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Minimal discs in hyperbolic space
bounded by a quasicircle at infinity

Andrea Seppi

Abstract. We prove that the supremum of principal curvatures of a minimal embedded disc
in hyperbolic three-space spanning a quasicircle in the boundary at infinity is estimated in a
sublinear way by the norm of the quasicircle in the sense of universal Teichmüller space, if
the quasicircle is sufficiently close to being the boundary of a totally geodesic plane. As a
by-product we prove that there is a universal constant C independent of the genus such that if the
Teichmüller distance between the ends of a quasi-Fuchsian manifold M is at most C, then M
is almost-Fuchsian. The main ingredients of the proofs are estimates on the convex hull of a
minimal surface and Schauder-type estimates to control principal curvatures.
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1. Introduction

Let H3 be hyperbolic three-space and @1H3 be its boundary at infinity. A surface S
in hyperbolic space isminimal if its principal curvatures at every pointx have opposite
values. We will denote the principal curvatures by � and ��, where � D �.x/ is
a nonnegative function on S . It was proved by Anderson [3, Theorem 4.1] that
for every Jordan curve � in @1H3 there exists a minimal embedded disc S whose
boundary at infinity coincides with � . It can be proved that if the supremum k�k1 of
the principal curvatures of S is in .�1; 1/, then � D @1S is a quasicircle, namely �
is the image of a round circle under a quasiconformal map of the sphere at infinity.

However, uniqueness does not hold in general. Anderson proved the existence of
a Jordan curve � � @1H3 invariant under the action of a quasi-Fuchsian group G
spanning several distinct minimal embedded discs, see [3, Theorem 5.3]. In this case,
� is a quasicircle and coincides with the limit set ofG. More recently in [16] invariant
curves spanning an arbitrarily large number of minimal discs were constructed. On
the other hand, if the supremum of the principal curvatures of a minimal embedded
disc S satisfies k�k1 2 .�1; 1/ then, by an application of the maximum principle,
S is the unique minimal disc asymptotic to the quasicircle � D @1S .
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The aim of this paper is to study the supremum k�k1 of the principal curvatures
of a minimal embedded disc, in relation with the norm of the quasicircle at infinity, in
the sense of universal Teichmüller space. The relations we obtain are interesting for
“small” quasicircles, that are close in universal Teichmüller space to a round circle.
The main result of this paper is the following:
Theorem A. There exist universal constants K0 > 1 and C > 0 such that every
minimal embedded disc in H3 with boundary at infinity aK-quasicircle � � @1H3,
with 1 � K � K0, has principal curvatures bounded by

k�k1 � C logK :

Recall that the minimal disc with prescribed quasicircle at infinity is unique if
k�k1 < 1. Hence we can draw the following consequence, by choosing K 00 <
minfK0; e1=C g:
Theorem B. There exists a universal constant K 00 such that every K-quasicircle
� � @1H3 with K � K 00 is the boundary at infinity of a unique minimal embedded
disc.

Applications to quasi-Fuchsian manifolds. Theorem A has a direct application
to quasi-Fuchsian manifolds. Recall that a quasi-Fuchsian manifoldM is isometric
to the quotient of H3 by a quasi-Fuchsian group G, isomorphic to the fundamental
group of a closed surface †, whose limit set is a Jordan curve � in @1H3. The
topology ofM is † �R. We denote by �C and �� the two connected components
of @1H3n� . Then�C=G and��=G inherit natural structures of Riemann surfaces
on † and therefore determine two points of T .†/, the Teichmüller space of †. Let
dT .†/ denote the Teichmüller distance on T .†/.
Corollary A. There exist universal constants C > 0 and d0 > 0 such that, for
every quasi-Fuchsian manifoldM D H3=G with dT .†/.�C=G;��=G/ < d0 and
every minimal surface S inM homotopic to † � f0g, the supremum of the principal
curvatures of S satisfies:

k�k1 � CdT .†/.�C=G;��=G/ :

Indeed, under the hypothesis of Corollary A, the Teichmüller map from one
hyperbolic end of M to the other is K-quasiconformal for K � e2d0 . Hence the
lift to the universal cover H3 of any closed minimal surface in M is a minimal
embedded disc with boundary at infinity a K-quasicircle, namely the limit set of the
corresponding quasi-Fuchsian group. Choosing d0 D .1=2/ logK0, whereK0 is the
constant of Theorem A, and choosing C as in Theorem A (up to a factor 2 which
arises from the definition of Teichmüller distance), the statement of Corollary A
follows.

We remark here that the constant C of Corollary A is independent of the genus
of †.
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A quasi-Fuchsian manifold contaning a closed minimal surface with principal
curvatures in .�1; 1/ is called almost-Fuchsian, according to the definition given
in [18]. The minimal surface in an almost-Fuchsian manifold is unique, by the above
discussion, as first observed by Uhlenbeck [24]. Hence, applying Theorem B to the
case of quasi-Fuchsian manifolds, the following corollary is proved.
Corollary B. If the Teichmüller distance between the conformal metrics at infinity
of a quasi-Fuchsian manifoldM is smaller than a universal constant d 00, thenM is
almost-Fuchsian.

Indeed, it suffices as above to pick d 00 D .1=2/ logK 00, which is again independent
on the genus of †. By Bers’ Simultaneous Uniformization Theorem, the Riemann
surfaces �˙=G determine the manifold M . Hence the space QF.†/ of quasi-
Fuchsian manifolds homeomorphic to † � R, considered up to isometry isotopic to
the identity, can be identified to T .†/ � T .†/. Under this identification, the subset
of QF.†/ composed of Fuchsian manifolds, which we denote by F.†/, coincides
with the diagonal in T .†/ � T .†/. Let us denote by AF.†/ the subset of QF.†/
composed of almost-Fuchsianmanifolds. Corollary B can be restated in the following
way:
Corollary C. There exists a uniform neighborhood N.F.†// of the Fuchsian locus
F.†/ inQF.†/ Š T .†/ � T .†/ such that N.F.†// � AF.†/.

