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.'; �/-modules in families. Especially we construct a natural open subspace of a family of
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1. Introduction

The theory of .'; �/-modules describes Qp-valued continuous representations of
the absolute Galois group of a local field in terms of semi-linear algebra objects.
This theory was generalized by Dee [9] to the case of coefficients in a complete
local noetherian Zp-algebra. Finally Berger and Colmez [3] generalize the theory of
overconvergent .'; �/-modules to families parametrized by p-adic Banach algebras.
More preceisely their result gives a fully faithful functor from the category of vector
bundles with continuous Galois action on a rigid analytic variety to the category of
families of étale overconvergent .'; �/-modules. This functor fails to be essentially
surjective. However it was shown by Kedlaya and Liu in [17] that this functor can be
inverted locally around rigid analytic points.

It was already pointed out in our previous paper [12] that the right category to
handle these objects is the category of adic spaces (locally of finite type over Qp) as
introduced by Huber, see [14]. Using the language of adic spaces, we show in this
paper that given a family N of .'; �/-modules over the relative Robba ring B�

X;rig
on an adic space X locally of finite type over Qp (see below for the construction of
the sheaf B�

X;rig), one can construct natural open subspaces X int resp. X adm, where
the family N is étale resp. induced by a family of Galois representations. This
generalizes our paper [12] to the set up of .'; �/-modules. Moreover we show
that the inclusion X adm � X is partially proper, i.e. contains all its specializations
inside X , and we further investigate the difference between the open subspaces X int

�The author was partially supported by the SFB TR 45 of the DFG (German Research Foundation).
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and X adm: we show that X adm contains the tube over a point in the special fiber of
some formal model of X int.

Ourmain results are as follows. LetK be a finite extension ofQp andwriteGK for
its absolute Galois group. Further we fix a cyclotomic extension K1 D

S
K.�pn/

of K and write � D Gal.K1=K/.

Theorem 1.1. Let X be a reduced adic space locally of finite type over Qp , and
letN be a family of .'; �/-modules over the relative Robba ring B�

X;rig.

(i) There is a natural open subspace X int � X such that the restriction of N
to X int is étale, i.e. locally on X int there is a family of étale lattices N � N .

(ii) The formation .X;N / 7! X int is compatible with base change in X , and
X D X int whenever the familyN is étale.

In the classical theory of overconvergent .'; �/-modules, the slope filtration
theorem of Kedlaya, [15, Theorem 1.7.1] asserts that a '-module over the Robba ring
admits an étale lattice if and only if it is pure of slope zero. The latter condition
is a semi-stability condition which only involves the slopes of the Frobenius. The
question whether there is a generalization of this result to p-adic families was first
considered by R. Liu in [18], where he shows that an étale lattice exists locally around
rigid analytic points.

The condition of being étale is a local condition and asks for the existence of a
lattice. As these lattices are only unique up to p-isogeny one can not expect that
they glue together to give an étale lattice globally. Hence it is not easy to define this
kind of structure over a formal model of the given rigid analytic space. However, if
we relax the condition of being locally free and consider classical .'; �/-modules
in the sense of Fontaine instead of the overconvergent .'; �/-modules (i.e. consider
modules over BX;K instead of modules over B�

X;rig in the notations of the body of
the paper) we have the following replacement. Again we refer to the body of the
paper for the precise definitions.

Theorem 1.2. Let X be a reduced adic space of finite type over Qp and let N
be an étale family of .'; �/-modules over B�

X;rig with associated .'; �/-module ON
over BX;K . Then there exists a coherent AX;K-sub .'; �/-module ON � N that is
étale and generates ON over BX;K . Moreover there exists a formal model X of X
such that ON admits a model over X .

On the other hand, we construct an admissible subset X adm � X for a family of
.'; �/-modules over X . This is the subset over which there exists a family of Galois
representations. It will be obvious that we always have an inclusion X adm � X int.
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Theorem 1.3. Let X be a reduced adic space locally of finite type over Qp and N
be a family of .'; �/-modules over the relative Robba ring B�

X;rig.

(i) There is a natural open and partially proper subspace X adm � X and a
family V of GK-representations on X adm such that N jXadm is associated to V
by the construction of Berger–Colmez.

(ii) The formation .X;N / 7! .X adm;V/ is compatible with base change in X ,
and X D X adm whenever the family N comes from a family of Galois
representations.

(iii) Assume that X is quasi-compact and N is étale, i.e. X D X int. Let X be a
formal model of X that admits a model for an étale submodule ON � ON in the
sense of Theorem 1:2. Let Y � X be the tube of a closed point in the special
fiber of X . Then Y � X adm.

In a forthcoming paperwewill apply the theory developed in this article to families
of trianguline .'; �/-modules and the construction of a (conjectural) local Galois-
theoretic theoretic counterpart of eigenvarieties. This should give an alternative
construction of Kisin’s finite slope space.

Acknowledgements. It is a pleasure to thank R. Liu, T. Richarz, P. Scholze
and M. Rapoport for helpful conversations and J. Nekovář for pointing out some
references. Further I thank R. Bellovin for pointing out some small mistakes.

2. Sheaves of period rings

In this section we define relative versions of the classical period rings used in the
theory of .'; �/-modules and in p-adic Hodge-theory. Some of these sheaves were
already defined in [12, 8].

Let K be a finite extension of Qp with ring of integers OK and residue field k.
Fix an algebraic closure NK ofK and write GK D Gal. NK=K/ for the absolute Galois
group of K. As usual we choose a compatible system �n 2 NK of pn-th root of
unity and write K1 D

S
K.�n/. Let HK � GK denote the absolute Galois group

of K1 and write � D Gal.K1=K/. Finally we denote by W D W.k/ the ring of
Witt vectors with coefficients in k and by K0 D FracW the maximal unramified
extension of Qp inside K. Moreover we writeW 0 D OK0

0
for the ring of integers of

the maximal unramified extension K 00 of Qp inside K1.

2.1. The classical period rings. We briefly recall the definitions of the period rings,
as defined in [1] for example, see also [17, 1]. Write

QEC D lim
 �
x 7!xp

OCp
=pOCp

:
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This is a perfect ring of characteristic p which is complete for the valuation valE
given by valE.x0; x1; : : : / D valp.x0/. Let

QE D Frac QEC D QECŒ1
�
�;

where � D .�1; �2; : : : / 2 QE
C. Further we define

QAC D W. QEC/; QA D W. QE/;
QBC D QACŒ1=p�; QB D QAŒ1=p�:

On all these ring we have an action of the Frobenius morphism ' which is induced by
the p-th power map on QE. Let W 0..T // D W 0ŒŒT ��Œ1=T � denote the ring of Laurent
series with coefficient in W 0. Further we consider the ring AK which is the p-adic
completion of W 0..T // and denote by BK D AK Œ1=p� its rational analogue. We
embed these rings into QB by mapping T to the lift of a uniformizer of the field of
norms of K. The morphism ' restricts to an endomorphism, again denoted by ',
on AK , resp. BK . Further GK acts on AK through the quotient GK ! � .

