d/-polarized
abelian surface, and y 2 A \ P�. Then, the 4 � 4 pfaffians of the anti-symmetric
minors of the matrices8̂̂̂̂

<̂
ˆ̂̂:
M5.x; y/IM5.x; �

5.y//IM5.x; �
5.y/I if d D 5I

Md .x; y/IMd .x; �
d .y//I if d � 7, d oddI

M6.x; y/IM6.�.x/; y/IM6.�.x/; y/I if d D 6I
Md .x; y/IMd .�.x/; y/I if d � 8, d evenI

(6.2)

generate the homogeneous ideal of A.

6.2.1. The case n D 8. Let A be a .1; 8/-polarized abelian surface. We are now in
what so far we have called the intermediate case. The line bundle L corresponding
to the polarization induces an embedding A ! P7 Š P.H 0.A;L/�/ of degree 16.
Let us fix homogeneous coordinates x0; : : : ; x7 on P7, and consider the usual action
of the Heisenberg group H1;8, where the two generators operate as �.xi / D xi�1,
�.xi / D �

�1xi with � D e�i=4.
The standard involution .xi / 7! .x�i / on Z8 induces on A the involution {. The

eigenspaces P2� and P4C are, respectively, defined in P.H 0.A;L/�/ by

fx0 D x4 D x1 C x7 D x2 C x6 D x3 C x5 D 0g

and
fx1 � x7 D x2 � x6 D x3 � x5 D 0g:

Let us now consider the subgroup H0 WD
˝
�4; �4

˛
Š .Z=2Z/2 � H.1;8/.

As we have observed, H0 acts on P2� and if A is an abelian surface embedded
in P.H 0.A;L/�/, then the four 2-torsion points of A \ P2� consist of an H0-orbit
on P2�. Furthermore, as it is remarked in [24, Section 6], if y1, y2, y3 are
homogeneous coordinates on P2� we can embed P2�=H

0 in P3 by the map

P2�=H
0

�! P3

Œy1 W y2 W y3� 7�! Œ2y1y3 W �y
2
2 W y

2
1 C y

2
3 W �y

2
2 � :

(6.3)
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Therefore, the image of P2�=H
0 in P3 is the plane fw1 � w3 D 0g, where w0, w1,

w2, w3 are the homogeneous coordinates of P3. The quotient morphism P2� !
P2�=H

0

Š P2 is finite of degree four. We keep denoting by y1, y2, y3 and w0, w1,
w2 the homogeneous coordinates on P2� and P2�=H

0 respectively.
Let us now recall briefly a few results from [24, Section 6]. Let A2.1; 8/lev be

as usual the moduli space of .1; 8/-polarized abelian surfaces with canonical level
structure. There exists a dominant map

‚8 W A2.1; 8/lev ! P2�=H
0

Š P2

associating to a .1; 8/-polarized abelian surface with canonical level structure the
set of its odd 2-torsion points. For a general point y 2 P2�, let V8;y � P7 denote
the subscheme defined by the quadrics of P7 invariant under the action of H0 and
vanishing on the Heisenberg orbit of y. For a general y 2 P2�, V8;y is a Calabi–Yau
complete intersection of type .2; 2; 2; 2/with exactly 64 nodes. The fibre of‚8 over a
general point y 2 P2�=H

0 corresponds to a pencil of abelian surfaces contained in the
singular Calabi–Yau complete intersection V8;y . Furthermore, by [24, Theorem 6.8]
A2.1; 8/lev is birational to a conic bundle over P2�=H

0

Š P2 with discriminant locus
contained in the curve

� D f2w41 � w
3
0w2 � w0w

3
2g:

Proposition 6.14. The discriminant of the conic bundle

‚8 W A2.1; 8/lev ! P2�=H
0

Š P2

is the whole curve �.

Proof. Recall that the fibre of ‚8 over a point y 2 P2�=H
0 corresponds to a pencil

of abelian surfaces contained in the singular Calabi–Yau complete intersection V8;y .
By [52, Section 1.2], the equation defining the complete intersection V8;y in P7 are
the following:

f D y1y3.x
2
0 C x

2
4/ � y

2
2.x1x7 C x3x5/C .y

2
1 C y

2
3/x2x6;

�.f / D y1y3.x
2
1 C x

2
5/ � y

2
2.x2x0 C x4x6/C .y

2
1 C y

2
3/x3x7;

�2.f / D y1y3.x
2
2 C x

2
6/ � y

2
2.x3x1 C x5x7/C .y

2
1 C y

2
3/x4x0;

�3.f / D y1y3.x
2
3 C x

2
7/ � y

2
2.x4x2 C x6x0/C .y

2
1 C y

2
3/x5x1:

Consider the point Œy1 W y2 W y3� D Œ0 W 0 W 1�, which is mapped to the point
Œ0 W 0 W 1� 2 P2�=H

0 . We see that for y D Œ0 W 0 W 1� the variety V8;y is given
by fx2x6 D x3x7 D x0x4 D x1x5 D 0g. Hence V8;y is the union of 16 linear
subspaces of dimension three in P7. In particular, V8;y does not contain a pencil of
abelian surfaces and the conic bundle structure of ‚8 W A2.1; 8/lev ! P2�=H

0

Š P2
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degenerates on Œ0 W 0 W 1� 2 �. Therefore the discriminant locus of this conic bundle
is non-empty, hence it is a curve. By [24, Theorem 6.8] we know that the discriminant
locus is contained in the curve �. Now, it is enough to observe that � is smooth, in
particular irreducible, to conclude that the discriminant locus is exactly �.

