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Explicit Brill–Noether–Petri general curves
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Abstract. Let p1; : : : ; p9 be the points in A2.Q/ � P2.Q/ with coordinates

.�2; 3/; .�1;�4/; .2; 5/; .4; 9/; .52; 375/; .5234; 37866/; .8;�23/; .43; 282/;
�1
4
;�
33

8

�
;

respectively. We prove that, for any genus g, a plane curve of degree 3g having a g-tuple point
at p1; : : : ; p8, and a .g � 1/-tuple point at p9, and no other singularities, exists and that the
general plane curve of that degree and with those singularities is a Brill–Noether–Petri general
curve of genus g.

Mathematics Subject Classification (2010). 14H10, 14H51.

Keywords. Brill–Noether theory, moduli of curves, surfaces with canonical sections.

1. Introduction

ThePetri Theoremasserts that for a general curveC of genusg > 1, themultiplication
map

�0;L W H
0.C;L/˝H 0.C; !C ˝ L

�1/! H 0.C; !C /

is injective for every line bundle L on C . While the result, which immediately
implies the Brill–Noether Theorem, holds for almost every curve ŒC � 2Mg , so far
no explicitly computable examples of smooth curves of arbitrary genus satisfying
this theorem have been known. Indeed, there are two types of known proofs
of the Petri Theorem. These are: the proofs by degeneration due to Griffiths–
Harris [12], Gieseker [11], and Eisenbud–Harris [8], or the recent proof using tropical
geometry [5], which by their nature, shed little light on the explicit smooth curves
which are Petri general; and the elegant proof by Lazarsfeld [15], asserting that every
hyperplane section of a polarised K3 surface .X;H/ of degree 2g � 2, such that
the hyperplane class ŒH � is indecomposable is a Brill–Noether general curve, while
a general curve in the linear system jH j is Petri general. However, there are no
known concrete examples of polarisedK3 surfaces of arbitrary degree satisfying the
requirement above. It is a non-trivial instance of a theorem of André [1, 16], that
there exists polarisedK3 surfaces of degree 2g�2 over a number field, having Picard



478 E. Arbarello, A. Bruno, G. Farkas and G. Saccà CMH

number one. While the above mentioned results are all in characteristic zero, it has
been observed by Welters [22] that a minor modification of the proof in [8], proves
the Petri Theorem in positive characteristic as well.

This work originated from the paper [2], where a number of explicit families of
curves lying on the projective plane or on a ruled elliptic surfacewere constructed. For
these curves the question of whether they satisfy the Brill–Noether–Petri condition
arises naturally. Among these families one, already studied by du Val [7], is
particularly interesting. Curves in this family naturally sit on the blow-up of the
projective plane in nine points.

The aim of this paper is to show that, by using the methods from [15] and [19],
coupled with Nagata’s classical results [17] on the effective cone of the blown-
up projective plane, these curves provide explicit examples of Brill–Noether–Petri
general curves of any genus. They also provide computable examples of Brill–
Noether general curves of any genus.

In [21], Treibich sketches a construction of Brill–Noether (but not necessarily
Petri) curves of any given genus.

We set the notation we are going to use throughout this note. We denote by S 0 the
blow-up of P2 at nine points p1; : : : ; p9 which are 3g-general (see the Definition 2.2
below), and we let E1; : : : ; E9 be the exceptional curves of this blow-up. We have
that

�KS 0 � 3` �E1 � � � � �E9 ;

where ` is the proper transform of a line in P2. As the points pi are general, there
exists a unique curve

J 0 2 j �KS 0 j (1.1)

which corresponds to a smooth plane cubic passing through the pi ’s. We next
consider the linear system on S 0

Lg WD
ˇ̌
3g` � gE1 � � � � � gE8 � .g � 1/E9

ˇ̌
:

This is a g-dimensional system whose general element is a smooth genus g curve.
Since for each curve C 0 2 Lg , we have that C 0 � J 0 D 1, the point fpg WD C 0 \ J 0 is
independent of C 0 and is thus a base point of the linear system Lg . Precisely, p 2 J 0
is determined by the equationOJ 0

�
gp1C: : :Cgp8C.g�1/p9Cp

�
D OJ 0.3g`jJ 0/.