For r < s 2 Z we define

AŒr;s� D

(X
n2Z

anT
n

ˇ̌̌̌
an 2 K

0
0;
0 � valp.anpn=r/!1; n! �1

0 � valp.anpn=s/!1; n!1

)
;

QA�;r D

(X
n�0

Œxn�p
n

ˇ̌̌̌
xn 2 QE; 0 � valE.xn/C prn

p�1
!1; n!1

)
;

QB�;r D

( X
n��1

Œxn�p
n

ˇ̌̌̌
xn 2 QE; valE.xn/C prn

p�1
!1; n!1

)
:

The rings QA�;r and QB�;r are endowed with the valuation

wr W
X

pkŒxk� 7�! inf
k

˚
valE.xk/C prk

p�1

	
:

Using these definitions the perfect period rings (on which the Frobenius ' is bijective)
are defined as follows:

QB�;srig D Frechet completion of QB�;s for the valuations ws0 , s0 � s;

QB� D lim
�!s
QB�;s;

QB�rig D lim
�!s
QB�;srig :

(2.1)
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Furtherwe have the usual imperfect period rings (where the Frobenius is not bijective):

BŒr;s� D AŒr;s�Œ1=p�;

B�;r D BK \ QB
�;r

A�;r D AK \ QA
�;r

B�;srig D Frechet completion of B�;s for the valuations ws0 , s0 � s;

B� D lim
�!r

B�;r ;

B�rig D lim
�!r

B�;rrig ;

A� D AK \ B�:

(2.2)

Note that these definitions equip all rings with a canonical topology. There are
canonical actions ofGK on all of these rings which are continuous for their canonical
topologies. The HK-invariants of QR for any of the rings in .2:1/ are given by the
corresponding ring without a tilde R in .2:2/, where R is identified with a subring
of QR by mapping T to a lift of a uniformizer of the field of norms of K. Hence there
is a natural continuous �-action on all the rings in .2:2/.

Remark 2.1. Let us point out that some of the above rings have a geometric
interpretation. We write B for the closed unit disc over K 00 and U � B for the
open unit disc. Then

AŒr;s� D �.BŒp�1=r ;p�1=s �;OCB /;
BŒr;s� D �.BŒp�1=r ;p�1=s �;OB/;

where BŒa;b� � B is the subspace of inner radius a and outer radius b and U�a � U
is the subspace of inner radius a.

The ring B�;rrig is known to be identified with the ring of rigid analytic functions
in the variable T that converge on the annulus 0 < vp.T / � 1=r , i.e. we have the
identification

B�;rrig D lim
 �s

BŒr;s� D �.U�p�1=r ;OU/;

andB�;r is identifiedwith its subring of functions that are bounded in that annulus. We
write AŒr;1/ � B�;r for the subring1 of power series with coefficients inW 0 D OK0

0
.

Note that
A� D lim

 �s
AŒr;1/

but that AŒr;1/ is strictly larger than lim
 �s

AŒr;s�, as for example T �1 2 AŒr;1/,
but T �1 is not bounded by 1 on any annulus 0 < vp.T / � 1=r .

1This ring is denoted Rint;r in [17].
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The Frobenius endomorhpism ' of QB induces a ring homomorphisms

AŒr;s� �! AŒpr;ps�

AŒr;1/ �! AŒpr;1/

QA�;s �! QA�;ps;

for r; s � 0 and in the limit endomorphisms of the rings

A�;B�;B�rig; QB
�
; QB�rig:

These homomorphisms will be denoted by ' and commute with the action of � ,
resp. GK .

2.2. Sheafification. Let X be an adic space locally of finite type over Qp in the
sense of Huber [14]. Recall thatX comes along with a sheafOCX � OX of open and
integrally closed subrings.

LetAC be a reduced Zp-algebra topologically of finite type. Recall that for i � 0
the completed tensor products

ACb̋Zp
Wi . QE

C
/ and ACb̋Zp

Wi . QE/

are the completions of the ordinary tensor product for the topology that is given by the
discrete topology onAC=piAC and by the natural topology onWi . QE

C
/ resp.Wi . QE/,

see [12, 8.1].
Let X be a reduced adic space locally of finite type over Qp . As in [12, 8.1] we

can define sheaves QE CX , QEX , QA CX and QAX by demanding

�.Spa.A;AC/; QE CX / D A
Cb̋Zp

QEC;

�.Spa.A;AC/; QEX / D ACb̋Zp
QE;

�.Spa.A;AC/; QA CX / D lim
 � i

ACb̋Zp
Wi . QE

C
/;

�.Spa.A;AC/; QAX / D lim
 � i

ACb̋Zp
Wi . QE/;

for an affinoid open subset Spa.A;AC/ � X . It follows from [12, Lemma 8.1] that
these are well defined sheaves.

We define the sheaf AX;K to be the p-adic completion of .OCX ˝Zp
W /..T //,

that is
AX;K.Spa.A;AC// D

�
AC ˝Zp

W /..T //
�^

for some reduced affinoid Tate algebra .A;AC/. As p-adic completion is left exact
it is clear that this rule again defines a sheaf, not just a pre-sheaf. Further we set

BX;K D AX;K Œ1=p�:



Vol. 91 (2016) Families of p-adic Galois representations 727

Let AC be as above and A D ACŒ1=p�. We define

ACb̋Zp
AŒr;s� and ACb̋Zp

QA�;s

to be the completion of the ordinary tensor product for the p-adic topology on AC

and the natural topology on AŒr;s� resp. QA�;s . These completed tensor products can
be viewed as subrings of �.Spa.A;AC/; QASpa.A;AC//. For a reduced adic space X
locally of finite type over Qp , we define the sheaves A Œr;s�

X and QA �;s
X by demanding

�.Spa.A;AC/;A Œr;s�
X / D ACb̋Zp

AŒr;s�;

�.Spa.A;AC/; QA �;s
X / D ACb̋Zp

QA�;s;

for an open affinoid Spa.A;AC/ � X . In order to show that these rules really
define sheaves, we proceed as follows: The rings AŒr;s� is a lattice in a Banach-
algebra over Qp and so is QA�;s (it is complete for the valuation ws) and we may
use [17, Definition 3.2, Lemma 3.3] in order to prove the sheaf axiom. The claim of
loc. cit. is formulated for Banach algebras, but the proof works the same for lattices
in Banach algebras.

Similarly we define the sheaf QB�;s
X . Finally, as in the case above, we can use these

sheaves to define the sheafified versions of .2:1/:

QB�
X D lim

�!s

QB�;s
X ;

QB�
X;rig D lim

�!s

QB�;s
X;rig;

(2.3)

where the direct limits are (by definition) direct limits in the category of sheaves
(i.e. sheafification of the direct limit as pre-sheaves).

Moreover we define QB�;r
X;rig to be the sheaf associated to

Spa.A;AC/ 7! A Ő Qp
QB�;rrig

for Spa.A;AC/ � X affinoid open. Again it is easy to see that this indeed defines a
sheaf: The ring A Ő Qp

QB�;rrig is the Frechet completion of

A Ő Qp
QB�;r D �.Spa.A;AC/; QB�;s

X /

with respect to the family of norms ws0 , for s0 � s. But as completion is left exact,
for some open covering Spa.A;AC/ D

S
i Ui , the exact sequence

0 �! �.Spa.A;AC/; QB�;r
X / �!

Y
i

�.Ui ; QB
�;r
X / �!

Y
i;j

�.Ui \ Uj ; QB
�;r
X /

stays exact after completion. We deduce the sheaf property from QB�;r
X;rig from the

sheaf property of QB�;r
X .
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Moreover we have the sheafified versions of the rings .2:2/ (by a direct limit we
always mean the direct limit in the category of sheaves, i.e. the sheafification of the
direct limit in the category of presheaves):

BŒr;s�
X D A Œr;s�

X Œ1=p�;

B�;r
X DBX;K \

QB�;r
X

A �;r
X D AX;K \

QA �;r
X

B�
X D lim

�!r
B�;r
X ;

A �
X D AX;K \B�

X :

(2.4)

Note that all the rational period rings (i.e. those period rings in which p is
inverted) can also be defined on a non-reduced space X by locally embedding the
space into a reduced space Y and restricting the corresponding period sheaf from Y

to X , compare [12, 8.1].