In particular, since deg.�/ D 4, as it is remarked in [24, Theorem 6.8], the moduli
space A2.1; 8/lev is rational thanks to the classification of conic bundles from [3].

Theorem 6.15. The moduli space A2.1; 8/�sym of .1; 8/-polarized abelian surfaces
with a symmetric theta structure and an odd theta characteristic is birational to a
conic bundle over P2 whose discriminant locus is a smooth curve of degree eight. In
particular A2.1; 8/�sym is unirational but not rational.

Proof. In Section 5.3 we defined the morphism

Th�.1;8/ W A2.1; 8/
�
sym �! P2�:

We claim that it fits in the following commutative diagram

A2.1; 8/�sym P2� Š P2

A2.1; 8/lev P2�=H
0

Š P2

Th�
8

f �

‚8

This is due to the fact (see Section 5.3, Proposition 3.1 and Proposition 3.2) that,
given an abelian surface with level structure .A; /, the 4 choices of symmetric theta
structure that induce , plus the odd theta characteristic (which is unique) aremapped
exactly to the 4 points of intersection ofAwithP2�. Therefore, the finitemorphismf �
maps fibers of Th�8 to fibers of ‚8, and Th�8 W A2.1; 8/�sym ! P2� Š P2 is a conic
bundle. By Proposition 6.14 the discriminant of this conic bundle is the inverse
image of the curve � D f2w41 � w30w2 � w0w32g via the projection P2 ! P2�=H

0 .
By substituting the equations (6.3), we get that the discriminant is the curve

�
0

D f2y82 � 14y
5
1y

3
3 � 14y

3
1y

5
3 � 2y

7
1y3 � 2y1y

7
3 D 0g:

Note that �0 is a smooth plane curve of degree eight. Since deg.�0/ � 6, by [3,
Theorem4.9], the varietyA2.1; 8/�sym is not rational. On the other hand, deg.�0/ � 8,
and by [44, Corollary 1.2] A2.1; 8/�sym is unirational.

6.2.2. The case n D 10. An argument analogous to the one used in the proof of
Theorem 6.15 works in the case n D 10 as well. Here the negative eigenspace is of
dimension three. Following [26, Theorem 6.2], we have:
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Theorem 6.16. Let d be an even positive integer. The morphism

‚d W A2.1; d/lev ! P
d
2 �2
� =Z2 � Z2

mapping an abelian surface to the orbit of its odd 2-torsion points is birational onto
its image for d � 10.

Thus in particular this is true for

‚10 W A2.1; 10/lev ! P3�=Z2 � Z2

The upshot is that A2.1; 10/lev is rational. In fact, the restriction of the matrix M5

from equation (6.2) is a 5� 5 anti-symmetric matrix with linear entries on P3�, hence
its determinant is never maximal. Therefore, the sets of odd 2-torsion points A\ P3�
cover the whole P3�, when A moves inside A2.1; 10/lev. We have the now familiar
commutative diagram

A2.1; 10/�sym P3�

A2.1; 10/lev P3�=Z2 � Z2

Th�
.1;10/

f �

‚10

with 4 to 1 vertical arrows. Hence, Th�10 is birational, and A2.1; 10/�sym is rational.

6.2.3. The case n D 12. In this section we consider the moduli spaceA2.1; 12/�sym
of .1; 12/-polarized abelian surfaces with a symmetric theta structure and an odd
theta characteristic. By [25, Section 2] if A � P11 is an H12-invariant abelian
surface of type .1; 12/, and y 2 A, then the matrixM6.x; y/ from equation (6.2) has
rank at most two on A. In particular, the matrix M6.x; x/ has rank at most two for
any x 2 A \ P4�. Now, P4� is defined by

P4� D fx0 D x6 D x5Cx7 D x4Cx8 D x3Cx9 D x2Cx10 D x1Cx11 D 0g � P11:

Therefore the upper left 4 � 4 block ofM6.x; x/ is0BB@
0 �x21 � x

2
5 �x22 � x

2
4 �2x23

x21 C x
2
5 0 �x1x3 � x3x5 �2x2x4

x22 C x
2
4 x1x3 C x3x5 0 �2x1x5

2x23 2x2x4 2x1x5 0

1CCA
and its pfaffian is

P D 2.x1x
3
3 C x

3
3x5 � x

3
2x4 � x2x

3
4 C x

3
1x5 C x1x

3
5/:
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We denote by X34 the quartic 3-fold

X34 D fx1x
3
3 C x

3
3x5 � x

3
2x4 � x2x

3
4 C x

3
1x5 C x1x

3
5 D 0g � P4�:

By Theorem 6.16, there exists a birational map

‚12 W A2.1; 12/lev Ü X34=Z2 � Z2

mapping A to the .Z2 � Z2/-orbit of A \ P4�. In this case the action of .Z2 � Z2/
on P4� is given by

�6.x1; x2; x3; x4; x5/ D .x5; x4; x3; x2; x1/;

�6.x1; x2; x3; x4; x5/ D .x1;�x2; x3;�x4; x5/:

By [25, Theorem 2.2] the quotient X34=Z2 � Z2 is birational to the complete
intersection G.1; 3/ \ Q � P5, where G.1; 3/ D fy0y5 � y1y4 C y2y3 D 0g

is the Grassmannian of lines in P3, andQ is the quadric given by

Q D fy0y2 � y
2
3 � 2y2y5 D 0g:

ThereforeA2.1; 12/lev is rational. In the following subsection, we will show that the
quartic X34 is unirational, not rational, and birational to A2.1; 12/�sym.

