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Virtually compact special hyperbolic groups are
conjugacy separable
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Abstract. We prove that any word hyperbolic group which is virtually compact special (in
the sense of Haglund and Wise) is conjugacy separable. As a consequence we deduce that all
word hyperbolic Coxeter groups and many classical small cancellation groups are conjugacy
separable. To get the main result we establish a new criterion for showing that elements of prime
order are conjugacy distinguished. This criterion is of independent interest; its proof is based
on a combination of discrete and profinite (co)homology theories.
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1. Introduction

One of the main themes of Geometric Group Theory is the study of groups which
act on non-positively curved spaces. Two prominent classes of such groups is the
class of hyperbolic groups (defined by Gromov in [13]) and the class of (virtually)
special groups (introduced by Haglund and Wise in [16]). The intersection of these
two classes is quite large and its elements, virtually special hyperbolic groups, have
particularly nice properties.

Recall that a finitely generated groupG is said to be hyperbolic if its Cayley graph
is a ı-hyperbolic metric space, for some ı � 0 (see, for example, [2]). On the other
hand,G is virtually compact special, if there is a finite index subgroupH 6 G, such
that H is isomorphic to the fundamental group of a compact special cube complex,
whose hyperplanes satisfy certain combinatorial properties (see [16, Sec. 3]).

Since the original work of Haglund and Wise [16], many hyperbolic groups have
been shown to be virtually special. For example, in the paper [15] Haglund and
Wise showed that hyperbolic Coxeter groups are virtually compact special. In [34]
Wise proved the same for finitely generated 1-relator groups with torsion, while
in [1] Agol showed this for fundamental groups of closed hyperbolic 3-manifolds. In
fact, Agol [1] proved that any hyperbolic group admitting a proper cocompact action
on a CAT(0) cube complex is virtually compact special.
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In this paper we study conjugacy separability of virtually compact special
hyperbolic groups. Recall, that a group G is conjugacy separable if for arbitrary
non-conjugate elements x; y 2 G there is a homomorphism from G to a finite
group F such that the images of x and y are not conjugate in F . Conjugacy
separability can be regarded as an algebraic analogue of solvability of the conjugacy
problem in a group and has a number of applications. Most prominently it is used
in proving residual finiteness of outer automorphism groups (see, for example, the
discussion in [25, Sec. 2]).

Conjugacy separability is usually not easy to show, and, until recently, only a
few classes of groups were known to satisfy it: virtually free groups [10], virtually
surface groups [23] and virtually polycyclic groups [11, 29]. Note that in general
conjugacy separability does not pass to finite index overgroups [12] or to finite index
subgroups [24], therefore the adjective “virtually” is important.

A group G is said to be hereditarily conjugacy separable if every finite index
subgroup ofG is conjugacy separable. In [25] the first author showed that right angled
Artin groups are hereditarily conjugacy separable. This result was subsequently
used to prove conjugacy separability of Bianchi groups [7], 1-relator groups with
torsion [26] and fundamental groups of compact 3-manifolds [17]. In fact, in [25] it
was shown that any virtually compact special groupG contains a conjugacy separable
subgroup of finite index. But it is still unclear whether such G must necessarily be
conjugacy separable itself. In the present paper we prove this in the case when G is
hyperbolic:
Theorem 1.1. Any virtually compact special hyperbolic group is hereditarily
conjugacy separable.

Conjugacy separability of torsion-free virtually compact special hyperbolic
groups was proved in [25, Cor. 9.11], so the actual novelty of Theorem 1.1 is in
handling groups with torsion. In view of Agol’s result [1, Thm. 1.1], the above
theorem shows that every hyperbolic group, admitting a proper cocompact action
on a CAT(0) cube complex, is hereditarily conjugacy separable. This gives an
abundance of new examples of (hereditarily) conjugacy separable groups, some of
which we mention in corollaries below.

For any Coxeter group W , Niblo and Reeves [27] constructed a cube complex C
on which W acts properly, and proved that the quotient complex X D W nC is
compact ifW is hyperbolic. It follows that any hyperbolic Coxeter group is virtually
compact special (originally this is due to Haglund and Wise [15]), hence we can use
Theorem 1.1 to deduce:
Corollary 1.2. Any hyperbolic Coxeter group is hereditarily conjugacy separable.

Note that conjugacy separability of hyperbolic even Coxeter groups was proved
in [6].

Another family of hyperbolic virtually compact special groups is given by groups
with finite small cancellation presentations. Indeed, in [33] Wise proved that many
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classical small cancellation groups, including C 0.1=6/ and C 0.1=4/ � T .4/ groups,
act properly and cocompactly on CAT(0) cube complexes. It is well known that
such groups are hyperbolic, so Agol’s result [1, Thm. 1.1] applies and, together with
Theorem 1.1, it yields
Corollary 1.3. LetG be a groupwith a finiteC 0.1=6/ orC 0.1=4/�T .4/ presentation.
Then G is hereditarily conjugacy separable.