Let � W S �! S 0 be the blow-up of S 0 at p, We denote again by E1; : : : ; E9
the inverse images of the exceptional curves on S 0 and by E10 the exceptional curve
of � . We let J be the strict transform of J 0 and C the strict transform of C 0, so that
we can write

�KS � J � 3` �E1 � � � � �E10;

C � 3g` � gE1 � � � � � gE8 � .g � 1/E9 �E10 ;

C � J D 0 :

(1.2)
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The linear system jC j is base-point-free and maps S to a surface S � Pg having
canonical sections and a single elliptic singularity resulting from the contraction of J .
As we mentioned above, this linear system was first studied by du Val in [7].
Definition 1.1. A curve in the linear system jC j as in (1.2) is called a du Val curve.

In [2] it is proved that Brill–Noether–Petri general curves whose Wahl map

� W

2̂

H 0.C; !C /! H 0.C; !˝3C /

is not surjective, are hyperplane sections of a K3 surface, or limits of such, and
it is shown that one such limit could be the surface S we just described. This is
one of the reasons why it is interesting to determine whether du Val curves are
Brill–Noether–Petri general. In this note we answer this question in the affirmative.
Theorem 1.2. A general du Val curve C � S satisfies the Brill–Noether–Petri
Theorem.

This, on the one hand, gives a strong indication that the result in [2] is the
best possible. On the other hand, and more importantly, Theorem 1.2 provides a
very concrete example of a Brill–Noether–Petri curve for every value of the genus.
Since the locus of 3g-general sets of 9 points is Zariski open in the symmetric
product .P2/.9/, we can choose p1; : : : ; p9 to have rational coefficients. Then
Theorem 1.2 implies the following result, which answers a question raised by Harris–
Morrison in [14, p. 343], in connection with the Lang–Mordell Conjecture:
Corollary 1.3. For every g, there exist smooth Brill–Noether–Petri general curves C
of genus g defined over Q.

In Section 5 we make Theorem 1.2 and Corollary 1.3 explicit by proving that the
following set of 9 points inA2.Q/ � P2.Q/, lying on the elliptic curve y2 D x3C17,
is 3g-general, for every g, in particular they can be used to construct Petri general
curves of any genus:

.�2; 3/; .�1;�4/; .2; 5/; .4; 9/; .52; 375/; .5234; 37866/;

.8;�23/; .43; 282/;
�1
4
;�
33

8

�
Wegive two proofs of Theorem 1.2. The first one, in Section 3, uses [17] and holds

for every 3g-general set of points p1; : : : ; p9 in P2. The second proof, presented in
Section 4, works only for a general sets of points p1; : : : ; p9, and relies on the theory
of limit linear series and the proof of the Gieseker–Petri theorem in [8].

Acknowledgements. We are especially grateful to Bjorn Poonen for his help
regarding Section 5 and to Edoardo Sernesi for numerous conversations on the topic
of surfaces with canonical sections. We thank Daniele Agostini, Rob Lazarsfeld and
Frank-Olaf Schreyer for interesting discussions related to this circle of ideas. The
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last named author thanks the participants of the Oberwolfach workshop on Singular
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same topic. Finally, we thank the referee for very helpful comments on the original
version of this paper.

2. Preliminaries

As in the introduction, we denote by S 0 the blow-up of P2 at nine points p1; : : : ; p9
and let E1; : : : ; E9 be the corresponding exceptional curves on S 0. We then consider
the anticanonical elliptic curve J 0 � S 0 as in (1.1).
Definition 2.1. The pointsp1; : : : ; p9 are said to be k-Cremona general for a positive
integer k, if there exists a single cubic curve passing through them and the surface S 0
carries no effective .�2/-curve of degree at most k. The points p1; : : : ; p9 are
Cremona general, if they are k-Cremona general for any k > 0.