Aunirational smoothquartic 3-fold. LetX � P4 be a smooth quartic hypersurface.
By adjunction we have that !X Š OX .�1/, hence X is Fano. The rational chain
connectedness and, in characteristic zero, the rational connectedness of Fano varieties
has been proven in [8] and [36].

Clearly a unirational variety is rationally connected. However, establishing if
the classes of unirational and rationally connected varieties are actually distinct is a
long-standing open problem in birational geometry.

We are interested in the quartic 3-fold X34 � P4�. We may write its equation as

X34 D fx0x
3
2 C x

3
2x4 � x

3
1x3 � x1x

3
3 C x

3
0x4 C x0x

3
4 D 0g

by shifting the indices of the homogeneous coordinates on P4�.
By [32] for any smooth quartic 3-fold X � P3 we have Bir.X/ D Aut.X/.

In particular, X is not rational. Furthermore, this result was extended to nodal
Q-factorial quartic 3-folds in [10] and [43]. This gave new counterexamples to the
famous Lüroth problem in dimension three. On the other hand, Segre [58] gave a
criterion for the unirationality of a smooth quartic 3-fold and produced an example
as well. In the rest of this section we will apply Segre’s criterion to the quartic X34
and prove the unirationality ofA2.1; 12/�sym. This criterion consists of the following
steps:

– first, we consider the open subset X0 � X of points x 2 X such that there are
at most finitely many triple tangent of X through x,
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– we consider the projectivized tangent bundle P.TX0/ ! X0, and the
subscheme Y0 � P.TX0/ parametrizing triple tangents to X0. Then we
define a rational map

f W Y0 Ü X

mapping a triple tangent to its fourth point of intersection with X .
– we construct a rational 3-fold Z0 � Y0 such that fjZ0

is finite.
Proposition 6.17. The quartic 3-fold X34 is unirational but not rational.

Proof. We will denote X34 simply by X . It is easy to check that X is smooth.
Therefore X is not rational [32]. Our strategy, in order to prove the unirationality
ofX , consists in applying the unirationality criterion of [58, Section 4]. A lineL � P4
will be called a triple tangent to X at a point x 2 X if either x 2 L � X or the
intersection L \X is of the form 3x C y.

Let us consider the point x D Œ10 W 2 W 1 W 1 W 0�. We have that

TxX D fx0 � 13x1 C 30x2 � 14x3 C 1001x4 D 0g:

Using [38] it is straightforward to check that the intersection S.x/ D X \ TpX
is an irreducible and reduced degree four surface, the point x has multiplicity two
on S.x/, and the quadratic tangent cone to S.x/ at x is irreducible and reduced as
well. Note that the triple tangents toX at x are the generators of the quadratic tangent
cone to S.x/ at x. Now, assume that infinitely many triple tangents lie in X . Then
the tangent cone lie in S.x/ which is irreducible and reduced. Therefore we get a
contradiction and only finitely many triple tangents can lie in X .

It is well known that the subsetX0 � X of pointswith this property is a dense open
subset of X . Now, let us consider the projectivized tangent bundle P.TX0/ ! X0.
Let Y0 � P.TX0/ be the subscheme parametrizing triple tangents to X0, and let
� W Y0 ! X0 be the projection. Note that if x 2 X0 the fiber ��1.x/ is isomorphic
to the base of the quadratic tangent cone to S.x/, that is ��1.x/ Š P1. Now, only
finitely many points on the fiber ��1.x/ correspond to triple tangents contained inX .
Therefore we can define a rational map f W Y0 Ü X mapping a triple tangent to its
fourth point of intersection with X . Now, following [58] we would like to construct
a rational 3-fold Z0 � Y0 such that fjZ0

is finite. Here comes the core part of the
construction.

Let us consider the hyperplane H4 D fx4 D 0g. Note that H4 D TqX where
q D Œ1 W 0 W 0 W 0 W 0�. The intersectionH4 \X is the surface

S D fG D x0x
3
2 � x

3
1x3 � x1x

3
3 D 0g � H4 Š P3:

The partial derivatives of G are

@G

@x0
D x32 ;

@G

@x1
D �3x21x3 � x

3
3 ;

@G

@x2
D 3x0x

2
2 ;

@G

@x3
D �x31 � 3x1x

2
3
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and the Hessian matrix of G is0BB@
0 0 3x22 0

0 �6x1x3 0 �3x21 � 3x
2
3

3x22 0 6x0x2 0

0 �3x21 � 3x
2
3 0 �6x1x3

1CCA
We see that dim.Sing.S// D 0, so S is irreducible. Furthermore, on the point
Œ1 W 0 W 0 W 0� all the first partial derivatives and the Hessian matrix vanish. On the
other hand @3G

@x3
2

.1; 0; 0; 0/ ¤ 0, then Œ1 W 0 W 0 W 0� is a singular point of multiplicity
exactly three for S . In particular, since deg.S/ D 4 projecting from Œ1 W 0 W 0 W 0� we
see that S is rational. Finally x D Œ10 W 2 W 1 W 1 W 0� 2 S , and S \X0 ¤ ;.