We remark that Corollary A is a partial converse of results presented in [13],
giving a bound on the Teichmüller distance between the hyperbolic ends of an
almost-Fuchsian manifold in terms of the maximum of the principal curvatures.
Another invariant which has been studied in relation with the properties of minimal
surfaces in hyperbolic space is the Hausdorff dimension of the limit set. Corollary A
and Corollary B can be compared with the following theorem given in [22]: for
every � and �0 there exists a constant ı D ı.�; �0/ such that any stable minimal
surface with injectivity radius bounded by �0 in a quasi-Fuchsian manifold M are
in .��; �/ provided the Hausdorff dimension of the limit set ofM is at most 1C ı.
In particular, M is almost Fuchsian if one chooses � < 1. Conversely, in [17] the
authors give an estimate of the Hausdorff dimension of the limit set in an almost-
Fuchsian manifold M in terms of the maximum of the principal curvatures of the
(unique) minimal surface. The degeneration of almost-Fuchsian manifolds is also
studied in [21].

Themain steps of the proof. The proof of Theorem A is composed of several steps.
By using the technique of “description from infinity” (see [7] and [19]), we

construct a foliation F of H3 by equidistant surfaces, such that all the leaves of the
foliation have the same boundary at infinity, a quasicircle � . By using a theorem
proved in [25] and [19, Appendix], which relates the curvatures of the leaves of the
foliation with the Schwarzian derivative of the map which uniformizes the conformal
structure of one component of @1H3n� , we obtain an explicit bound for the distance
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between two surfaces FC and F� of F , where FC is concave and F� is convex, in
terms of the Bers norm of� . The distance dH3.F�; FC/ goes to 0when� approaches
a circle in @1H3.

A fundamental property of aminimal surfaceS with boundary at infinity a curve�
is that S is contained in the convex hull of � . The surfacesF� andFC of the previous
step lie outside the convex hull of � , on the two different sides. Hence every point x
of S lies on a geodesic segment orthogonal to two planes P� and PC (tangent to F�
and FC respectively) such that S is contained in the region bounded by P� and PC.
The length of such geodesic segment is bounded by the Bers norm of the quasicircle
at infinity, in a way which does not depend on the chosen point x 2 S .

The next step in the proof is then a Schauder-type estimate. Considering the
function u, defined on S , which is the hyperbolic sine of the distance from the
plane P�, it turns out that u solves the equation

�Su � 2u D 0 ; (?)

where �S is the Laplace–Beltrami operator of S . We then apply classical theory of
linear PDEs, in particular Schauder estimates, to the equation (?) in order to prove
that

kukC2.�0/ � CkukC0.�/ ;

where �0 �� � and u is expressed in normal coordinates centered at x. Recall
that �S is the Laplace–Beltrami operator, which depends on the surface S . In order
to have this kind of inequality, it is then necessary to control the coefficients of �S .
This is obtained by a compactness argument for conformal harmonic mappings,
adapted from [6], recalling that minimal discs in H3 are precisely the image of
conformal harmonic mapping from the disc to H3. However, to ensure that compact
sets in the conformal parametrization are comparable to compact sets in normal
coordinates, we will first need to prove a uniform bound of the curvature. For this
reason we will assume (as in the statement of Theorem A) that the minimal discs we
consider have boundary at infinity a K-quasicircle, with K � K0.

The final step is then an explicit estimate of the principal curvatures at x 2 S ,
by observing that the shape operator can be expressed in terms of u and the first and
second derivatives of u. The Schauder estimate above then gives a bound on the
principal curvatures just in terms of the supremum of u in a geodesic ball of fixed
radius centered at x. By using the first step, since S is contained between P� and the
nearby plane PC, we finally get an estimate of the principal curvatures of a minimal
embedded disc only in terms of the Bers norm of the quasicircle at infinity.

All the previous estimates do not depend on the choice of x 2 S . Hence the
following theorem is actually proved.

Theorem C. There exist constants K0 > 1 and C > 4 such that the principal
curvatures ˙� of every minimal surface S in H3 with @1S D � a K-quasicircle,
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with K � K0, are bounded by:

k�k1 �
Ck‰kBq
1 � Ck‰k2B

; (1.1)

where � D ‰.S1/, ‰ W bC ! bC is a quasiconformal map, conformal on bC n D,
and k‰kB denotes the Bers norm of ‰.

Observe that the estimate holds in a neighborhood of the identity (which represents
circles in @1H3), in the sense of universal Teichmüller space. Theorem A is then
a consequence of Theorem C, using the well-known fact that the Bers embedding is
locally bi-Lipschitz.

Organization of the paper. The structure of the paper is as follows. In Section 2, we
introduce the necessary notions on hyperbolic space and some properties of minimal
surfaces and convex hulls. In Section 3 we introduce the theory of quasiconformal
maps and universal Teichmüller space. In Section 4 we prove Theorem A. The
Section is split in several subsections, containing the steps of the proof. In Section 5
we discuss how Theorem B, Corollary A, Corollary B and Corollary C follow from
Theorem A.
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of Luxembourg; I would like to thank the Institution for the hospitality. I am very
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observations and advices which highly improved the presentation of the paper.

2. Minimal surfaces in hyperbolic space

We consider (3+1)-dimensional Minkowski space R3;1 as R4 endowed with the
bilinear form

hx; yi D x1y1 C x2y2 C x3y3 � x4y4 : (2.1)

The hyperboloid model of hyperbolic 3-space is

H3
D
˚
x 2 R3;1 W hx; xi D �1; x4 > 0

	
:

The induced metric from R3;1 gives H3 a Riemannian metric of constant
curvature �1. The group of orientation-preserving isometries of H3 is Isom.H3/ Š

SOC.3; 1/, namely the group of linear isometries of R3;1 which preserve orientation
and do not switch the two connected components of the quadric fhx; xi D �1g.
Geodesics in hyperbolic space are the intersection of H3 with linear planes X
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of R3;1 (when nonempty); totally geodesic planes are the intersections with linear
hyperplanes and are isometric copies of hyperbolic plane H2.