Remark 2.2. As in the absolute case there is a geometric interpretation of some of
these sheaves of period rings:

A Œr;s�
X D prX;�

�
OCX�B

Œp�1=r ;p�1=s�

�
;

BŒr;s�
X D prX;�

�
OX�B

Œp�1=r ;p�1=s�

�
:

Here prX denotes the projection from the product to X .
We may further set

B�;r
X;rig D lim

 �s
BŒr;s�
X D prX;�

�
OX�U

�p�1=r

�
;

B�
X;rig D lim

�!r
B�;r

rig :

By construction all the “perfect” sheaves QRX (i.e. those of the period sheaves with
a tilde) are endowedwith a continuousOX -linearGK-action and an endomorphism '
commuting with the Galois action. The “imperfect” sheaves RX (i.e. those period
ringswithout a tilde) are endowedwith a continuous�-action and an endomorphism'
commuting with the action of � .

Notation. In the following wewill use the notationX. NQp/ for the set of rigid analytic
points of an adic space X locally of finite type over Qp , i.e.

X. NQp/ D fx 2 X j k.x/=Qp finiteg:
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Proposition 2.3. Let X be a reduced adic space locally of finite type over Qp and
let R be any of the integral period rings (i.e. a period ring in which p is not inverted)
defined above. Let RX be the corresponding sheaf of period rings on X .

(i) The canonical map

�.X;RX / �!
Y

x2X. NQp/

k.x/C ˝Zp
R

is an injection.

(ii) Let R0 � R be another integral period ring with corresponding sheaf of period
rings R 0X � RX and let f 2 �.X;RX /. Then f 2 �.X;R 0X / if and only if

f .x/ 2 k.x/C ˝Zp
R0 � k.x/C ˝Zp

R

for all rigid analytic points x 2 X .

Proof. This is proven along the same lines as [12, Lemma 8.2] and [12, Lemma 8.6].

Corollary 2.4. Let X be an adic space locally of finite type over Qp , then�
QB�
X;rig

�'Did
D OX ;

�
QB�
X;rig

�HK
DB�

X;rig;�
QB�
X

�'Did
D OX ;

�
QB�
X

�HK
DB�

X :

Proof. If the space is reduced this follows from the above by chasing through the
definitions. Otherwise we can locally on X choose a finite morphism to a reduced
space Y (namely a polydisc) and study the '- resp. HK-invariants in the fibers over
the rigid analytic points of Y , compare [12, Corollary 8.4, Corollary 8.8]

Notation. Let X be an adic space locally of finite type and R be any of the sheaves
of topological rings defined above. If x 2 X is a point then we will sometimes
write Rx for the completion of the fiber R ˝ k.x/ of R at x with respect to the
canonical induced topology.

3. CoherentOC

X
-modules and lattices

As the notion of being étale is defined by using lattices we make precise what we
mean by (families of) lattices.

LetX be an adic space locally of finite type overQp . The spaceX is endowedwith
a structure sheaf OX and a sheaf of open and integrally closed subrings OCX � OX
consisting of the power bounded sections of OX . Recall that for any ringed space,
there is the notion of a coherent module, see [10, 5.3].
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Definition 3.1. Let X be an adic space (locally of finite type over Qp) and let E be
a sheaf of OCX -modules on X .

(i) TheOCX module E is called of finite type or finitely generated, if there exist an
open covering X D

S
i2I Ui and for all i 2 I exact sequences

.OCUi
/di �! EjUi

�! 0:

(ii) The module is called coherent, if it is of finite type and for any open subspace
U � X the kernel of any morphism .OCU /d ! EjU is of finite type.

(iii) The sheaf E is called quasi-coherent if there is an open covering X D
S
Ui

and there exist exact sequences

.OCUi
/˚J1;i �! .OCUi

/˚J2;i �! EjUi
�! 0:

for some index sets J1;i ; J2;i .
Let X D Spa.A;AC/ be an affinoid adic space. Then any finitely generated

AC-moduleM defines a coherent sheaf of OCX -modules E by the usual procedure

�.Spa.B;BC/; E/ DM ˝AC BC

for an affinoid open subspace Spa.B;BC/ � X .
Remark 3.2. Let X be a reduced adic space locally of finite type over Qp . Then
locally on X the sections �.X;OX / as well as �.X;OCX / are noetherian rings:
Indeed, this comes down to the following claim: Let Spa.A;AC/ be an affinoid adic
space of finite type over Qp and assume that A is reduced. We claim that AC is
noetherian. But AC is identified with the ring of power bounded elements of A (by
definition of being of finite type). By Noether normalization there exists a morphism

B D QphT1; : : : ; Tri �! A

which makes A into a finite B-module. As the valuation on Qp is discrete it follows
from [4, 6.4.1, Corollary 6] thatAC is finite over the ring of power bounded elements
BC D ZphT1; : : : ; Tri of B D QphT1; : : : ; Tri. As BC is noetherian, so is AC.

It follows form this remark that anOCX -module which is locally associated with a
module of finite type is coherent.
Remark 3.3. The same definition of course also applies to the sheaves of period
rings that we defined above. However, as in this case the sections over open affinoids
are (in general) not noetherian, the analogue of Remark 3:2 does not apply.

On the other hand it is not true that all coherent OCX -modules on an affinoid
space arise in that way, as shown by the following example. The reason is that the
cohomology H 1.X;E/ of a coherent OCX -sheaf E does not necessarily vanish on
affinoid spaces.
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Example 3.4. Let X D Spa.QphT i;ZphT i/ be the closed unit disc. Let

U1 D fx 2 X j jxj � jpjg

U2 D fx 2 X j jpj � jxj � 1g:

Define the OCX -sheaf E1 � OX by glueing OCU1
and p�1TOCU2

over U1 \ U2
and E2 � OX by glueing OCU1

and pT �1OCU2
. Then E1 and E2 are coherent

OCX -modules. We have

�.X;E1/ D .1; p
�1T /�.X;OCX /;

�.X;E2/ D p�.X;OCX /:

Especially E2 is not generated by global sections. If X D U1 [ U2 Š bA1Zp
[bP1Zp

is the canonical formal model of X D U1 [ U2, then E2 is defined by the coherent
OX -sheafwhich is trivial on the formal affine line andwhich is the twisting sheafO.1/
on the formal projective line, while E1 is defined by its dual O.�1/ on the formal
projective line.

Let X be an adic space of finite type over Qp (especially X is quasi-compact)
and E be a coherent OCX -module on X . As E is not necessarily associated to an
AC-module on an affinoid open Spa.A;AC/ � X , the sheaf E does not necessarily
have a model E over any formal model X of X : The sheaf U 7! �.U ad; E/ does
not define E in the generic fiber in general. However there is a covering X D

S
Ui

ofX by finitely many open affinoids such thatEjUi
is the sheaf defined by the finitely

generated �.Ui ;OCX /-module �.Ui ; E/. Hence there is a formal model X of X
such that E is defined by a coherent OX -modules E . Namely X is a formal model
on which one can realize the covering X D

S
Ui as a covering by open formal

subschemes.
Remark 3.5. IfE is a coherentOCX -module on an adic spaceX of finite type overQp
and ifU D Spa.A;AC/ � X is an affinoid open, then �.U;E/ is a finitely generated
AC-module. In fact there is a formal model QU of U that is an admissible blow up
of SpfAC and such that there is a model QE of EjU over QU . Then the claim follows
from standard finiteness results for coherent sheaves and projective morphisms.