Now, we define Z0 WD ��1.S/. The general fiber of �jZ0
W Z0 ! S is a smooth

rational curve. In order to prove that Z0 is rational it is enough to show that �jZ0

admits a rational section. Let x 2 S be a smooth point. Then TxS intersects the
quadratic tangent cone to S.x/ in the two generators. In turn the two generators give
two points on the fiber of Z0 over x. We denote byD � Z0 the closure of the locus
of these pairs of points. Note that D is a double section of �jZ0

W Z0 ! S . Now,
the surface of triple tangents of S is given by the following two equations

3X
iD0

@G

@xi .x/
xi D 0;

3X
i;jD0

@2G.x/

@xixj
xixj D 0

for x varying in S . Therefore, the discriminant of the equation defining the two triple
tangents at a general point x 2 S is the determinant of the Hessian H.G/ up to a
quadratic multiple. We have

det.H.G// D .9x22.x
2
1 � x

2
3//

2:

Therefore, the surface of triple tangents of S splits in two componentsD D D0[D1,
and each component gives a rational section of �jZ0

W Z0 ! S . We conclude thatZ0
is rational. Now, we consider the restriction

fjD0
W D0 Ü S:

Note thatD0 is the surface given by
3X
iD0

@G.x/

@xi
xi D 0;

3X
iD0

˛i .x/xi D 0:

for x varying in S , where the ˛i are determined by the splittingD D D0 [D1. For
instance, if x D Œ10 W 2 W 1 W 1� the triple tangent L corresponding to the point ofD0
over x is given by

L D f2x1 � 5x2 C x3 D 2x0 � 5x2 � 15x3 D 0g

and L intersects S in x with multiplicity three and in the fourth point Œ65 W 1 W 2 W 8�.
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Now, a standard computation shows that for a general point y 2 S there exist a point
x 2 S and a triple tangent Lx to S at x such that y 2 Lx . In other words the rational
map fjD0

W D0 Ü S is dominant.
Let us come back to the rational map fjZ0

W Z0 Ü X . Let us assume that fjZ0
is

not dominant. SinceD0 � Z0 andD0 is dominant on S we have that fjZ0
.Z0/ is an

irreducible surface containing S . Therefore, fjZ0
.Z0/ D S . Now, let x 2 S be any

smooth point. Then S.x/ ¤ S , and the general generator of the quadratic tangent
cone to S.x/ in x does not lie on the hyperplane H4 cutting S on X . In particular,
the fourth point of intersection of such a general generator with X does not lie in S .
This is a contradiction. We conclude that fjZ0

W Z0 Ü X is dominant. Hence fjZ0

is finite, and since Z0 is rational the 3-fold X is unirational.

Theorem 6.18. The moduli spaceA2.1; 12/�sym of .1; 12/-polarized abelian surfaces
with canonical level structure, a symmetric theta structure and an odd theta
characteristic is unirational but not rational.

Proof. Let X34 be the quartic 3-fold defined by

fx1x
3
3 C x

3
3x5 � x

3
2x4 � x2x

3
4 C x

3
1x5 C x1x

3
5 D 0g � P4�:

An argument analogous to the one used in the proof of Theorem 6.15 shows that the
diagram

A2.1; 12/�sym X34

A2.1; 12/lev X34=Z2 � Z2

Th�
.1;12/

f �

‚12

commutes. Since, by Theorem 6.16, the map ‚12 is birational, the map Th�.1;12/
is birational as well. Finally, by Proposition 6.17 we have that A2.1; 12/�sym is
unirational but not rational.

6.2.4. The cases n D 14 and n D 16. By Theorem 6.16 the map

‚14 W A2.1; 14/lev Ü P5�=Z2 � Z2

mapping an abelian surface A to the orbit of A \ P5� is birational onto its image.
Let X14 be the inverse image of Im.‚14/ via the projection P5� ! P5�=Z2 � Z2.
Now, the first 4 � 4 minor of the matrix M7.x; x/, from equation (6.2), restricted
to P5� gives the following pfaffian

f D x1x
3
3 � x

3
2x4 � x1x3x

2
4 C x

3
1x5 � x

2
2x3x5 � x2x4x

2
5

� x3x
3
5 C x1x2x6 C x

2
3x4x6 C x

3
4x6 C x1x5x

2
6 C x2x

3
6 :
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On the other hand, the first 4 � 4 minor of the matrixM7.�.x/; x/ restricted to P5�
yields the pfaffian

g D x1x3x
2
4 � x

2
2x3x5 � x2x4x

2
5 C x

2
1x2x6 C x

2
3x4x6 C x1x5x

2
6 :

