
Comment. Math. Helv. 91 (2016), 751–806
DOI 10.4171/CMH/402

Commentarii Mathematici Helvetici
© Swiss Mathematical Society

Assembling homology classes in
automorphism groups of free groups

James Conant, Allen Hatcher, Martin Kassabov� and Karen Vogtmann��

Abstract. The observation that a graph of rank n can be assembled from graphs of smaller
rank k with s leaves by pairing the leaves together leads to a process for assembling homology
classes for Out.Fn/ and Aut.Fn/ from classes for groups �k;s , where the �k;s generalize
Out.Fk/ D �k;0 and Aut.Fk/ D �k;1. The symmetric group Ss acts on H�.�k;s/ by
permuting leaves, and for trivial rational coefficients we compute the Ss-module structure
on H�.�k;s/ completely for k � 2. Assembling these classes then produces all the known
nontrivial rational homology classes for Aut.Fn/ and Out.Fn/ with the possible exception of
classes for n D 7 recently discovered by L. Bartholdi. It also produces an enormous number
of candidates for other nontrivial classes, some old and some new, but we limit the number of
these which can be nontrivial using the representation theory of symmetric groups. We gain
new insight into some of the most promising candidates by finding small subgroups of Aut.Fn/

and Out.Fn/ which support them and by finding geometric representations for the candidate
classes as maps of closed manifolds into the moduli space of graphs. Finally, our results have
implications for the homology of the Lie algebra of symplectic derivations.
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1. Introduction

In this paper we develop a new approach to studying the homology of automorphism
groups of free groups which gives fresh group theoretic and geometric insight into
known families of homology classes, and also helps direct the search for new classes.
We restrict attention to homology and cohomology with untwisted coefficients in a
field k of characteristic zero unless explicitly specified otherwise.

Let us recall briefly what is known about these homology groups. First of all,
Hi
�
Aut.Fn/

�
and Hi

�
Out.Fn/

�
are finite-dimensional over k for all i , and vanish
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for i greater than the virtual cohomological dimension (vcd), which is 2n � 2 for
Aut.Fn/ and 2n � 3 for Out.Fn/ [14]. The groups Hi

�
Aut.Fn/

�
and Hi

�
Out.Fn/

�
are independent of n for n � 5.iC1/=4 as shown in [23,24], and these stable groups
are in fact zero as well, as Galatius proved in [16]. Thus in the first quadrant of
the .i; n/ plane (see Figure 1 below) there is a wedge-shaped region bounded by
lines of slope 1=2 and 5=4 that contains all the nonzero groups Hi

�
Aut.Fn/

�
, and

similarly forHi
�
Out.Fn/

�
. There are only a small number of these groups which are

explicitly known to be nonzero. For Aut.Fn/ these occur for .i; n/ D .4; 4/, .7; 5/,
.8; 6/, .8; 7/; .11; 7/ and .12; 8/; for Out.Fn/ the list is the same except that .7; 5/ is
omitted. (The natural map Hi

�
Aut.Fn/

�
! Hi

�
Out.Fn/

�
is known to be surjective

for all i and n [27] and we give a different proof of this in Theorem 2.4.) These
low-dimensional calculations are done mostly by computer; see [1,12,17,19,23,33].
Complete calculations of Hi

�
Aut.Fn/

�
have been made only for n � 5 and for

Hi
�
Out.Fn/

�
only for n � 7.
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4

Figure 1. Classes in the homology of Aut.Fn/ for n � 14. The Morita classes are shown as
squares and the Eisenstein classes are shown as circles, filled in if the classes are known to be
nontrivial. The nontrivial classes recently found by Bartholdi are shown as hexagons.

There are two potentially infinite sequences which begin with nontrivial classes:
these are classes �k for .i; n/ D .4k; 2k C 2/ defined by Morita [33] and classes Ek
for .i; n/ D .4k C 3; 2k C 3/ constructed in [10]. The latter are known as
Eisenstein classes because they arise from Eisenstein series via the connection
between modular forms and the cohomology of SL2.Z/ established by the Eichler–
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Shimura isomorphism. The Morita classes �k are defined for both Aut and Out,
while the Ek’s are defined for Aut and map to zero in Out. Note that these classes are
all either one or two dimensions below the vcd.

One of the big open questions is to determine which of the classes �k and Ek
are nonzero. However, even if they are nonzero it seems that they account for only
a small fraction of the homology. The Euler characteristic for H�

�
Out.Fn/

�
was

computed for n � 11 by Morita, Sakasai, and Suzuki in [35, 36], and after starting
with the values 1 and 2 for n � 8, it becomes �21;�124;�1202 for n D 9; 10; 11.
If this trend continues for larger n, it would say there are many odd-dimensional
classes for Out.Fn/, though the only one discovered to date is the 11-dimensional
class in Out.F7/ recently found by Bartholdi [1]. (This class is balanced by a single
8-dimensional class, consistent with the Euler characteristic calculation for n D 7.)

n 3 4 5 6 7 8 9 10 11 12

�.Out.Fn// 1 2 1 2 1 1 �21 �124 �1202 ‹

Figure 2. Euler characteristic of Out.Fn/

The Morita classes �k were first constructed using Lie algebra techniques
underpinned by Kontsevich’s “formal noncommutative symplectic geometry” [28,
29]. In [12] these classes were interpreted explicitly in Lie graph cohomology and
generalized; further generalizations including the classes Ek were obtained using
“hairy graph homology” in [10]. In the present paper we show how to construct all
of these classes in an elementary fashion which bypasses both graph homology and
Kontsevich’s work. The idea is to use the fact that Out.Fn/ and Aut.Fn/ are the first
two groups in a series�n;0; �n;1; �n;2; : : :where�n;s is the group of homotopy classes
of self-homotopy equivalences of a rank n graph fixing s leaves (vertices of valence
one) [2, 22, 24]. These groups are related by natural surjective homomorphisms
�n;s ! �n;s�k with kernel .Fn/k . These homomorphisms split for k < s but not for
k D s.

The groups �n;s are of interest because by gluing graphs together along a subset
of their leaf vertices we obtain many homomorphisms �n1;s1 � � � � � �nk ;sk ! �n;s .
On the level of homology, each such map induces a homomorphism

H�.�n1;s1/˝ � � � ˝H�.�nk ;sk / �! H�.�n;s/;

which we call an assembly map (see Section 5). For example by pairing up all of the
leaves of two rank one graphs with s leaves (in any way) we obtain an assembly map

H�.�1;s/˝H�.�1;s/ �! H�.�sC1;0/ D H�
�
Out.FsC1/

�
:

Restricting to the case that s is odd, say s D 2k C 1, it is easy to calculate that
H2k.�1;2kC1/ Š k (see Section 3.4), and in Section 5.1 we note that the Morita
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class �k is the image of ˛k˝˛k under this assembly map, where ˛k is a generator of
H2k.�1;2kC1/. This graphical interpretation of the original Morita series allows us
to give two new proofs that Morita classes vanish after one stabilization, one proof
being algebraic (Section 6.2) and the other geometric (Section 7). This result was first
proved via a more elaborate combinatorial computation in graph homology in [13].

As a consequence of the elementary construction, we find that all the classes �k
in Morita’s original series, as well as the generalized Morita classes given in [12], are
supported on abelian subgroups of Aut.Fn/. This naturally gives rise to the question
of whether the standard maximal abelian subgroup can support nontrivial homology
classes, and we show in Section 8 that it cannot. For the Eisenstein classes we find
slightly more complicated nonabelian subgroups that support them.

Parallel to these group-theoretic descriptions of Morita and Eisenstein classes
there are geometric representations as maps of closed orientable manifolds into
the classifying spaces for Aut.Fn/ or Out.Fn/ carrying top-dimensional homology
classes of the manifolds to the Morita or Eisenstein classes. In the case of Morita
classes the manifolds are tori while for the Eisenstein classes they are products of a
certain 3-manifold with tori.

The computational heart of the paper is in Section 3 where we use the natural
action of the symmetric groupSs on�n;s to studyH�.�n;s/. For n D 1 and n D 2we
determine the Ss-module structure of H�.�n;s/ completely. This can be applied in
the search for nontrivial classes inH�.�n;s/ that lie in the images of assembly maps.
In particular we show in Section 5.5 that many of the generalized Morita classes are
in fact zero, though this does not apply to the �k’s themselves. In Section 5.7 we
show that certain odd-dimensional classes constructed in [35] must vanish, but we
also find some new candidates for nontrivial odd-dimensional classes.

The calculation of H�.�1;s/ is an easy consequence of the fact that �1;s Š
Z2 Ë Zs�1. To calculate the homology of �2;s we use the short exact sequence

1 �! F s
2 �! �2;s �! �2;0 D Out.F2/ �! 1:

In the Leray–Serre spectral sequence associated to this short exact sequence we note
that all differentials are zero, allowing us to completely calculate the homology.
(Actually, for convenience we use cohomology rather than homology for spectral
sequence arguments and indeed for most algebraic calculations.) The results of our
computations for n D 1 and n D 2 and small values of s are recorded in several
tables at the end of the paper.

These computations show that even though the dimension ofHi .�n;s/ as a vector
space over k increases with s for fixed n D 1; 2, it is nevertheless true that as
representations of Ss these vector spaces eventually stabilize in the sense of [7].
This representation stability holds for all n in fact, as a corollary of a result of
Jiménez Rolland [26]; see Proposition 6.1.

We also apply some elementary representation theory to show that the group
Hi .�n;s/ is nontrivial whenever i is an even multiple of n and s is sufficiently large
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with respect to i and n. This can be contrasted with the situation for stabilization with
respect to n, whereHi .�n;s/ becomes trivial as n increases, by Galatius’ theorem for
s D 1 and hence for all s since the groupsHi .�n;s/ are independent of both n and s
when n � 2i C 4 by [24].

In Section 9 we point out the relationship of the homology of �n;s with both
hairy graph homology [10,11] and the cohomology of the Lie algebra of symplectic
derivations, as studied by Kontsevich, Morita and many others. In particular, we
show how our computations for �n;s imply that the cohomology in each dimension
of this Lie algebra contains infinitely many simple Sp-modules.

Section 10 contains some conjectures and open questions. Most nontrivial rational
homology classes for any �n;s which occur below the vcd 2n � 3 C s have been
shown to be in the image of assembly maps. The only exceptions are new classes for
Out.F7/ and Aut.F7/ recently found by Bartholdi [1], for which this is still unclear.
It is then natural to ask whether assembly maps generate all classes below the vcd.
The number of potential homology classes for Hi .�n;s/ constructed from assembly
maps grows exponentially with n, leading to the expectation that the rank of the
homology also grows very fast. For s D 0 this expectation coincides nicely with the
Euler characteristic calculations of Morita, Sakasai, and Suzuki cited earlier.

Finally, we remark that the rational classifying spaces for the groups �n;s have
natural compactifications, whose homology has recently been studied by Chan,
Galatius and Payne [5, 6]. One thing they show is that this homology vanishes
in dimensions less than s � 3. It is easy to see that all homology classes which are in
the image of an assembly map must vanish in this compactification, consistent with
their calculations.

2. The groups �n;s

2.1. Definitions. The group Out.Fn/ is the group of homotopy classes of self-
homotopy equivalences of a finite connected graph X of rank n, and Aut.Fn/ is
the basepointed version of this, the homotopy classes of homotopy equivalences
of X fixing a basepoint, where homotopies are also required to fix the basepoint.
A natural generalization is to choose s distinct marked points x1; : : : ; xs in X and
then define �n;s to be the group of homotopy classes of self-homotopy equivalences
of X fixing each xi , with homotopies also required to fix these points. The group
operation in �n;s is induced by composition of homotopy equivalences, which is
obviously associative with an identity element. To check that inverses exist one uses
the following elementary fact:

Lemma 2.1. If f WX ! Y is a homotopy equivalence of finite connected graphs
taking a set of s marked points x D fx1; : : : ; xsg bijectively to another such set
y D fy1; : : : ; ysg, then f is a homotopy equivalence of pairs .X; x/ ! .Y; y/, so
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there is a map g W Y ! X restricting to f �1 on y with the compositions gf and fg
homotopic to the identity fixing x and y respectively.

Proof. Let Z be the quotient of the mapping cylinder of f obtained by collapsing
x � I to x D y. The quotient map collapses a finite number of intervals to a point
so it is a homotopy equivalence. If f is a homotopy equivalence, then the inclusions
of X and Y into the mapping cylinder are homotopy equivalences, hence the same is
true for the inclusions into Z. It follows that Z deformation retracts onto the copies
of X and Y at either end. The deformation retraction to X gives the map g.

This lemma also shows that �n;s does not depend on the choice of .X; x/, up to
isomorphism. Throughout most of the paper we will take X to be a rank n graph
with exactly s leaves, with the leaf vertices as the marked points. Here a leaf means
a vertex of valence one together with the adjoining edge. Our generic notation for a
graph of rank n with s leaves will be Xn;s . Two examples of rank 3 graphs with 4
leaves are shown in Figure 3.

Figure 3. Two possibilities for X3;4

A homotopy equivalence f W Xn;s ! Xn;s that permutes the leaf vertices induces
an automorphism of �n;s via conjugation by f . If f fixes the leaf vertices this is an
inner automorphism, hence induces the identity on the homology of �n;s , so there is
an induced action of the symmetric group Ss on the homology. If we choose Xn;s
to have a single nonleaf vertex as in the left half of Figure 3 then this action ofSs on
homology comes from the action on Xn;s permuting the leaves. The Ss-action on
H�.�n;s/ will play a major role in later sections of the paper.

The groups �0;s are trivial since anyX0;s is a tree and any homotopy equivalence
of a tree which fixes all of its leaf vertices is homotopic to the identity by a homotopy
fixing the leaf vertices.

As shown in [2], the group �1;s is the semidirect product Z2 Ë Zs�1. The free
abelian subgroup Zs�1 is generated by homotopy equivalences which wrap one leaf
edge around the (unique) loop while fixing the leaf vertex and the rest of the graph.
These generators commute since they have disjoint supports. Note that wrapping
all of the leaf edges around the loop in the same direction results in a map which is
homotopic to the identity fixing the leaf vertices, so there are only s � 1 independent
generators. The generator of Z2 flips the loop, so acts on Zs�1 by x 7! �x.
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We remark that �n;s could also be defined as the mapping class group of the
3-manifold Mn;s formed by removing s disjoint balls from the connected sum
of n copies of S1 � S2, modulo the subgroup generated by Dehn twists along
embedded 2-spheres. This follows from results of Laudenbach and is made explicit
in Proposition 1 of [24].

The groups �n;s for s > 1 were first considered in [22] in work on homological
stability and also appeared in Bestvina and Feighn’s proof that Out.Fn/ is a virtual
duality group [2]. It was observed in [10] that their homology is very closely related
to hairy graph homology groups for the Lie operad.

2.2. Short exact sequences. In this section we observe that there are natural short
exact sequences relating the groups �n;s .

Proposition 2.2. If n > 1 and k � s there is a short exact sequence

1 �! F kn �! �n;s �! �n;s�k �! 1

which splits if k < s. This holds also when n D 1 and k < s, but in the exceptional
case .n; k/ D .1; s/ there is a split short exact sequence

1 �! Zs�1 �! �1;s �! �1;0 �! 1

expressing �1;s as the semidirect product Z2 Ë Zs�1.
For k D s � 1 the proposition follows from [2, Section 2.5], where it is shown

that �n;s Š Aut.Fn/ Ë F s�1n .

Proof. Let X be a rank n graph containing a set x D fx1; : : : ; xsg of s distinct
marked points. Let En;s be the space of homotopy equivalences X ! X fixed on x,
so �n;s D �0.En;s/. For k � s there is an inclusion En;s � En;s�k obtained by
no longer requiring homotopy equivalences to fix x1; : : : ; xk . Evaluating homotopy
equivalences X ! X on x1; : : : ; xk gives a map En;s�k ! Xk which is a fibration
with fiber En;s over the point .x1; : : : ; xk/. The long exact sequence of homotopy
groups for this fibration ends with the terms

�1.En;s�k/ �! �1.X
k/ �! �n;s �! �n;s�k �! 1:

When k < s the first term �1.En;s�k/ is trivial by obstruction theory. Namely, we
can assume X is obtained by attaching 1-cells to a set of s � k 0-cells, and then any
loop of homotopy equivalences ft W X ! X fixing the 0-cells can be deformed to
the trivial loop since �2.X/ D 0. Thus we obtain the first short exact sequence in
statement of the proposition when k < s, for arbitrary n.