Let E be a coherent OCX -module on an adic space X and let x 2 X .
Let mx � OX;x denote the maximal ideal of function vanishing at x and write
mCx D mx \OCX;x , i.e.O

C

X;x=m
C
x D k.x/

C is the integral subring of k.x/. We write
E ˝ k.x/C for the fiber of E at x, that is for the quotient of the OCX;x-module

Ex D lim
�!
U3x

�.U;E/

by the ideal mCx .
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Let X be a formal model of X and E be a coherentOX -module defining E in the
generic fiber. Further let Spf k.x/C ,! X denote the morphism defining x in the
generic fiber. Then E ˝ k.x/C D E ˝ k.x/C: If we write NX for the special fiber
of X and NE for the restriction of E to NX and if x0 2 NX denotes the specialization
of x, then it follows that

NE ˝ k.x0/ D .E ˝ k.x/C/˝k.x/C k.x0/ D .E ˝ k.x/C/˝k.x/C k.x0/:

Definition 3.6. Let E be a vector bundle of rank d on an adic space X , locally of
finite type over Qp . A lattice in E is a coherent OCX -submodule EC � E which
is locally on X free of rank d over OCX and which generates E, i.e. the inclusion
induces an isomorphism

EC ˝OC
X

OX Š E:

Let us assume for simplicity that the space X is reduced and let X be a formal
model of X . In a similar way as above we can define coherent sheaves of AX;K or
A Œr;1/
X -modules. Moreover we can define the sheaf of OX -algebras AX ;K on X by

�.U ;AX ;K/ D �.U ad;AX;K/:

If X D SpfAC is affine and if N is a finitely generate AC Ő Zp
AK D �.X ;AX ;K/-

module, then we can associate to N a coherent AX ;K-module by

Spf BC 7�! N Ő ACB
C
D N˝AC Ő ZpAK

.BC Ő Zp
AK/;

for Spf BC � SpfAC open affine.
Similarly we associate to N a coherent AX;K-module by

Spa.B;BC/ 7�! N Ő ACB
C
D N˝AC Ő ZpAK

.BC Ő Zp
AK/;

for Spa.B;BC/ � Spa.A;AC/ open affinoid.
Given again an arbitrary adic space of finite type over Qp and a formal model X

of X . Let N be a coherent AX ;K-module on X . As a coherent AX ;K-module is of
finite type it follows that there is an affine coverX D

S
i2U SpfACi such thatNjSpfAC

i

is associated to a module Ni as above2. Then we can associate to N a coherent
AX;K-module N ad on X by defining N adj

.SpfAC
i
/ad

to be the sheaf associated to Ni .
If a coherent AX;K-module is of the form N ad for some coherent AX ;K-module N ,
then we say that this module admits a model over X , or that N is a model for N ad.

Finally let N be a locally free BX;K-module. We say that a coherent
AX;K-submodule N � N is a lattice in N if N is locally on X free as an
AX;K-module and if N ˝AX;K

BX;K D NŒ
1
p
� D N .

Similar remarks and constructions apply to A Œr;1/
X as well.

2Note that we do not claim that if X is affine then every coherent AX ;K -module is associated to a
module over �.X ;AX ;K/.
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4. .'; �/-modules over the relative Robba ring

In this section we define certain families of '-modules that will appear in the context
of families of Galois representations later on. Some results of this section are already
contained in [12, 6].

Definition 4.1. Let X be an adic space and R 2 fAX;K ;A
�
Xg.

An étale '-module over R is a coherent R-module N together with an
isomorphism

ˆ W '�N �! N :

Definition 4.2. Let X 2 AdlftQp
and

R 2 fBX;K ;B
�
X ;B

�
X;rigg:

Write RC � R for the corresponding integral subring3.

(i) A '-module over R is an R-module N which is locally on X free over R
together with an isomorphism ˆ W '�N ! N .

(ii) A '-module over R is called étale if it is locally on X induced from an étale
'-module that is free over RC.

Remark 4.3. Although our main interest is in objects that are (locally on some X )
free, we need more flexibility in the case of Definition 4:1. Especially, given an étale
'-module on some affinoid space, we want to be able to treat its global sections as
an étale '-module.

Recall that K1 is a fixed cyclotomic extension of K and � D Gal.K1=K/
denotes the Galois group of K1 over K.

Definition 4.4. Let X 2 AdlftQp
and R be any of the sheaves of rings defined above.

(i) A .'; �/-module over R is a '-module over R together with a continuous
semi-linear action of � commuting with the semi-linear endomorphism ˆ.

(ii) A .'; �/-module over R is called étale if its underlying '-module is étale.

4.1. The étale locus. If X is an adic space (locally of finite type over Qp) and
x 2 X is any point, we will write �x W x ! X for the inclusion of x. If R is any of
the sheaf of topological rings above and if N is a sheaf of RX -modules on X , we
write

��xN D ��1x N ˝RX
Rx

for the pullback of N to the point x. The following result is a generalization
of [17, Theorem 7.4] to the category of adic spaces.

3The integral subring of B
�

X;rig is A
�

X .
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Theorem 4.5. Let X be an adic space locally of finite type over Qp and N be a
family of .'; �/-modules over B�

X;rig.

(i) The set
X int
D fx 2 X j ��xN is étaleg � X

is open.

(ii) There exists a covering X int D
S
Ui and locally free étale A �

Ui
-modules

Ni � N jUi
which are stable under ˆ such that

Ni ˝A
�
Ui

B�
Ui ;rig D N jUi

;

i.e. N jX int is étale.

Proof. If X is reduced this is [12, Corollary 6.11]. In loc. cit. we use a different
Frobenius '. However the proof works verbatim in the case considered here. For
non reduced spaces we follow the same proof using [11, Theorem 6.5] instead of [12,
Theorem 6.9]4.

Remark 4.6. If we are interested in integral models it is in fact enough to work
with locally free B�;r

X -modules N instead of modules over B�;r
X that are locally

over X free: A locally free BŒr;s�
X -module (which is obtained by restricting a locally

free B�;r
X -module) is locally on X free over BŒr;s�

X . Hence [12, Theorem 6.9]
resp. [11, Theorem 6.5] still apply and the assumptions of [12, Proposition 6.5] are
satisfied.

Theorem 4.7. Let f W X ! Y be a morphism of adic spaces locally of finite type
over Qp . Let NY be a family of .'; �/-modules over B�

Y;rig and write NX for its

pullback over B�
X;rig. Then f

�1.Y int/ D X int.

Proof. This is [12, Proposition 6.14]. Again the same proof applies with the
Frobenius considered here.

4.2. Existence of étale submodules. For later applications toGalois representations
the existence of an étale lattice locally on X will not be sufficient. We cannot hope
that the étale lattices glue together to a global étale lattice on the space X . However
we have a replacement which will be sufficient for applications.