Nagata [17] has obtained an explicit characterization of the sets of Cremona
special sets, which we now explain. A permutation � 2 S9 gives rise to an
isomorphism � W Pic.S 0/ ! Pic.S 0/ induced by permuting the curves E1; : : : ; E9.
We define the following divisors on S 0:

A1 WD ` �E1 �E2 �E3; A2 WD 2` �E1 � � � � �E6;

A3 WD 3` � 2E1 �E2 � � � � �E8 and B D 3` �

9X
iD1

Ei :

It is shown in [17] Proposition 9 and Proposition 10, that a set p1; : : : ; p9
consisting of distinct points is k-Cremona general if and only if the following
conditions are satisfied for all permutations � 2 S9:ˇ̌

�.nBC Ai/
ˇ̌
D ;; for all n �

k � i

3
and i D 1; 2; 3: (2.1)

Since the virtual dimension of each linear system
ˇ̌
nB C Ai

ˇ̌
is negative, clearly a

very general set of points p1; : : : ; p9 is Cremona general.
We now recall the following classical definition:

Definition 2.2. The points p1; : : : ; p9 are said to be k-Halphen special if there exists
a plane curve of degree 3d � k having points of multiplicity d at p1; : : : ; p9 and no
further singularities. We say that the setp1; : : : ; p9 is k-general if it is simultaneously
k-Cremona and k-Halphen general.

The locus of k-special points defines a proper Zariski closed subvariety of
the symmetric product .P2/.9/. If p1; : : : ; p9 is a k-Halphen special set, then
dim jdJ 0j D 1, thus S 0 ! P1 is an elliptic surface with a fibre of multiplicity
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d � k
3
. If Halph.k/ � .P2/.9/ denotes the locus of k-special Halphen sets, then the

quotient Halph.k/==SL.3/ is a variety of dimension 9, see [4, Remark 2.8].
The relevance of both Definitions 2.1 and 2.2 comes to the fore in the following

result, which is essentially due to Nagata [17], see also [6].
Proposition 2.3. The pointsp1; : : : ; p9 are k-general if and only if, for every effective
divisorD on S 0 such that

D � d` �

9X
iD1

�iEi ; �i � 0 ; and D � J 0 D 0; (2.2)

where d � k, one hasD D mJ 0, for some m.

Proof. Clearlywemay assume thatD is irreducible. From theHodge IndexTheorem,
it follows that D2 � 0. If D2 < 0, then by adjunction D is a smooth rational curve
with D2 D �2. But S 0 has no .�2/-curves of degree at most k, for p1; : : : ; p9 are
k-Cremona general. If D2 D 0, then applying again the Hodge Index Theorem we
obtain thatD? D K?S 0 , thereforeD 2 jJ 0j. Thus, for an arbitrary effective divisorD,
with D � J 0 D 0, we get that D 2 jmJ 0j, for some positive integer m � k

3
. From

the k-Halphen generality condition, we obtain dim jmJ 0j D 0, hence D D mJ 0.
The reverse implication follows directly from the definition of a k-general nine-tuple
of points.

Recall Definition 1.1.
Lemma 2.4. If the points p1; : : : ; p9 are 3-general, a general du Val curve of genus g
is smooth and irreducible.

Proof. The linear system jC j on S satisfies the hypothesis of Theorem 3.1 in [13]
and it is then free of fixed divisors. In particular, since by hypothesis J is fixed, the
general element of jC j does not contain J . From Corollary 3.4 of [13] the linear
system jC j is also base point free. This property together with Bertini’s theorem and
the fact that C 2 > 0, implies that the general element of C is irreducible and hence
smooth.