Finally, Theorem 1.1 implies that any group acting properly and cocompactly on
the hyperbolic 3-space is hereditarily conjugacy separable, because fundamental
groups of closed hyperbolic 3-manifolds are virtually compact special by a
combination of results of Bergeron and Wise [3] and Agol [1]. Thus we obtain
the following statement:
Corollary 1.4. Any uniform lattice in PSL2.C/ is hereditarily conjugacy separable.

The above corollary could also be proved by combining results of Chagas and the
second author [7, Thm. 2.5 or Thm. 2.7] with a different theorem of Agol from [1],
claiming that closed hyperbolic 3-manifolds are virtually fibered.

Let us now say a few words about the proof of Theorem 1.1. One of the main
difficulties in it is to separate conjugacy classes of torsion elements in a finite quotient.
To this end we come up with a new approach (see Proposition 3.2) which employs
(co)homological methods and is based on a result of K.S. Brown [5] allowing one to
distinguish conjugacy classes of elements of prime order using group cohomology.
In particular we obtain the following quite general result.
Theorem 1.5. Let G be a residually finite group with vcd.G/ < 1. If G is
cohomologically good then every element of prime order is conjugacy distinguished
in G.

Recall that a residually finite group G is cohomologically good, if the inclusion
of G in its profinite completion induces an isomorphism on cohomology with finite
coefficients. An element g 2 G is said to be conjugacy distinguished if the conjugacy
class gG is closed in the profinite topology on G (thus G is conjugacy separable if
and only if each g 2 G is conjugacy distinguished). The claim of Theorem 1.5 can
be restated by saying that two non-conjugate elements of prime order in G are not
conjugate in the profinite completion bG; in other words, the embedding of G in bG
induces an injective map on the sets of conjugacy classes of elements of prime order
in G and in bG. In Corollary 3.5 we prove that if, additionally, G is finitely generated
then this map is actually a bijection (in particular, every element of prime order in bG
is conjugate to some element in G).

To prove Theorem 1.1 for a hyperbolic virtually compact special group G, we
first show that G is cohomologically good by proving that this property is stable
under virtual retractions (Lemma 3.1), and combining this with some results from
[14, 16, 20] (our argument actually does not make use of the hyperbolicity of G
and works, more generally, for almost virtual retracts of right angled Artin groups;
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see Proposition 3.8). It follows that Theorem 1.5 can be applied to separate the
conjugacy classes of elements of prime order in G. After this we prove that every
torsion element ofG is conjugacy distinguished essentially by induction on its order.

Acknowledgements. The authors would like to thank Marco Boggi, Frédéric
Haglund, Dessislava Kochloukova, Ian Leary and Nansen Petrosyan for enlightening
discussions. The second author was supported by Capes and CNPq.

2. Preliminaries

2.1. Notation. Given a group G, its subgroups K;H and an element g 2 G, we
will write CH .g/ D fh 2 H j hgh�1 D gg to denote the centralizer of g inH , and
NH .K/ D fh 2 H j hKh

�1 D Kg to denote the normalizer of K inH .

2.2. Hyperbolic groups and quasiconvex subgroups. Recall that a geodesicmetric
space Y is (Gromov) hyperbolic if there exists a constant ı � 0 such that for any
geodesic triangle � in Y , any side of � is contained in the closed ı-neighborhood
of the union of the other sides (cf. [2]). A subset Z � Y is quasiconvex if there
is " � 0 such that for any two points z1; z2 2 Z, any geodesic joining these points is
contained in the closed "-neighborhood of Z.

If G is a group generated by a finite set A � G, then G is said to be hyperbolic
if its Cayley graph �.G;A/ is a hyperbolic metric space. Similarly, a subset S � G
is quasiconvex if it is quasiconvex when considered as a subset of �.G;A/.

Quasiconvex subgroups are very important in the study of hyperbolic groups.
Such subgroups are themselves hyperbolic and are quasi-isometrically embedded
in G (see [2]). Basic examples of quasiconvex subgroups in hyperbolic groups are
centralizers of elements (see [4, Ch. III.� , Prop. 3.9]); this fact will be important for
our argument below.

2.3. Right angled Artin groups. A right angled Artin group is a group which can
be given by a finite presentation, where the only defining relators are commutators of
the generators. To construct such a group, one usually starts with a finite simplicial
graph � with vertex set V and edge set E. One then defines the corresponding right
angled Artin group A D A.�/ by the following presentation:

A D hV k Œu; v� D 1; whenever .u; v/ 2 Ei;

where Œu; v� D uvu�1v�1 is the commutator of u and v.
For any subset S � V , the subgroup AS D hSi 6 A is said to be a full subgroup

of A. It is easy to see that AS is itself a right angled Artin group corresponding to
the full subgraph �S of � , induced by the vertices from S . Moreover, AS is a retract
of A (see [25, Sec. 6]).
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Recall that a subgroup H , of a group G, is a virtual retract if H is a retract
of some finite index subgroup K 6 G. In other words, H � K and there is a
homomorphism � W K ! H such that �.K/ D H and �jH D idH .