To split this short exact sequence when k < s it suffices to find a map
En;s�k ! En;s such that the composition En;s�k ! En;s ! En;s�k is homotopic
to the identity. We are free to choose the marked points x1; : : : ; xk anywhere
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in the complement of the remaining s � k points, so we choose them in a small
contractible neighborhood N of the point xkC1. We can then deformation retract
En;s�k onto the subspace E 0

n;s�k
of homotopy equivalences that are fixed on N .

(This is particularly easy if we choose X to have a valence one vertex with xkC1 as
this vertex.) The subspace E 0

n;s�k
includes naturally into En;s , and this inclusion

gives the desired map En;s�k ! En;s as the composition of the first two maps
En;s�k ! E 0

n;s�k
,! En;s ,! En;s�k , the first map being the retraction produced

by the deformation retraction. The composition of the three maps is homotopic to
the identity by the deformation retraction itself.

There remain the cases k D s. The issue is whether �1.En;0/ is trivial, so that
the long exact sequence becomes a short exact sequence. To settle this, consider the
fibration En;1 ! En;0 ! X which gives a long exact sequence

1 �! �1.En;0/ �! �1.X/ �! �n;1 �! �n;0 �! 1

where the initial 1 is �1.En;1/. The middle map in this sequence is the map from �1
of the base of the fibration to �0 of the fiber, and it is easy to check the definitions
to see that this is the map Fn ! Aut.Fn/ sending an element of Fn to the inner
automorphism it determines. The kernel of this map is the center of Fn so it is trivial
when n > 1 and we deduce that �1.En;0/ D 1 in these cases, so we again have the
short exact sequence claimed in the proposition.

When n D 1 and k D s the space E1;0 is homotopy equivalent to S1 and the
exact sequence of the fibration E1;s ! E1;0 ! X s becomes

1 �! Z �! Zs �! �1;s �! �1;0 �! 1;

with the map Z ! Zs the diagonal inclusion. This yields the short exact sequence
displaying �1;s as the semidirect product Z2 Ë Zs�1.

Remark 2.3. If we use Laudenbach’s theorem to express�n;s in terms of themapping
class group ofMn;s then the short exact sequence of Proposition 2.2 can be derived
from a 3-dimensional analog of the Birman exact sequence for mapping class groups
of surfaces [2]. From this viewpoint the spaceEn;s is replaced by the diffeomorphism
group ofMn;s , and the resulting fibration is a very simple special case of much more
general fibrations due to Cerf, Palais, and Lima.

2.3. Homology splitting. If s D k and n � 2 the map �n;s ! �n;s�k D �n;0
does not split. The reason is that �n;0 D Out.Fn/ contains finite subgroups which
do not lift. For example, consider the symmetry group of the graph consisting of two
vertices joined by nC 1 edges. This is a subgroup of �n;0 which cannot be realized
on any graph of rank n by graph symmetries which fix a basepoint, so the subgroup
does not lift to any �n;s with s � 1.

Homology with coefficients in k does not see finite subgroups, and in fact when
we pass to homology we do obtain a splitting. Note that it suffices to prove this for



Vol. 91 (2016) Assembling homology classes 759

s D 1, i.e. the map from Aut.Fn/ to Out.Fn/. Homology splitting of this map was
first proved by Kawazumi in [27]. There is a simple proof of this using the fact that
the moduli space of graphs (respectively basepointed graphs) is a rational K.�; 1/
for Out.Fn/ (respectively Aut.Fn/). The idea is that although there is no natural way
to choose a basepoint in a graph one can compensate by taking a suitably weighted
sum of all possible basepoints.
Theorem 2.4. The natural map Aut.Fn/ ! Out.Fn/ splits on the level of rational
homology, soHk

�
Out.Fn/

�
embeds intoHk

�
Aut.Fn/

�
.

Proof. We define a backwards map on the chain level. We take C�
�
Aut.Fn/

�
and

C�
�
Out.Fn/

�
to be defined in terms of the spine of the moduli space of (basepointed)

graphs. We refer to [13, section 2] for complete details. The chain complex
C�
�
Aut.Fn/

�
is spanned by graphs with specified subforests and a chosen basepoint,

while C�
�
Out.Fn/

�
is defined in the same way except the graphs do not have

basepoints. In both cases, the edges in the subforests are ordered, and changing
the order incurs the sign of the permutation. There are two boundary operators @C
and @R which sum over contracting and removing forest edges respectively. In both
the basepointed and unbasepointed cases, contracting the i th edge of a forest comes
with the sign .�1/iC1, while removing that edge comes with the sign .�1/i .

The natural projection � WAut.Fn/! Out.Fn/ corresponds to the map

��WC�
�
Aut.Fn/

�
! C�

�
Out.Fn/

�
which forgets the basepoint.

We now define a map r WC�
�
Out.Fn/

�
! C�

�
Aut.Fn/

�
: by

r.G/ D
X

v2V.G/

.jvj � 2/rv.G/:

Here V.G/ is the vertex set of G, jvj is the valence of v and rv.G/ is the forested
graph G with v specified as the basepoint. We need to check that r is a chain map.
Clearly @Rr D r@R since the definition of r makes no reference to the forest, and
the signs in @R make no reference to the basepoint. For @C we must check whether
the order of performing the two operations of adding a basepoint and contracting
an edge matters, the signs in @C being the same in both cases. If e is an edge with
vertices v and w, then adding a basepoint distinct from v and w clearly commutes
with contracting e. Adding basepoints at v and atw followed by contracting e results
in the same basepointed graph with multiplicity jvj C jwj � 4, whereas contracting e
first results in a vertex vw of valence jvj C jwj � 2, so adding a basepoint there also
gives multiplicity jvj C jwj � 4 (see Figure 4).

Now observe that �� ı r.G/ D kGG, where kG D
P
v2V.G/.jvj � 2/ D 2n� 2.

Thus if we are not in the trivial case n D 1 the composition �� ı r is represented by
a diagonal matrix with nonzero diagonal entries and is therefore invertible. So r� is
injective on homology.
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v

w

@C
vw

r

.jvj � 2/ C .jwj � 2/
@C

.jvj C jwj � 4/

r

Figure 4. Diagram commutes because jvwj D jvj C jwj � 2

3. Cohomology of �n;s

We are interested in studying the homology of Out.Fn/ and Aut.Fn/, with trivial
coefficients in a field k of characteristic 0. The idea is to glue together homology
classes of the �n;s using the assembly maps described briefly in the Introduction and
defined more precisely in Section 5. To find nontrivial classes which can be fed to the
assembly maps we use some elementary representation theory of symmetric groups
and GLn.Z/ together with the Leray–Serre spectral sequence applied to the group
extensions

1 �! F s
n �! �n;s �! �n;0 D Out.Fn/ �! 1 (3.1)

from Section 2.2.
For the calculations it will be convenient to switch from homology to cohomology,

which is isomorphic by the universal coefficient theorem since we are taking
coefficients in k and all homology is finite-dimensional over k. In the course of
our study we will exploit the structure of Hi .�n;s/ as an Ss-module. Since all
the modules we consider are finite-dimensional and all Ss-modules are self-dual,
the cohomology is isomorphic to the homology also as an Ss-module, though the
isomorphism is not canonical.

3.1. A little representation theory. In this section we establish some notation and
collect some results from representation theory which we will use. All the contents
of this section are well known and can be found, for example, in [15].
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Recall that the irreducible representations ofSs correspond to partitions of s and
are often represented by drawing Young diagrams with s boxes arranged in rows of
non-increasing size. We use P� to denote the representation corresponding to the
partition � D .�1; : : : ; �k/, where �1 � �2 � � � � � �k and

P
i �i D s. Exponential

notation denotes equal values of �i , e.g., P.2;1;1;1;1/ is written as P.2;14/.

Example 3.1. The module P.s/ is the 1-dimensional trivial module. The module
P.1s/ D alt is the 1-dimensional alternating representation of Ss , where a
permutation � acts as multiplication by sign.�/ D ˙1. The module P.s�1;1/ is the
.s � 1/-dimensional standard representation ks=k of Ss . It contains distinguished
elements vi , 1 � i � s, which satisfy

P
vi D 0.

The tensor product of two Ss-representations is also an Ss-representation with
the diagonal action. In general the multiplicity of an irreducible representation P�
in the decomposition of P� ˝ P� is difficult to compute, but for � D .s/ it is known
that P.s/ occurs with multiplicity 1 if � D � and with multiplicity 0 otherwise. One
tensor product we will encounter is P� ˝ alt. This is equal to P�0 where �0 denotes
the transpose partition, obtained by switching the rows and columns of the Young
diagram.

If P is a representation ofSs�k andQ is a representation ofSk , then P ˝Q is
a representation of Ss�k �Sk . If we consider Ss�k �Sk as a subgroup of Ss we
can form the induced representation. Following Fulton and Harris [15], we denote
this induced representation by P ıQ, i.e.,

P ıQ D IndSs

Ss�k �Sk
P ˝Q:

TheLittlewood–Richardson rule can be used to compute the decomposition ofP�ıP�
into irreducible modules. When � D .k/ this specializes to the Pieri rule, see [15,
Appendix A]. This says that the terms of P� ıP.k/ correspond to all Young diagrams
which can be obtained by adding k boxes to the diagram for �, each in a different
column. An example is illustrated in Figure 5.

ı D C C

Figure 5. Pieri rule for decomposing P.2;2/ ı P.3/

Now let V be an n-dimensional vector space. The irreducible representations
of GL.V / D GLn.k/ also correspond to partitions, and we let S�V denote the
GLn-representation associated to the partition �. Since dim.V / D n only partitions
into at most n pieces occur. Schur–Weyl duality gives the irreducible decomposition
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of the representation V ˝q as a module over GL.V / �Sq , namely

V ˝q Š
M
�

S�V ˝ P�;

where the sum is over all partitions of q into at most n pieces (if � has more than n
rows the module S�V is zero) (see, e.g., [15, Cor. 6.6]). We emphasize that GL.V /
acts trivially on P� and Sq acts trivially on S�V .
Example 3.2. For q D 2 the Schur–Weyl formula gives

V ˝ V D
�
S.2/V ˝ P.2/

�
˚
�
S.12/V ˝ P.12/

�
D Sym2 V ˚

V2
V:

where Symk denotes the k-th symmetric power functor on vector spaces and
Vk is

the k-th exterior power.
Notation. We denote by V ^q the Sq-module which is isomorphic as a vector space
to V ˝q , with Sq acting by permuting the factors and multiplying by the sign of the
permutation, i.e.,

V ^q D V ˝q ˝ alt:

The Schur–Weyl formula translates to a similar formula for V ^q:

V ^q D V ˝q ˝ alt Š
M
�

S�V ˝ P� ˝ alt D
M
�

S�V ˝ P�0 ;

where the sum is over all partitions of q into at most n pieces.
Finally, we record a computation we will use later.

Lemma 3.3. Suppose dim.V / D 2. Then S.q�k;k/V Š Symq�2k V ˝ detk as
GL.V /-modules, where detk D .

V2
V /˝k is the 1-dimensional representation given

by the k-th power of the determinant.

Proof. This can be seen by calculating the Schur polynomials S� for the two
sides, which determine the representations uniquely. Using the formula A.4 of [15,
Appendix A] one obtains

S.a;b/ D .x1x2/
b

�
xa�bC11 � xa�bC12

x1 � x2

�
D .S.1;1//

bS.a�b/:

The lemma now follows because Schur polynomials of tensor products multiply,
S.1;1/H D det and S.c/V D Symc V .

3.2. The Leray–Serre spectral sequence. Shifting from homology to cohomology
now, the Leray–Serre spectral sequence of a group extension 1 ! N ! G !

Q ! 1 is a first-quadrant spectral sequence with Ep;q2 D Hp
�
QIH q.N /

�
, which

converges toHpCq.G/. Applied to the short exact sequence (3.1) it reads

E
p;q
2 D Hp

�
Out.Fn/IH q.F s

n /
�
H) HpCq.�n;s/: (3.2)
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The symmetric groupSs which permutes the factors of F s
n induces an action on

each of theE2 terms which commutes with all differentials. We begin by identifying
the coefficientsH q.F s

n / as Ss-modules.
Throughout this section we set H D H 1.Fn/ Š kn. Note that the action of

Out.Fn/ on H factors through the natural GLn.Z/ action on H.
Lemma 3.4. The cohomology of F s

n is given as an Ss-module by the formula

H q.F s
n / D H^q ı P.s�q/:

Proof. The Künneth formula gives an isomorphism

H�.Fn/˝ � � � ˝H
�.Fn/ Š H

�.Fn � � � � � Fn/

via the cohomology cross product. The groupSs acts by permuting the factors, with
signs determined by the permutation and the dimension of the cohomology groups
on the left-hand side (see, e.g., [21, Chapter 3B]). The cohomology of Fn is k in
dimension 0, H in dimension 1 and zero in higher dimensions, so in dimension q the
cohomology ofF s

n is the direct sum of
�
s
q

�
copies of H˝q . These copies are permuted

by the action of Ss . The stabilizer of each copy is isomorphic to Sq �Ss�q , where
the action of Sq on H˝q is modified by the sign of the permutation since all classes
are in dimension 1.

In other words,H q.F s
n / is obtained by inducing up toSs theSq �Ss�q-module

H^q ˝ P.s�q/.

We now read off information which we obtain immediately from the spectral
sequence (3.2). The first observation applies to the case s D 1. The same result was
obtained earlier by Kawazumi [27] using a different method.
Proposition 3.5. There is an isomorphism

H k
�
Aut.Fn/Ik

�
Š H k

�
Out.Fn/Ik

�
˚H k�1

�
Out.Fn/IH

�
:

Proof. In the spectral sequence associated to 1! Fn ! Aut.Fn/! Out.Fn/! 1

we have Ep;q2 Š Hp
�
Out.Fn/IH q.Fn/

�
with differentials of bidegree .2;�1/.

Since Fn has cohomological dimension one there are only two nontrivial rows,
namely q D 0 and q D 1, so the only possible nonzero differentials in the entire
spectral sequence are on the E2 page; they start in the top row q D 1 with target in
the bottom row q D 0.

The map on cohomology induced by pWAut.Fn/! Out.Fn/ factors through the
edge homomorphism eWE

p;0
1 ! Hp

�
Aut.Fn/

�
Hp

�
Out.Fn/

�
Hp

�
Aut.Fn/

�
Hp

�
Out.Fn/

�
=Im.d2/

p�

e
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The top arrow is injective by Theorem2.4, so the left arrow is aswell, i.e., Im.d2/ D 0
and the differentials on the E2 page are also trivial. Thus

H k
�
Aut.Fn/

�
D E

k;0
2 ˚E

k�1;1
2

D H k
�
Out.Fn/

�
˚H k�1

�
Out.Fn/IH 1.Fn/

�
D H k

�
Out.Fn/

�
˚H k�1

�
Out.Fn/IH

�
:

The next observation has to do with the top-dimensional cohomology of �n;s .

Proposition 3.6. H k.�n;s/ vanishes for k > 2n�3Cs andH 2n�3Cs.�n;s/ is given
as an Ss-module by

H 2n�3Cs.�n;s/ Š H
2n�3

�
Out.Fn/IH^s

�
:

Proof. The cohomology groupHp
�
Out.Fn/IH q.F s

n /
�
vanishes if eitherp > 2n�3

or q > s since the virtual cohomological dimension of Out.Fn/ is 2n � 3 and the
virtual cohomological dimension of F s

n is equal to s. Thus the only possible nonzero
terms in the spectral sequence (3.2) lie in a rectangle with E2n�3;s2 at its upper
right-hand corner, so all differentials into or out of E2n�3;s2 are zero and

H 2n�3Cs.�n;s/ Š H
2n�3

�
Out.Fn/IH s.F s

n /
�
Š H 2n�3

�
Out.Fn/IH^s

�
:

3.3. Rank zero. Since �0;s is trivial, we just have

H i .�0;s/ D

(
P.s/ D k if i D 0
0 if i 6D 0:

3.4. Rank one. For n D 1 the short exact sequence (3.1) is a restatement of the fact
that

�1;s D Z2 Ë Zs�1;

where the Z2 acts via x 7! �x. We can use this to compute the cohomology of �1;s
as anSs-module without appealing to the Leray–Serre spectral sequence, as follows.