3. A general du Val curve is a Petri general curve

Let jC j and S be as in the introduction. By Lemma 2.4, a general element C of
the linear system jC j is smooth. Let L be a base-point-free line bundle on C with
h0.C;L/ D r C 1 and consider the homomorphism �0;L given by multiplication of
global sections

�0;L W H
0.C;L/˝H 0.C; !C ˝ L

�1/ �! H 0.C; !C / :
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The curve C is said to be a Brill–Noether–Petri general curve, if the map �0;L
is injective for every line bundle L on C . Consider the Lazarsfeld–Mukai bundle
defined by the sequence

0 �! FL �! H 0.C;L/˝OS �! L �! 0:

Note thatH 0.S; FL/ D 0 andH 1.S; FL/ D 0. Setting, as usual,EL WD F _L , dually,
we obtain the exact sequence

0 �! H 0.C;L/_ ˝OS �! EL �! !C ˝ L
�1
�! 0: (3.1)

Here we have used that!S jC D OC . Clearly c1.EL/ D OS .C /, but unlike in theK3
situation, on S we have thatH 1.S;EL/ Š H

0.C;L/_ is .rC1/-dimensional (rather
than trivial). Following closely Pareschi’s proof of Lazarsfeld’s Theorem [15, 19],
(see also Chapter XXI, Section 7 of [3]), one proves the following lemma.
Lemma 3.1. If h0.S; F _L ˝ FL/ D 1, then Ker �0;L D 0.

Proof. For the benefit of the reader we outline the proof of this lemma following
very closely the treatment in [3]. By tensoring the exact sequence (3.1) by FL and
taking cohomology, sinceH 0.S; FL/ D 0 andH 1.S; FL/ D 0, we obtain

H 0.S; F _L ˝ FL/ Š H
0
�
C;FLjC ˝ !C ˝ L

�1
�
:

The twist by !C ˝L�1 of the restriction FLjC of the Lazarsfeld–Mukai bundle to C
sits in an exact sequence

0 �! OC �! FLjC ˝ !C ˝ L
�1
�!ML ˝ !C ˝ L

�1
�! 0 : (3.2)

Moreover there is a canonical isomorphism Ker �0;L Š H 0.C;ML ˝ !C ˝L
�1/.

Proposition 5.29 and diagrams (6.1) and (6.2) in [3] show that if � W Wr
d
! Mg

is the family of jLj D gr
d
’s over moduli, then the image of d� at a point ŒC; L�, is

contained in

.Im�1/? � H 1.C; TC /

where
�1 W Ker�0 �! H 0.C;K2C / D H

1.C; TC /
_

is the Gaussian map defined by diagram (6.1) in [3]. We must show that the
coboundary map ı of the cohomology sequence (3.2) vanishes. Let U � jC j be the
open subscheme parametrising smooth du Val curves in the linear system jC j on S ,
and let f W C ! U � jC j be the family of smooth curves parametrised byU . SinceS
is regular, the characteristic map induces an isomorphism TŒC �.U / Š H 0.C;NC=S /.
Consider the relative family

p WWr
d .f /! U :
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Since p is surjective and C is a general element of U , the differential

dp W TŒC;L�.Wr
d .f // �! TŒC �.U / D H

0.C;NC=S /

is surjective. Since KS jC D OC , we have NC=S D !C . Let

� W H 0.C;NC=S /! H 1.C; TC /

be the Kodaira–Spencer map of the family f . We then get

Im.� ı dp/ � Im.�/ \ Im.�1/?;
hence

Im.dp/ � Im.�_ ı �1/? � H 0.C;NC=S /:

We set
�1;S WD �

_
ı �1 W Ker�0 ! H 1.C; !C ˝N

_
C=S /:

Since dp is surjective, we get
�1;S D 0 :

In Lemma (7.9) of [3], using only the fact that KS jC is trivial on C , it is proved that
�1;S D ı up to multiplication by a nonzero scalar. Hence the coboundary map ı is
zero.