Clearly, by Theorem 6.13, X14 � X34;4 D ff D g D 0g � P5�. Furthermore, a
standard computation in [38] shows that X34;4 is an irreducible 3-fold of degree 16
which is singular along a curve of degree 24. Finally, we get that the map

Th�14 W A2.1; 14/�sym ! X34;4

is birational. The case n D 16 is quite similar. By [25, Lemma 4.1] the variety
X340 � P6� defined by the 4 � 4 pfaffians of M8.x; x/ is an irreducible 3-fold of
degree 40. By Theorem 6.16 the map

‚16 W A2.1; 16/lev Ü P6�=Z2 � Z2

is birational onto its image. If � W P6� ! P6�=Z2 � Z2 then X340 D ��1.Im.‚16//.
As usual, we get that the map

Th�16 W A2.1; 16/�sym ! X340

is birational. Furthermore, we have the following.
Proposition 6.19. The moduli space A2.1; 16/�sym is of general type.

Proof. By [25, Remark 4.2] the 3-fold X340 is of general type.

References

[1] W. L. Baily, Jr. and A. Borel, Compactification of arithmetic quotients
of bounded symmetric domains, Ann. of Math. (2), 84 (1966), 442–528.
Zbl 0154.08602 MR 0216035

[2] W. Barth, Abelian surfaces with .1; 2/-polarization, in Algebraic geometry,
(Sendai, 1985), 41–84, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam,
1987. Zbl 0639.14023 MR 0946234

[3] A. Beauville, Variétés de Prym et jacobiennes intermédiaires, Ann. Sci. École
Norm. Sup. (4), 10 (1977), no. 3, 309–391. Zbl 0368.14018 MR 0472843

[4] C. Birkenhake and H. Lange, Complex Abelian Varieties, Grundlehren der
Mathematischen Wissenschaften, A series of Comprehensive Studies in
Mathematics, 32, 2014.

[5] M. Bolognesi, A conic bundle degenerating on the Kummer surface, Math. Z.,
261 (2009), no. 1, 149–168. Zbl 1159.14016 MR 2452642

https://zbmath.org/?q=an:0154.08602
http://www.ams.org/mathscinet-getitem?mr=0216035
https://zbmath.org/?q=an:0639.14023
http://www.ams.org/mathscinet-getitem?mr=0946234
https://zbmath.org/?q=an:0368.14018
http://www.ams.org/mathscinet-getitem?mr=0472843
https://zbmath.org/?q=an:1159.14016
http://www.ams.org/mathscinet-getitem?mr=2452642


Vol. 91 (2016) Abelian surfaces and theta characteristics 605

[6] M. Bolognesi, On Weddle surfaces and their moduli, Adv. Geom., 7 (2007),
no. 1, 113–144. Zbl 1125.14026 MR 2290643

[7] M. Bolognesi and A. Massarenti, Moduli of abelian surfaces, symmetric theta
structures and theta characteristics. II, in preparation.

[8] F. Campana, Connexité rationnelle des variétés de Fano, Ann. Sci. École Norm.
Sup. (4), 25 (1992), no. 5, 539–545. Zbl 0783.14022 MR 1191735

[9] C. H. Clemens, Double solids, Adv. in Math., 47 (1983), no. 2, 107–230.
Zbl 0509.14045 MR 0690465

[10] A. Corti andM.Mella, Birational geometry of terminal quartic 3-folds. I, Amer.
J. Math., 126 (2004), no. 4, 739–761. Zbl 1063.14016 MR 2075480

[11] I. V. Dolgachev, Dual homogeneous forms and varieties of power sums, Milan
J. Math., 72 (2004), 163–187. Zbl 1222.14116 MR 2099131

[12] I. Dolgachev and D. Lehavi, On isogenous principally polarized abelian
surfaces, in Curves and abelian varieties, 51–69, Contemp. Math., 465, Amer.
Math. Soc., Providence, RI, 2008. Zbl 1152.14306 MR 2457735

[13] I. Dolgachev and D. Ortland, Point sets in projective spaces and theta functions,
Astérisque, 165 (1989), 1988, 210 pp. Zbl 0685.14029 MR 1007155

[14] R. Donagi, The unirationality of A5, Ann. of Math. (2), 119 (1984), no. 2,
269–307. Zbl 0589.14043 MR 0740895

[15] C. Erdenberger, The Kodaira dimension of certain moduli spaces of abelian
surfaces, Math. Nachr., 274/275 (2004), 32–39. Zbl 1065.14058 MR 2092323

[16] B. van Geemen, The moduli space of curves of genus 3 with level 2 structure is
rational, unpublished preprint.