Convention. Let X be a reduced adic space locally of finite type over Qp and
let .N ; ˆ/ be an étale '-module over B�

X;rig and . ON ; Ô / be an (étale) '-module

4There is a mistake in [12]. The proof of Theorem 6.9 only applies to reduced spaces. However, this
is enough for the purposes of [12]. This mistake is fixed in [11].
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over BX;K . We say that . ON ; Ô / is induced from .N ; ˆ/ if there exists a covering
X D

S
Ui and étale A �

Ui
lattices Ni � N jUi

such that

. ON ; Ô /jUi
D
�
.Ni ; ˆ/

^
�
Œ 1
p
� D .Ni ; ˆ/˝A

�
Ui

BUi ;K :

Note that BX;K is not a sheaf of B�
X;rig-modules and hence we can only base change

after passing to an étale lattice. Further note the every étale '-module over B�
X;rig

gives rise to a unique '-module over BX;K , as an étale A �
X -lattice is unique up to

p-isogeny, compare [17, Prop. 6.5].
Proposition 4.8. Let X be a reduced adic space of finite type and . ON ; Ô / be a
'-module over BX;K which is induced from an étale '-module .N ; ˆ/ over B�

X;rig.
Then there exists an étale '-submodule ON � ON over AX;K such that the inclusion
induces an isomorphism after inverting p. Moreover there exists an formal model X
of X such that ON has a model over X .
Remark 4.9. Note that in this proposition we do not claim that ON is locally free.
Proposition 4.10. Let X be an reduced adic space of finite type over Qp . Let N be
an étale '-module overB�;r

X;rig, then there exists a quasi-coherentA
Œr;1/
X -submodule

N � N which (locally on X ) contains a basis of N . Moreover, if X D
Sm
iD1 Ui is

a finite covering such thatN jUi
admits a free étale latticeNi , then we can chooseN

such that N jUi
� Ni .

Proof. Let X D
Sm
iD1 Ui be a finite covering such that N jUi

is free and admits an
étale lattice Ni � N jUi

. Write Vi D
Si
jD1 Uj .

LetM1 D N1 on U1. We claim that we can inductively extendMi on Vi toMiC1

on ViC1 such that
pC
0
iC1Nj �MiC1jUj

� pCiC1Nj (4.1)

for j D 1; : : : ; iC1 for some constantsCiC1 andC 0iC1. The proposition then follows
after rescalingMn by p�Cn .

The claim is obvious for i D 1 and for the induction step it is sufficient to extend
Mi jVi\UiC1

to UiC1 such that this extension satisfies .4:1/. By Lemma 4:11 below
it is sufficient to check that there are CiC1 and C 0iC1 such that

pC
0
iC1NiC1jVi\UiC1

�Mi jVi\UiC1
� pCiC1NiC1jVi\UiC1

:

However this may be checked on the open covering Uj \ UiC1 for j 2 f1; : : : ; ig of
Vi \ UiC1 and hence by induction hypothesis it is enough to show that

pC
0
iC1NiC1jUj\UiC1

� p
C 0

jNj jUj\UiC1

� pCjNj jUj\UiC1
� pCiC1NiC1jUj\UiC1

:
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But by [17, Prop 6.5] an étale lattice inN jUi\Uj
is unique up to p-isogeny and hence

the required constants CiC1 and C 0iC1 do exist.

Lemma 4.11. LetX D Spa.A;AC/ be a reduced affinoid adic space and U � X an
quasi-compact open subset. LetNX D .B

�;r
X;rig/

d and let NU be a finitely generated

A Œr;1/
U -submodule ofNU D NX jU .
Let N 0; N 00 � NX be A Œr;1/

X -lattices such that

N 00jU � NU � N
0
jU :

Then there exists a quasi-coherent A Œr;1/
X -module NX such that NX jU D NU and

N 00 � NX � N
0:

Proof. After localizing we may assume that N 0 is free. Denote by j W U ,! X the
open embedding of U . We define NX by

NX D ker.N 0 �! j�.N
0
U =NU //

and claim that NX is a coherent A Œr;1/
X -module containing (locally on X ) a basis

ofNX .
It is obvious that N 00 � NX � N 0 and hence NX contains a basis of NX . It

remains to check that this sheaf is quasi-coherent. LetU D
S
Ui be a finite covering

by open affinoids such that NU is associated to a finitely generated �.Ui ;A Œr;1/
X /-

module. Choose a covering X D
S
Vj by open affinoids such that Vj \ U � Uij

for some index ij . Then NX is associated to the �.Vj ;A Œr;1/
X /-module

ker
�
�.Vj ; N

0/ �! �.Uij ; N
0
U =NU /˝�.Uij

;A
Œr;1/
X

/
�.Vj \ U;A

Œr;1/
X /

�
:

Especially NX is quasi-coherent.

Proof of Proposition 4:8. AsX is quasi-compact, we can choose a locally free model
.Nr ; ˆr/ of .N ; ˆ/ over B�;r

X;rig for some r � 0. After enlarging r if necessary,
we can assume that there exists a finite covering X D

S
Ui and étale lattices

Mi � Nr jUi
. Using Proposition 4:10 we find that there exist a quasi-coherent

A Œr;1/
X -module N0 � N such that

N0jUi
�Mi

and such that N0 generates N as a B�;r
rig -module. As N0 is quasi-coherent, we may

assume (after eventually refining the covering) that Ui is affine and that N0jUi
is

associated to a module over �.Ui ;A Œr;1/
X /.
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Let Nri denote the restriction of Nr to B�;ri
X;rig, where we write ri D pir . Then

we inductively define quasi-coherent A Œri ;1/
X -modules Ni � Nri by setting

NiC1 D Ni ˝
A

Œri ;1/

X

A
ŒriC1;1/

X Cˆ.'�Ni /:

By assumption, we always have

Nj jUi
�Mi ˝A

Œr;1/
Ui

A
Œrj ;1/

Ui
:

We define an A �
X -submodule N � N , by setting

N D

�
lim
�!
i2N

Ni

�
˝A �

X ;

where the direct limit again is the direct limit in the category of sheaves. Further we
define ON to be the image of the canonical morphism

N ˝
A

�
X

AX;K �!
ON ;

where ON is the BX;K-module associated to N . We claim that ON is coherent. This
is a local claim and may be checked on affinoid open subsets U D Spa.A;AC/ � X
such that U � Ui for some i and such that N0jU is associated to a �.U;A Œr;1/

X /-
module. It follows from the construction that ON jU is the sheaf associated to the
�.U;AX;K/ D .A

C ˝Zp
W 0/..T ///^-module

�.U; ON/ � �.U;Mi ˝A
�
Ui

AX;K/: (4.2)

We point out that the ring .AC˝Zp
W 0/..T //^ is noetherian. Indeed, the ring AC is

the ring of power bounded elements in a reduced Tate-algebra and hence noetherian,
compare Remark 3.2. The ring .AC˝Zp

W 0/..T // is a localization of the noetherian
ring .AC˝Zp

W 0/ŒŒT �� (the power-series ring over a noetherian ring is noetherian) and
hence itself noetherian. Finally the p-adic completion of the noetherian Zp-algebra
.AC ˝Zp

W 0/..T // is still noetherian.
As the right hand side of .4:2/is finitely generated, so is the left hand side and it

follows that ON is coherent.
Moreover ON can be defined over a formal model X of X : indeed we may take a

formal model such that there is an open covering of X realizing a covering of X by
open subsets of the form U as above. This formal model clearly does the job.