Proposition 3.7. As a representation of Ss

H i .�1;s/ Š

(
P.s�i;1i / if i is even
0 if i is odd:

In particular,H 2k.�1;2kC1/ Š P.12kC1/ D k with the alternating action.

Proof. The rational cohomology of �1;s D Z2 Ë Zs�1 is the invariants of the
Z2-action on the cohomology of Zs�1 induced from the action on Zs�1. The
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cohomology of Zs�1 is the exterior algebra on s � 1 generators. Thus we get
the even degree part of this exterior algebra:

H i .�1;s/ Š

(Vi
ks�1 if i is even

0 if i is odd:

To see the Ss action, write �1;s D Z2 Ë .Zs=Z/. The representation ks=k is the
standard representation P.s�1;1/ of Ss , and by [15, Ex. 4.6] we have

Vi
.ks=k/ D

P.s�i;1i / as an Ss-module.

We record this calculation for small values of s in table form at the end of the
paper (Section 11). We note that the results agree with the calculations via dihedral
homology in [11].

3.5. Rank two. Recall that �2;0 D Out.F2/ Š GL2.Z/, so that for n D 2 the E2
term of (3.2) is

E
p;q
2 D Hp

�
GL2.Z/IH q.F s

2 /
�
:

Since GL2.Z/ has virtual cohomological dimension 1, the only potentially nonzero
terms on theE2-page of this spectral sequence lie in the first two columns p D 0 and
p D 1. For p D 1 the cohomology of GL2.Z/ is closely related to modular forms;
we review this relation in the next subsection.

3.5.1. Modular forms. Let Ms be the vector space of classical modular forms for
SL2.Z/ of weight s, and let Ss �Ms be the subspace of cusp forms. See [31] for
an elementary introduction to these spaces. They satisfyM

s�0

Ms Š kŒE4; E6�;

where E4 and E6 are generators of weight 4 and 6 respectively. In particular,Ms is
nonzero only for s > 2 even. In these cases the subspace Ss has codimension 1. The
classical Eichler–Shimura isomorphism (see, e.g., [20]) relates modular forms to the
cohomology of SL2.Z/:

H 1
�
SL2.Z/ISyms.k2/

�
ŠMsC2 ˚ SsC2:

We next review the relation between cusp forms and the stabilizer of the cusp at
infinity. Let P � SL2.Z/ be the (parabolic) subgroup generated by the matrix

�
1 1
0 1

�
and consider the map

�WH 1
�
SL2.Z/ISyms.k2/

�
�! H 1

�
P ISyms.k2/

�
induced by inclusion. Since P Š Z, its first cohomology with any coefficients
is simply the coinvariants of the action, which is isomorphic to the space of
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invariants. If x and y are a basis for k2, the generator of P acts on Syms.k2/ D
kŒxs; xs�1y; : : : ; xys�1; ys� by sending x 7! x and y 7! x C y, so the space of
invariants is 1-dimensional, spanned by xs . The map � can be identified with the map
MsC2 ˚ SsC2 ! MsC2=SsC2 (projection on the first factor, zero on the second
factor) given by the normalized value of the modular form at infinity (see [20]).

We can reinterpret � in terms of the cohomology of GL2.Z/ using the short exact
sequence 1! SL2.Z/! GL2.Z/! Z2 ! 1 (see, e.g., [10]); this gives

H 1
�
GL2.Z/ISyms.k2/˝ det

�
ŠMsC2 and H 1

�
GL2.Z/ISyms.k2/

�
Š SsC2:

Since H 1
�
SL2.Z/ISyms.k2/

�
DMsC2 ˚ SsC2 we see that the restriction of � to

the second factor

�WH 1
�
GL2.Z/ISyms.k2/

�
�! H 1

�
P ISyms.k2/

�
is zero, but on the first factor

�WH 1
�
GL2.Z/ISyms.k2/˝ det

�
�! H 1

�
P ISyms.k2/˝ det

�
has 1-dimensional image when s > 0 is even.

3.5.2. Cohomology calculations.
Lemma 3.8. Let H D H 1.F2/ Š k2. Then as an Sq-module,

H 0
�
GL2.Z/IH^q

�
D

(
P.22m/ if q D 4m
0 otherwise:

H 1
�
GL2.Z/IH^q

�
D

8̂̂̂̂
<̂
ˆ̂̂:
0 if q is odd

Wq WD
M
0�i<

q
2

Xq;i ˝ P.2i ;1q�2i / if q is even

where Xq;i D SqC2�2i if i is even and MqC2�2i if i is odd. In either case Xq;i is
trivial as an Sq-module.
Remark 3.9. The formula in the statement above gives the following pattern for the
first few Wq:

W0 D 0

W2 D .S4 ˝ P.12//

W4 D .S6 ˝ P.14//˚ .M4 ˝ P.2;12//

W6 D .S8 ˝ P.16//˚ .M6 ˝ P.2;14//˚ .S4 ˝ P.22;12//

W8 D .S10 ˝ P.18//˚ .M8 ˝ P.2;16//˚ .S6 ˝ P.22;14//˚ .M4 ˝ P.23;12//

W10 D .S12 ˝ P.110//˚ .M10 ˝ P.2;18//˚ .S8 ˝ P.22;16//˚ .M6 ˝ P.23;14//

˚ .S4 ˝ P.24;12//:



Vol. 91 (2016) Assembling homology classes 767

However, the dimension ofMk is 1 for k D 4; 6; 8; 10, and hence the dimension ofSk
is trivial in those degrees. The module S12 is 1-dimensional, so we see interesting
modular forms entering the picture starting with W10. Using this information, the
above list simplifies to

W0 D 0

W2 D 0

W4 D P.2;12/

W6 D P.2;14/

W8 D P.2;16/ ˚ P.23;12/

W10 D P.110/ ˚ P.2;18/ ˚ P.23;14/:

Proof. We first decompose the coefficients H^q into irreducible components using
Schur–Weyl duality. Since H has dimension 2, this gives H^q Š

L
� S�H ˝ P�0 ,

where the sum is over all partitions of q into at most 2 pieces, i.e., � D .q � k; k/.
Now H 0

�
GL2.Z/IH^q

�
is equal to the GL2.Z/-invariants of H^q , so we are

looking for the trivial representations S�H appearing in the Schur–Weyl formula. By
Lemma 3.3 we have S.q�k;k/H Š Symq�2k H˝ detk , which is clearly trivial only if
q D 2k and k is even. Therefore as an Sq-module we have

H 0
�
GL2.Z/IH^q

�
D

(
P.2m;2m/0 D P.22m/ if q D 4m;
0 otherwise:

For the first cohomology we have

H 1
�
GL2.Z/IH^q

�
D

M
0�k�

q
2

H 1
�
GL2.Z/IS.q�k;k/H˝ P.q�k;k/0

�
D

M
0�k�

q
2

H 1
�
GL2.Z/IS.q�k;k/H

�
˝ P.q�k;k/0

D

M
0�k�

q
2

H 1
�
GL2.Z/ISymq�2k H˝ detk

�
˝ P.q�k;k/0

D

M
0�k�

q
2

H 1
�
GL2.Z/ISymq�2k H˝ detk

�
˝ P.2k ;1q�2k/:

The computations in Section 3.5.1 now give

H 1
�
GL2.Z/ISymr H˝ det`

�
D

8̂<̂
:
0 if r is odd;
SrC2 if r and ` are even;
MrC2 if r is even and ` is odd:
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Substituting r D q � 2k, ` D k into these formulas and using the fact that
M2 D 0 completes the calculation.

We now have the tools we need to completely compute the cohomology of �2;s
as an Ss-module.

Theorem 3.10. The cohomology of �2;s is

H i .�2;s/ D

8̂̂̂̂
<̂
ˆ̂̂:
P.22m/ ı P.s�4m/ i D 4m � s;

0 i D 4mC 2;

W2m ı P.s�2m/ i D 2mC 1 � s C 1;

0 otherwise;

where W2m is the module defined in the statement of Lemma 3.8.

Proof. For all r � 2 the differential on the r-th page of the Leray–Serre spectral
sequence has bidegree .r;�r C 1/. Since only the first two columns are nonzero all
differentials are too wide to be nonzero, so E2 D E1 and

H k.�2;s/ Š H
0
�
GL2.Z/IH k.F s

2 /
�
˚H 1

�
GL2.Z/IH k�1.F s

2 /
�
:

By Lemmas 3.4 and 3.8 we have

H 0
�
GL2.Z/IH k.F s

2 /
�
Š H 0

�
GL2.Z/IH^k ı P.s�k/

�
Š H 0

�
GL2.Z/IH^k

�
ı P.s�k/

Š

(
P.22m/ ı P.s�4m/ if k D 4m � s;
0 otherwise;

where the second isomorphism holds because the GL2.Z/ action on H^k commutes
with the Sk �Ss�k action and the Ss�k action is trivial.

We calculate the irreducible decomposition of P.22m/ ı P.s�4m/ using the Pieri
rule, which says that the components are obtained by adding s�4m boxes in different
columns to the Young diagram for � D .22m/. The only legal way to do this is to put
0, 1, or 2 boxes in a new bottom row and add the rest to the first row. The resulting
partitions are .s � 4m � j; 22m�1; j / for j D 0; 1; 2.

The second summand is

H 1
�
GL2.Z/IH k�1.F s

n /
�
Š H 1

�
GL2.Z/IH^k�1

�
ı P.s�kC1/:

By Lemma 3.8, H 1.GL2.Z/IH^k�1/ is nonzero only when k is odd, in which case
we have identified it as an Sk�1-module which we named Wk�1. Inducing this up
to Ss produces

�
s
k�1

�
copies of Wk�1, permuted by the action of Ss .
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The first few rows and columns of the spectral sequence look like this:

P.s/

0

0

0

P.22/ ı P.s�4/

0

0

0

P.24/ ı P.s�8/

0

0

0

W2 ı P.s�2/

0

W4 ı P.s�4/

0

W6 ı P.s�6/

0

W8 ı P.s�8/

0

0

0

0

0

0

0

0

0

0

0

Since E2 D E1, the result follows.

Remark 3.11. The dimension ofP.22m/ can be computed by the hook-length formula
(see, e.g., [15]); it is the 2m-th Catalan number C2m D 1

2mC1

�
4m
2m

�
. The induced

representation P.22m/ ıP.s�4m/ D H
4m.�2;s/ consists of

�
s
4m

�
copies of this, so has

dimension equal to

1

2mC 1

 
4m

2m

! 
s

4m

!
D

sŠ

.s � 4m/Š.2mC 1/Š.2m/Š
:

If s � 4mC 2 then the irreducible decomposition of P.22m/ ı P.s�4m/ obtained by
the Pieri rule is

P.22m/ ı P.s�4m/ D P.s�4mC2;22m�1/ ˚ P.s�4mC1;22m�1;1/ ˚ P.s�4m;22m/

Remark 3.12. Using the decomposition of Wq into irreducible Sq-modules in
Remark 3.9 one can use the Pieri rule to obtain the decomposition of H i .�2;s/

into irreducible Ss-modules for odd i . For example

H 7.�2;10/ D W6 ıP.4/ D P.2;14/ ıP.4/ D P.6;14/˚P.5;2;13/˚P.5;15/˚P.4;2;14/:

The dimension and module structure of the cohomology of �1;s and �2;s for
s � 10 are summarized in the tables at the end of the paper.
Remark 3.13. The calculation of the map on cohomology induced by inclusion
P ! GL2.Z/ in Section 3.5.1 together with the decomposition

H 1
�
GL2.Z/IH^q

�
D

M
0�k�

q
2

H 1
�
GL2.Z/ISymq�2k H˝ detk

�
˝ P.2k ;1q�2k/:
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given in the proof of Lemma 3.8 shows that the image of the map

H 1
�
GL2.Z/IH^q

�
�! H 1

�
P IH^q

�
is isomorphic to

M
2k<q; k odd

P.2k ;1q�2k/ for q even. Combining with this with Theorem 3.10

gives a projection

H i .�2;s/ �!
M

2k<i�1; k odd

P.2k ;1i�2k�1/ ı P.s�iC1/

for i odd. This projection will be useful for constructing nice homology classes from
cohomology classes, which we do in Section 4.3.

3.6. Arbitrary rank. The representation theory we used to compute the cohomol-
ogy of �2;s gives information about the cohomology of �n;s for all values of n. In
this section we show how this works.
Theorem 3.14. If s � n.2m C 1/ then H 2mn.�n;s/ contains the Ss-module
P.s�2mn;n2m/ as a direct summandwithmultiplicity1. In particular,H 2mn.�n;s/ ¤ 0

for all s � 2mnC n.

Proof. The E2 term of the spectral sequence (3.2) is Hp
�
Out.Fn/IH q.F s

n /
�
. The

p D 0 column is straightforward to calculate because it is simply a calculation
of GLn.Z/ invariants of a well-understood module. The other columns consist of
groups that are not known, so our strategy will be to look for Ss-representations in
the p D 0 column that cannot appear in the other columns. Such a representation
cannot support a nontrivial differential, as all differentials are Ss-equivariant, so
survives to E1 and hence toH�.�n;s/.

The action of Out.Fn/ on H D H 1.Fn/ Š kn factors through the usual action of
GLn.Z/ on H, and as before, using Lemma 3.4 we have

H 0
�
Out.Fn/IH q.F s

n /
�
D H 0

�
Out.Fn/IH^q ı P.s�q/

�
D H 0

�
Out.Fn/IH^q

�
ı P.s�q/

D H 0
�
GLn.Z/IH^q

�
ı P.s�q/:

By Schur–Weyl duality, H^q Š
L
j�jDq S�H˝P�0 , where S�H is the irreducible

GLn-representation corresponding to �. It follows from the character formula [15,
Theorem 6.3], that S�H is 1-dimensional if and only if q is amultiple of n, say q D kn
and � D .kn/. In this case S.kn/H is the 1-dimensional GLn.k/-representation which
is the kth power of the determinant (the Schur polynomial is Skn D .x1x2 : : : xn/

k).
Thus S�H is a trivial GLn.Z/-module only when q D 2mn is an even multiple of n
and � D ..2m/n/. We conclude that H 0

�
Out.Fn/IH q.F s

n /
�
D 0 unless q D 2mn

in which case we have

H 0
�
Out.Fn/IH 2mn.F s

n /
�
D P..2m/n/0 ı P.s�2mn/ D P.n2m/ ı P.s�2mn/:
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Using the Pieri rule to decompose this representation, we see that as long as
s � 2mn � n one of the terms we get is P.s�2mn;n2m/, obtained by adding one box
below each existing column and the rest to the right of the first row; this is illustrated
in Figure 6.

n

2m

Figure 6. Adding boxes to .n2m/ to obtain the Young diagram for one term of the induced
module P.n2m/ ı P.s�2mn/

We have shownP.s�2mn;n2m/ occurs inE
0;2mn
2 . We now claim it does not appear

in any row below the 2mn-th row, so that all differentials from P.s�2mn;n2m/ must
vanish, and P.s�2mn;n2m/ survives inH�.�n;s/. Since

E
p;q
2 D Hp

�
Out.Fn/;H q.F sn /

�
D Hp

�
Out.Fn/;H^q ı P.s�q/

�
D

M
j�jDq

Hp
�
Out.Fn/;S�H˝ P�0 ı P.s�q/

�
D

M
j�jDq

Hp .Out.Fn/;S�H/˝ P�0 ı P.s�q/;

it suffices to show that P.s�2mn;n2m/ cannot occur as a term in any of the induced
modules P�0 ı P.s�q/ with j�j D q < 2mn. The is the case because the first row of
any diagram appearing in P�0 ı P.s�q/ has length at least s � q > s � 2mn.