[17] G. van der Geer, Note on abelian schemes of level three,Math. Ann., 278 (1987),
no. 1-4, 401–408. Zbl 0688.14034 MR 0909234

[18] T. Graber, J. Harris and J. Starr, Families of rationally connected varieties,
J. Amer. Math. Soc., 16 (2003), no. 1, 57–67 (electronic). Zbl 1092.14063
MR 1937199

[19] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley-Interscience
[John Wiley & Sons], New York, 1978. Zbl 0836.14001 MR 0507725

[20] V. Gritsenko, Irrationality of the moduli spaces of polarized abelian surfaces,
in Abelian varieties (Egloffstein, 1993), 63–84, de Gruyter, Berlin, 1995.
Zbl 0848.14019 MR 1336601

[21] V. Gritsenko, Irrationality of the moduli spaces of polarized abelian surfaces,
Internat. Math. Res. Notices, 1994 (1994), no. 6, 235 ff., approx. 9 pp.
(electronic). Zbl 0854.14019 MR 1277050

https://zbmath.org/?q=an:1125.14026
http://www.ams.org/mathscinet-getitem?mr=2290643
https://zbmath.org/?q=an:0783.14022
http://www.ams.org/mathscinet-getitem?mr=1191735
https://zbmath.org/?q=an:0509.14045
http://www.ams.org/mathscinet-getitem?mr=0690465
https://zbmath.org/?q=an:1063.14016
http://www.ams.org/mathscinet-getitem?mr=2075480
https://zbmath.org/?q=an:1222.14116
http://www.ams.org/mathscinet-getitem?mr=2099131
https://zbmath.org/?q=an:1152.14306
http://www.ams.org/mathscinet-getitem?mr=2457735
https://zbmath.org/?q=an:0685.14029
http://www.ams.org/mathscinet-getitem?mr=1007155
https://zbmath.org/?q=an:0589.14043
http://www.ams.org/mathscinet-getitem?mr=0740895
https://zbmath.org/?q=an:1065.14058
http://www.ams.org/mathscinet-getitem?mr=2092323
https://zbmath.org/?q=an:0688.14034
http://www.ams.org/mathscinet-getitem?mr=0909234
https://zbmath.org/?q=an:1092.14063
http://www.ams.org/mathscinet-getitem?mr=1937199
https://zbmath.org/?q=an:0836.14001
http://www.ams.org/mathscinet-getitem?mr=0507725
https://zbmath.org/?q=an:0848.14019
http://www.ams.org/mathscinet-getitem?mr=1336601
https://zbmath.org/?q=an:0854.14019
http://www.ams.org/mathscinet-getitem?mr=1277050


606 M. Bolognesi and A. Massarenti CMH

[22] V. A. Gritsenko and G. K. Sankaran, Moduli of abelian surfaces with a
.1; p2/ polarisation, Izv. Ross. Akad. Nauk Ser. Mat., 60 (1996), no. 5, 19–
26. Zbl 0910.14024 MR 1427394

[23] B. H. Gross and J. Harris, On some geometric constructions related to
theta characteristics, in Contributions to automorphic forms, geometry, and
number theory, 279–311, Johns Hopkins Univ. Press, Baltimore, MD, 2004.
Zbl 1072.14032 MR 2058611

[24] M.Gross and S. Popescu, Calabi–Yau threefolds andmoduli of abelian surfaces.
I, Compositio Math., 127 (2001), no. 2, 169–228. Zbl 1063.14051MR 1845899

[25] M. Gross and S. Popescu, Calabi–Yau three-folds and moduli of abelian
surfaces. II, Trans. Amer. Math. Soc., 363 (2011), no. 7, 3573–3599.
Zbl 1228.14039 MR 2775819

[26] M. Gross and S. Popescu, Equations of .1; d/-polarized abelian surfaces,Math.
Ann., 310 (1998), no. 2, 333–377. Zbl 0922.14030 MR 1602020

[27] M.Gross and S. Popescu, Themoduli space of .1; 11/-polarized abelian surfaces
is unirational, Compositio Math., 126 (2001), no. 1, 1–23. Zbl 1015.14022
MR 1827859

[28] K. Hulek, C. Kahn and S. H. Weintraub, Moduli spaces of abelian surfaces:
compactification, degenerations, and theta functions, de Gruyter Expositions
in Mathematics, 12, Walter de Gruyter & Co., Berlin, 1993. Zbl 0809.14035
MR 1257185

[29] K. Hulek and G. K. Sankaran, The Kodaira dimension of certain moduli spaces
of abelian surfaces, Compositio Math., 90 (1994), no. 1, 1–35. Zbl 0799.14026
MR 1266492

[30] J.-i. Igusa, On the graded ring of theta-constants, Amer. J. Math., 86 (1964),
219–246. Zbl 0146.31703 MR 0164967

[31] A. Iliev and K. Ranestad, K3 surfaces of genus 8 and varieties of sums of
powers of cubic fourfolds, Trans. Amer. Math. Soc., 353 (2001), no. 4, 1455–
1468. Zbl 0966.14027 MR 1806733

[32] V. A. Iskovskikh and Y. Manin, Three-dimensional quartics and
counterexamples to the Lüroth problem, Amer. J. Math., 86 (1964), 219–246.