Let VR denote the class of all groups which are virtual retracts of finitely
generated right angled Artin groups, and let AVR be the class consisting of all
groups G such that G has a finite index subgroup from VR. We are interested
in these specific classes of groups because of the following two results: in [16]
Haglund and Wise proved that any virtually compact special group G belongs to
the class AVR, and in [25] the first author showed that any group H 2 VR is
hereditarily conjugacy separable.

2.4. Profinite topology. The profinite topology on a group G is defined by taking
finite index subgroups as a basis of neighborhoods of the identity element. This
topology is Hausdorff, i.e., f1g is a closed subset of G, if and only if the group G is
residually finite. In the latter case, G embeds in its profinite completion, bG, and the
profinite topology onG is precisely the restriction of the natural topology of bG toG.

A subset S � G is said to be separable if it is closed in the profinite topology
on G. Thus an element x 2 G is conjugacy distinguished if its conjugacy class
xG D fgxg�1 j g 2 Gg is separable in G. It is not difficult to see that the latter is
equivalent to the property that for any element y 2 G, which is not conjugate to x,
there is a finite group F and a homomorphism � W G ! F , such that �.y/ is not
conjugate to �.x/ in F . It follows that G is conjugacy separable if and only if all of
its elements are conjugacy distinguished.

2.5. Criteria for conjugacy separability. The next standard observation will be
useful (cf. [24, Lemma 7.2]):

Lemma 2.1. LetK be a subgroup of finite index in a group G and let x 2 K. If x is
conjugacy distinguished in K then x is conjugacy distinguished in G.

The following criterion was discovered by Chagas and the second author in [7]:

Proposition 2.2 ( [7, Prop. 2.1]). Let H be a normal subgroup of index m 2 N in a
group G and let x 2 G be any element. Suppose that H is hereditarily conjugacy
separable and the centralizerCG.xm/, of xm 2 H , satisfies the following conditions:

(i) x is conjugacy distinguished in CG.xm/;

(ii) each finite index subgroup of CG.xm/ is separable in G.

Then x is conjugacy distinguished in G.

Note that the original condition (i) from [7, Prop. 2.1] required CG.xm/ to be
conjugacy separable, however, it is easy to see that the proof (see also [6, Prop. 2.2]
for an alternative argument) only uses the weaker assumption that x is conjugacy
distinguished in CG.xm/.
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2.6. Profinite topology on virtually compact special groups. Let VCSH denote
the class of all virtually compact special hyperbolic groups.

Remark 2.3. The class VCSH is closed under taking finite index subgroups and
overgroups.

Indeed, it is immediate from the definitions that a finite index subgroup/overgroup
of a virtually compact special group is still virtually compact special. On the other
hand, it is well known that a group is hyperbolic if and only if a finite index subgroup
is hyperbolic (for instance, this follows from the fact that hyperbolicity is invariant
under quasi-isometries; see [4, Ch. III.H, Thm. 1.9]).

The next statement easily follows from the work of Haglund and Wise in [16].

Lemma 2.4. Suppose that G 2 VCSH and g 2 G. Then

(a) the centralizer CG.g/ also belongs to VCSH;

(b) every finite index subgroup of CG.g/ is separable in G.

Proof. Fix some finite generating set A of G. Since the group G is hyperbolic, it
is well known that centralizers of elements in G are quasiconvex (see, for example,
[4, Ch. III.� , Prop. 3.9]). Hence CG.g/ is quasiconvex, so it is also hyperbolic
(cf. [2, Lemma 3.8]). In [16, Cor. 7.8] Haglund andWise proved that any quasiconvex
subgroup of G is virtually compact special, thus (a) is proved.

To prove (b), note that every finite index subgroupN 6 CG.g/ is also quasiconvex
(because there is a constant c � 0 such that every element of CG.g/ is at distance
no more than c from an element of N in the Cayley graph �.G;A/). Therefore N is
separable in G by [16, Cor. 7.4 and Lemma 7.5].

Lemma 2.5. Any virtually compact special group G has a finite index normal
subgroup H C G such that H 2 VR, H is torsion-free and hereditarily conjugacy
separable.

Proof. In [16]Haglund andWise proved that every virtually compact special groupG
has a finite index normal subgroup H C G such that H 2 VR. Now, H is torsion-
free as right angled Artin groups are torsion-free, and H is hereditarily conjugacy
separable by [25, Cor. 2.1].

3. Cohomological goodness and its applications to conjugacy separability

Recall that a groupG is cohomologically good, if the natural embeddingG ,! bG, of
the group in its profinite completion, induces an isomorphism on cohomology with
finite coefficients. This notion was originally introduced by Serre in [30, Exercises
in Sec. I.2.6].
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Cohomological goodness of residually finite groups behaves nicely under certain
free constructions and is stable under group commensurability (see [14, 20]). We
begin this section with proving another useful permanence property:

Lemma 3.1. Suppose thatG is a residually finite cohomologically good group andH
is a virtual retract of G. ThenH is cohomologically good.