Remark 3.15. The module P.s�2mn;n2m/ used in the above proof is only a tiny
piece of E0;2mn2 D H 0

�
Out.Fn/IH q.F s

n /
�
. It seems likely that a much larger part

survives to infinity in the spectral sequence and thus contributes to the cohomology
of �n;s .

4. Subgroups supporting homology classes in �1;s and �2;s

In later sections of the paper it will be more natural to work with homology than
cohomology. The universal coefficient theorem formally allows us to do this, sincewe
have finite-dimensional homology groups and coefficients in a field. In this section
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we show that in rank 1 and 2 we can also describe some homology classes more
directly as classes supported on certain easily understood subgroups.

4.1. Rank one. The situation for rank 1 is quite simple so we describe this first. By
Proposition 3.7 the odd-dimensional cohomology of �1;s vanishes and the inclusion
ofZs�1 into �1;s induces an isomorphism on cohomology in even degrees, hence this
holds also for homology. This implies that the top homology class of any subgroup
of even rank in Zs�1 maps to a nontrivial class inH�.�1;s/, andH�.�1;s/ has a basis
of such classes. If s D 2k C 1 then the entire subgroup Zs�1 D Z2k has even rank
and its top homology class maps to a nontrivial class ˛k 2 H2k.�1;2kC1/, which is
well defined up to sign. The class ˛k will be used to construct the Morita class �k in
Section 5.1.

4.2. Rank two, even homology degree. Now we turn to rank 2, where H�.�2;s/
is considerably more complicated. This extra complication is relatively mild in
even degrees, so we examine those first. It suffices to consider H4k.�2;s/ since
H4kC2.�2;s/ D 0 by Theorem 3.10.

Notation. Throughout this section and the next we fix generators x and y for F2
and we let x and y denote their images in H1.F2/, with x� and y� the dual basis
of H 1.F2/. We also set OH D H1.F2/; the notation is meant to distinguish it from
H D H 1.F2/.

For disjoint subsets I and J of f1; 2; : : : ; sg let AI;J be the abelian subgroup
of F s2 consisting of s-tuples with powers of x in the I coordinates, powers of y
in the J coordinates, and the identity in the other coordinates. We have inclusions
AI;J � F

s
2 � �2;s , and we let ˛I;J 2 H�.�2;s/ be the image of a generator of the

top-dimensional homology of AI;J .

Proposition 4.1. If jI j D jJ j D 2k for some k then the class ˛I;J 2 H4k.�2;s/ is
nonzero and these classes ˛I;J generateH4k.�2;s/.

Proof. First we show that ˛I;J is nonzero when jI j D jJ j D 2k for some k � 1.
(Here s � 4k since AI;J � F s2 .) We do this by finding a cohomology class
inH 4k.�2;s/ that pairs nontrivially with ˛I;J .

By Lemma 3.8 we haveH 1.GL2.Z/IH^4k�1/ D 0. Therefore

H 1
�
GL2.Z/IH 4k�1.F s2 /

�
D H 1

�
GL2.Z/IH^4k�1

�
ı P.s�4k/ D 0;

and
H 4k.�2;s/ Š H

0
�
GL2.Z/IH 4k.F s2 /

�
Š H 0

�
GL2.Z/IH^4k

�
ı P.s�4k/:

Thus to computeH 4k.�2;s/ as anSs-module it suffices to understand the invariants
of the diagonal action of GL2.Z/ on H^4k . As a GL2.Z/-module, H^4k is the same
as H˝4k , and we describe the (classical) answer below.
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A straightforward calculation shows that the diagonal action of an element
T 2 GL2.Z/ on H ˝ H sends !� D x� ˝ y� � y� ˝ x� to .detT / � !�. The
diagonal action on H˝4k sends .!�/˝2k to .detT /2k.!�/˝2k , so since detT D ˙1
and 2k is even this is an invariant. Any permutation of the indices f1; : : : ; 4kg
produces another invariant, and the invariants defined in this way span the entire
space of invariants (see, e.g., [15] for details). Note that each term in each of these
invariants has an equal number of x�’s and y�’s, so this is true of any invariant.

Suppose first that s D 4k and let I D f1; 3; : : : ; 4k � 1g, the odd indices, and
J D f2; 4; : : : ; 4kg, the even indices. Then the image ofH4k.AI;J / Š H1.Z/˝� � �˝
H1.Z/ inH1.F 4k2 / Š OH˝� � �˝ OH is generated by z D x˝y˝� � �˝x˝y. Since this
matches the first term of .!�/˝2k , the cohomology class .!�/˝2k 2 H 4k.�2;4k/

pairs nontrivially with ˛I;J , which is the image of z in H4k.�2;4k/. This shows
that ˛I;J is nonzero. Permuting the indices produces other nonzero classes ˛I;J that
spanH4k.�2;4k/ since the corresponding cohomology classes spanH 4k.�2;4k/.

If s > 4k, any of the natural inclusions�2;4k ! �2;s (given by gluing extra leaves
to the leaf vertices of X2;4k and extending maps by the identity) induces an injection
H4k.�2;4k/! H4k.�2;s/mapping each ˛I;J nontrivially. On homology, the image
of this map depends only on the inclusion f1; : : : ; 2kg ! f1; : : : ; sg of leaf vertices.
SinceH4k.�2;s/ D H4k.�2;4k/ ı P.s�4k/, these classes span all ofH4k.�2;s/.

Remark 4.2. If I and J are disjoint subsets of f1; : : : ; sg of different size, then ˛I;J
is trivial because the top-dimensional homology class ofAI;J is a simple tensor with
an unequal number of x’s and y’s, so every invariant evaluates trivially on it.

Remark 4.3. The classes ˛I;J 2 H4k.�2;s/ are not linearly independent. There
are several possible ways to obtain a subset of these classes which form a basis
of H4k.�2;s/. Since the dimension of H4k.�2;s/ is closely related to the dimension
of P.2k;2k/, which is equal to the Catalan number C2k , one can use combinatorial
objects such as non-crossing partitions or Young tableaux to describe such a basis.
Here is one possible description of a basis.

Claim. The space H4k.�2;s/ has a basis consisting of those ˛I;J for which I D
fi1 < i2 < � � � < i2kg and J D fj1 < j2 < � � � < j2kg are disjoint subsets
of f1; : : : ; sg such that it < jt for each t D 1; : : : ; 2k.

The proof of this involves a deeper use of representation theory so we will not
give it here.

4.3. Rank two, odd homology degree. Constructing classes of odd homology
degree is more difficult since no subgroups of F s2 support such classes. As a result
we must use slightly more complicated subgroups of �2;s . We use the same notation
as in the previous section for generators of F2 and its homology and cohomology.

Fix disjoint subsets I; J � f1; : : : ; sg. Let BI;J Š F
jI j
2 � ZjJ j be the subgroup

of F s2 consisting of s-tuples with arbitrary elements in the I coordinates, powers
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of x in the J -coordinates and the identity in coordinates not indexed by I or J .
Recall that �2;s maps onto �2;0 Š GL.2;Z/ with kernel F s2 . Let P Š Z denote
the unipotent subgroup of GL2.Z/ generated by

�
1 1
0 1

�
, corresponding to the (outer)

automorphism of F2 fixing x and sending y to xy. Lift the generator of P to an
element ' 2 �2;s that wraps the y-loop of X2;s around both itself and the x-loop,
and fixes the x-loop and all leaves. This normalizes BI;J , and we defineMI;J to be
the subgroup of �2;s generated by ' and BI;J . We now have a commutative diagram

1 F s2 �2;s GL2.Z/ 1

1 BI;J MI;J P 1:

Note thatMI;J splits as the productMI �ZjJ j whereMI DMI;¿ andZjJ j D B¿;J .
We will be interested in the cases when jI j and jJ j are even, and we let

jI j C jJ j D 2k. The top-dimensional homology of BI;J is H2k.BI;J / Š OH˝jI j ˝
OX˝jJ j, where OX Š k is the subspace of OH D H1.F2/ spanned by x. From the
Leray–Serre spectral sequence it follows that H�.MI;J / vanishes above dimension
2k C 1 andH2kC1.MI;J / D H1

�
P IH2k.BI;J /

�
.

4.3.1. The case jIj=2. The analysis of the case jI j D 2 is easier than the general
case and will suffice for our construction of the Eisenstein classes in Section 5.6, so
we begin with this case.

We first computeH2kC1.MI;J /. From the splittingMI;J DMI � ZjJ j we have

H2kC1.MI;J / Š H3.MI /˝H2k�2.Z2k�2/ Š H3.MI / Š H1
�
P IH2.BI;¿/

�
:

SinceP Š Z the first homologyH1
�
P IH2.BI;¿/

�
is just the invariants of the action

of P on H2.BI;¿/ D OH ˝ OH. This is the diagonal action, where P acts on OH by
sending x! x and y! xC y. It is easy to compute that the space of invariants is
2-dimensional, spanned by x˝ x and ! D x˝ y � y˝ x. Thus

H2kC1.MI;J / Š H1
�
P IH2k.BI;J /

�
Š ŒH2k.BI;J /�

P
Š Œ OH˝2˝ OX˝2k�2�P Š k2

with basis x2k and ! ˝ x2k�2.
The class in H2kC1.MI;J / corresponding to ! ˝ x2k�2 is the one whose

image mI;J in H2kC1.�2;s/ will be used as a building block for Eisenstein classes.
In Section 7.2 we give a different, more geometric construction of this class as the
image of the fundamental class of a manifold mapped into a moduli space of graphs.

The natural actions of SI D S2 and SJ D S2k�2 on H2kC1.MI;J / are easy
to describe since these two symmetric groups act separately on the factors of the
splittingMI;J DMI �ZjJ j. ForSI the transposition � interchanges the F2 factors
of F 22 , so �.x ˝ x/ D �x ˝ x since the cross product in the Künneth formula is
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anti-symmetric. For the class ! D x˝y�y˝xwe have �.!/ D ! since we get one
minus sign from the minus sign in ! and another from anti-symmetry in the Künneth
formula. For an element � 2 SJ the action on x2k�2 is just by the sign of � .

Because of the anti-symmetric action of SJ , the classes mI;J 2 H2kC1.�2;s/
are well defined only up to sign. We now show they are nontrivial and describe how
much ofH2kC1.�2;s/ they account for.
Proposition 4.4. For I; J � f1; : : : ; sg with jI j D 2 and jJ j D 2k � 2 � 2

the map H2kC1.MI;J / ! H2kC1.�2;s/ induced by inclusion has 1-dimensional
image spanned by mI;J , and the Ss-module generated by mI;J is isomorphic to
P.2;12k�2/ ı P.s�2k/.

In particular, when s D 2k the classes mI;J generate H2kC1.�2;2k/ only when
k � 3; this follows from Theorem 3.10.

Proof. To prove that mI;J is nonzero we find a cohomology class that pairs
nontrivially with it.

Assume first that s D 2k. To simplify notation we also assume I D f1; 2g and
J D f3; : : : ; 2kg and set B D BI;J ; M D MI;J and m D mI;J . The map from
H 2kC1.�2;2k/ Š H

1
�
GL2.Z/IH 2k.F 2k2 /

�
toH 2kC1.M/ induced by the inclusion

M ,! �2;2k factors as

H 1
�
GL2.Z/IH 2k.F 2k2 /

�
�! H 1

�
P IH 2k.F 2k2 /

�
�! H 1

�
P IH 2k.B/

�
where the first map is induced by the inclusion P ,! GL2.Z/ and the second by the
map of coefficients induced by B ,! F 2k2 .

In Remark 3.13 we pointed out that the first map is a surjection onto the odd
terms of the decomposition of H 1

�
P IH 2k.F 2k2 /

�
into irreducible S2k-modules.

Here is a more explicit description of this map. Since P Š Z, for any P -module V
we have H 1.P IV / Š VP . If V is a vector space there is a canonical isomorphism
.V �/P Š .V P /� (sending f to its restriction to V P ). In particular, using the
universal coefficient theorem we get natural isomorphisms

H 1
�
P IH 2k.F 2k2 /

�
D
�
H 2k.F 2k2 /

�
P
Š
�
ŒH2k.F

2k
2 /�P

��
D
�
ŒH1.F2/

˝2k
˝ alt�P

��
D
�
Œ OH˝2k�P

��
˝ alt;

where alt refers to theS2k-action. Now recall that the space ofP -invariants in OH˝ OH
is spanned by ! and x2. Since OH ˝ OH D

V2 OH ˚ Sym2 OH, this shows that the
subspace of P -invariants in each summand is 1-dimensional. This is a special
instance of the general fact that the space ofP -invariants in .

V2 OH/˝`˝Sym2k�2` OH
is 1-dimensional, spanned by !`˝x2k�2`. The Schur–Weyl decomposition of OH˝2k
then shows that the image of the firstmap can be identifiedwith

L
`<k odd P.2`;12k�2`/,

as in Remark 3.13, where each term is generated by !`˝ x2k�2` as anS2k-module.
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For the second map, note that

H 1
�
P IH 2k.B/

�
D
�
H˝ H˝X˝2k�2

�
P
˝ alt

Š
�
Œ OH˝ OH˝ OX˝2k�2�P

��
˝ alt;

where this alt refers to the action of S2 �S2k�2 which permutes the factors of
B D F 22 � Z2k�2 independently. Thus the map

H 1
�
P IH 2k.F 2k2 /

�
! H 1

�
P IH 2k.B/

�
becomes �

ŒH2k.F
2k
2 /�P

��
�!

�
ŒH2k.B/�

P
��

i.e., �
Œ OH˝2k�P

��
˝ alt �!

�
Œ OH˝2 ˝ OX˝2�P

��
˝ alt:

The map on the first factor is just the transpose of the inclusion map
Œ OH˝2 ˝ OX˝2�P ,! Œ OH˝2k�P and in particular sends .! ˝ x2k�2/� to itself.

Since .!˝ x2k�2/� is in the image of the first mapH 1
�
GL2.Z/IH 2k.F 2k2 /

�
!

H 1
�
P IH 2k.F 2k2 /

�
, there is a cohomology class inH 2kC1.�2;2k/which hits it under

the composition

H 2kC1.�2;2k/ D H
1
�
GL2.Z/IH 2k.F 2k2 /

�
�! H 1

�
P IH 2k.F 2k2 /

�
�! H 1

�
P IH 2k.B/

�
D H 2kC1.M/:

This class evaluates nontrivially on the image m 2 H2kC1.�2;2k/ of ! ˝ x2k�2 2
H2kC1.M/, showing that m is nontrivial.

Any permutation of the indices f1; : : : ; 2kg gives another class inH2kC1.�2;2k/.
The S2k-submodule generated by m is isomorphic to P.2;12k�2/, which coincides
withH2kC1.�2;2k/ only when k D 2; 3. This completes the proof of the proposition
for s D 2k.

The generalization to s > 2k is straightforward, since H 2kC1.�2;s/ Š

H 1
�
GL2.Z/IH 2k.F s2 /

�
Š H 1

�
GL2.Z/IH^2k

�
ıP.s�4k/:TheSs-module generated

by the image ofH2kC1.MI;J / inH�.�2;s/ is isomorphic toP.2;12k�2/ıP.s�2k/.

As was noted when the classes mI;J were defined, they are invariant under
transposing the two indices in I and anti-invariant under permutations of the indices
in J . When s D 2k we can obtain a class which is anti-invariant under a larger
group of permutations by adding together signed images of mI;J under appropriate
permutations. Specifically, let I D f1; 2g; J D f3; : : : ; 2kg and m D mI;J as in the
proof of Proposition 4.4 and choose an index i 2 f1; : : : ; 2kg. Then define

mi D
X
�.1/Di

sign.�/ �.m/;
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where the sum is over all permutations � 2 S2k which send 1 to i . The class mi is
then anti-invariant under stabS2k

.i/. For example when I D f1; 2g and J D f3; 4g,
so m corresponds to xyxx � yxxx (omitting tensor symbols for simplicity), the
class m1 corresponds to 6yxxx � 2xyxx � 2xxyx � 2xxxy, up to sign. The formula
for m2 is similar, and one sees that m D ˙1

8
.m1 � m2/. For larger J there are

analogous formulas.