We denote by dH3.�; �/ the metric on H3 induced by the Riemannian metric. It is
easy to show that

cosh.dH3.p; q// D jhp; qij (2.2)
and other similar formulae which will be used in the paper.

Note that H3 can also be regarded as the projective domain

P.fhx; xi < 0g/ � RP 3:

Let us denote by bdS3 the region

bdS3 D
˚
x 2 R3;1 W hx; xi D 1

	
and we call de Sitter space the projectivization of bdS3,

dS3 D P.fhx; xi > 0g/ � RP 3:

Totally geodesic planes in hyperbolic space, of the form P D X \ H3, are
parametrized by the dual points X? in dS3 � RP 3.

In an affine chart fx4 ¤ 0g for the projective model of H3, hyperbolic space
is represented as the unit ball

˚
.x; y; z/ W x2 C y2 C z2 < 1

	
, using the affine

coordinates .x; y; z/ D .x1=x4; x2=x4; x3=x4/. This is called the Klein model;
although in this model the metric of H3 is not conformal to the Euclidean metric
of R3, the Klein model has the good property that geodesics are straight lines, and
totally geodesic planes are intersections of the unit ball with planes of R3. It is
well known that H3 has a natural boundary at infinity, @1H3 D P.fhx; xi D 0g/,
which is a 2-sphere and is endowed with a natural complex projective structure - and
therefore also with a conformal structure.

Given an embedded surface S in H3, we denote by @1S its asymptotic boundary,
namely, the intersection of the topological closure of S with @1H3.

2.1. Minimal surfaces. This paper is mostly concerned with smoothly embedded
surfaces in hyperbolic space. Let � W S ! H3 be a smooth embedding and let N be
a unit normal vector field to the embedded surface �.S/. We denote again by h�; �i
the Riemannian metric of H3, which is the restriction to the hyperboloid of the
bilinear form (2.1) of R3;1; r and rS are the ambient connection and the Levi-
Civita connection of the surface S , respectively. The second fundamental form of S
is defined as

rQv Qw D r
S
Qv Qw C II.v;w/N

if Qv and Qw are vector fields extending v andw. The shape operator is the .1; 1/-tensor
defined as B.v/ D �rvN . It satisfies the property

II.v;w/ D hB.v/; wi :
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Definition 2.1. An embedded surface S in H3 is minimal if tr.B/ D 0.
The shape operator is symmetric with respect to the first fundamental form of the

surface S ; hence the condition of minimality amounts to the fact that the principal
curvatures (namely, the eigenvalues of B) are opposite at every point.

An embedded disc in H3 is said to be area minimizing if any compact subdisc
is locally the smallest area surface among all surfaces with the same boundary. It is
well known that area minimizing surfaces are minimal. The problem of existence for
minimal surfaces with prescribed curve at infinity was solved by Anderson; see [3]
for the original source and [5] for a survey on this topic.
Theorem 2.2 ([3]). Given a simple closed curve � in @1H3, there exists a complete
area minimizing embedded disc S with @1S D � .

A key property used in this paper is that minimal surfaces with boundary at
infinity a Jordan curve � are contained in the convex hull of � . Although this fact
is known, we prove it here by applying maximum principle to a simple linear PDE
describing minimal surfaces.
Definition 2.3. Given a curve � in @1H3, the convex hull of � , which we denote
by CH.�/, is the intersection of half-spaces bounded by totally geodesic planes P
such that @1P does not intersect � , and the half-space is taken on the side of P
containing � .

Hereafter Hessu denotes the Hessian of a smooth function u on the surface S ,
i.e. the (1,1) tensor

Hessu.v/ D rSv gradu :

Sometimes the Hessian is also considered as a (2,0) tensor, which we denote (in the
rare occurrences) with

r
2u.v;w/ D hHessu.v/; wi :

Finally, �S denotes the Laplace–Beltrami operator of S , which can be defined as

�Su D tr.Hessu/ :

Observe that, with this definition, �S is a negative definite operator.
Proposition 2.4. Given a minimal surface S � H3 and a plane P , let u W S ! R
be the function u.x/ D sinh dH3.x; P /. Here dH3.x; P / is considered as a signed
distance from the plane P . Let N be the unit normal to S , B D �rN the shape
operator, and E the identity operatior. Then

Hessu � uE D
q
1C u2 � kgraduk2B (2.3)

as a consequence, u satisfies

�Su � 2u D 0 : (?)
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Proof. Consider the hyperboloid model for H3. Let us assume P is the plane dual
to the point p 2 dS3, meaning that P D p? \H3. Then u is the restriction to S of
the function U defined on H3:

U.x/ D sinh dH3.x; P / D hx; pi : (2.4)

Let N be the unit normal vector field to S ; we compute gradu by projecting the
gradient rU of U to the tangent plane to S :

rU D p C hp; xix (2.5)
gradu.x/ D p C hp; xix � hp;N iN : (2.6)

Now Hessu.v/ D rSv gradu, where rS is the Levi-Civita connection of S , namely
the projection of the flat connection of R3;1, and so

Hessu.x/.v/ D hp; xiv � hp;N irSv N D u.x/v C hrU;N iB.v/ :

Moreover, rU D graduC hrU;N iN and thus

hrU;N i2 D hrU;rU i � kgraduk2 D 1C u2 � kgraduk2

which proves (2.3). By taking the trace, (?) follows.

Corollary 2.5. Let S be a minimal surface in H3, with @1.S/ D � a Jordan curve.
Then S is contained in the convex hull CH.�/.

Proof. If � is a circle, then S is a totally geodesic plane which coincides with the
convex hull of � . Hence we can suppose � is not a circle. Consider a planeP� which
does not intersect� and the function u defined as in Equation (2.4) in Proposition 2.4,
with respect to P�. Suppose their mutual position is such that u � 0 in the region
of S close to the boundary at infinity (i.e. in the complement of a large compact set).
If there exists some point where u < 0, then at a minimum point �Su D 2u < 0,
which gives a contradiction. The proof is analogous for a plane PC on the other
side of � , by switching the signs. Therefore every convex set containing � contains
also S .