Let us go back to the construction of S and S 0, and recall the role played by
the points p1; : : : ; p9. From the Riemann–Roch theorem on S 0, these points are
3g-Halphen general if and only if

H 0.J 0;OJ 0.kJ 0// D H 0
�
J;OJ .k.3` �E1 � � � � �E9//

�
D 0 ;

k D 1; : : : ; g .J Š J 0/ (3.3)

Theorem 3.2. If p1; : : : ; p9 is a 3g-general set, then the general element of jC j is a
Brill–Noether–Petri general curve.

Proof. We use the Lemma above. By contradiction, suppose there is a non-trivial
endomorphism � 2 End.F _L ; F

_
L /. As in Lazarsfeld’s proof, we may assume that �

is not of maximal rank. Consider the blow-down � W S ! S 0. We have

�.E10/ D p ; � W C Š �.C / D C 0 ; � W J Š �.J / D J 0 :

Notice that
.J 0/2 D 0 ; J 0 � C 0 D 1 :

Let U WD S n E10 Š S 0 n fpg DW V . Let F be the sheaf defined on S 0 by the exact
sequence

0 �! F �! H 0.C;L/˝OS 0 �! L �! 0:
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Since
0 �! H 0.C;L/_ ˝OS 0 �! F _ �! !C ˝ L

�1.p/ �! 0

is exact, and L is special, F _ is generated by global sections away from a finite set
of points. Consider the restriction

� W F _
jV D F

_
LjU �! F _LjU D F

_
jV :

By Hartogs’ Theorem, � extends uniquely to a homomorphism

�0 W F _ �! F _;

which is non trivial and not of maximal rank. Let

E WD Im�0 ; G WD Coker�0 ; G WD G=T .G/ :

Set

A D c1.E/ ; B D c1.G/ ; T D c1.T .G// ;
therefore

ŒC 0� D AC B C T:

Let us prove that A, B , and T are effective or trivial. The assertion for T is clear. As
for A and B it suffices to notice that E and G are generated by global sections away
from a finite set of points because they are positive rank torsion free quotients of F _.

Since .J 0/2 D 0, we have that

J 0 � A � 0 ; J 0 � B � 0 ; J 0 � T � 0:

Since C 0 � J 0 D 1, either J 0 � A D 0 or J 0 � B D 0. By Proposition 2.3, either

A D kJ 0 or B D hJ 0;

with k; h � 0. Both cases lead to a contradiction. Suppose A D kJ 0. This means
that OJ 0.A/ is a degree-zero line bundle. Let us show that it is the trivial bundle.
Since E is globally generated away from a finite set of points, the same holds for the
restriction of its determinant to J 0. Thus h0.J 0;OJ 0.A// D h0.J 0;OJ 0.kJ 0// ¤ 0,
which contradicts condition (3.3). To summarize, the non-trivial endomorphism �

cannot exist in the first place and C is a Brill–Noether–Petri general curve.

Remark 3.3. If the set p1; : : : ; p9 is 3d -Halphen special, the linear systemˇ̌̌̌
3d` � d

9X
iD1

Ei

ˇ̌̌̌
cuts out on C a g1

d
. In particular, one can realize curves of arbitrary gonality as

special du Val curves.
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4. Lefschetz pencils of du Val curves

In this section we determine the intersection numbers of a rational curve
j W P1 !Mg induced by a pencil of du Val curves on S with the generators of
the Picard group of the moduli spaceMg . Recall that � denotes the Hodge class and
ı0; : : : ; ıbg

2 c
2 Pic.Mg/ are the classes corresponding to the boundary divisors of

the moduli space. We denote by ı WD ı0C� � �Cıbg
2 c

the total boundary. For integers
r; d � 1, we denote byMr

g;d
the locus of curves ŒC � 2Mg such thatW r

d
.C / ¤ ;.