4.3.2. The general case. Now we consider the general case jI j D 2` for odd
` � 1. This is more involved because for ` > 1 the top-dimensional cohomology
H 2kC1.MI;J / is quite large and it is not immediately clear how to pick a distinguished
element dual to !˝` ˝ x2k�2`. We settle this by using the unique element which
is invariant under the action of certain involutions. This is motivated by the case
` D 1, where the element ! 2 OH^2 spans the invariants of OH^2 under the action of
the involution .12/.

Given any set T of disjoint transpositions, let NT denote the elementary abelian
subgroup that they generate.
Proposition 4.5. Let T be a set of ` disjoint transpositions of the set I . For ` odd, the
top homologyH2kC1.MI;J / contains a unique (up to scalar multiple) element which
is invariant under the action of NT � SI . The image of this element under the map
H2kC1.MI;J / ! H2kC1.�2;s/ induced by inclusion is nonzero. The Ss-module
generated by this image is isomorphic to P.2`;12k�2`/ ı P.s�2k/.

Proof. In order to simplify the notation we will assume that I D f1; : : : ; 2`g,
J D f2`C 1; : : : ; 2kg and T D f.1; 2/; .3; 4/; : : : ; .2`� 1; 2`/g, and set B` D BI;J
andM` DMI;J .

Recall that OX is the 1-dimensional subspace ofH1.F2/ spanned by x. The actions
of P and NT onH2k.B`/ D OH^2` ˝ OX^2k�2` commute soh

H2kC1.M`/
iNT

D

h
H1
�
P IH2k.B`/

�iNT

D

h�
H2k.B`/

�P iNT

D

h�
OH^2` ˝ OX^2k�2`

�P iNT

D

h�
OH^2` ˝ OX^2k�2`

�NT

iP
D

h�
OH^2`

�NT
˝ OX^2k�2`

iP
The space of invariants in OH^2` under the action of NT is 1-dimensional, spanned
by !˝`, so the entire space ŒH2kC1.M`/�

NT is at most 1-dimensional. It is exactly
1-dimensional since the element

m` D !
˝`
˝ x2k�2` 2

h
OH^2` ˝ OX^2k�2`

iP
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is invariant under the action of NT . We will show that m` has nontrivial image in
H2kC1.�2;s/ if ` is odd.

Let D` be the subspace of H 2k.F 2k2 / D H^2k generated as a GL2.Z/-module
by .!�/˝` ˝ .x�/˝2k�2`. Thus

D` Š S.2k�`;`/.H/ Š det` ˝ Sym2k�2`.H/:

(See Lemma 3.3.) Viewing D` as a submodule of the induced module H 2k.F s2 / D

H 2k.F 2k2 / ıP.s�2k/ we see thatm` pairs nontrivially with the P -coinvariants inD`
(to compute these coinvariants, note that the action of P on H D H 1.F2/ is dual
to its action on H1.F2/ so sends x� 7! x� C y� and fixes y�.) Therefore m` pairs
nontrivially with the cohomology class generatingH 1.P ID`/.

Since ` is oddRemark 3.13 shows that themapH 1
�
GL2.Z/ID`

�
! H 1.P ID`/

is surjective. Hence the class m` pairs nontrivially with a class inH 1
�
GL2.Z/ID`

�
which is the image of a class in H 1

�
GL2.Z/IH 2k.F s2 /

�
D H 2kC1.�2;s/. This

shows that the homology class m` is nonzero inH�.�2;s/.
The last statement of the proposition follows from the Schur–Weyl decomposition

ofH2k.B`/:

H2k.B`/ D OH^2` ˝ OX^2k�2` D
M
i�`

S.`Ci;`�i/ OH˝ P.2`�i ;12i / ˝
OX^2k�2`

The element m` D !` ˝ x2k�2` is in the i D 0 term S.`;`/ OH Š det`˝Sym2k�2` OH,
so theS2k-submodule ofH2k.B`/ it generates is of type P.2`;12k�2`/, which is then
induced up to P.2`;12k�2`/ ı P.s�2k/.

Remark 4.6. The Ss-module generated by the element of H 2kC1.�2;s/ found in
Proposition 4.5 must come from the term M2kC2�2` ˝ P.2`;12k�2�2`/ ı P.s�2k/ of
the computation of H 2kC1.�2;s/ in Theorem 3.10. In fact it comes from the map
M2kC2�2` ! k obtained by evaluating the modular form at infinity. This is clear
from the construction since we are using the parabolic subgroup P and the inclusion
of P into GL2.Z/ kills all other classes (see Section 3.5.1).

Remark 4.7. Recall that after the proof of Proposition 4.4 we defined classes mi
using a symmetrization procedure. Similarly, we can use extra symmetrization to
obtain classes mI 0;J 0 indexed by disjoint sets I 0 and J 0 with jI 0j D ` and jJ 0j D
2k � ` for ` odd which span the module P.2`;12k�2`/ ı P.s�2k/ insideH2kC1.�2;s/.
These elements are anti-invariant under the action of SI 0 �SJ 0 and invariant under
permutations fixing I 0 and J 0 pointwise. These elements generate all ofH2kC1.�2;s/
ifk � 5. Fork > 5 they generate only the homology coming from the parabolic group
P � SL2.Z/. The elementsmI 0;J 0 are not linearly independent, but a subset similar
to the one described in Remark 4.3 can be used to form a basis of the corresponding
Ss-module.
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5. Gluing classes together

Given a graph Xn;s we can obtain a new set of graphs fXni ;si g by snipping some
of the edges at their midpoints; the snipped edges will become leaves in the Xni ;si .
Conversely, suppose we have a set of graphs fXn1;s1 ; : : : ; Xnk ;sk g and a gluing
pattern � which pairs up some or all of the leaf vertices to form a connected graphX� .
An example is shown in Figure 7. If X� has rank n and s leaves, then the gluing

Xn1;s1 [ � � � [Xnk ;sk �! X�

induces a homomorphism

p� W�n1;s1 � � � � � �nk ;sk �! �n;s:

This in turn induces an assembly map on homology via the cross product,

A� WH�.�n1;s1/˝ � � � ˝H�.�nk ;sk / �! H�.�n;s/:

In particular, if we glue all of the univalent vertices in pairs, we obtain a map
to the homology of Out.Fn/, and if we glue all but one we obtain a map to the
homology of Aut.Fn/. We allow leaf vertices of a single Xn;s to be glued together.
For example, gluing all four leaf vertices of X2;4 in pairs gives an assembly map
H�.�2;4/! H�.�4;0/ that we use in Section 5.2.

�

Figure 7. Making X4;3 from X1;3 and X2;4 using a gluing map �

Remark 5.1. Assembly maps are associative since this is obviously true for gluing
graphs together, and the cross product in homology is associative. In particular, if
a gluing is done in two stages, the assembly map factors through the intermediate
stage.

Remark 5.2. The vcd of �n;s is 2nC s � 3 if n > 0, and for a k-fold assembly map
as above with each ni > 0 this is given by the formula

vcd.�n;s/ D vcd.�n1;s1/C � � � C vcd.�nk ;sk /C .k � 1/:
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To see this it suffices by induction to consider the case of gluing a single pair of
leaves. If k D 1 we are gluing two leaves of the same graph together, increasing n
by one and decreasing s by two, so the vcd is unchanged. If k D 2 and we glue a
leaf of one graph to a leaf of the other we have n D n1C n2 and s D s1C s2 � 2, so
2nC s�3 is one more than the sum .2n1C s1�3/C .2n2C s2�3/. A consequence
of this relation between the vcd’s is that a k-fold assembly map with k > 1 cannot
produce homology classes in the vcd of �n;s . This holds even when some ni ’s are 0,
provided we exclude trivial factors with .ni ; si / D .0; 2/.

A different gluing �0 may also produce a graph X�0 of rank n with s leaves. As
noted at the beginning of Section 2.1, a bijection between the leaf vertices of X�
andX�0 determines an isomorphism between the targets of both assembly maps. For
�0 D � this gives the action of the symmetric group Ss onH�.�n;s/.

The left-hand side of the assembly mapA� is a priori anSs1 � � � ��Ssk -module.
The gluing � interacts with the action ofSs1 � � � � �Ssk in various ways, which can
be explained by the following two observations:

(1) If tij leaves of Xni ;si are paired with leaves of Xnj ;sj , then a permutation that
does the same thing to both sets of leaves does not change the result of the
gluing.

(2) If there are ui unglued leaves in Xni ;si , then permuting them can be done
before or after gluing with the same effect.

The algebraic effect of the first observation is that the map A� factors through the
coinvariants of the diagonal action of Stij on H�.�ni ;si /˝H�.�nj ;sj /. Here Stij

acts on H�.�ni ;si / and H�.�nj ;sj / by restriction of the Ssi and Ssj actions. For
example, if the leaves of a graph with exactly s leaves are glued to the leaves of
another graph with exactly s leaves, then the assembly map factors through the space
of Ss coinvariants:

Hp.�n1;s/˝Hq.�n2;s/ HpCq.�n1Cn2Cs�1;0/

�
Hp.�n1;s/˝Hq.�n2;s/

�
Ss

A�

Now .P� ˝ P�/Ss
is zero unless � D �, in which case it is 1-dimensional.

Therefore the assembly map is trivial unless some irreducible P� appears in the
Ss decompositions of bothHp.�n1;s/ andHq.�n2;s/.

The second observation says that we can make A� into an .Su1
� � � � � Suk

/-
module map by realizingSu1

� � � � �Suk
as the appropriate subgroup ofSs . (Here

againSui
acts onH�.�ni ;si / by restricting theSsi action.) We can sometimes obtain

new information about A� by extending it to an Ss-module map, which we call OA� .
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Thus the range of OA� is stillH�.�n;s/ but the domain of OA� is the module obtained by
inducingH�.�n1;s1/˝� � �˝H�.�nk ;sk /, considered as a .Su1

� � � ��Suk
/-module,

up to Ss . The advantage here is that Ss-modules and Ss-module maps between
them are very well understood.

In the following sections we give examples of assembly maps. In particular, we
show how all but one of the known nontrivial homology classes for Out.Fn/ and
Aut.Fn/ are obtained by assembling classes from the homology of �1;s and �2;s .

5.1. Morita’s original series [33]. Recall from Section 4.1 thatH2k.�1;2kC1/ Š k

with generator ˛k . Fix a gluing pattern � W X1;2kC1 [ X1;2kC1 ! X2kC2;0 which
matches all of the leaves of the first graph with those of the second. This gives an
assembly map

A� WH2k.�1;2kC1/˝H2k.�1;2kC1/ �! H4k
�
Out.F2kC2/

�
:

The kth Morita class �k is the image under A� of ˛k ˝ ˛k . Remark 9.5 explains
why this viewpoint leads to the same classes as those originally defined by Morita.
The classes �1; �2, and �3 are known to be nontrivial.

A lift of �k to H4k
�
Aut.F2kC2/

�
can be obtained via assembly maps using

the gluing pattern � W X1;2kC1 [ X0;3 [ X1;2kC1 ! X2kC2;1 which matches one
leaf of X0;3 with a leaf of one X1;2kC1, another leaf of X0;3 with a leaf of the
other X1;2kC1, and then pairs the remaining leaves of the two copies of X1;2kC1
as before. Let O�k be the image of ˛k ˝ � ˝ ˛k under the resulting assembly map
H2k.�1;2kC1/˝H0.�0;3/˝H2k.�1;2kC1/! H4k.�2kC2;1/, where � is a generator
of H0.�0;3/. The projection map H4k.�2kC2;1/ ! H4k.�2kC2;0/ then sends O�k
to �k .

Remark 5.3. This argument shows more generally that every assembly map with
targetHi

�
Out.Fn/

�
lifts toHi

�
Aut.Fn/

�
.

Proposition 5.4. The Morita class �k 2 H4k
�
Out.F2kC2/

�
is supported in an

abelian subgroup Z4k of Out.F2kC2/, and the analogous statement also holds for a
lift to Aut.F2kC2/.

Proof. As noted in Section 4.1, the class ˛k is the top-dimensional homology class
of a subgroup Z2k in �1;2kC1. The assembly that produces �k then gives a map
Z4k ! Out.F2kC2/ taking a generator of H4k.Z4k/ to �k . It is easy to see using
the definition of �n;s as a group of homotopy equivalences that the image of the map
Z4k ! Out.F2kC2/ is generated by automorphisms �i1 and �i2 for 3 � i � 2kC 2,
where �ij is left multiplication of the basis element xi by xj , and �ij is right
multiplication of xi by xj , with all basis elements other than xi fixed in both cases.
From this description one can see that the map Z4k ! Out.F2kC2/ is injective, as
is its lift to Aut.F2kC2/, so the two versions of �k for Out and Aut are supported
on Z4k subgroups.
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5.2. Homology of �2;4. If � connects two copies of X1;3 by gluing just one pair of
leaves as in Figure 8, the result is a graphX� of rank 2 with 4 leaves and an assembly
map

A� WH2.�1;3/˝H2.�1;3/ �! H4.�2;4/:

As before, let ˛1 be a generator of H2.�1;3/ Š P.13/. The image of ˛1 ˝ ˛1
under A� is then the nonvanishing class ˛I;J in Proposition 4.1 in the case k D 1.
By Theorem 3.10 we haveH4.�2;4/ D P.2;2/, which is 2-dimensional. Since P.2;2/
is irreducible as an S4-module, nontriviality of A� implies that the induced map

OA� WResS3

S2

�
H2.�1;3/

�
ı ResS3

S2

�
H2.�1;3/

�
�! H4.�2;4/

is surjective.

�

Figure 8. Gluing two copies of X1;3

5.3. Gluing two leaves of a single rank 1 graph. If � glues two leaves of X1;s
together as in Figure 9, the result is a graph X� of rank 2 with s � 2 leaves and an
assembly map

A� WHk.�1;s/ �! Hk.�2;s�2/:

Let us show that this A� is zero when k > 0.

�::
:

Figure 9. A self-gluing of X1;s

The map A� is an Ss�2-module map, where Ss�2 is the subgroup of Ss which
permutes the unglued leaves. For k > 0 either the domain or the range of A� is zero
unless k is a multiple of 4, by Proposition 3.7 and Theorem 3.10. If k D 4` > 0, then
H4`.�1;s/ D P.s�4`;14`/. Restriction from Ss to Ss�2 removes two boxes from the
Young diagram for P.s�4`;14`/, so as an Ss�2-module the domain of A� is

P.s�4`�2;14`/ ˚ 2P.s�4`�1;14`�1/ ˚ P.s�4`;14`�2/



Vol. 91 (2016) Assembling homology classes 783

(though if s � 4` < 3 some of the terms are not there). On the other hand, by
Theorem 3.10 all partitions in H4`.�2;s�2/ contain at least 2` boxes in the second
column, so none of these modules appears inH4`.�2;s�2/ and A� must be zero.

5.4. Rank 2. For any positive s1 and s2 we can join X1;s1 to X1;s2 by connecting
one pair of leaves. We obtain a graph X� of rank 2 with s1 C s2 � 2 leaves and
assembly maps

A� WH2k1
.�1;s1/˝H2k2

.�1;s2/ �! H2k1C2k2
.�2;s1Cs2�2/:

If k1 C k2 is odd then H2k1C2k2
.�2;s1Cs2�2/ D 0, so the map is obviously trivial.

In fact this map is trivial unless k1 D k2, in which case it is nontrivial. This follows
immediately from Proposition 4.1 and Remark 4.2.

In the special case si D 2ki C 1 and k1 ¤ k2 there is an alternative argument for
proving the assembly map is zero using representation theory. From the discussion
in the beginning of the section the assembly map induces a map

Res
S2k1C1

S2k1

�
H2k1

.�1;2k1C1/
�
ı Res

S2k2C1

S2k2

�
H2k2

.�1;2k2C1/
�

�! H2k1C2k2
.�2;2k1C2k2

/:

By Proposition 3.7 and Theorem 3.10 we have H2ki
.�1;2kiC1/ D P.12kiC1/ and

H2k1C2k2
.�2;2k1C2k2

/ D P.2k1Ck2 /, so that the induced map is P.12k1 / ıP.12k2 / !