3. Universal Teichmüller space

The aim of this section is to introduce the theory of quasiconformal mappings and
universal Teichmüller space. We will give a brief account of the very rich and
developed theory. Useful references are [2, 11, 12, 14] and the nice survey [23].
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3.1. Quasiconformal mappings and universal Teichmüller space. We recall the
definition of quasiconformal map.
Definition 3.1. Given a domain� � C, an orientation-preserving homeomorphism

f W �! f .�/ � C

is quasiconformal if f is absolutely continuous on lines and there exists a constant
k < 1 such that

j@zf j � kj@zf j :

Let us denote �f D @zf=@zf , which is called complex dilatation of f . This is
well defined almost everywhere, hence it makes sense to take the L1 norm. Thus a
homeomorphism f W �! f .�/ � C is quasiconformal if k�f k1 < 1. Moreover,
a quasiconformal map as in Definition 3.1 is called K-quasiconformal, where

K D
1C k

1 � k
:

It turns out that the best such constantK 2 Œ1;C1/ represents themaximal dilatation
of f , i.e. the supremum over all z 2 � of the ratio between the major axis and the
minor axis of the ellipse which is the image of a unit circle under the differential dzf .

It is known that a 1-quasiconformal map is conformal, and that the composition of
a K1-quasiconformal map and a K2-quasiconformal map is K1K2-quasiconformal.
Hence composing with conformal maps does not change the maximal dilatation.

Actually, there is an explicit formula for the complex dilatation of the composition
of two quasiconformal maps f; g on �:

�gıf �1 D
@zf

@zf

�g � �f

1 � �f �g
: (3.1)

Using Equation (3.1), one can see that f and g differ by post-composition with
a conformal map if and only if �f D �g almost everywhere. We now mention
the classical and important result of existence of quasiconformal maps with given
complex dilatation.

Measurable Riemann mapping theorem. Given any measurable function � on C
there exists a unique quasiconformal map f W C ! C such that f .0/ D 0, f .1/ D 1
and �f D � almost everywhere in C.

The uniqueness part of Measurable Riemann mapping Theorem means that every
two solutions (which can be thought as maps on the Riemann sphere bC) of the
equation

.@zf /� D @zf

differ by post-composition with a Möbius transformation of bC.
Given any fixed K � 1, K-quasiconformal mappings have an important

compactness property. See [12] or [20].
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Theorem 3.2. Let K > 1 and fn W bC ! bC be a sequence of K-quasiconformal
mappings such that, for three fixed points z1; z2; z3 2 bC, the mutual spherical
distances are bounded from below: there exists a constant C0 > 0 such that

dS2.fn.zi /; fn.zj // > C0

for every n and for every choice of i; j D 1; 2; 3, i ¤ j . Then there
exists a subsequence fnk which converges uniformly to a K-quasiconformal map
f1 W bC ! bC.

3.2. Quasiconformal deformations of the disc. It turns out that every quasicon-
formal homeomorphisms of D to itself extends to the boundary @D D S1. Let us
consider the space:

QC.D/ D fˆ W D ! D quasiconformalg = �

where ˆ � ˆ0 if and only if ˆjS1D ˆ0jS1 . Universal Teichmüller space is then
defined as

T .D/ D QC.D/=Möb.D/ ;

where Möb.D/ is the subgroup of Möbius transformations of D. Equivalently, T .D/
is the space of quasiconformal homeomorphisms ˆ W D ! D which fix 1, i and �1
up to the same relation �.

Such quasiconformal homeomorphisms of the disc can be obtained in the
following way. Given a domain �, elements in the unit ball of the (complex-valued)
Banach space L1.D/ are called Beltrami differentials on �. Let us denote this unit
ball by:

Belt.D/ D f� 2 L1.D/ j k�k1 < 1g :

Given any � in Belt.D/, let us define O� on C by extending � on C nD so that

O�.z/ D �.1=z/ :

The quasiconformal map f � W C ! C such that�f � D O� fixing 1, i and�1, whose
existence is provided by Measurable Riemann mapping Theorem, maps @D to itself
by the uniqueness part. Therefore f � restricts to a quasiconformal homeomorphism
of D to itself.

The Teichmüller distance on T .D/ is defined as

dT .D/.Œˆ�; Œˆ
0�/ D

1

2
inf logK.ˆ�11 ıˆ

0
1/ ;

where the infimum is taken over all quasiconformal maps ˆ1 2 Œˆ� and ˆ01 2 Œˆ0�.
It can be shown that dT .D/ is a well defined distance on Teichmüller space, and
.T .D/; dT .D// is a complete metric space.
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3.3. Quasicircles and Bers embedding. We now want to discuss another inter-
pretation of Teichmüller space, as the space of quasidiscs, and the relation with the
Schwartzian derivative and the Bers embedding.
Definition 3.3. A quasicircle is a simple closed curve � in bC such that � D ‰.S1/
for a quasiconformal map ‰. Analogously, a quasidisc is a domain� in bC such that
� D ‰.D/ for a quasiconformal map ‰ W bC ! bC.

Let us denote D� D fz 2 bC W jzj > 1g D fz 2 C W jzj > 1g [ f1g. We
remark that in the definition of quasicircle, it would be equivalent to say that � is the
image of S1 by a K 0-quasiconformal map of bC (not necessarily conformal on D�).
However, the maximal dilatation K 0 might be different, with K � K 0 � 2K. Hence
we consider the space of quasidiscs:

QD.D/ D f‰ W bC ! bC W ‰jD is quasiconformal and ‰jD� is conformalg= � ;

where the equivalence relation is ‰ � ‰0 if and only if ‰jD� D ‰0jD� . We will
again consider the quotient ofQD.D/ by Möbius transformation.