If �.g; r; d/ D �1, in particular g C 1 must be composite, Mr
g;d

is an effective
divisor. Eisenbud and Harris [9] famously computed the class of the closure of the
Brill–Noether divisors:

ŒMr

g;d � D cg:d;r

�
.g C 3/� �

g C 1

6
ı0 �

b
g
2 cX
iD1

i.g � i/ıi

�
2 Pic.Mg/: (4.1)

We retain the notation of the introduction and observe that the linear system

ƒg�1 WD
ˇ̌
3.g � 1/` � .g � 1/E1 � � � � � .g � 1/E8 � .g � 2/E9

ˇ̌
appears as a hyperplane in the g-dimensional linear system Lg on the surface S . It
consists precisely of the curves D C J 2 Lg , where D 2 ƒg�1. We now choose a
Lefschetz pencil in Lg , which has 2g � 2 D C 2 base points. Let X WD Bl2g�2.S/
be the blow-up of S at those points and we denote by f W X ! P1 the induced
fibration, which gives rise to a moduli map

j W P1 !Mg :

We compute the numerical features of this du Val pencil in the moduli space:
Theorem 4.1. The intersection numbers of the du Val pencil with the generators of
the Picard group ofMg are given as follows:

j �.�/ D g; j �.ı0/ D 6.gC1/; j
�.ı1/ D 1; and j �.ıi / D 0 for i D 2; : : : ;

�
g

2

�
:

As a consequence: j �
�
ŒMr

g;d �
�
D 0.

Proof. Using Grothendieck–Riemann–Roch, we have the following formulas valid
for the moduli map j induced by f W X ! P1:

j �.�/ D �.X;OX /C g � 1; j �.ı/ D c2.X/C 4.g � 1/:

Clearly �.X;OX / D 1, therefore j �.�/ D g. Furthermore, since X is P2 blown
up at 2g C 8 points, c2.X/ D 12�.X;OX / � K2X D 2g C 11, and accordingly
j �.ı/ D 6g C 7. Of these 6g C 7 singular curves in the pencil, there is precisely
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one of type D C J , where D is the proper transform of a curve in the linear
system ƒg�1. Note that D � J D 1. Therefore j �.ı1/ D 1. A parameter count
also shows that a general du Val pencil contains no curves in the higher boundary
divisors�i , where i � 2, therefore j �.ı0/ D 6gC 6. Using (4.1), we now compute
j �
�
ŒMr

g;d �
�
D 0, and finish the proof.

We record the following immediate consequence of Theorem 4.1.

Corollary 4.2. For any choice of nine distinct points p1; : : : ; p9 2 P2, the du Val
pencil j.P1/ either lies entirely in or is disjoint from any Brill–Noether divisorMr

g;d .

In particular, notice that when the pointsp1; : : : ; p9 belong to theHalphen stratum
Halp.3d/, then the elliptic pencil jdJ 0j on S 0 cut out a pencil of degree d on each
curve C 0, in particular gon.C / � d . Such Halphen surfaces S , appear as limits of
polarisedK3 surfaces .X;H/, whereX carries an elliptic pencil jEjwithE �H D k.
The enlargement of the Picard group on the side of K3 surfaces correspond on the
du Val side to the points p1; : : : ; p9 becoming Halphen special.

Remark 4.3. Du Val curves of genus g form a unirational subvariety of dimension

min.g C 10; 3g � 3/

inside the moduli space Mg . In particular, for g D 7, one has a divisor Dv7 of
du Val curves of genus 7. It would be interesting to describe this divisor and compute
the class ŒDv7� 2 Pic.M7/.

4.1. Du Val curves are Petri general: a second proof. We now describe an
alternative approach, based on the theory of limit linear series, to prove a slightly
weaker version of Theorem1.2. We retain throughout the notation of the Introduction.
We denote by BN (respectively GP) the proper subvariety of Mg consisting of
curves ŒC � having a line bundle L which violates the Brill–Noether (respectively the
Gieseker–Petri) condition. Clearly BN � GP .

Theorem 4.4. Let S 0 be the blow-up of P2 at nine general points p1; : : : ; p9 and set
as before

Lg WD
ˇ̌
3g` � gE1 � � � � � gE8 � .g � 1/E9

ˇ̌
:

Then a general curveC 0 2 Lg satisfies the Petri Theorem. Furthermore, an arbitrary
irreducible nodal curve C 0 2 Lg satisfies the Brill–Noether Theorem.