Proof. Since the cohomological goodness passes to subgroups of finite index (see [14,
Lemma3.2]), wemay assume thatH is a retract ofG. Letf W G ! H be a retraction.
Then the profinite topology on G induces the full profinite topology on H (see, for
example, [28, Lemma 3.1.5]), hence the natural embedding i W H ! G induces
an injective continuous mapbi W bH ! bG (cf. [28, Lemma 3.2.6]). Therefore, the
functorial property of profinite completions shows that the retraction f induces a
retraction bf W bG ! bH , giving rise to the following commutative diagram, where
the vertical maps are the natural embeddings of the residually finite groups in their
profinite completions:

bH bi // bGbfoo

H

OO

i //
G

OO

f
oo

(3.1)

IfM is a finite H -module, we can turn it into a G-module by letting the kernel
of f act trivially on M . Then for any n 2 N [ f0g, (3.1) induces the following
commutative diagram of cohomology groups:

Hn.bH;M/
bf �

//

resbH
H

��

Hn.bG;M/

resbG
G

��

bi�oo

Hn.H;M/
f �

//
Hn.G;M/

i�
oo

Since f ı i D idH and bf ıbi D idbH , we can deduce that i� ı f � andbi� ıbf � are
identity maps onHn.H;M/ andHn.bH;M/ respectively. In particular, the map bf �
is injective and the map i� is surjective.
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Since G is cohomologically good the right vertical arrow is a bijection and we
need to show that so is the left vertical arrow. To see the injectivity, pick an element
h 2 Hn.bH;M/. Then

�
f � ı resbHH �.h/ D �

resbGG ı bf ��.h/, implying that h D 0

if resbHH .h/ D 0.
For surjectivity, observe that i� ı resbGG D resbHH ıbi� and the map on the left-hand

side is surjective, hence resbHH must also be surjective.
Thus resbHH is an isomorphism, as required.

The next statement establishes a connection between cohomological goodness
and separability of conjugacy classes of elements of prime order.

Proposition 3.2. Let G be a residually finite cohomologically good group of finite
virtual cohomological dimension. Suppose that G splits as a semidirect product
G D H Ì hxi, where H C G is torsion-free and x 2 G has prime order p. Then
the natural embedding of G in bG induces an injective map between the conjugacy
classes of finite subgroups in G and in bG.

Proof. Fix any integer n > vcd.G/. Let I [respectively, OI ] denote the set of
conjugacy classes of subgroups of order p in G [respectively, in bG]. For every
conjugacy class ˛ 2 I choose any subgroup C˛ , of order p, representing it in G.
Since all elementary abelian p-subgroups ofG have rank at most 1 (asG D H Ì hxi
andH is torsion-free), we can apply a classical result of Brown (cf. Cor. 7.4 and the
Remark below it in Ch. X of [5]), claiming that there is a canonical isomorphism

� W Hn.G;Z=p/!
Y
˛2I

Hn.NG.C˛/;Z=p/: (3.2)

Denote N˛ D NG.C˛/, ˛ 2 I . The above isomorphism � can be defined
as follows: for each ˛ 2 I , the inclusion N˛ ,! G induces the restriction
homomorphism resGN˛ W H

n.G;Z=p/ ! Hn.N˛;Z=p/, and � D
Q
˛2I resGN˛

is the corresponding diagonal map.
For our purposes, it is actually more convenient to work with homology instead

of cohomology. For each ˛ 2 I , the inclusion N˛ ,! G induces the corestriction
homomorphism corGN˛ W Hn.N˛;Z=p/ ! Hn.G;Z=p/. This gives a natural
homomorphism

' W
M
˛2I

Hn.N˛;Z=p/! Hn.G;Z=p/; (3.3)

defined by the property that the restriction of ' to each direct summandHn.N˛;Z=p/
is the map corGN˛ .

Since Z=p is a field, the contravariant functor HomZ=p.�;Z=p/ induces a
natural isomorphism between HomZ=p.Hn.F;Z=p/;Z=p/ andHn.F;Z=p/ for any
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groupF (for example by theUniversal Coefficient Theorem, cf. [18, Sec. 3.1, pp. 196–
197]). Applying this functor to (3.3) gives the map � from (3.2).

If the map ' was not injective then we would have a short exact sequence

f0g ! K !
M
˛2I

Hn.N˛;Z=p/
'
! Hn.G;Z=p/! f0g;

where K is a non-trivial vector space over Z=p. Since Z=p is a field, the functor
HomZ=p.�;Z=p/ is exact, so it would give a short exact sequence

f0g ! Hn.G;Z=p/
�
!

Y
˛2I

Hn.N˛;Z=p/! HomZ=p.K;Z=p/! f0g:

The latter would contradict the fact that � is surjective, as HomZ=p.K;Z=p/ ¤ f0g.
Therefore ' is injective. A similar argument shows that ' is also surjective, as � is
injective. Hence the homomorphism ' in (3.3) is an isomorphism.