Given a Beltrami differential � 2 Belt.D/, one can construct a quasiconformal
map on bC, by applying Measurable Riemann mapping Theorem to the Beltrami
differential obtained by extending � to 0 on D�. The quasiconformal map obtained
in this way (fixing the three points 0,1 and 1) is denoted by f�. A well-known
lemma (see [12, §5.4, Lemma 3]) shows that, given two Beltrami differentials�;�0 2
Belt.D/, f �jS1 D f �

0

jS1 if and only if f�jD� D f�0 jD� . Using this fact it can
be shown that T .D/ is identified to QD.D/=Möb.bC/, or equivalently to the subset
ofQD.D/ which fix 0, 1 and1.

We will say that a quasicircle � is a K-quasicircle if

K D inf
�D‰.S1/;
‰2QD.D/

K.‰/ :

It is easily seen that the condition that � D ‰.S1/ is a K-quasicircle is equivalent
to the fact that the element Œˆ� of the first model T .D/ D QC.D/=Möb.D/ which
corresponds to Œ‰� has Teichmüller distance from the identity dT .D/.Œˆ�; Œid�/ D
.logK/=2.

By using the model of quasidiscs for Teichmüller space, we now introduce the
Bers norm on T .D/. Recall that, given a holomorphic function f W � ! C with
f 0 ¤ 0 in �, the Schwarzian derivative of f is the holomorphic function

Sf D

�
f 00

f 0

�0
�
1

2

�
f 00

f 0

�2
:

It can be easily checked that S1=f D Sf , hence the Schwarzian derivative can be
defined also for meromorphic functions at simple poles. The Schwarzian derivative
vanishes precisely on Möbius transformations.
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Let us now consider the space of holomorphic quadratic differentials on D.
We will consider the following norm, for a holomorphic quadratic differential
q D h.z/dz2:

kqk1 D sup
z2D

e�2�.z/jh.z/j ;

where e2�.z/jdzj2 is the Poincaré metric of constant curvature �1 on D. Observe
that kqk1 behaves like a function, in the sense that it is invariant by pre-composition
with Möbius transformations of D, which are isometries for the Poincaré metric.

We now define the Bers embedding of universal Teichmüller space. This is
the map ˇD which associates to Œ‰� 2 T .D/ D QD.D/=Möb.bC/ the Schwarzian
derivative S‰. Let us denote by k�kQ.D�/ the norm on holomorphic quadratic
differentials on D� obtained from the k�k1 norm on D, by identifying D with D� by
an inversion in S1. Then

ˇD W T .D/! Q.D�/
is an embedding of T .D/ in the Banach space .Q.D�/; k�kQ.D�// of bounded
holomorphic quadratic differentials (i.e. for which kqkQ.D�/ < C1). Finally, the
Bers norm of en element ‰ 2 T .D/ is

k‰kB D kˇDŒ‰�k1 D kS‰kQ.D�/ :

The fact that the Bers embedding is locally bi-Lipschitz will be used in the
following. See for instance [10, Theorem 4.3]. In the statement, we again
implicitly identify the models of universal Teichmüller space by quasiconformal
homeomorphisms of the disc (denoted by Œˆ�) and by quasicircles (denoted by Œ‰�).
Theorem 3.4. Let r > 0. There exist constants b1 and b2 D b2.r/ such that, for
every Œ‰�; Œ‰0� in the ball of radius r for the Teichmüller distance centered at the
origin (i.e. dT .D/.Œ‰�; Œid�/; dT .D/.Œ‰0�; Œid�/ < r),

b1kˇDŒ‰� � ˇDŒ‰�k1 � dT .D/.Œ‰�; Œ‰
0�/ � b2kˇDŒ‰� � ˇDŒ‰�k1 :

We conclude this preliminary part by mentioning a theorem by Nehari, see for
instance [20] or [11].

Nehari theorem. The image of the Bers embedding is contained in the ball of
radius 3=2 in .Q.D�/; k�kQ.D�//, and contains the ball of radius 1=2.

4. Minimal surfaces in H3

The goal of this section is to prove Theorem A. The proof is divided into several
steps, whose general idea is the following:
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(1) Given ‰ 2 QD.D/, if k‰kB is small, then there is a foliation F of a convex
subsetC ofH3 by equidistant surfaces. All the surfacesF ofF have asymptotic
boundary the quasicircle � D ‰.S1/. Hence the convex hull of � is trapped
between two parallel surfaces, whose distance is estimated in terms of k‰kB.

(2) As a consequence of point ((1)), given a minimal surface S in H3 with
@1.S/ D � , for every point x 2 S there is a geodesic segment through x of
small length orthogonal at the endpoints to two planes P�,PC which do not
intersect C. Moreover S is contained between P� and PC.

(3) Since S is contained between two parallel planes close to x, the principal
curvatures of S in a neighborhood of x cannot be too large. In particular,
we use Schauder theory to show that the principal curvatures of S at a
point x are uniformly bounded in terms of the distance from P� of points
in a neighborhood of x.

(4) Finally, the distance fromP� of points ofS in a neighborhood of x is estimated
in terms of the distance of points in PC from P�, hence is bounded in terms
of the Bers norm k‰kB.

It is important to remark that the estimates we give are uniform, in the sense that they
do not depend on the point x or on the surface S , but just on the Bers norm of the
quasicircle at infinity. The above heuristic arguments are formalized in the following
subsections.

4.1. Description from infinity. The main result of this part is the following. See
Figure 4.1.
Proposition 4.1. Let A < 1=2. Given an embedded minimal disc S in H3 with
boundary at infinity a quasicircle @1S D ‰.S1/ with k‰kB � A, every point of S
lies on a geodesic segment of length at most arctanh.2A/ orthogonal at the endpoints
to two planes P� and PC, such that the convex hull CH.�/ is contained between P�
and PC.