[33] P. Katsylo, Rationality of the moduli variety of curves of genus 3, Comment.
Math. Helv., 71 (1996), no. 4, 507–524. Zbl 0885.14013 MR 1420508

[34] P. Kleidman and M. Liebeck, The subgroup structure of the finite classical
groups, London Mathematical Society Lecture Note Series, 129, Cambridge
University Press, Cambridge, 1990. Zbl 0697.20004 MR 1057341

https://zbmath.org/?q=an:0910.14024
http://www.ams.org/mathscinet-getitem?mr=1427394
https://zbmath.org/?q=an:1072.14032
http://www.ams.org/mathscinet-getitem?mr=2058611
https://zbmath.org/?q=an:1063.14051
http://www.ams.org/mathscinet-getitem?mr=1845899
https://zbmath.org/?q=an:1228.14039
http://www.ams.org/mathscinet-getitem?mr=2775819
https://zbmath.org/?q=an:0922.14030
http://www.ams.org/mathscinet-getitem?mr=1602020
https://zbmath.org/?q=an:1015.14022
http://www.ams.org/mathscinet-getitem?mr=1827859
https://zbmath.org/?q=an:0809.14035
http://www.ams.org/mathscinet-getitem?mr=1257185
https://zbmath.org/?q=an:0799.14026
http://www.ams.org/mathscinet-getitem?mr=1266492
https://zbmath.org/?q=an:0146.31703
http://www.ams.org/mathscinet-getitem?mr=0164967
https://zbmath.org/?q=an:0966.14027
http://www.ams.org/mathscinet-getitem?mr=1806733
https://zbmath.org/?q=an:0885.14013
http://www.ams.org/mathscinet-getitem?mr=1420508
https://zbmath.org/?q=an:0697.20004
http://www.ams.org/mathscinet-getitem?mr=1057341


Vol. 91 (2016) Abelian surfaces and theta characteristics 607

[35] J. Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik
und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics
[Results in Mathematics and Related Areas. 3rd Series. A Series of Modern
Surveys in Mathematics], 32, Springer-Verlag, Berlin, 1996. Zbl 0877.14012
MR 1440180

[36] J. Kollár, Y. Miyaoka and S. Mori, Rational connectedness and boundedness
of Fano manifolds, J. Differential Geom., 36 (1992), no. 3, 765–779.
Zbl 0759.14032 MR 1189503

[37] J. M. Landsberg and G. Ottaviani, Equations for secant varieties of Veronese
and other varieties, Ann. Mat. Pura Appl. (4), 192 (2013), no. 4, 569–606.
Zbl 1274.14058 MR 3081636

[38] MacAulay2, Macaulay2, a software system devoted to supporting research
in algebraic geometry and commutative algebra. Available at: http://www.
math.uiuc.edu/Macaulay2/

[39] N. Manolache and F.-O. Schreyer, Moduli of .1; 7/-polarized abelian surfaces
via syzygies,Math. Nachr., 226 (2001), 177–203. Zbl 0996.14019MR 1839408

[40] A.Massarenti,Generalized varieties of sums of powers, Bulletin of the Brazilian
Mathematical Society, 2016. DOI:10.1007/s00574-016-0113-6

[41] A. Massarenti and M. Mella, Birational aspects of the geometry of varieties of
sums of powers,Adv.Math., 243 (2013), 187–202. Zbl 1287.14023MR3062744

[42] A. Marini, On a family of .1; 7/-polarised abelian surfaces, Math. Scand., 95
(2004), no. 2, 181–225. Zbl 1076.14056 MR 2098354

[43] M.Mella, Birational geometry of quartic 3-folds. II. The importance of beingQ-
factorial,Math. Ann., 330 (2004), no. 1, 107–126. Zbl 1058.14022MR 2091681

[44] M. Mella, On the unirationality of 3-fold conic bundles, 2014.
arXiv:1403.7055v1

[45] F. Melliez and K. Ranestad, Degenerations of .1; 7/-polarized abelian surfaces,
Math. Scand., 97 (2005), no. 2, 161–187. Zbl 1094.14031 MR 2191701

[46] S. Mori and S. Mukai, The uniruledness of the moduli space of curves of genus
11, in Algebraic geometry (Tokyo/Kyoto, 1982), 334–353, Lecture Notes in
Math., 1016, Springer, Berlin, 1983. Zbl 0557.14015 MR 0726433

[47] S. Mukai, Fano 3-folds, in Complex projective geometry (Trieste, 1989/Bergen,
1989), 255–263, London Math. Soc. Lecture Note Ser., 179, Cambridge Univ.
Press, Cambridge, 1992. Zbl 0774.14037 MR 1201387

[48] S. Mukai, Polarized K3 surfaces of genus 18 and 20, in Complex projective
geometry (Trieste, 1989/Bergen, 1989), 264–276, London Math. Soc. Lecture
Note Ser., 179, Cambridge Univ. Press, Cambridge, 1992. Zbl 0774.14035
MR 1201388

https://zbmath.org/?q=an:0877.14012
http://www.ams.org/mathscinet-getitem?mr=1440180
https://zbmath.org/?q=an:0759.14032
http://www.ams.org/mathscinet-getitem?mr=1189503
https://zbmath.org/?q=an:1274.14058
http://www.ams.org/mathscinet-getitem?mr=3081636
http://www.math.uiuc.edu/Macaulay2/
http://www.math.uiuc.edu/Macaulay2/
https://zbmath.org/?q=an:0996.14019
http://www.ams.org/mathscinet-getitem?mr=1839408
https://zbmath.org/?q=an:1287.14023
http://www.ams.org/mathscinet-getitem?mr=3062744
https://zbmath.org/?q=an:1076.14056
http://www.ams.org/mathscinet-getitem?mr=2098354
https://zbmath.org/?q=an:1058.14022
http://www.ams.org/mathscinet-getitem?mr=2091681
http://arxiv.org/abs/1403.7055v1
https://zbmath.org/?q=an:1094.14031
http://www.ams.org/mathscinet-getitem?mr=2191701
https://zbmath.org/?q=an:0557.14015
http://www.ams.org/mathscinet-getitem?mr=0726433
https://zbmath.org/?q=an:0774.14037
http://www.ams.org/mathscinet-getitem?mr=1201387
https://zbmath.org/?q=an:0774.14035
http://www.ams.org/mathscinet-getitem?mr=1201388