P.2k1Ck2 /. Since k1 ¤ k2 there is no way to add 2k2 boxes to distinct rows in the
Young diagram for P.12k1 / to obtain the diagram for P.2k1Ck2 /, which means that
the decomposition of P.12k1 / ı P.12k2 / does not contain P.2k1Ck2 /. So the map OA�
(and hence the assembly map A�) must be zero. One can use a similar argument
when si ¤ 2ki C 1 but this requires the full Littlewood–Richardson rule instead of
the much easier Pieri rule.

5.5. GeneralizedMorita Classes. In [12], Morita’s original series was generalized,
and it is not hard to describe the generalization in terms of assembly maps arising
from gluing together graphs of rank 0 and rank 1. Suppose we are given a finite
connected graph G with no valence 2 vertices, along with a partition of its non-leaf
vertices into two subsets V0 and V1 such that all vertices in V1 have odd valence. Take
a copyXv ofX1;2kC1 for each vertex v in V1 of valence 2kC1, and identify the leaves
of Xv with the edges of G incident to v. Similarly for each vertex in V0 of valence k
take a copy of X0;k . The graph G then gives gluing instructions for constructing a
graph Xn;s and a corresponding assembly map. (The s leaves of Xn;s come from the
valence 1 vertices ofG.) By assembling copies of ˛k 2 H2k.�1;2kC1/ at the valence
2k C 1 vertices in V1, along with standard generators for H0.�0;k/ at the valence k
vertices in V0, we obtain a generalized Morita class �G 2 Hi .�n;s/. The original
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Morita classes are the case that G has two vertices, both in V1, with all edges going
from one vertex to the other.

Vertices in V1 are called rank one vertices, and vertices in V0 are rank zero
vertices. There is no loss of generality in assuming that all rank zero vertices are
isolated, in the sense that no edge of G connects two different rank zero vertices,
since such edges can be collapsed one by one without affecting the class �G .

If the graph G has certain “orientation-reversing” symmetries, for example if it
has an edge with both ends at the same vertex in V1, then the class�G is automatically
zero; this is spelled out in detail in [12] in the case s D 0, which is the case considered
there. The following result shows that �G vanishes in many other cases as well.

Theorem 5.5. If G has two rank one vertices of different valence then �G D 0.

Proof. The graph G contains a path connecting two rank one vertices of different
valence and passing only through rank zero vertices. Using gluing instructions given
by this linear subgraph we obtain a graph X� D X2;s for some s > 0. We can
also obtain an X2;s by first gluing one of the rank 1 graphs and all of the rank 0
graphs to obtain a graph X1;s1 , then gluing X1;s1 to the other rank 1 graph X1;s2 .
Call the latter gluing  . The assembly map A� factors through A , and we showed
in Section 5.4 that A is zero since the two classes assembled by it have different
homology degrees, by the hypothesis that the original two rank one vertices have
different valence.

5.6. Eisenstein classes. Consider a gluing � that attaches leaves of X2;2kC2 to
leaves of X1;2kC1, leaving one leaf of X2;2kC2 unpaired. This gluing determines a
map �2;2kC2 � �1;2kC1 ! �2kC3;1 D Aut.F2kC3/ and an assembly map

A� W H2kC3.�2;2kC2/˝H2k.�1;2kC1/ �! H4kC3
�
Aut.F2kC3/

�
:

In Section 4.3 we constructed classes mI;J 2 H2kC3.�2;2kC2/ corresponding to a
partition of f1; : : : ; 2kC 2g into sets I and J with jI j D 2 and jJ j D 2k. (Note that
the parameter k now corresponds to k� 1 in Section 4.3.) Choose I to consist of the
unglued leaf of X2;2kC2 and one other leaf, with J the remaining leaves. Then the
Eisenstein class Ek is the image of mI;J ˝ ˛k under A� . This does not depend on
the choice of the other leaf in I or the ordering of the leaves in J since permutations
of the glued leaves in X2;2kC2 become inner automorphisms of Aut.F2kC3/ which
therefore induce the identity on homology.

We choose I to contain the unglued leaf because if we did not, then Ek would
automatically be zero by the following symmetry argument. If both leaves inX2;2kC2
indexed by I were glued to leaves of X1;2kC1 then the transposition switching these
two leaves would extend to a transposition of two edges of the glued-together graph
X2kC3;1. This transposition sends mI;J ˝ ˛k to its negative since it preserves mI;J
as we noted in Section 4.3 and it sends ˛k to its negative. On the other hand, after
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gluing, the transposition gives an inner automorphism of Aut.F2kC3/ inducing the
identity on homology. Choosing I to contain the unglued leaf has the effect of
breaking this symmetry, so Ek does not vanish for any obvious reason. (Permutations
of the leaves in J act trivially on Ek since they act by their sign on bothmI;J and ˛k .)

An alternative construction would be to use the class mi defined after the proof
of Proposition 4.4 instead of mI;J . Permutations of the glued leaves change mi by
the sign of the permutation, and the same is true for ˛k , so mi ˝ ˛k is invariant
under these permutations. From the definition of mi it follows that using mi instead
of mI;J changes Ek only by a nonzero scalar multiple.

Remark 5.6. The Eisenstein class Ek maps to zero in H4kC3
�
Out.F2kC3/

�
since

the map �2kC3;1 ! �2kC3;0 is induced by forgetting the leaf of X2kC3;1, and this
leaf could just as well be omitted from X2;2kC2 before the gluing, but this puts the
class mi in a dimension above the vcd of �2;2kC1. This argument applies more
generally whenever one has an assembly map with target Hi .�n;1/ and a source
factorHvcd.�nj ;sj / whose graph Xnj ;sj is the one with the unglued leaf.

5.7. Odd-dimensional classes in H�

�
Out.Fn/

�
. The Euler characteristic calcula-

tions for n � 11 imply that there must exist odd-dimensional classes inH�
�
Out.Fn/

�
,

probably in great abundance as n increases. However, only one such class has been
found so it becomes an interesting challenge to find nontrivial odd-dimensional
classes in a systematic way.

Figure 10. Left: Assembling 1 2 H11

�
Out.F8/

�
from H2.�1;3/, H4.�1;5/, and H5.�2;4/.

Right: Assembling 2 2 H15

�
Out.F10/

�
fromH4.�1;5/,H6.�1;7/, andH5.�2;4/

A sequence of candidates for such classes was introduced by Morita, Sakasai,
and Suzuki in [35], Proposition 6.3. These are classes k 2 H4kC7

�
Out.F2kC6/

�
for k � 1. The class k can be interpreted as gluing X1;2kC3 [ X1;2kC1 [ X2;4 !
X2kC6;0 (illustrated for k D 1 and 2 in Figure 10) and considering the image of the
class ˛kC1˝˛k˝mi , wheremi is the class defined after the proof of Proposition 4.4,
with i labeling the leaf of X2;4 attached to X1;2kC1. However, since the image of
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˛kC1 ˝ ˛k in H4kC2.�2;4k�2/ is trivial by Section 5.4, these classes must also be
zero by associativity of the assembly map.

Figure 11. Candidates for a nontrivial class inH11

�
Out.F8/

�
The class 1 2 H11

�
Out.F8/

�
was introduced to account for the fact that �3 2

H12
�
Out.F8/

�
is nonzero while the Euler characteristic of Out.F8/ is 1, so an odd-

dimensional class must exist. An alternative candidate class in H11
�
Out.F8/

�
can

be constructed by assembling two copies of ˛1 2 H2.�1;3/ with a class inH7.�2;6/
by gluing all the leaves of two copies of X1;3 to one copy of X2;6 as shown in the
left half of Figure 11. Another possibility is to glue all the leaves ofX1;1 andX1;5 to
the leaves ofX2;6, obtaining an assembly mapH0.�1;1/˝H7.�2;6/˝H4.�1;5/!
H11.Out.F8/

�
as in the right half of Figure 11. However, this assembly map may

well be zero since it produces classes that lift to classes in H11
�
Aut.F8/

�
that are in

the image of the stabilization H11
�
Aut.F7/

�
! H11

�
Aut.F8/

�
(see Section 6.2) so

if they were nonzero they would give counterexamples to Conjecture 10.5.

Figure 12. Candidates for a nontrivial class inH15

�
Out.F10/

�
A few other ways to construct candidates for odd-dimensional classes are shown

in Figure 12, this time for classes inH15
�
Out.F10/

�
.
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There are many other ways to construct candidates for odd-dimensional homology
classes. If we glue X1;s to X2;s by joining all of their leaves, we obtain a rank s C 2
graph with no leaves and an associated assembly map

H2.�1;s/˝H5.�2;s/ �! H7.�sC2;0/:

For s � 4 we have H2.�1;s/ D P.s�2;12/. The decomposition of H5.�2;s/ D
W4 ı P.s�4/ D P.2;12/ ı P.s�4/ has several terms but one of them is P.s�2;12/,
with multiplicity one. Thus the space of coinvariants

�
H2.�1;s/˝H5.�2;s/

�
Ss

is
1-dimensional and the assembly map, which factors through these coinvariants, may
well be nontrivial. This construction produces potential classes in H7

�
Out.Fn/

�
for

all n � 6, although by homology stability these classes must be trivial for n � 10.
According to the calculations in [37] and [1] the classes for n D 6; 7 also vanish.

We can make a similar construction withH2k.�1;s/ andH2kC3.�2;s/ as long as
s � 2kC 2 using the partition .s � 2k; 12k/. We haveH2k.�1;s/ D P.s�2k;12k/ and
H2kC3.�2;s/ D W2kC2ıP.s�2k�2/. The second term ofW2kC2 isM2kC2˝P.2;12k/,
and one term of P.2;12k/ ı P.s�2k�2/ is equal to P.s�2k;12k/. Thus we obtain a map
from M2kC2 to H4kC3

�
Out.FsC2/

�
. For large s this map must be trivial since the

target group is trivial. In fact we suspect that the map is trivial for s � 2k C 4 but
not for s D 2k C 3. For s D 2k C 3 the image lies in H4kC3

�
Out.F2kC5/

�
. Since

the vcd of Out.F2kC5/ is 4k C 7, these classes lie in codimension 4.
If s � 2k C 1 there is another similar construction with H2k.�1;s/ and

H2kC1.�2;s/, again using the partition .s � 2k; 12k/. Here H2kC1.�2;s/ contains
the summand S2kC2 ˝ P.12k/ ı Ps�2k . Since P.12k/ ı P.s�2k/ contains a copy of
P.s�2k;12k/ we get a map from S2kC2 to H4kC1

�
Out.FsC2/

�
. The first potentially

nontrivial class occurs when k D 5, inH21
�
Out.F13/

�
; this class is inHvcd�2.

5.8. Classes from pairs of cusp forms. Consider a gluing

X2;2m [X2;2m �! X2mC3;0

matching the leaves of the first graph with those of the second, and the associated
assembly map

H2mC1.�2;2m/˝H2mC1.�2;2m/ �! H4mC2
�
Out.F2mC3/

�
:

There is a Z2 action onH2mC1.�2;2m/˝H2mC1.�2;2m/which switches the factors.
By basic properties of the cross product (which gives the Künneth isomorphism) we
have

a˝ b D .�1/.2mC1/.2mC1/b ˝ a D �b ˝ a;

so this assembly map factors through the exterior product
V2

H2mC1.�2;2m/ in
addition to factoring through the S2m-coinvariants.
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Applying Lemma 3.8 we now have a map�^2
H2mC1.�2;2m/

�
S2m

D

�^2 � M
0�i<m

X2m;i ˝ P.2i ;12m�2i /

��
S2m

�! H4mC2
�
Out.F2mC3/

�
;

where X2m;i is the space of either cusp forms (if i is even) or all modular forms (if i
is odd) of weight 2mC2�2i . Since the P.2i ;12m�2i / are pairwise non-isomorphic
this gives a map M

0�i<m

�V2X2m;i
�
�! H4mC2

�
Out.F2mC3/

�
:

The term corresponding to i D 0 was first mentioned in [10].

6. Stabilization

In this section we consider the two ways to stabilize �n;s by letting one of the
parameters n and s increase while keeping the other fixed. Both stabilizations can be
viewed as special cases of assembly maps.

6.1. Stabilization with respect to s. For s � 1 the map gluing X0;3 to Xn;s by a
single edge simply increases the number of leaves, and the associated assembly map

H0.�0;3/˝Hi .�n;s/ �! Hi .�n;sC1/

gives a stabilization map Hi .�n;s/ ! Hi .�n;sC1/ sending a class ˛ to � ˝ ˛

where � is the standard generator of H0.�0;3/. This is the same as the map induced
by the splitting of the natural projection �n;sC1 ! �n;s defined in the proof of
Proposition 2.2. Strictly speaking, there are s different stabilization maps depending
on which leaf of Xn;s we attach X0;3 to, although these stabilizations differ only by
the action of Ss . The stabilization maps are always injective since they are induced
by splittings of the groups. By [24] the stabilization map is surjective if n � 2i C 2,
but in this case the homology groups are trivial by Galatius’ theorem.

Switching from homology to cohomology, Proposition 3.7 and Theorem 3.10
demonstrate directly that for fixed i the groups H i .�1;s/ and H i .�2;s/ satisfy
representation stability as s increases, i.e., for large enough s the partitions which
appear in their irreducible decompositions asSs-modules differ only by the number
of boxes in the first row. This leads one to suspect that the cohomology of �n;s
satisfies representation stability for all n. This is indeed the case and can be deduced
easily from a theorem of Jiménez Rolland [26] giving the corresponding result for
mapping class groups of certain manifolds with punctures.
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Proposition 6.1. For fixed i andn the groupsH i .�n;s/ satisfy representation stability
as s increases.

Proof. As described in Section 2.1 we can view �n;s as the quotient of the mapping
class group of the 3-manifoldMn;s by the subgroup generated by Dehn twists along
2-spheres. This subgroup is normal and is just a direct product of finitely many
cyclic groups of order 2. In particular it is a finite group so the projection from the
mapping class group to�n;s induces an isomorphismon cohomologywith coefficients
in k by the Leray–Serre spectral sequence. Thus it suffices to prove representation
stability for the mapping class group, and this was done in [26], with a specific stable
range s � 3i . To apply [26] one uses the manifoldM DMn;0 as the base manifold,
and one needs to check that this satisfies certain hypotheses: (1) �1M D Fn is of
type FP1 and has trivial center, which is obviously true; and (2) the mapping class
group ofM is of type FP1, which follows from Out.Fn/ being FP1 and the kernel
of the map from the mapping class group to Out.Fn/ being finite abelian and hence
of type FP1.

We remark that A. Saied has recently shown thatH i .�n;s/ satisfies representation
stability with respect to s whenever s � n C i [38]. If n < 2i this is an obvious
improvement on the stable rangementioned in the above proposition, and ifn � 2iC2
the cohomology is zero for all s.

6.2. Stabilization with respect to n. A stabilization mapHi .�n;s/! Hi .�nC1;s/

can be obtained in a similar way by gluing X1;2 to Xn;s along one edge. Here
sufficiently many iterations take one to the stable range where the homology groups
are zero, so the interest is in what happens unstably. We can describe completely
what happens when rank one classes are stabilized to rank two:

Proposition 6.2. If a class in Hi .�n;s/ is obtained from an assembly map with a
factor group Hj .�1;k/, j > 0, then this class maps to zero under the stabilization
Hi .�n;s/ ! Hi .�nC1;s/ obtained by gluing X1;2 to the corresponding factor
graph X1;k .

An immediate consequence is the following result, first proved in [13] by
combinatorial arguments.

Corollary 6.3. The Morita class �k , lifted from Out to Aut, vanishes under the
stabilization mapH4k.�2kC2;1/! H4k.�2kC3;1/.

Proof of Proposition 6.2. It suffices to prove that the stabilization Hi .�1;s/ !

Hi .�2;s/ is trivial for i > 0. The extension ofA� WHi .�1;s/˝H0.�1;2/! Hi .�2;s/

to the Ss-module map

OA� WResSs

Ss�1

�
Hi .�1;s/

�
ı ResS2

S1

�
H0.�1;2/

�
�! Hi .�2;s/
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is accomplished by first restricting the Ss-action on �1;s to Ss�1 and then inducing
it back up to Ss . In terms of Young diagrams, restriction to Ss�1 is accomplished
by removing one box (in all possible ways), while induction adds a box (also in all
possible ways). Since the diagrams of all partitions appearing inHi .�1;s/ have boxes
only in the first row and column, all resulting diagrams will have at most two boxes
in the second column.