Remark 4.2. Aconsequence of Proposition 4.1 is that theHausdorff distance between
the two boundary components of CH.�/ is bounded by arctanh.2k‰kB/. Hence it
would be natural to try to define in such a way a notion of thickness or width of the
convex hull:

w.�/ D max
n

inf
x2@�CH.�/

d.x; @CCH.�//; inf
x2@CCH.�/

d.x; @�CH.�//
o

However, a bound on the Hausdorff distance is not sufficient for the purpose of
this paper. It will become clear in the proof of Theorem C and Theorem A, and
in particular for the application of Lemma 4.15, that the necessary property is the
existence of two support planes which are both orthogonal to a geodesic segment of
short length through any point x0 2 S .
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We review here some important facts on the so-called description from infinity
of surfaces in hyperbolic space. For details, see [7] and [19]. Given an embedded
surface S in H3 with bounded principal curvatures, let I be its first fundamental
form and II the second fundamental form. Recall we defined B D �rN its shape
operator, for N the oriented unit normal vector field (we fix the convention that N
points towards the x4 > 0 direction in R3;1), so that II D I.B �; �/. Denote by E the
identity operator. Let S� be the �-equidistant surface from S (where the sign of �
agrees with the choice of unit normal vector field to S ). For small �, there is a map
from S to S� obtained following the geodesics orthogonal to S at every point.

P−

P+

x0

Γ

S

Figure 4.1. The statement of Proposition 4.1. The geodesic segment through x0 has length� w,
for w D arctanh.2k‰kB/, and this does not depend on x0 2 S .

Lemma 4.3. Given a smooth surface S in H3, let S� be the surface at distance �
from S , obtained by following the normal flow at time �. Then the pull-back to S of
the induced metric on the surface S� is given by:

I� D I..cosh.�/E � sinh.�/B/�; .cosh.�/E � sinh.�/B/�/ : (4.1)

The second fundamental form and the shape operator of S� are given by

II� D I..� sinh.�/E C cosh.�/B/�; .cosh.�/E � sinh.�/B/�/ (4.2)
B� D .cosh.�/E � sinh.�/B/�1.� sinh.�/E C cosh.�/B/ : (4.3)

Proof. In the hyperboloid model, let � W D ! H2 be the minimal embedding of the
surface S , with oriented unit normal N . The geodesics orthogonal to S at a point x
can be written as


x.�/ D cosh.�/�.x/C sinh.�/N.x/ :
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Then we compute

I�.v; w/ D hd
x.�/.v/; d
x.�/.w/i

D hcosh.�/d�x.v/C sinh.�/dNx.v/; cosh.r/d�x.w/C sinh.�/dNx.w/i
D I.cosh.�/v � sinh.�/B.v/; cosh.�/w � sinh.�/B.w// :

The formula for the second fundamental form follows from the fact that II� D
�
1
2

dI�
d�

.

It follows that, if the principal curvatures of a minimal surface S are � and ��,
then the principal curvatures of S� are

�� D
� � tanh.�/
1 � � tanh.�/

; �0� D
�� � tanh.�/
1C � tanh.�/

: (4.4)

In particular, if �1 � � � 1, then I� is a non-singular metric for every �. The
surfaces S� foliate H3 and they all have asymptotic boundary @1S� D @1S .

We now define the first, second and third fundamental form at infinity associated
to S . Recall the second and third fundamental form of S are II D I.B �; �/ and
III D I.B �; B �/.

I � D lim
�!1

2e�2�I� D
1

2
I..E � B/�; .E � B/�/ D

1

2
.I � 2II C III / (4.5)

B� D .E � B/�1.E C B/ (4.6)

II � D
1

2
I..E C B/�; .E � B/�/ D I �.B��; �/ (4.7)

III � D I �.B��; B��/ (4.8)

We observe that the metric I� and the second fundamental form can be recovered as

I� D
1

2
e2�I � C II � C

1

2
e�2�III � (4.9)

II� D �
1

2

dI�

d�
D
1

2
I �..e�E C e��B�/�; .�e�E C e��B�/�/ (4.10)

B� D .e
�E C e��B�/�1.�e�E C e��B�/ (4.11)

The following relation can be proved by some easy computation:
Lemma 4.4 ([19, Remark 5.4 and 5.5]). The embedding data at infinity .I �; B�/
associated to an embedded surface S in H3 satisfy the equation

t r.B�/ D �KI� ; (4.12)

where KI� is the curvature of I �. Moreover, B� satisfies the Codazzi equation with
respect to I �:

drI�B� D 0 : (4.13)
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A partial converse of this fact, which can be regarded as a fundamental theorem
from infinity, is the following theorem. This follows again by the results in [19],
although it is not stated in full generality here.
Theorem 4.5. Given a Jordan curve � � @1H3, let .I �; B�/ be a pair of a metric
in the conformal class of a connected component of @1H3 n � and a self-adjoint
.1; 1/-tensor, satisfiying the conditions (4.12) and (4.13) as in Lemma 4.4. Assume
the eigenvalues of B� are positive at every point. Then there exists a foliation of H3

by equidistant surfaces S�, for which the first fundamental form at infinity (with
respect to S D S0) is I � and the shape operator at infinity is B�.

We want to give a relation between the Bers norm of the quasicircle � and the
existence of a foliation of H3 by equidistant surfaces with boundary � , containing
both convex and concave surfaces. We identify @1H3 to bC by means of the
stereographic projection, so that D correponds to the lower hemisphere of the sphere
at infinity. The following property will be used, see [25] or [19, Appendix A].
Theorem 4.6. Let � � @1H3 be a Jordan curve. If I � is the complete hyperbolic
metric in the conformal class of a connected component � of @1H3 n � , and II �0
is the traceless part of the second fundamental form at infinity II �, then �II �0 is
the real part of the Schwarzian derivative of the isometry ‰ W D� ! �, namely the
map ‰ which uniformizes the conformal structure of �:

II �0 D �Re.S‰/ : (4.14)

We now derive, by straightforward computation, a useful relation.
Lemma 4.7. Let � D ‰.S1/ be a quasicircle, for‰ 2 QD.D/. If I � is the complete
hyperbolic metric in the conformal class of a connected component� of @1H3 n � ,
and B�0 is the traceless part of the shape operator at infinity B�, then

sup
z2�

jdetB�0 .z/j D k‰k
2
B : (4.15)

Proof. From Theorem 4.6, B�0 is the real part of the holomorphic quadratic
differential �S‰. In complex conformal coordinates, we can assume that

I � D e2�jdzj2 D

�
0 1

2
e2�

1
2
e2� 0

�
and S‰ D h.z/dz2, so that

II �0 D �
1

2
.h.z/dz2 C h.z/d Nz2/ D �

�
1
2
h 0

0 1
2
Nh

�
and finally

B�0 D .I
�/�1II �0 D �

�
0 e�2� Nh

e�2�h 0

�
:
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Therefore jdetB�0 .z/j D e�4�.z/jh.z/j
2. Moreover, by definition of Bers embedding,

B.Œ‰�/ D S‰, because ‰ is a holomorphic map from D� which maps S1 D @D
to � . Since

k‰k2B D sup
z2�

.e�4�.z/jh.z/j2/ ;

this concludes the proof.