Further the construction implies that

Ô .'� ON/ � ON;

ON ˝AX;K
BX;K D

ON :
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It is left to show that Ô .'� ON/ ! ON is an isomorphism. In order to do so, we may
work locally on X and hence assume that X is affinoid and ON is contained in an
étale AX;K-lattice OM � ON . Moreover we may assume that ON is the coherent sheaf
associated to its global sections (that we also denote by ON by abuse of notation) and
that these global sections are finitely generated over �.X;AX;K/.

Given a maximal ideal m � AC we denote by km D AC=m the residue field
of m. By Nakayama’s lemma we are reduced to show that for all maximal ideals
m � AC the canonical map of finite free .km˝Fp

k0/..T //-modules (here k0 denotes
the residue field of OK0

0
)

Ô W '� ON ˝AC km �! ON ˝AC km; (4.3)

is an isomorphism. As both, source and target, have the same dimension as km..T //-
vector spaces (one is just a “twist” of the other) it is enough to show that the map is
surjective.

For a rigid analytic point x 2 X wewritemx � A for themaximal ideal defining x
and mCx D mx \ A

C � AC. Then x specializes to m 2 SpecAC=pAC if and only
if mCx � m.

Given x, the fiber ON ˝ k.x/C is a finitely generated module over the ring
AX;K ˝ k.x/

C which is (a product of) complete discrete valuation rings. Write�
ON ˝ k.x/C

�tors-free
� ON ˝ k.x/C

for the submodule which is$x-torsion free. This submodule has to be free and�
ON ˝ k.x/C

�tors-free
Œ 1
p
� D . ON ˝ k.x/C/Œ 1

p
�

D . OM ˝ k.x/C/Œ 1
p
� D ON ˝ k.x/:

It follows from Lemma 4:12 below that
�
ON ˝ k.x/C

�tors-free is an étale '-module,
i.e. Ô is surjective.

Now we consider the morphism .4:3/ and assume Nf 2 ON ˝AC km. As ON
is p-torsion free, there exists some x 2 X such that x is in the tube of m and
f 2

�
ON ˝ k.x/C

�tors-free such that Nf D f mod $x , where $x is a uniformizer
of k.x/C, i.e.m=mCx D .$x/ as ideals inAC=mCx D k.x/C. As

�
ON ˝k.x/C

�tors-free
is étale, there exists an f 0 2 '�

�
ON ˝ k.x/C

�tors-free such that Ô .f 0/ D f . Reducing
modulo $x it follows that .f 0 mod $x/ maps to Nf . We have shown that .4:3/ is
surjective as claimed.

Lemma 4.12. Let F be a finite extension ofQp and . ON; Ô / be a free étale '-module
over AF;K . Let ON1 � ON be a finitely generated submodule such that ON1Œ1=p� D
ONŒ1=p� and Ô .'� ON1/ � ON1. Then . ON1; Ô / is an étale '-module, i.e.

Ô .'� ON1/ D ON1:
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Proof. As AF;K is (a product of) discrete valuation rings, it is clear that ON1 is free
on d generators, where d is the AF;K-rank of ON . Let b1; : : : ; bd be a basis of ON
and e1; : : : ; ed be a basis of ON1. Let A denote the change of basis matrix from b

to e and denote by Matb. Ô / resp. Mate. Ô / the matrix of Ô in the basis b resp. e of
ONŒ1=p� D ON1Œ1=p�. Then our assumptions imply that

Mate. Ô / 2 Matd�d .AF;K/:

On the other hand
Mate. Ô / D A�1Matb. Ô /'.A/

and hence det
�
Mate. Ô /

�
2 A �F;K , as ON is étale, and

valp.detA/ D valp.det'.A//:

5. Families of p-adic Galois representations

In this section we study the relation between Galois representations and .'; �/-
modules in families. This problem was first considered by Dee in [9] for families
parametrized by a complete local noetherian Zp-algebra. Later the problem was
considered by Berger and Colmez in [3] and Kedlaya and Liu in [17], where they
define a functor from p-adic families of GK-representations to p-adic families of
overconvergent .'; �/-modules.
Definition 5.1. Let G a topological group and X an adic space locally of finite type
overQp . A family ofG-representations overX is a vector bundle V overX endowed
with a continuous G-action.

Wewrite RepXG for the category of families ofG-representations overX . Recall
that we writeGK D Gal. NK=K/ for the absolute Galois group of a fixed local fieldK.
In this case Berger and Colmez define the functor

D� W RepXGK �!
˚
étale .'; �/-modules over B�

X

	
;

which maps a family V of GK-representations on X to the étale .'; �/-module

D�.V/ D
�
V ˝OX

QB�
X

�HK :

More precisely they construct this functor ifX is a reduced affinoid adic space of finite
type. As the functorD� is fully faithful in this case and maps V to a free B�

X -module
it follows that we can consider D� on the full category RepXGK , whenever X is
reduced.

In [17] Kedlaya and Liu consider the variant

D�rig W V 7�!
�
V ˝OX

QB�
X;rig

�HK
D D�.V/˝

B
�
X

B�
X;rig
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which wewill also consider here. Note that for an adic spaceX of finite type overQp ,
the .'; �/-module D�.V/ is always defined over some B�;s

X � B�
X , for s � 0.

Especially an étale lattice can be defined over A Œs;1/
X for s � 0.

5.1. The admissible locus. In this section we will always assume that our adic
spaces are reduced.

It is known that the functors D� and D�rig are not essentially surjective. In [17],
Kedlaya and Liu construct a local inverse to this functor. More precisely, they show
that ifN is a family of .'; �/-modules over B�

X;rig, then every rigid analytic point at
whichN is étale has an affinoid neighborhood on which the familyN is the image of
a family of GK-representations. However, we need to extend this result to the setup
of adic spaces in order to define a natural subspace over which such a family N is
induced by a family of GK-representations.

Theorem 5.2. LetX be a reduced adic space locally of finite type overQp and letN
be a family of .'; �/-modules of rank d over B�

X;rig.

(i) The subset

X adm
D

8̂̂<̂
:̂x 2 X

ˇ̌̌̌
ˇ̌̌̌ dimk.x/..N ˝B

�
X;rig

QB�
X;rig/˝ k.x/

�ˆDid
D d

and this k.x/-vector space generates
.N ˝

B
�
X;rig

QB�
X;rig/˝ k.x/

9>>=>>;
is open.

(ii) There exists a family of GK-representations V on X adm such that there is a
canonical and functorial isomorphism

D�rig.V/ Š N jXadm :

(iii) Let V be a family GK-representations on X such that D�rig.V/ D N . Then
X adm D X .

Remark 5.3. Note that (iii) is not contained in [12] (in the context of a different
semi-linear operator): there the claim is only made if we assume X int D X .

Let A be a complete topological Qp-algebra and let AC � A be a ring of
integral elements. Assume that the completed tensor products ACb̋ QA� and Ab̋ QB�rig
are defined5. In this case the following approximation Lemma of Kedlaya and Liu
applies.

5The examples we consider here, are �.X;OX / for an affinoid adic space of finite type and the
completions of k.x/ for a point x 2 X . In the latter case the completed tensor product is the completion
of the fiber of QA � resp. QB�

rig at the point x.
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Lemma 5.4. Let QN be a free .'; �/-module over Ab̋ QB�rig such that there exists a
basis on which ˆ acts via idCB with

B 2 pMatd�d .ACb̋ QA�/:
Then QNˆDid is free of rank d as an A-module. Moreover, an A-module basis of
QNˆDid is an Ab̋ QB�rig-module basis of QN .

Proof. This is [17, Theorem 5.2].