Using Theorem 3.10 we can see that the simple modules appearing in Hi .�2;s/
for i even always have at least i=2 boxes in the second column. Thus if i � 6 there
is no partition which appears in both the domain and range of OA� , which forces OA�
(and therefore A�) to be zero.

For i D 2 the target H2.�2;s/ is always zero. For i D 4 the diagrams appearing
in H4.�1;s/ have five rows, but the diagrams appearing in H4.�2;s/ have at most
three rows, so it is not possible to obtain one from the other by changing the position
of a single box, and again the assembly map must be trivial.

In Section 7 below we show precisely how the class ˛k becomes trivial after one
stabilization, using a natural geometric interpretation of this class.

7. A more geometric viewpoint

A rational model for BOut.Fn/ is the quotientQn of Outer Space for rank n graphs
by the action of Out.Fn/ changing the marking. (One could instead use just the spine
of Outer Space, but for our present purposes it is more convenient not to restrict to the
spine.) Points of Qn are thus isometry classes of finite connected graphs of rank n
with no vertices of valence 1 or 2 and with lengths assigned to the edges, normalized
so that the sum of the lengths of all the edges is 1. Collapsing edges to points by
shrinking their lengths to zero is allowed provided this does not decrease the rank
of the graph. There is a similar rational model Qn;s for B�n;s consisting of graphs
in Qn with s leaves attached to them at arbitrary points. There is no need to assign
lengths to the leaf edges since they are not allowed to collapse to points. An assembly
map is induced from a map Qn1;s1 � � � � �Qnk ;sk ! Qn;s where edge lengths on
a glued-together graph Xn;s are obtained by first assigning a fixed length, say 1, to
the new edges created by the leaf pairings, then renormalizing the lengths of all the
nonleaf edges of Xn;s .

7.1. Geometric Morita cycles. The classes ˛k 2 H2k.�1;2kC1/ are particularly
easy to describe from this perspective, and hence also the Morita classes and their
generalizations. The class ˛k is the image of the top-dimensional homology class
of a 2k-dimensional torus under a map f WT 2k ! Q1;2kC1 described as follows.
Consider graphs X1;2kC1 obtained from a circle c by attaching 2k C 1 leaves. By
rotating the circle if necessary, we can assume the first leaf attaches at a fixed
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basepoint of c. The other leaves attach at 2k arbitrary points of c which need not
be distinct. Letting these points vary independently around c then gives the map
f WT 2k ! Q1;2kC1. This is surjective but not injective since graphs differing by
a reflection of c fixing the basepoint are identified in Q1;2kC1, so Q1;2kC1 is T 2k
modulo the action of Z2 reflecting each circle factor. From this point of view one can
see why we require the total number of leaves to be odd, because if it were 2k instead
of 2k C 1 then the Z2-action would reverse the orientation of the torus T 2k�1 and
hence the map T 2k�1 ! Q1;2k would induce the trivial map on the top-dimensional
homology of the torus.

For the map Q1;2kC1 �Q1;2kC1 ! Q2kC2;0 used to construct the Morita class
�k D ˛k ˝ ˛k we glue all the leaves of the first copy of X1;2kC1 to the leaves of the
second copy. Thus we have two circles joined by 2k C 1 edges. One of these edges
serves as a “basepoint” edge, and then by varyingwhere the remaining 2k edges attach
we obtain a family of graphsX2kC2;0 corresponding to amapT 4k ! Q2kC2;0 taking
a generator of H4k.T 4k/ to �k . (The basepoint edge could be collapsed to a point,
giving a map T 4k ! Q2kC2;0 homotopic to the original one.) The generalized
Morita classes have similar geometric descriptions as maps from a torus to the
appropriateQn;s .

For the Morita class �k the map T 4k ! Q2kC2;0 is invariant under certain
symmetries. To start, there is the Z2 � Z2 symmetry coming from the symmetries
of the two ˛k factors reflecting each of the two circles. There is another Z2
symmetry from interchanging the two circles. Finally, there is an S2k symmetry
group permuting the 2k arcs connecting the two circles. Altogether this gives a
symmetry groupGk of order 8.2k/Šwith the map T 4k ! Q2kC2;0 factoring through
the quotient T 4k=Gk . One can regard Gk as acting on choices of an ordering and
orientations of the two circles and an ordering of the 2k connecting arcs. This makes
it clear that the induced map T 4k=Gk ! Q2kC2;0 is injective.

In the case k D 1 the quotient T 4=G1 can be determined explicitly.
Proposition 7.1. T 4=G1 D S4.

Proof. The quotient of T 4 by the reflections of the two circles gives S2 � S2 since
the quotient of T 2 by reflection of its two circle factors is the familiar 2-sheeted
branched covering space T 2 ! S2. Next, factor out the Z2-action interchanging the
two circles, corresponding to interchanging the two factors of S2�S2. This gives the
two-fold symmetric product SP2.S2/ which is well-known to be CP 2. Explicitly,
CP 2 can be identified with nonzero polynomials a2z2 C a1z C a0 in CŒz� up to
scalar multiplication, and these are determined by their unordered pair of roots in
S2 D C [ 1 where linear factors corresponding to roots at 1 are deleted. (See
e.g. [21, Example 4K.4]) Finally we need to factor out by theZ2-action interchanging
the two connecting arcs. This corresponds to reflecting each torus T 2 across its
diagonal. In the quotient S2 �S2 of T 2 � T 2 this is equivalent to reflecting each S2
across its equator. In the space of quadratic polynomials this is given by complex
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conjugation of the roots, hence also of the coefficients. Thus we are forming the
quotient of CP 2 by complex conjugation. This quotient is S4 by a classical result of
Massey [32] and Kuiper [30].

The quotient T 4k=Gk for k > 1 cannot be a sphere since one can compute that
its rational homology consists of a copy of Q in each dimension 4i � 4k.

We can use the geometric viewpoint to give another proof that Morita classes and
their generalizations vanish after one stabilization of the rank:

Geometric proof that ˛k vanishes after one stabilization. The idea is to see how the
commutator relation Œeij ; ejk� D eik among elementary matrices can be translated
into a two-parameter family of graphs.

We can reinterpret the stabilizationmap as themapQ1;2kC1 ! Q2;2kC1 obtained
by attaching both ends of a new edge b at the basepoint of the graphs X1;2kC1
described above consisting of a circle c with 2k C 1 leaves attached, where by the
basepoint we mean the point of c where the fixed leaf attaches. Let a be any one
of the remaining 2k leaves. Sliding a around c gives one of the S1 factors of the
torus T 2k whose map toQ1;2kC1 sends a generator ofH2k.T 2k/ to ˛k .

Figure 13 describes a two-parameter family of graphs in which one end of the
arc b moves across c while one end of the arc amoves across b and c. As we proceed
from left to right in the sequence of four pictures we see one end of b sliding around c.
The dotted arc denotes the path followed by the attaching point of a. Initially it just
goes across b, then when b has moved partway around c the end of a must backtrack
across part of c after it crosses b, in order to return to the basepoint. In the last picture
we see that a crosses both b and c.

c

b

a

c

a

b

c

a
b

c

b

a

Figure 13. A 2-parameter family of graphs X2;1

On the boundary of the parameter square for this two-parameter family one thus
has five slides of one arc over another, as indicated in Figure 14. The quotient
space of the square obtained by identifying the two a=b edges and the two b=c
edges is a surface S1;1 of genus one with one boundary circle, where this boundary
circle parametrizes the a=c slide. The a=c slide was the restriction of the map
f WT 2k ! Q2;2kC1 representing the stabilization of ˛k to one of the circle factors
of T 2k , so we can extend f to a map T 2k�1 �S1;1 ! Q2;2kC1. This implies that f
induces the zero mapH2k.T 2k/! H2k.Q2;2kC1/.
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b=cb=c

a=b

a=b a=c

Figure 14. The parameter space, a punctured torus

7.2. Representing Eisenstein classes geometrically. Let us describe how the
Eisenstein classes Ek 2 H4kC3

�
Aut.F2kC3/

�
can be realized as families of graphs

parametrized by certain manifolds Ek that are analogous to the tori representing
Morita classes, but a little more complicated. Consider first the case k D 1, so E1
will be a closed orientable 7-manifold. This is the product of T 4 with a 3-manifoldN ,
whereN splits along a 2-torus into submanifoldsN1 andN2 each homeomorphic to a
product of S1 with a compact surface S1;1 of genus 1with one boundary component.
We obtain N from N1

`
N2 by gluing the two boundary tori via a homeomorphism

of @N1 D @N2 D T 2 switching the two circle factors of T 2. From this description
one can see that �1E1 is the product of Z4 with two copies of Z � F2 amalgamated
along Z � Z where the second Z is generated by the commutator of the generators
of F2 and the amalgamation interchanges the two factors of Z � Z. Also from the
construction of E1 one can easily see that it is a K.�; 1/.

Now we describe a map E1 ! Q5;1 corresponding to a 7-dimensional family of
rank 5 graphs with one leaf. To construct these graphs, start with the family of graphs
parametrized by S1;1 indicated in Figure 13, consisting of a circle c with edges a
and b attached. One end of b is attached to the basepoint of c and the other end to a
point moving around c. The arc a attaches at one end to a point that moves across b
and then returns to the basepoint along an arc of c. Next we attach one end of another
arc a0 at a point that moves only around c, independently of how a and b attach. This
gives a family of graphs parametrized by S1 � S1;1. Reversing the roles of a and a0
gives another family parametrized by S1�S1;1. On S1� @S1;1 both families consist
of graphs in which b[c is S1_S1 with a and a0 attached to arbitrary points of c. The
two families parametrized by S1�S1;1 then fit together to form a family parametrized
byN , so we have a mapN ! Q2;2. Attaching two more arcs d and e at an endpoint
of each that moves freely around c gives a family parametrized by N � T 2 and so
a map N � T 2 ! Q2;4, hence a class m 2 H5.�2;4/. Finally, we assemble this
class m with the torus T 2 representing ˛1 2 H2.�1;3/ by adjoining another circle c0
and attaching the free ends of a, d , and e at points that move around c0, where by
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rotating c0 we can assume that a attaches just at the basepoint of c0. The arc a0 has one
end unattached, so it is a leaf. Figure 15 shows a graph in the resulting 7-parameter
family in the case that a0 attaches to c, but a0 could also attach to b when a attaches
to c. These two possibilities correspond to the two submanifolds N1 and N2 of N .

e

a

b

d

a0

c c0

Figure 15. A graph in the E1 family

To relate this to the earlier construction of Eisenstein classes, note first that the
group MI;J in Proposition 4.4 is the semidirect product Z Ë .F 22 � Z2/ in the case
at hand when jI j D 2 D jJ j. A K.�; 1/ for this group is the mapping torus Tf of
a map f from .S1 _ S1/2 � T 2 to itself that is the identity on the T 2 factor, and
on each S1 _ S1 induces the automorphism of �1.S1 _ S1/ D F2 fixing the first
basis element x and sending the second basis element y to xy. We can compute
H5.Tf / geometrically as the elements of H4

�
.S1 _ S1/2 � T 2

�
fixed by f� using

the exact sequence in Example 2.48 of [21]. This H4 has dimension 4 with basis
corresponding to the 4-cells of .S1 _ S1/2 � T 2 by the Künneth formula. The basis
elements can be written (omitting tensor product symbols for simplicity) as xxzz,
xyzz, yxzz, and yyzz. (It would make sense to simplify the notation further by
replacing z by x throughout.) The map f� fixes x and z and takes y to x C y. A
short calculation shows that the elements invariant under f� form a 2-dimensional
subspace with basis xxzz and xyzz � yxzz. The element xxzz is not of interest
to us since it can be shown to give the trivial element of H5.�2;4/. For the element
xyzz � yxzz the four letters of each of these two words correspond to the edges
a; a0; d; e in that order. For example the four letters of xyzz correspond to a moving
around c, a0 moving across b, and d and e moving around c. Interchanging a and a0
gives the other word yxzz. To go fromH4

�
.S1 _ S1/2 � T 2

�
toH5.Tf / involves a

fifth parameter, and this corresponds to one end of the edge b moving around c. The
whole mapping torus Tf corresponds to a 5-dimensional family of graphs in which a
and a0 move freely around both b and c, while d , e, and one end of b move around c.
The reason for restricting to the graphs parametrized by N � T 2 is to get a manifold
as parameter space and thus reduce the dimension ofH5 from two to one.

To generalize from E1 to Ek is easy since all one has to do is replace the arcs d
and e by 2k arcs d1; : : : ; dk and e1; : : : ; ek that behave in exactly the same way as d
and e. Thus Ek D N � T 4k . Incidentally, the manifold N belongs to the class of
3-manifolds known as graph manifolds, which seems an especially appropriate name
in the present context.
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One can see that Ek 2 H4kC3.�2kC3;1/ maps to zero in H4kC3.�2kC3;0/
since ignoring the leaf a0 replaces the 3-manifold N by a 2-dimensional quotient,
namely S1;1, so the composition Ek ! Q2kC3;1 ! Q2kC3;0 factors through
S1;1 � T

4k which has one lower dimension than Ek .

8. Homological triviality of a standard “maximal torus” for Aut.Fn/

LetA be the subgroup of Aut.Fn/ generated by the automorphisms �i and �i for 1 �
i � n � 1, where �i sends the basis element xi to xnxi and fixes xj for j ¤ i ,
and �i is defined similarly but multiplies xi by xn on the right. Thus A is isomorphic
toZ2n�2, realizing themaximal rank of an abelian subgroup since the vcd of Aut.Fn/
is 2n � 2.
Theorem 8.1. The inclusion A ,! Aut.Fn/ of the standard free abelian subgroup of
maximal rank induces the trivial map on rational homology in all positive dimensions.

Note that the Z2n�4 � Aut.Fn/ realizing the Morita class �k is not contained in
thisZ2n�2 � Aut.Fn/ or any subgroup conjugate to this by permuting basis elements
for Fn, and the theorem gives a good reason why this must be the case.

We will give three different proofs of this theorem, each with its own advantages.
The first proof is probably the most elementary.

Algebraic proof. We can enlarge A to a subgroup G � Aut.Fn/ by adjoining the
automorphisms that permute the basis elements x1; : : : ; xn�1 and send a subset of
them to their inverses. These automorphisms form a copy of the signed permutation
groupS˙n�1 in Aut.Fn/, and G is the semidirect productS˙n�1 ËA. It will suffice to
showHi .G/ D 0 for i > 1 sinceH1

�
Aut.Fn/

�
D 0 from the classical presentations

of Aut.Fn/.
Passing from homology to cohomology and applying the usual argument with

transfer homomorphisms, we can computeH�.G/ as the invariants ofH�.A/ under
the action of S˙n�1 induced by conjugation. The cohomology ring H�.A/ is an
exterior algebra on generators ai and bi corresponding to �i and �i . Conjugation by
the map inverting xi sends �i to ��1i and �i to ��1i , so inH�.A/ this sends ai to �bi
and bi to �ai . Conjugation by a permutation of the xi ’s has the effect of permuting
the subscripts on the ai ’s and bi ’s.

Elements of H k.A/ are linear combinations of degree k monomials in the ai ’s
and bi ’s. We will show that for any monomial m of degree k > 1 there exists
� 2 S˙n�1 such that �m D �m. This implies that m cannot appear in any element
of H k.A/ that is invariant under the action of S˙n�1, and hence H k.G/ D 0 for
k > 1. There are three cases: if m contains both ai and bi for some i , then
inverting xi changes the sign of ai ^ bi and thus the sign of m; if m contains ai
and aj but not either of bi or bj we use the involution in G interchanging xi and xj ;
and if m contains ai and bj but not either of bi or aj we use the involution in G
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interchanging xi and x�1j . (This argument does not apply when k D 1, but it is easy
to check thatH 1.G/ D k generated by

P
i ai �

P
i bi .)