We are finally ready to prove Proposition 4.1.

Proof of Proposition 4.1. Suppose again I � is a hyperbolic metric in the conformal
class of �. Since tr.B�/ D 1 by Lemma 4.4, we can write B� D B�0 C .1=2/E,
where B�0 is the traceless part of B�. The symmetric operator B� is diagonalizable;
therefore we can suppose its eigenvalues at every point are .aC1=2/ and .�aC1=2/,
where a is a positive number depending on the point. Hence˙a are the eigenvalues
of the traceless part B�0 .

By using Equation (4.15) of Lemma 4.7, and observing that jdetB�0 j D a2, one
obtains k‰kB D kak1. Since this quantity is less than A < 1=2 by hypothesis, at
every point a < 1=2, and therefore the eigenvalues of B� are positive at every point.

ByTheorem4.5 there exists a smooth foliationF ofH3 by equidistant surfacesS�,
whose first fundamental form and shape operator are as in equations (4.9) and (4.11)
above. We are going to compute

�1 D inf
˚
� W B� is non-singular and negative definite

	
and

�2 D sup
˚
� W B� is non-singular and positive definite

	
:

Hence S�1 is concave and S�2 is convex. By Corollary 2.5, S is contained in the
region bounded by S�1 and S�2 . We are therefore going to compute �1 � �2. From
the expression (4.11), the eigenvalues of B� are

�� D
�2e2� C .2aC 1/

2e2� C .2aC 1/
and

�0� D
�2e2� C .1 � 2a/

2e2� C .1 � 2a/
:

Since a < 1=2, the denominators of �� and �0� are always positive; one has �� < 0 if
and only if e2� > aC1=2, whereas �0� < 0 if and only if e2� > �aC1=2. Therefore

�1 � �2 D
1

2

�
log

�
AC

1

2

�
� log

�
�AC

1

2

��
D
1

2
log

�
1C 2A

1 � 2A

�
D arctanh.2A/ :
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This shows that every point x on S lies on a geodesic orthogonal to the leaves
of the foliation, and the distance between the concave surface S�1 and the convex
surface S�2 , on the two sides of x, is less than arctanh.2A/. Taking P� and PC the
planes tangent to S�1 and S�2 , the claim is proved.

Remark 4.8. The proof relies on the observation — given in [19] and expressed
here implicitly in Theorem 4.5 — that if the shape operator at infinity B� is positive
definite, then one reconstructs the shape operator B� as in Equation (4.11), and
for � D 0 the principal curvatures are in .�1; 1/. Hence from our argument it
follows that, if the Bers norm k‰kB is less than 1=2, then one finds a surface S with
@1S D ‰.S1/, with principal curvatures in .�1; 1/. This is a special case of the
results in [8], where the existence of such surface is used to prove (using techniques
of hyperbolic geometry) a generalization of the univalence criterion of Nehari.

4.2. Boundedness of curvature. Recall that the curvature of a minimal surface S is
given by KS D �1 � �2, where˙� are the principal curvatures of S . We will need
to show that the curvature of a complete minimal surface S is also bounded below
in a uniform way, depending only on the complexity of @1S . This is the content of
Lemma 4.11.

We will use a conformal identification of S with D. Under this identification the
metric takes the form gS D e2f jdzj2, jdzj2 being the Euclidean metric on D. The
following uniform bounds on f are known (see [1]).

Lemma 4.9. Let g D e2f jdzj2 be a conformal metric on D. Suppose the curvature
of g is bounded above, Kg < ��2 < 0. Then

e2f <
4

�2.1 � jzj2/2
: (4.16)

Analogously, if �ı2 < Kg , then

e2f >
4

ı2.1 � jzj2/2
: (4.17)

Remark 4.10. A consequence of Lemma 4.9 is that, for a conformal metric g D
e2f jdzj2 on D, if the curvature of g is bounded from above byKg < ��2 < 0, then
a conformal ball B0.p;R/ (i.e. a ball of radius R for the Euclidean metric jdzj2) is
contained in the geodesic ball of radius R0 (for the metric g) centered at the same
point, where R0 only depends from R. This can be checked by a simple integration
argument, and R0 is actually obtained by multiplying R for the square root of the
constant in the RHS of Equation (4.16). Analogously, a lower bound on the curvature,
of the form �ı2 < Kg , ensures that the geodesic ball of radius R centered at p is
contained in the conformal ball B0.p;R0/, where R0 depends on R and ı.
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Lemma 4.11. For everyK0 > 1, there exists a constantƒ0 > 0 such that all minimal
surfaces S with @1S a K-quasicircle, K � K0, have principal curvatures bounded
by k�k1 < ƒ0.

We will prove Lemma 4.11 by giving a compactness argument. It is known that
a conformal embedding � W D ! H3 is harmonic if and only if �.D/ is a minimal
surface, see [9]. The following lemma is proved in [6] in the more general case of
CMC surfaces. We give a sketch of the proof here for convenience of the reader.
Lemma 4.12. Let �n W D ! H3 a sequence of conformal harmonic maps such that
�.0/ D x0 and @1.�n.D// D �n is a Jordan curve, and assume �n ! � in the
Hausdoff topology. Then there exists a subsequence �nk which converges C1 on
compact subsets to a conformal harmonicmap�1 W D ! H3 with @1.�1.D// D � .