Corollary 5.5. Let X be an adic space locally of finite type over Qp and QN be a
family of .'; �/-modules over QB�

X;rig. Let x in X , then

dimbk.x/.�
�
x
QN /ĹDid D d ” dimk.x/

�
.N ˝

B
�
X;rig

QB�
X;rig/˝ k.x/

�ˆDid
D d:

Proof. The proof is the same as the proof of [12, Proposition 8.20 (i)].

Proof of Theorem 5:2. Let x 2 X adm and denote by Z the Zariski-closure of x, that
is, the subspace defined by the ideal of all functions vanishing at x. This is an reduced
adic space locally of finite type and we have k.x/ D OZ;x , as the ideal of functions
on Z that vanish at x is trivial by definition. Then�

.N ˝
B

�
X;rig

QB�
X;rig/˝ k.x/

�
D
�
.N jZ ˝B

�
Z;rig

QB�
Z;rig/˝ k.x/

�
D lim
�!

x2U�Z

�.U;N jZ ˝B
�
Z;rig

QB�
Z;rig/:

By this identification we may choose an affinoid neighborhood U � Z of x in Z
such that a basis of the ˆ-invariants extends to U and forms a basis ofN jU . Then

VU D
�
N jZ ˝B

�
Z;rig

QB�
U;rig

�ˆDid
is free of rank d over OU and

VU ˝OU
QB�
U;rig D N jZ :

On VU we have the diagonalGK-action given by the natural action on QB�
U;rig and the

�-action onN . It is a direct consequence of the construction that

D�rig.VU / D N jU :

Especially it follows thatN is étale at x. It follows that we already haveX adm � X int.
Replacing X by X int we may assume thatN is étale everywhere.

Now let x 2 X adm and let U denote a neighborhood of x to which we can lift a
basis of ˆ-invariants. As N is known to be étale, we can shrink U such that we are
in the situation of Lemma 5:4.
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It follows that X adm is open and that�
N ˝

B
�
X;rig

QB�
X;rig

�ˆDid
gives a vector bundle V on X adm. Again, we have the diagonal action of GK . As
above we find that

D�rig.V/ D N jXadm\X int D N jXadm :

Finally (iii) is obvious by the construction of [3].

Theorem 5.6. Let f W X ! Y be a morphism of adic spaces locally of finite
type over Qp with Y reduced. Further let NY be a family of .'; �/-modules
over B�

Y;rig and write NX for the pullback of NY to X . Then f �1.Y adm/ D X adm

and f �VY D VX on X adm.

Proof. Using the discussion above, the proof is the same as the proof of [12,
Proposition 8.22].

Proposition 5.7. Let X be a reduced adic space locally of finite type over Qp and
letN be a family of .'; �/-modules over B�

X;rig. Then the inclusion

f W X adm
�! X

is open and partially proper.

Proof. We have already shown that f is open. Especially it is quasi-separated and
hence we may apply the valuative criterion for partial properness, see [14, 1.3].
Let .x; A/ be a valuation ring of X with x 2 X adm and let y 2 X be a center
of .A; x/. We need to show that y 2 X adm: As y is a specialization of x, the
inclusion i W k.y/ ,! k.x/ identifies k.y/ with a dense subfield of k.x/. Especially

QNy WD N ˝
B

�

k.y/;rig

QB�

k.y/;rig �! N ˝
B

�

k.x/;rig

QB�

k.x/;rig DW
QNx

is dense. Let e1; : : : ; ed be a basis of QNx on which ˆ acts as the identity. We may
approximate this basis by a basis of QNy . Thus we can choose a basis of QNy on
which ˆ acts by idCA with

A 2 Matd�d . QB
�

k.y/;rig/

sufficently small. For example we can choose

A 2 pMatd�d . QA �

k.y/
/:

By Lemma 5:4 and Corollary 5:5 it follows that y 2 X adm.
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5.2. Existence of Galois representations. In this section we link deformations of
Galois representations and deformations of étale '-modules.

In the following .R;m/will denote a complete local noetherian ring, topologically
of finite type over Zp . Again we have a notion of an étale '-module over

Rb̋Zp
AK D lim

 �n

�
.R=mn/˝Zp

AK
�
:

By this we mean an R Ő Zp
AK-module D of finite type together with an

isomorphism ˆ W '�D ! D. Note thatD is not required to be locally free.
A Galois representation with coefficients in R (or a family of Galois representa-

tions on SpfR) is a continuous representation

G �! GLd .R/;

where G is the absolute Galois group of some field L. The relation between
Galois representations and étale '-modules with coefficients in local rings was first
considered by Dee, see [9, 2].

Theorem 5.8. Let X be a reduced adic space of finite type over Qp and let .N ; ˆ/
be a family of étale '-modules over B�

X;rig. Then there exists a formal model X ofX
and an étale AX;K-module N � ON generating ON that admits a model over X . Let
x0 2 NX be a closed point in the special fiber of X of X and let Y � X denote the
tube over x0. Then .N ; ˆ/jY is associated to a family ofHK-representations on the
open subspace Y .

Proof. Let us write ON for the BX;K-module associated to N . It follows from
Proposition 4:8 that there exist an étale '-module ON over AX;K such that ON � ON
as '-modules and such that ON contains a basis of ON . Moreover there is some formal
model X of X such that ON is defined over X . Choose a formal affine neighborhood
U D Spf.AC/ of x0 and write U for its generic fiber. We write m � AC for the
maximal ideal defining x0 and write R for the m-adic completion of AC. Then Y is
the generic fiber of SpfR in the sense of Berthelot. Write N D �.U; ON/. This is a
�.U;AX;K/-module on which Ô induces a semi-linear isomorphism.

It follows that ON D Nb̋ACR is a finitely generated étale '-module over
�.Y;AX;K/ D Rb̋Zp

AK . Hence, by [9], there is a finitely generated R-module E
with continuousHK action associated with ON. Then

Y � V 7! E ˝R �.V;OX /

defines the desired family of Galois representations6 on Y .

6Note that we do not claim that locally on Y the integral representation E is associated with an étale
lattice in .N ;ˆ/. This is only true up to p-isogeny.
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Corollary 5.9. Let X be a reduced adic space locally of finite type over Qp and N
be a family of étale .'; �/-modules on X . Then there exists a formal model X of X
and an étale AX;K-module N � ON generating ON which admits a model over X .
Let x0 2 NX be a closed point in the special fiber X of X and let Y � X denote the
tube of x0. Then N jY is associated to a family of GK-representations on the open
subspace Y .

Proof. By the above theorem it follows that Y D Y adm. The claim follows from
Theorem 5:2.

Conjecture 5.10. The claim of the theorem (and the corollary) also holds true if we
replace x0 by a (locally) closed subscheme of the special fiber over which there exists
a Galois representation that is associated with the reduction of the étale submodule.

5.3. Local constancy of the reduction modulo p. Let L be a finite extension
of Qp with ring of integers OL, uniformizer $L and residue field kL. Let V be a
d -dimensional L-vector space with a continuous action of a compact group G. We
choose a G-stable OL-lattice ƒ � V and write Nƒ D ƒ=$Lƒ for the reduction
modulo the maximal ideal of OL. Then Nƒ is a (continuous) representation of G on
a d -dimensional kL D OL=$LOL-vector space. The representation Nƒ depends
on the choice of a G-stable lattice ƒ � V , however it is well known that its
semisimplification Nƒss(i.e. the direct sum of its Jordan-Hölder constituents) is
independent of ƒ and hence only depends on the representation V . In the following
we will write NV for this representation and refer to it as the reduction modulo$L of
the representation V .