608 M. Bolognesi and A. Massarenti CMH

[49] D. Mumford, On the equations defining abelian varieties. I, Invent. Math., 1
(1966), 287–354. Zbl 0219.14024 MR 0204427

[50] B. van Geemen and N. O. Nygaard, On the geometry and arithmetic of
some Siegel modular threefolds, J. Number Theory, 53 (1995), no. 1, 45–87.
Zbl 0838.11047 MR 1344832

[51] K. G. O’Grady, On the Kodaira dimension of moduli spaces of abelian surfaces,
Compositio Math., 72 (1989), no. 2, 121–163. Zbl 0711.14025 MR 1030139

[52] S. Pavanelli, Mirror symmetry for a two parameter family of Calabi–Yau
three-folds with Euler characteristic 0, Ph.D. thesis, University of Warwick,
Mathematics Institute, 2003.

[53] K. Ranestad and F.-O. Schreyer, Varieties of sums of powers, J. Reine Angew.
Math., 525 (2000), 147–181. Zbl 1078.14506 MR 1780430

[54] N. Saavedra Rivano, Finite geometries in the theory of theta characteristics,
Enseignement Math. (2), 22 (1976), no. 3-4, 191–218. Zbl 0346.14015
MR 0447261

[55] R. S. Manni, On the nonidentically zero Nullwerte of Jacobians of theta
functions with odd characteristics, Adv. in Math., 47 (1983), no. 1, 88–104.
Zbl 0517.14013 MR 0689766

[56] R. S. Manni, On the not integrally closed subrings of the ring of the
thetanullwerte, Duke Math. J., 52 (1985), no. 1, 25–33. Zbl 0592.10020
MR 0791289

[57] G. K. Sankaran,Moduli of polarised abelian surfaces,Math. Nachr., 188 (1997),
321–340. Zbl 0907.14019 MR 1484680

[58] B. Segre, Variazione continua ed omotopia in geometria algebrica, Ann. Mat.
Pura Appl. (4), 50 (1960), 149–186. Zbl 0099.16401 MR 0121698

[59] A. Verra, A short proof of the unirationality of A5, Nederl. Akad. Wetensch.
Indag. Math., 46 (1984), no. 3, 339–355. Zbl 0553.14010 MR 0763470

Received September 23, 2015; revised April 17, 2016

M. Bolognesi, IMAG - Université de Montpellier, Place Eugène Bataillon,
34095 Montpellier Cedex 5, France
E-mail: michele.bolognesi@umontpellier.fr
A. Massarenti, Universidade Federal Fluminense, Rua Mário Santos Braga,
24020-140 Niterói, Rio de Janeiro, Brazil
E-mail: alexmassarenti@id.uff.br

https://zbmath.org/?q=an:0219.14024
http://www.ams.org/mathscinet-getitem?mr=0204427
https://zbmath.org/?q=an:0838.11047
http://www.ams.org/mathscinet-getitem?mr=1344832
https://zbmath.org/?q=an:0711.14025
http://www.ams.org/mathscinet-getitem?mr=1030139
https://zbmath.org/?q=an:1078.14506
http://www.ams.org/mathscinet-getitem?mr=1780430
https://zbmath.org/?q=an:0346.14015
http://www.ams.org/mathscinet-getitem?mr=0447261
https://zbmath.org/?q=an:0517.14013
http://www.ams.org/mathscinet-getitem?mr=0689766
https://zbmath.org/?q=an:0592.10020
http://www.ams.org/mathscinet-getitem?mr=0791289
https://zbmath.org/?q=an:0907.14019
http://www.ams.org/mathscinet-getitem?mr=1484680
https://zbmath.org/?q=an:0099.16401
http://www.ams.org/mathscinet-getitem?mr=0121698
https://zbmath.org/?q=an:0553.14010
http://www.ams.org/mathscinet-getitem?mr=0763470
mailto:michele.bolognesi@umontpellier.fr
mailto:alexmassarenti@id.uff.br

	Introduction
	Notation and preliminaries
	Theta characteristics and linear systems on abelian surfaces
	The arithmetic groups for moduli of abelian surfaces with symmetric theta structure
	Moduli of (1,d)-polarized surfaces, with symmetric theta structure and a theta characteristic: the theta-null map
	The odd case
	The even case
	The intermediate case

	Moduli of (1,d) polarized surfaces, with symmetric theta structure and a theta characteristic: birational geometry
	Polarizations of type (1,n) with n odd
	Polarizations of type (1,n) with n even