Proof. Assume by contradiction, that for a general choice of p1; : : : ; p9 2 P2, there
exists a nodal curve C 0 2 Lg that violates the Brill–Noether condition. We let the
points p1; : : : ; p9 specialize to the base locus of a general pencil of plane cubics.
Then S 0 becomes a rational elliptic surface � W S 0 ! P1 andE WD E9 can be viewed
as a section of � .
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By a standard calculation, since ��OS 0 D OP1 , we compute that

h0.S 0;OS 0.gJ 0// D h0.P1;OP1.g// D g C 1:

Similarly, since ��.OS 0.E// D OP1 , we find that h0.S 0;OS 0.gJ 0 C E// D g C 1.
Therefore, every element of the linear system Lg is of the form J1 C � � � C Jg CE,
where Ji 2 jOS 0.J 0/j are elliptic curves on S 0 and Ji �E D 1, for i D 1; : : : ; g.

Let ' W M0;g �Mg

1;1 ! Mg be the map obtained by attaching to each
g-pointed stable rational curve ŒR; x1; : : : ; xg � 2 M0;g elliptic tails J1; : : : ; Jg
at the points x1; : : : ; xg respectively. The symmetric group Sg acts diagonally
on the product M0;g �Mg

1;1, by simultaneously permuting the markings xi and
the tails Ji for i D 1; : : : ; g. The map ' is Sg -invariant. Observe that the
moduli map m W Lg Ü Mg corresponding to the linear system Lg factors via�
M0;g �Mg

1;1

�
=Sg . Since the morphism ' is regular, it follows that the variety of

stable limits of Lg , defined as the image �2.†/ of the graph Lg
�1
 � †

�2
�!Mg of

the rational map m, is actually contained in Im.'/.
Using [9] Theorem 1.1, no curve lying Im.'/ carries a limit linear series gr

d
with

negative Brill–Noether number (note that all the stable curves in Im.'/ are tree-like
in the sense of [9], so the theory of limit linear series applies to them). It follows that
Im.'/ \BN D ;.

Our hypothesis implies that we can find a family of du Val curve f W C ! .T; 0/

over a 1-dimensional base, such that for the general fibre Œf �1.t/� 2 BN , whereas
the central fibre f �1.0/ is a (possibly non-reduced) curve from the linear systemLg .
Applying stable reduction to f , we obtain a new family having in the central fibre a
stable curve that lies simultaneously in Im.'/ and in BN , which is a contradiction.

Furthermore, the proof of the Gieseker–Petri Theorem in [8], implies that
for any choice of elliptic tails ŒJ1; x1�; : : : ; ŒJg ; xg � 2 Mg

1;1, there exists
ŒR; x1; : : : ; xg � 2M0;g such that '

�
ŒR; x1; : : : ; xg �; ŒJ1; x1�; : : : ; ŒJg ; xg �

�
62 GP .

This implies that for general p1; : : : ; p9 2 P2, a general curve C 0 2 Lg satisfies
Petri’s condition.

Remark 4.5. The conclusion of Theorems 1.2 and 4.4 cannot be improved, in the
sense that it is not true that every smooth curve C 0 2 Lg verifies the Petri condition.
The classes of the closure of the divisorial components GPrg;d of GP corresponding
to line bundles L 2 W r

d
.C / such that g � .r C 1/.g � d C r/ D 0, have been

computed in [9, Section 5], when r D 1 and in [10, Theorem 1.6] in general. Taking
the pencil j W P1 !Mg considered in Theorem 4.1, we immediately conclude that
j �.ŒGPrg;d �/ ¤ 0.
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5. An explicit system of nine general points

In this final section we show how, using standard techniques from the arithmetic
of elliptic curves, we can exhibit an explicit system of nine points verifying the
genericity assumption of Definition 2.2 for every k. Throughout this section we use
the embedding A2.Q/ ,! P2.Q/.