Geometric proof. As in the previous section we consider the rational modelQn;1 for
Aut.Fn/. The inclusionZ2n�2 ,! Aut.Fn/ corresponds to a map f WT 2n�2 ! Qn;1
of the .2n�2/-torus toQn;1. This specifies a family of graphs parametrized byT 2n�2
constructed as follows. Start with a basepointed circle c, then attach n� 1 arcs ai by
identifying their endpoints with points si and ti in c. The si and ti are the coordinates
on T 2n�2, and we can write f as a function f .s1; t1; : : : ; sn�1; tn�1/.

The map f is not injective since there are some symmetries present. One can
interchange si and ti , switching the ends of ai , without changing the graph, and one
can permute the arcsai . Switching si and ti gives a quotient of the i th 2-torus factor of
T 2n�2 D .T 2/n�1. The quotient of a 2-torus by interchanging the two circle factors
is a triangle with two edges identified. This deformation retracts to a single circle,
say the si circle. The quotient of T 2n�2 by these coordinate transpositions thus has
the homotopy type of T n�1. This already implies that the inclusion A ,! Aut.Fn/
induces the trivial map onHk for k > n � 1.

Nowwe can factor out the permutations of then�1 factors of thisT n�1, producing
the .n� 1/-fold symmetric product of S1. This is well known to have the homotopy
type of a single circle. (See for example the end of Example 4K.4 in [21].) Thus the
map f factors through a space homotopy equivalent to S1 so it induces the trivial
map onHi for i > 1. It also induces the trivial map onH1 sinceH1

�
Aut.Fn/

�
D 0

as noted in the first proof.

: :
: � ::
:

�

�

Figure 16. The gluings X1;2n�1 ! X2;2n�3 ! Xn;1

Proof via representation theory. Wehave inclusionsA � �1;2n�1 � Aut.Fn/where
the second inclusion corresponds to the self-gluing X1;2n�1 ! Xn;1. (In fact
�1;2n�1 is contained in the subgroup G used in the first proof above). The gluing
X1;2n�1 ! Xn;1 factors as the composition of two gluings X1;2n�1 ! X2;2n�3 !

Xn;1 as shown in Figure 16, so the mapH�.A/! H�
�
Aut.Fn/

�
factors asH�.A/!

H�.�1;2n�1/ ! H�.�2;2n�3/ ! H�.�n;1/. The middle of these three maps is an
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assembly map which we showed is trivial in Section 5.3 (unless the degree is 0),
which implies thatHk.A/! Hk

�
Aut.Fn/

�
is trivial if k > 0.

One of the advantages of this last proof is that it also works in degree 1, so one
does not need a separate argument for this case.

Remark 8.2. The composition A ! Aut.Fn/ ! Out.Fn/ has kernel Z and is
injective when restricted to a suitable subgroup Z2n�3 realizing the vcd of Out.Fn/.
The theorem implies that this inclusionZ2n�3 ,! Out.Fn/ is also trivial on homology
since it factors through A ,! Aut.Fn/.

9. Connections with hairy graph homology
and the Lie algebra of symplectic derivations

9.1. Hairy graph homology. In this section we note the connection between our
calculations and the hairy graph homology theory of [10]. As aboveSk denotes the
symmetric group on k letters and Symk the k-th symmetric power functor on vector
spaces. The following lemma is an immediate consequence of Proposition 3.6.

Lemma 9.1. Let H D H 1.Fn/ Š kn. For any k-vector space V

H 2n�3Cs.�n;s/˝Ss
V ^s Š H 2n�3

�
Out.Fn/ISyms.H˝ V /

�
:

Proof. The Künneth isomorphism H s.F s
n / Š H

1.Fn/
^s
D H^s is Out.Fn/ �Ss-

equivariant. So

H 2n�3Cs.�n;s/˝Ss
V ^s Š H 2n�3

�
Out.Fn/IH s.F s

n /
�
˝Ss

V ^s (Prop. 3.6)

Š H 2n�3
�
Out.Fn/IH^s

�
˝Ss

V ^s

Š H 2n�3
�
Out.Fn/IH^s ˝Ss

V ^s
�

Š H 2n�3
�
Out.Fn/IH˝s ˝Ss

V ˝s
�

Š H 2n�3 .Out.Fn/ISyms.H˝ V // :

Let Hn;s
V denote the hairy Lie graph complex (see [10, 11]), where graphs have

rank n and s hairs labeled by vectors from V . In [10] the following theorem, with
the twist accidentally omitted, was proved by a direct analysis of the chain complex.

Theorem 9.2 ([10], Theorem 11.1). There is an isomorphism

Hk.Hn;s
V / Š H 2nCs�2�k.�n;s/˝Ss

V ^s:

Combining this with Lemma 9.1 gives a shorter proof of the following theorem
from [11] relating the first homology of the hairy Lie graph complex with the
cohomology of Out.Fn/ with twisted coefficients.
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Theorem 9.3 ([10], Theorem 8.8). For n � 2; s � 0 there is an isomorphism

H1.Hn;s
V / Š H 2n�3

�
Out.Fn/ISyms.H˝ V /

�
:

This theorem has been slightly restated here to be more compatible with current
notation.

9.2. The Lie algebra of symplectic derivations. According to Theorem 9.2 hairy
graph homology is obtained by twisting the homology of �n;s with V ^s . In [10,11],
it was shown that if the dimension of V is sufficiently large, the k-th homology of the
Lie algebra hV of positive degree symplectic derivations embeds in hairy Lie graph
homology:

Hk.hV / � Hk.HV / D
M
n;s

Hk.Hn;s
V / Š

M
n;s

H 2nCs�2�k.�n;s/˝Ss
V ^s:

Furthermore, every irreducible GL.V /-module S�V in the decomposition of
hairy graph homology corresponds to an irreducible Sp.V /-module Sh�iV in the
decomposition of of H�.hV /. Thus the cohomology classes found in this paper
produce homology classes for hV . These classes can be used to show that Hk.h/
contains infinitely many different Sp-modules, as we now show.
Theorem 9.4. H3nCd�2.h/ contains the Sp-module Sh..2mC1/n;1d /i for all m.

Proof. Let s D 2n.mC1/ C d . By Theorem 3.14, H 2nm.�n;s/ contains the Ss-
submodule P.nCd;n2m/ with multiplicity 1. Setting k D 3nC d � 2 we have

H3nCd�2.Hn;s
V / Š H 2mn.�n;s/˝Ss

V ^s

� P.nCd;n2m/ ˝Ss
V ^s

Since V ^s D
L
� P�0 ˝ S�.V / and P� ˝Ss

P� D 0 unless � D �, in which
case it is the trivial module k, we see that for dim.V / � max.2mC1; nCd/,
H3nCd�2.Hn;s

V / contains theGL.V /-submoduleS.nCd;n2m/0.V / D S..2mC1/n;1d /.V /.
Therefore for dim.V / sufficiently large H3nCd�2.hV / contains the corresponding
Sp.V /-submodule Sh..2mC1/n;1d /i.V /. Taking the limit as dim.V / goes to infinity,
gives thatHk.h/ contains Sh..2mC1/n;1d /i for all m.

Remark 9.5. In [12] the original Morita classes in the cohomology of Out.Fn/ were
re-interpreted in terms of hairy graphs and this point of viewwas then used to construct
more classes, called generalized Morita classes. The fact that the classes described
in Sections 5.1 and 5.5 represent the same classes stems from the identification

H1.H1;2kC1
V / Š H 2k.�1;2kC1/˝S2kC1

V ^2kC1 D S2kC1V D Sym2kC1 V

from Theorem 9.2. A generator of H1.H1;2kC1
V / is a linear Lie tree with two ends

joined by an edge and 2k C 1 commuting V -labeled leaves (“hairs”), whereas a
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generator of H 2k.�1;2kC1/ is the same thing, but with unlabeled leaves. Call this
generator ˛�

k
, as it is dual to ˛k . The graphical cocycle of [12] is nonzero only if

the graph is the union of ˛�
k1
; : : : ; ˛�

km
with the hairs connected up by edges. In that

case the cocycle evaluates to ˙ the graph obtained by shrinking each ˛k to a point.
Further projecting the graphical cocycle into the subspace spanned by a single graph
gives the Morita cocycle �G . By construction, this process is dual to the gluing map
defined by G.

Remark 9.6. In [11] it was explained that hairy graph homology can be viewed
as the Feynman transform of a cyclic operad. In light of Theorem 9.2 this implies
that the cohomology groupsH�.�n;s/ can be combined into a (twisted) modular co-
operad [18]. Therefore the dualsH�.�n;s/ of these groups form a (twisted) modular
operad. The assembly maps defined in Section 5 are the structure maps of this
modular operad.

10. Open Questions

We finish with several questions and conjectures related to results in the paper. The
conjectures have been verified for all but the most recently discovered nontrivial
classes in Hk.�n;s/, but there are not enough of these verified cases to provide
overwhelming evidence for the conjectures.

In what follows we always exclude trivial assembly maps, those that involve
a component graph X0;2 where the gluing involves only one leaf, because the
map ˇ W Hk.�n;s/! Hk.�n;s/ induced by the assembly map ˛ W Hk.�n;s/ ˝
H0.�0;2/! Hk.�n;s/ is equal to the identity.

10.1. Surjectivity of the assembly maps below the virtual cohomological dimen-
sion. An assembly mapH�.�n1;s1/˝ � � �˝H�.�nk ;sk /! H�.�n;s/ for k � 2 can
never have nontrivial image in the virtual cohomological dimension (vcd) of �n;s
since in that case the vcd of �n;s is strictly greater than the sum of the vcd’s of
the factors. An assembly map induced by gluing pairs of leaves of a single graph
preserves the vcd, so such an assembly map might conceivably be nontrivial in that
dimension, though it seems unlikely that such amap can be surjective (with nontrivial
image). By contrast, in other dimensions we expect that all classes are constructed
by assembly from lower-rank graphs.

Conjecture 10.1. Suppose that k 6D 2n C s � 3, the vcd of �n;s . Then Hk.�n;s/
is generated by the images of the assembly maps A� over all possible gluings which
give the graph Xn;s .

The examples in Section 5 confirm this conjecture for n D 1 and n D 2. It can be
seen from the description of the cohomology groups thatHk.�n;sC1/ is generated by
the images of the assembly maps Hk.�n;s/˝H0.�0;3/! Hk.�n;sC1/ in all cases
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except when k D 2nC s � 3, or when n D 2 and k D s is divisible by 4. The first
exception is excluded from the conjecture since these classes are in the vcd and the
second one is covered by Section 5.4.

The first three Morita classes and the first two Eisenstein classes are obtained as
images of assembly maps. By Bartholdi’s calculations there are nontrivial classes in
H11.Out.F7// andH8.Out.F7//. The first of these is in the vcd, and there is a natural
candidate for the second one, obtained by assembling four copies of ˛1 2 H2.�1;3/ in
a tetrahedral pattern. By Theorem 2.4 the class inH11.Out.F7// also produces a class
inH11.Aut.F7//; which cannot be the Eisenstein class by Remark 5.6. It is possible
that this class can be obtained by assembling classes inH11.�6;2/ andH0.�0;3/.

As mentioned in Remark 9.6, the homology groups H�.�n;s/ for n � 1 form a
twisted modular operad. Conjecture 10.1 together with computations in Section 5
imply that this modular operad is generated byH0.�0;3/ andH2nCs�3.�n;s/.

10.2. Injectivity of classes constructed from modular forms. In Section 5.8 we
constructed maps from spaces of modular forms to H4mC2

�
Out.F2mC3/

�
by gluing

two rank 2 graphs together along all of their leaves. These maps take the form

� W
M
0�i<m

�V2X2m;i
�
�! H4mC2

�
Out.F2mC3/

�
The first of these maps which could be nontrivial has target H42

�
Out.F23/

�
. We

do not know how to show that the image is nontrivial and it is beyond the reach of
computer calculations. Nevertheless, we make the following conjecture:

Conjecture 10.2. The restriction of � to the term
V2X2m;0 is injective.

This conjecture appeared as a question in [10]. It seems unlikely that � is injective
on
V2X2m;i for i close tom, but injectivity is still plausible for small values of i , so

we ask the following question:

Question 10.3. For which i is the restriction of � to the term
V2X2m;i injective?

We remark that Conjecture 10.2 would contradict a conjecture made by Church,
Farb, and Putman [8, Conjecture 12] concerning a stability property of the groups
H2n�3�k

�
Out.Fn/

�
for fixed k as n!1.

10.3. Odd-dimensional classes. In Section 5.7 we constructed maps from the space
M2kC2 of modular forms of weight 2k C 2 to H4kC3

�
Out.FsC2/

�
for all k and s.

For small s this map is trivial because the homology dimension is above the vcd and
for large s the map must be trivial by homology stability, but for s D 2k C 2 we
conjecture that it is highly nontrivial:

Conjecture 10.4. The map M2kC2 ! H4kC3
�
Out.F2kC4/

�
constructed in

Section 5.7 is injective for all k.
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This too is incompatible with the conjecture of Church, Farb, and Putman.
Since the vcd of Out.F2kC4/ is 4k C 5, these classes lie in codimension 2, and
Conjecture 10.4 implies that the dimension of Hvcd�2

�
Out.Fn/

�
grows at least

linearly with n when n is even.

10.4. Vanishing under stabilization. For s > 0 there are two natural ways to
stabilize �n;s , by increasing n or by increasing s, as described in Section 6. Here we
consider the stabilization increasing n.
Conjecture 10.5. If � is any gluing, then all positive-dimensional classes in the
image of the assembly map A� vanish after a single stabilization with respect to n.

The condition of positive dimension is of course necessary to exclude the classes in
H0.�n;s/which clearly do not vanish after stabilization. In Section 6 we showed that
the conjecture is true for classes in the image of an assembly map where stabilization
is done using a rank 1 factor.

We point out that Conjectures 10.1 and 10.5 imply the following for classes in
dimensions below the vcd:
Conjecture 10.6. All classes in Hk.�n;s/ for 0 < k < 2n C s � 3 vanish after a
single stabilization with respect to n.

Since the vcd of �n;s increases with n, this conjecture implies that two
stabilizations kill all homology classes.

11. Tables of results

In this section we write out tables of the cohomology of �n;s for small values of s.
The space above the diagonal in each table is left blank since it represents terms
above the virtual cohomological dimension, where the cohomology must vanish.

H 0 H 1 H 2 H 3 H 4 H 5 H 6 H 7

�1;0 k

�1;1 P.1/
�1;2 P.2/ 0

�1;3 P.3/ 0 P.13/

�1;4 P.4/ 0 P.2;12/ 0

�1;5 P.5/ 0 P.3;12/ 0 P.15/

�1;6 P.6/ 0 P.4;12/ 0 P.2;14/ 0

�1;7 P.7/ 0 P.5;12/ 0 P.3;14/ 0 P.17/

�1;8 P.8/ 0 P.6;12/ 0 P.4;14/ 0 P.2;16/ 0

Table 1. H i .�1;s Ik/ for s � 8
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H 0 H 1 H 2 H 3 H 4 H 5 H 6 H 7

�1;0 1

�1;1 1

�1;2 1 0

�1;3 1 0 1

�1;4 1 0 3 0

�1;5 1 0 6 0 1

�1;6 1 0 10 0 5 0

�1;7 1 0 15 0 15 0 1

�1;8 1 0 21 0 35 0 7 0

Table 2. Dimensions ofH i .�1;s Ik/ for s � 8

H 0 H 1 H 2 H 3 H 4 H 5 H 6 H 7 H 8 H 9 H 10

�2;0 1 0

�2;1 1 0 0

�2;2 1 0 0 0

�2;3 1 0 0 0 0

�2;4 1 0 0 0 2 3

�2;5 1 0 0 0 10 15 0

�2;6 1 0 0 0 30 45 0 5

�2;7 1 0 0 0 70 105 0 35 0

�2;8 1 0 0 0 140 210 0 140 14 35

�2;9 1 0 0 0 252 378 0 420 126 315 0

�2;10 1 0 0 0 420 630 0 1050 630 1575 0

Table 4. Dimensions ofH i .�2;s Ik/ for i; s � 10
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