In particular, we see that if ˛1 and ˛2 are distinct elements of I then

'.Hn.N˛1 ;Z=p// \ '.Hn.N˛2 ;Z=p// D f0g inHn.G;Z=p/: (3.4)

By the assumptions, for each k D 1; 2, G D H Ì C˛k , i.e., G retracts onto C˛k .
Therefore N˛k also retracts onto C˛k , and hence the corestriction homomorphism
corN˛kC˛k

W Hn.C˛k ;Z=p/! Hn.N˛k ;Z=p/ is injective. SinceHn.C˛k ;Z=p/ ¤ f0g
for k D 1; 2 (as C˛k Š Z=p), (3.4) shows that the natural images of Hn.C˛1 ;Z=p/
andHn.C˛2 ;Z=p/ inHn.G;Z=p/ must be distinct.

Now, arguing by contradiction, assume that there exist distinct ˛1; ˛2 2 I such
that C˛1 is conjugate to C˛2 in bG. We have the following commutative diagram
coming from the natural inclusions: bG

C˛1

>>

// G

OO

C˛2
oo

`` (3.5)

Since C˛k is a closed subgroup of bG, k D 1; 2, andG is dense in bG, this diagram
induces the following commutative diagram of cohomology groups (for the vertical
and diagonal arrows see [30, Sec. I.2.4 and Exercise 1) in Sec. I.2.6]):

Hn.bG;Z=p/
resbG
C˛1

vv
resbG
G

��

resbG
C˛2

((
Hn.C˛1 ;Z=p/ Hn.G;Z=p/

resG
C˛1

oo
resG
C˛k

// Hn.C˛2 ;Z=p/

(3.6)

where resbGG is an isomorphism by cohomological goodness of G.
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Let us apply theHomZ=p.�;Z=p/ functor to the diagram (3.6). Pontryagin duality
between cohomology and homology of profinite groups (see [28, Prop. 6.3.6]) says
that HomZ=p.H

n.bG;Z=p/;Z=p/ is naturally isomorphic to Hn.bG;Z=p/. On the
other hand, for the discrete group G, HomZ=p.H

n.G;Z=p/;Z=p/ may not be, in
general, isomorphic toHn.G;Z=p/. However, since

HomZ=p.Hn.G;Z=p/;Z=p/ Š Hn.G;Z=p/

(as observed above), the space HomZ=p.H
n.G;Z=p/;Z=p/ can be thought of as the

double dual ofHn.G;Z=p/. Since there is always a canonical embedding of a vector
space into its double dual, we obtain an injective homomorphism � W Hn.G;Z=p/!
Hn.bG;Z=p/, which fits into the following commutative diagram:

Hn.bG;Z=p/
Hn.C˛1 ;Z=p/

O�1

66

�1 // Hn.G;Z=p/

�

OO

Hn.C˛2 ;Z=p/
�2oo

O�2

hh (3.7)

where Hn.bG;Z=p/ is the profinite homology of bG, �k D corGC˛k and O�k D corbGC˛k ,
k D 1; 2.

By the assumption, there exists g 2 bG such that C˛2 D gC˛1g
�1. Hence we

have bG
ig
��

C˛1
? _oo

ig jC˛1

��bG C˛2
? _oo

where ig W bG ! bG is the inner automorphism of bG given by ig.h/ D ghg�1, for
all h 2 bG, and ig jC˛1 W C˛1 ! C˛2 is its restriction to C˛1 . This leads to the
following commutative diagram between the corresponding homology groups:

Hn.bG;Z=p/
id
��

Hn.C˛1 ;Z=p/
O�1oo

Š

��
Hn.bG;Z=p/ Hn.C˛2 ;Z=p/

O�2oo

Note that the left vertical map is the identity on Hn.bG;Z=p/, as it is induced by an
inner automorphism ofbG (this is easy to prove directly, or one can use [30, Exercise 1)
in Sec. I.2.5] and apply the Pontryagin duality between Hn and Hn). Therefore we
can conclude that O�1.Hn.C˛1 ;Z=p// D O�2.Hn.C˛2 ;Z=p// in Hn.bG;Z=p/. Thus,
in view of injectivity of the map � from (3.7), inHn.G;Z=p/ we must have that

�1.Hn.C˛1 ;Z=p// D �2.Hn.C˛2 ;Z=p//:
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The latter gives a contradiction with the property that the natural images
ofHn.C˛1 ;Z=p/ andHn.C˛2 ;Z=p/ inHn.G;Z=p/ are distinct, which was proved
above as a consequence of the fact that the map ' in (3.3) is injective.

Therefore, C˛1 cannot be conjugate to C˛2 in bG if ˛1 ¤ ˛2 in I . This means that
the inclusion G ,! bG induces an injective map from I to OI , as required.

We are now ready to prove Theorem 1.5, stated in the introduction.

Proof of Theorem 1.5. Let p be a prime and let x be an element of order p in G.
By the assumptions there exists a torsion-free normal subgroup H C G, which has
finite index in G. Denote G1 D H hxi 6 G. Clearly G1 has finite index in G,
and G1 Š H Ì hxi. Therefore G1 is residually finite and vcd.G1/ D vcd.G/ <1.
Moreover, G1 is cohomologically good since this property passes to finite index
subgroups and overgroups (see [14, Lemma 3.2]). Thus the groupG1 satisfies all the
assumptions of Proposition 3.2.