The aim of this section is to show that the reduction modulo $L is locally
constant in a family7 of p-adic representations of G. In the context of families
of Galois representations this was shown by Berger for families of 2-dimensional
crystalline representations of Gal. NQp=Qp/ in a weaker sense: Berger showed that
every rigid analytic point has a neighborhood on which the reduction is constant,
see [2].

Let X be an adic space locally of finite type overQp and E a vector bundle onX
endowed with a continuous G-action. If x 2 X , then we write�

E ˝ k.x/
�
D
�
E ˝ k.x/

�ss
for the semisimplification of the G-representation in the special fiber

k.x/ D k.x/C=.$x/

of k.x/.

7This seems to be a well known fact, at least in the context of pseudo-characters. As we do not want
to assume p > d here, we give a different proof.
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Proposition 5.11. Let X be an adic space locally of finite type and let E be a vector
bundle on X endowed with a continuous action of a compact group G. Then the
semi-simplification of the reduction E ˝ k.x/ is locally constant.

Proof. As the claim remains the same once we replace X by its reduced underlying
subspace, we may assume that X is reduced. Moreover, we may assume that X D
Spa.A;AC/ is affinoid. For g 2 G we consider the map

fg W x 7�! charpoly
�
gjE ˝ k.x/

�
Let us write fg;i .x/ for the i -th coefficient of fg.x/. As E ˝ k.x/ admits an
k.x/C-lattice stable under the action of G, we find that fg;i .x/ 2 k.x/C, and
hence fg;i defines a map

fi W G �! �.X;OCX / D A
C:

By construction this map is continuous and hence so is the induced map

Nfi W G �! NA D AC=ACC;

where ACC � A denotes the ideal of topologically nilpotent elements. However,
as NA is endowed with the discrete topology this morphism has to be constant. On the
other hand Nfg;i .x/ is the i -th coefficient of the characteristic polynomial of g acting
on Ex=$xEx , where Ex � E˝ k.x/ is a G-stable k.x/C-lattice and$x 2 k.x/

C is
a uniformizer. Now [8, Theorem 30.16] implies the claim8.

6. An example

In this section we give an example in order to show how the condition on the reduction
modulo p to be locally constant obstructs the existence of a global étlale lattice.

For this section we use different notations. Let K be a totally ramified quadratic
extension of Qp . Fix a uniformizer � 2 OK and a compatible system �n 2 NK of
pn-th roots of � . Let us write K1 D

S
K.�n/ and GK1 D Gal. NK=K1/ for this

section. Further let E.u/ 2 ZpŒu� denote the minimal polynomial of � . Finally we
adapt the notation from [12] and write

BR
X DB�

X;rig and BŒ0;1/
X D prX;�OX�U:

We consider the following family .D;ˆ;F�/ of filtered '-modules on

X D P1K � P1K :

8After this paper was written, we noticed that the idea to consider all coefficients of the characteristic
polynonial is used in [7] to generalize pseudo-characters.
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Let D D O2
X D OXe1 ˚OXe2 and ˆ D diag.$1;$2/, where$1 and$2 are the

zeros of E.u/. We consider a filtration F� ofDK D D˝Qp
K such that F0 D DK

and F2 D 0. Fix an isomorphism D ˝Qp
K Š O2

X ˚ O2
X and let the filtration

stepF1 be the universal subspace onX . This is a family of filtered '-modules in the
sense of [12]. One easily computes that

Xwa
D Xnf.0; 0/; .1;1/g;

where Xwa � X is the weakly admissible locus defined in [12, 4.2]. Generalizing a
construction of Kisin [16] the family .D;ˆ;F�/ defines a family .M; ˆ/ consisting
of a vector bundle on Xwa � U and an injection ˆ W '�M ! M such that
E.u/ cokerˆ D 0 (see [12, Theorem 5.4]).

We define the family .N ; ˆ/ over BR
Xwa as

.N ; ˆ/ D .M; ˆ/˝
B

Œ0;1/
Xwa

BR
Xwa : (6.1)

This is obviously a family of '-modules over the Robba ring which is étale at all rigid
analytic points. We can cover the weakly admissible setXwa D X1[X2[X3[X4,
where

X1 D
�
.P1nf1g/ � .P1nf1g/

�
nf.0; 0/g Š A2nf0g;

X2 D .P1nf1g/ � .P1nf0g/ Š A2;
X3 D .P1nf0g/ � .P1nf1g/ Š A2;
X4 D

�
.P1nf0g/ � .P1nf0g/

�
nf.1;1/g Š A2nf0g:

Now the space Xwa contains K-valued points x1; x2 and x3 such that

.M; ˆ/˝ k.x1/ Š

�
O2

UK
;

�
0 �E.u/

1 $1 C$2

��
.M; ˆ/˝ k.x2/ Š

�
O2

UK
;

�
0 �.u �$1/

.u �$2/ $1 C$2

��
.M; ˆ/˝ k.x3/ Š

�
O2

UK
;

�
�.u �$1/ 0

0 �.u �$2/

��
:

The semi-simplifications of the reduction modulo � of the obvious ˆ-stableW ŒŒu��-
lattices in these '-modules are

.M; ˆ/˝ k.x1/ Š

�
FpŒŒu��2;

�
0 �u2

1 0

��
;

.M; ˆ/˝ k.x2/ Š

�
FpŒŒu��2;

�
0 �u

u 0

��
;

.M; ˆ/˝ k.x3/ Š

�
FpŒŒu��2;

�
�u 0

0 �u

��
:
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Using Caruso’s classification [6, Corollary 8] of those '-modules we find that they
are all non-isomorphic and in fact even stay non-ismomorphic after inverting u. After
inverting u these '-modules correspond (up to twist) under Fontaine’s equivalence
of categories to the restriction to GK1 of the reduction modulo � of the constructed
Galois representations E ˝ k.xi /. By [5, Theorem 3.4.3] this restriction is fully
faithful and hence we find that

E ˝ k.xi / 6Š E ˝ k.xj /

as GK-representations for i ¤ j .
As .M; ˆ/ is admissible in a neighborhood of each of the xi , we can find some yi

such that
E ˝ k.xi / Š E ˝ k.yi /

for i D 1; 2; 3 and such that in addition yi 2 X2 for all i for example. Let us fix
a covering X2 Š A2 D

S
Ui by an increasing sequence of closed discs around the

origin and let Vi � Ui be the corresponding open disc.
Assume that there exists an étale A �

X -lattice in .N ; ˆ/ over all the Ui
defined above. Then it follows from Corollary 5:9 that there exists a family of
GK-representations associated to .M; ˆ/ on all the Vi .

By the construction in [12] this family is naturally contained in

D ˝OVi
.OVi

b̋Bcris/

and in fact identified with

Fil0
�
D ˝OVi

.OVi
b̋Bcris/

�ˆDid
:

However, if this assumption is true for all i , we easily can find some i such
that y1; y2; y3 2 Ui map to the origin in the special fiber, i.e. y1; y2; y3 2 Vi . By
Proposition 5:11, we know that the reduction modulo p of the GK-representation on
the fibers of the family E has to be constant, contradicting the choice of the yi .

Hence we see that a formal model of Ui over which we have an integral étale
structure as in Proposition 4:8must be a blow up that separates the specializations of
the points y1; y2 and y3.
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