We start with the elliptic curve E W y2 D x3 C 17, and we denote by
p1 WD Œ0; 1; 0� 2 E its point at infinity and use the identification OE .1/ D
OE .3p1/. If q 2 E, we denote by �q 2 E its inverse element using the group law
of E, having p1 as origin. Observe that the following points belong to E.Q/:

p1 D .�2; 3/; p2 D .�1;�4/; p3 D .2; 5/; p4 D .4; 9/; p5 D .52; 375/;

as well as,

p6 D .5234; 37866/; p7 D .8;�23/; p8 D .43; 282/; and p9 D
�1
4
;�
33

8

�
:

It is known that ˙pi for i D 1; : : : ; 8 are the only points in E.Z/ � f0g. Using the
explicit formulas for the addition law on E, observe that

p4 D p1 � p3; p2 D 2p1 � p3; p5 D 3p1 � p3; p6 D 4p1 � 3p3;

p7 D 2p1; p8 D 2p3 � p1 and p9 D p1 C p3:

The following facts are known to experts, we include an elementary proof for the
sake of completeness.

Lemma 5.1.

1) One has E.Q/tors D 0.

2) One has an embedding Z � p1 ˚ Z � p3 ,! E.Q/1.

Proof. For the first part, we use that if p is a prime not dividing the discriminant
of E, one has an embedding E.Q/tors ,! E.Fp/, see for instance [20, Chapter 7].
The curve E has good reduction at the primes 5 and 7 (in fact, at any prime different
from 2, 3 and 17). Therefore, the torsion subgroup E.Q/tors injects into both E.F5/
and E.F7/, which are of orders 6 and 13, respectively. It follows that E.Q/tors
is trivial. We remark that the same conclusion can be obtained by applying the
Nagell–Lutz Theorem.

We prove that the points p1 and p3 are independent inE.Q/. SinceE.Q/Œ2� D 0,
it will suffice to show that no linear combination np1 C mp3 of the points
p1 D .�2; 3/, p3 D .2; 5/ can be zero, where at least one of m; n 2 Z is odd.

1In fact one can prove thatE.Q/ D Z˚Z, that is, each rational point ofE can be written as a unique
combination of p1 and p3, see [18] or use the program PARI, but we will not use this fact.
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This follows once we show that p1; p3, as well as p4 D p1 � p3 D .4; 9/ are non-
zero in the quotient E.Z/=2E.Z/. Recall [20, p. 58], that if p D .a; b/ 2 E.Q/,
then the x-coordinate of the point 2p 2 E is given by

x.2p/ D
a4 � 136

4a3 C 68
:

Assuming p1 2 2E.Z/, we obtain that the equation a4 � 136a D 8.a3C 17/ has an
integral solution, which is a contradiction. The proof that p3 62 2E.Z/ is identical.
If p4 2 2E.Z/, then the equation a4� 136a D 16.a3C 17/ has an integral solution,
again a contradiction.

Theorem 5.2. The points p1; : : : ; p9 are k-general for every integer k.

Proof. The condition that the nine points are k-Halphen special for some k � 0 is
precisely that p1 C � � � C p9 2 E.Q/tors, that is, p1 C � � � C p9 D 13p1 � p3 D 0,
which contradicts Lemma 5.1.

To show that the points are Cremona general, we unwind the conditions appearing
in (2.1) in terms of the group law on E. In turns out that if p1; : : : ; p9 are Cremona
general, then there exists non-negative integers n1; : : : ; n9, not all equal to zero, such
that the linear equivalence n1p1 C � � � C n9p9 � .n1 C � � � C n9/p1 holds, that is,
n1p1 C � � � C n9p9 D 0 2 E. Since with the exception of p4 D p1 � p3, each of
the points p1; : : : ; p9 are combinations of the type mp1 C np3, with mC n > 0, we
obtain that such a combination of p1 and p3 is equal to zero, which contradicts the
second part of Lemma 5.1.
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