Consider any element y 2 G1, which is not conjugate to x. If y and x have
different orders, then, using residual finiteness ofG1, we can find a finite quotientM ,
of G1, where the images of y and x still have different orders, and hence they will
not be conjugate in M . Therefore in this case M will be a finite quotient of G1
distinguishing the conjugacy classes of y and x.

So, now we can suppose that y also has order p. If hyi is not conjugate to hxi
in G1, then, by Proposition 3.2, these subgroups are also not conjugate in bG1.
Hence y is not conjugate to x in bG1, i.e., y … xbG1 . Now, the conjugacy class xbG1
is closed in bG1, as bG1 is compact, so xbG1 \ G1 is a separable subset of G1 which
contains xG1 but avoids y. It follows that there is a finite quotient ofG1 distinguishing
the conjugacy classes of x and y.

Thus we can further assume that hyi is conjugate to hxi in G1. Then hyh�1 D z
for some h 2 G1 and some z 2 hxi. Note that z ¤ x as y is not conjugate to x inG1,
by our assumption. Consequently, z D �.z/ ¤ �.x/ D x, where � W G1 ! hxi is the
natural retraction (coming from the semidirect product decomposition of G1). Since
the group hxi is abelian, we can conclude that �.y/ D �.z/ is not conjugate to �.x/
in it, so hxi is a finite quotient ofG1 distinguishing the conjugacy classes of x and y.

Thus we have considered all possibilities, showing that x is conjugacy
distinguished in G1. It remains to apply Lemma 2.1 to conclude that x is conjugacy
distinguished in G, as required.

Proposition 3.2 shows that, under its assumptions, the natural inclusion G ! bG
induces an injective map between the conjugacy classes of prime order subgroups
in G and in bG. To complement this, we will now show this map is also surjective,
providedG has finitely many conjugacy classes of elements of prime order (the latter
will be satisfied if G is finitely generated; see Corollary 3.5 below).
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Lemma3.3. Suppose thatH is a cohomologically good groupwith cd.H/ D n <1.
Then cd.bH/ � n; in particular, bH is torsion-free.

Proof. IfA is any simple discrete bH -module, thenA is finite (because bH is compact
and its action on A is continuous), so HnC1.bH;A/ Š HnC1.H;A/ D f0g by
cohomological goodness of H and the assumption that cd.H/ < n C 1. Hence
cdp.bH/ � n for every prime p by [28, Prop. 7.1.4], therefore

cd.bH/ WD supfcdp.bH/ j p primeg � n:

Finally, since cdp.C / � cdp.bH/ < 1 for each prime p and every closed
subgroup C 6 bH (cf. [28, Thm. 7.3.1]), and cdp.Z=p/ D 1 we can conclude
that bH cannot contain subgroups of order p, for any prime p. Thus bH must be
torsion-free, as claimed.

Proposition 3.4. Let p be a prime and let G be a residually finite cohomologically
good group such that vcd.G/ < 1 and G contains finitely many conjugacy classes
of subgroups (or, equivalently, elements) of order p. Then every element of order p
in the profinite completion bG is conjugate to some element of G.

Proof. Arguing by contradiction suppose that there is some element  2 bG, of
order p, such that C D hi is not conjugate to any subgroup of G. By the
assumptions, only finitely many conjugacy classes C1; : : : ; Ck , of subgroups of
order p in bG, intersect G non-trivially. Since each Ci , i D 1; : : : ; k, is a compact
subset of bG, avoiding the finite subgroup C , there is a normal open subgroup U
of bG such that CU \ Ci D ; for every i D 1; : : : ; k. Since vcd.G/ < 1, G
contains a normal torsion-free subgroupK of finite index. Then the closureK, ofK
in bG, is naturally isomorphic to bK, and hence it is torsion-free by Lemma 3.3 (K is
cohomologically good by [28, Lemma 3.2.6] and cd.K/ D vcd.G/ <1). So, after
replacing U by U \K, we can assume that U is torsion-free.

Now, CU is an open subgroup of bG, so H D G \ CU is a finite index
subgroup of G, whose closure H in bG coincides with CU (see [28, Prop. 3.2.2]).
Since H \ Ci D ;, i D 1; : : : ; k, and every subgroup of order p in G is contained
in some Ci , we can conclude that H has no elements of order p. On the other hand,
sinceCU is an extension of a torsion-free groupU by the cyclic groupC , of order p,
we see that CU cannot contain non-trivial elements of finite orders other than p.
Recalling thatH 6 CU , allows us to conclude thatH is torsion-free.

Since jG W H j < 1 we can argue as in the case of K above (using Lemma 3.3)
to deduce that H D CU must be torsion-free. The latter contradicts the fact that it
contains C , completing the proof of the proposition.

Corollary 3.5. Suppose that G is a finitely generated residually finite cohomolog-
ically good group with vcd.G/ < 1. Then G has finitely many conjugacy classes
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of subgroups of prime power order, and the natural inclusion of G in bG induces a
bijection between the conjugacy classes of elements (or subgroups) of prime order
in G and in bG.

Proof. By the assumptions, G has a normal torsion-free finite index subgroup H .
It follows that there can be only finitely many primes p such that G contains some
non-trivial p-subgroup. Let p be such a prime. Since G is cohomologically good,
the same is true forH , so we can use a theorem of Weigel and the second author [32,
Thm. B] claiming thatHn.H;Z=p/ is finite for every n � 0. SinceZ=p is a field, the
Universal Coefficient Theorem tells us that the Z=p-vector spaceHn.H;Z=p/ is the
dual ofHn.H;Z=p/, hence the latter is also finite. Therefore we can apply a result of
Brown [5, Lemma IX.13.2] claiming thatG contains finitely many conjugacy classes
of p-subgroups.

Thus we can use Proposition 3.4, to conclude that the natural map between the
conjugacy classes of elements of prime order in G and in bG is surjective. This map
is injective by Theorem 1.5, so the corollary is proved.

Remark 3.6. In the case when the group G is virtually of type FP, Thm. 8.2 in the
survey paper [19] asserts (without proof) that, with some extrawork, a stronger version
of Corollary 3.5 can be derived from a general result of Symonds [31, Thm. 1.1] (this
was also confirmed to us by Symonds in a private communication).

An important tool for establishing cohomological goodness was discovered by
Grunewald, Jaikin-Zapirain and the second author, and, independently, by Lorensen:
Proposition 3.7 ( [14, Prop. 3.6], [20, Cor. 3.11]). Let G D H�BDAt be an HNN-
extension of a cohomologically good group H , where the associated subgroups A
and B are also cohomologically good. Suppose that G is residually finite, H , A
and B are separable in G and the profinite topology on G induces the full profinite
topologies onH , A, and B . Then G is cohomologically good.

This allows us to show that in fact any group from the class AVR is
cohomologically good.
Proposition 3.8. Let G 2 AVR. Then G is residually finite, cohomologically good
and has finite virtual cohomological dimension.

Proof. By definition of the class AVR, some finite index subgroup H 6 G is
a virtual retract of some right angled Artin group A. Right angled Artin groups
are residually finite (see, for example, [9, Ch. 3, Thm 1.1]), hence H and G are
both residually finite. The cohomological dimension cd.A/, of A, is equal to the
clique number of the associated graph (this follows from the fact that A acts freely
and cocompactly on a CAT(0) cube complex of the appropriate dimension; see [8,
Sec. 3.6]), therefore cd.H/ � cd.A/ <1. Thus vcd.G/ D cd.H/ <1.

To show that G is cohomologically good, we will first prove this for all right
angled Artin groups (cf. [20, Thm. 3.15] and [21]). Let B be a right angled Artin
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group corresponding to some finite simplicial graph � with vertex set V . We will
show that B is cohomologically good by induction on jV j. If jV j D 0 then B D f1g
and the claim holds trivially. Now, suppose that jV j > 0 and choose any S � V

with jV n S j D 1. Then B splits as an HNN-extension of BS over another full
subgroupBT , for some T � S (see [25, Sec. 7]). SinceBS andBT are a right angled
Artin groups with less than jV j generators, they are cohomologically good by the
induction hypothesis. Recall that bothBT andBS are retracts ofB andB is residually
finite, therefore these subgroups are separable in B and the profinite topology of B
induces the full profinite topologies on these subgroups (cf. [28, Lemma 3.1.5]).
Hence B is cohomologically good by Proposition 3.7.

Thus we have shown that any right angled Artin group is cohomologically
good. Therefore, according to Lemma 3.1, the finite index subgroup H 6 G is
cohomologically good, as a virtual retract of A. Hence G is itself cohomologically
good by [14, Lemma 3.2].

Combining Theorem 1.5 with Proposition 3.8 and Lemma 2.5 we immediately
obtain the following statement:
Corollary 3.9. Let G be a virtually compact special group (or, more generally,
let G 2 AVR). Then every element of prime order is conjugacy distinguished in G.

4. Proof of the main result

Before proving the main result we will need two more auxiliary statements.
Lemma 4.1. Let G 2 VCSH and let x 2 G be an element of infinite order. Then x
is conjugacy distinguished in G.

Proof. By Lemma 2.5, G has a normal subgroup H , of some finite index m 2 N,
such that H is hereditarily conjugacy separable. By the assumptions, xm 2 H is
an infinite order element in the hyperbolic group G, so its centralizer CG.xm/ is
virtually cyclic (cf. [2, Prop. 3.5]). It follows that CG.xm/ is conjugacy separable.
The second condition of Proposition 2.2 follows from Lemma 2.4.(b). Therefore
we can use this proposition to conclude that x is conjugacy distinguished in G, as
required.

Corollary 4.2 (cf. [25, Cor. 9.11]). If G 2 VCSH and H 6 G is a torsion-free
subgroup of finite index, thenH is hereditarily conjugacy separable.

Proof. Note that H 2 VCSH by Remark 2.3, hence any element of infinite order
is conjugacy distinguished in H by Lemma 4.1. Since H is torsion-free, the
only element of finite order in H , the identity element, must also be conjugacy
distinguished. Thus all elements of H are conjugacy distinguished, i.e., H is
conjugacy separable.
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Clearly the same argument applies to any finite index subgroup K 6 H .
Therefore,H is hereditarily conjugacy separable.

Proof of Theorem 1.1. Consider any group G 2 VCSH. Choose a torsion-free
normal subgroup H C G such that n D jG W H j is minimal (such H exists by
Lemma 2.5). We will prove the theorem by induction on n. If n D 1 the statement
holds because H is hereditarily conjugacy separable by Corollary 4.2. So we can
assume that n > 1 and we have already established hereditary conjugacy separability
for every group from VCSH which has a torsion-free normal subgroup of index less
than n.

Wewill first show thatG is conjugacy separable. So, consider any element x 2 G.
If x has infinite order, then x is conjugacy distinguished in G by Lemma 4.1. Thus
we can suppose that x has finite order.

Set K D H hxi and observe that K 2 VCSH by Remark 2.3. If jK W H j < n

then K is hereditarily conjugacy separable by the induction hypothesis, so x is
conjugacy distinguished in K. But then Lemma 2.1 implies that x is conjugacy
distinguished in G, as jG W Kj � jG W H j <1.

Therefore we can assume that jK W H j D n D jG W H j. It follows that G D K,
i.e., G D H hxi Š H Ì hxi, asH is torsion-free and x has finite order (which must
then be equal to n). We will now consider two cases.

Case 1. n D p is a prime number. Then x is conjugacy distinguished in G by
Corollary 3.9.

Case 2. n is a composite number. Thusn D lm for some l; m 2 N, 1 < l;m < n.
We aim to use the criterion from Proposition 2.2, so let’s check that all of its
assumptions are satisfied.

Let F D H hxmi 6 G. Then F 2 VCSH by Remark 2.3 and F Š H Ì .Z=l/.
ThusF is hereditarily conjugacy separable by the induction hypothesis, as jF W H j D
l < n. Evidently, F C G and jG W F j D m. Every finite index subgroup of CG.xm/
is separable in G by Lemma 2.4.(b), so it remains to check that x is conjugacy
distinguished in CG.xm/.

Set H1 D CG.x
m/ \ H , and observe that CG.xm/ D H1hxi Š H1 Ì .Z=n/.

Moreover, in view of Remark 2.3, H1 2 VCSH as jCG.xm/ W H1j D n < 1 and
CG.x

m/ 2 VCSH by Lemma 2.4.(a).
To verify that x is conjugacy distinguished in CG.xm/, consider any element

y 2 CG.x
m/which is not conjugate to x in CG.xm/. Since xm is central in CG.xm/,

we can let L be the quotient of CG.xm/ by hxmi, and let � W CG.xm/ ! L denote
the natural epimorphism.

Clearly �.H1/ Š H1, asH1 \ ker� D f1g. Therefore �.H1/ is torsion-free and
L D �.H1/h�.x/i Š H1 Ì .Z=m/, implying that L 2 VCSH (by Remark 2.3).
Consequently, L is hereditarily conjugacy separable by the induction hypothesis,
as jL W H1j D m < n. Let us again consider two separate subcases.
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Subcase 2.1. Suppose that �.x/ and �.y/ are not conjugate in L. Then there
is a finite group M and a homomorphism  W L ! M such that  .�.x// is not
conjugate to  .�.y// inM . Thus the homomorphism � D  ı � W CG.x

m/! M

will distinguish the conjugacy classes of x and y, as required.
Subcase 2.2. Assume that �.x/ is conjugate to �.y/ in L. Since ker� � hxi,

we can deduce that there is h 2 CG.xm/ such that hyh�1 D z, for some z 2 hxi.
Now, z ¤ x, since we assumed that y is not conjugate to x in CG.xm/. Therefore

x D �.x/ ¤ �.z/ D z, where � W CG.xm/ ! hxi is the natural retraction (coming
from the decomposition ofCG.xm/ as a semidirect product ofH1 and hxi). Recalling
that hxi is abelian, we see that �.y/ D �.hyh�1/ D �.z/. Therefore �.y/ is not
conjugate to �.x/ in the finite cyclic group hxi. Thus we have distinguished the
conjugacy classes of x and y in this finite quotient of CG.xm/.

Subcases 2.1 and 2.2 together imply that x is conjugacy distinguished inCG.xm/.
Therefore we have verified all of the assumptions of Proposition 2.2 (for G and the
finite index normal subgroup F C G), so we can apply this proposition to deduce
that x is conjugacy distinguished in G. Thus Case 2 is completed.

Cases 1 and 2 exhaust all possibilities, so we have established conjugacy
separability for any group G 2 VCSH, which possesses a torsion-free normal
subgroup H C G of index n. If K 6 G is any subgroup of finite index,
thenK 2 VCSH by Remark 2.3 andH \K is a torsion-free normal subgroup inK
of index at most n. So, either using the induction hypothesis (if jK W .H \K/j < n)
or the above argument (if jK W .H \K/j D n), we can conclude thatK is conjugacy
separable as well. Hence G is hereditarily conjugacy separable, and the step of
induction has been established. This finishes the proof of the theorem.
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