Sketch of proof. Consider the coordinates on H3 given by the Poincaré model,
namely H3 is the unit ball in R3. Let � ln, for l D 1; 2; 3, be the components
of �n in such coordinates. Fix R > 0 for the moment.

Since the curvature of the minimal surfaces �n.D/ is less than �1, from
Lemma 4.9 (setting � D 1) and Remark 4.10, for every nwe have that �n.B0.0; 2R//
is contained in a geodesic ball for the induced metric of fixed radius R0 centered
at x0. In turn, the geodesic ball for the induced metric is clearly contained in the ball
BH3.x0; R

0/, for the hyperbolic metric of H3. We remark that the radius R0 only
depends on R.

We will apply standard Schauder theory (compare also similar applications in
Sections 4.3) to the harmonicity condition

�0�
l
n D �

�
� ljk ı �

� @�ji
@x1

@�ki
@x1
C
@�

j
i

@x2
@�ki
@x2

!
DW hln (4.18)

for the Euclidean Laplace operator�0, where � ljk are the Christoffel symbols of the
hyperbolic metric in the Poincaré model.

The RHS in Equation (4.18), which is denoted by hln, is uniformly bounded on
B0.0; 2R/. Indeed Christoffel symbols are uniformly bounded, since �n.B0.0; 2R//
is contained in a compact subset of H3, as already remarked. The partial derivatives
of � ln are bounded too, since one can observe that, if the induced metric on S
is e2f jdzj2, then 2e2f D kd�k2, where

kd�k2 D
4

.1 �†i .� in/
2/2

��
@�1n
@x

�2
C

�
@�2n
@x

�2
C

�
@�3n
@x

�2
C

�
@�1n
@y

�2
C

�
@�2n
@y

�2
C

�
@�3n
@y

�2 �
:

Hence from Lemma 4.9 and again the fact that �n.B0.0; 2R// is contained in a
compact subset of H3, all partial derivatives of �n are uniformly bounded.
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TheSchauder estimate for the equation�0� ln D hln [15] give (for every˛ 2 .0; 1/)
a constant C1 such that:

k� lnkC1;˛.B0.0;R1// � C1

�
k� lnkC0.B0.0;2R// C kh

l
nkC0.B0.0;2R//

�
:

Hence one obtains uniform C 1;˛.B0.0; R1// bounds on � ln, where R < R1 < 2R,
and this provides C 0;˛.B0.0; R1// bounds on hln. Then the following estimate of
Schauder-type

k� lnkC2;˛.B0.0;R2// � C2

�
k� lnkC0.B0.0;R1// C kh

l
nkC1;˛.B0.0;R1//

�
provide C 2;˛ bounds on B0.0; R2/, for R < R2 < R1. By a boot-strap argument
which repeats this construction, uniform C k;˛.B0.0; R// for � ln are obtained for
every k.

By Ascoli–Arzelà theorem, one can extract a subsequence of �n converging
uniformly in C k;˛.B0.0; R// for every k. By applying a diagonal procedure one can
find a subsequence converging C1. One concludes the proof by a diagonal process
again on a sequence of compact subsets B0.0; Rn/ which exhausts D.

The limit function �1 W D ! H3 is conformal and harmonic, and thus gives a
parametrization of a minimal surface. It remains to show that @1.�1.D// D � .
Since each �n.D/ is contained in the convex hull of �n, the Hausdorff convergence
on the boundary at infinity ensures that �1.D/ is contained in the convex hull of � ,
and thus @1.�1.D// � � .

For the other inclusion, assume there exists a point p 2 � which is not in the
boundary at infinity of �1.D/. Then there is a neighborhood of p which does not
intersect �1.D/, and one can find a totally geodesic plane P such that a half-space
bounded by P intersects � (in p, for instance), but does not intersect �1.D/. But
such half-space intersects �n.D/ for large n and this gives a contradiction.

Proof of Lemma 4.11. We argue by contradiction. Suppose there exists a sequence
of minimal surfaces Sn bounded byK-quasicircles �n, withK � K0, with curvature
in a pointKSn.xn/ � �n. Let us consider isometries Tn of H3, so that Tn.xn/ D x0.

We claim that, since the point x0 is contained in the convex hull of Tn.�n/
for every n, the quasicircles Tn.�n/ can be assumed to be the image of S1 under
K0-quasiconformal maps ‰n W bC ! bC, such that ‰n maps three points of S1 (say
1, i and �1) to points of Tn.�n/ at uniformly positive distance from one another in
the spherical metric (thus satisfying the hypothesis of Theorem 3.2). Indeed, recall
that composing a K0-quasiconformal map by a conformal map does not change
the constant K0. Thus it suffices to prove that the quasicircles Tn.�n/ D ‰n.S

1/

(‰n aK0-quasiconformal map) contain three points un; vn; wn at uniformly positive
distance from one another, and then one can re-parameterize the quasicircle by pre-
composing ‰n with a biholomorphism of bC (which is determined by the image
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of three points on S1) so that 1; i;�1 are mapped to un; vn; wn. Moreover, it
suffices to prove that the quasicircles Tn.�n/ contain two points un; vn with distance
dS2.un; vn/ > 2C , whereC is some constant independent fromn. Indeed, the Jordan
curve Tn.�n/ will then necessarily contain a third point wn such that dS2.un; wn/
and dS2.vn; wn/ are larger thanC . The latter claim is easily proved by contradiction:
if the statement was not true, then for every integer j there would exists a quasicircle
Tnj .�nj / which is contained in a ball of radius 1=j for the spherical metric on S2.
But then it is clear that, for large j , the convex hull of Tnj .�nj / would not contain
the fixed point x0. See Figure 4.2.

x0

Tn(Γn)

Figure 4.2. If the quasicircle Tn.�n/ is contained in a small ball for the spherical metric, then
the (fixed) point x0 cannot be in the convex hull of the quasicircle.

By the compactness property in Theorem3.2, there exists a subsequenceTnk .�nk /
converging to a K-quasicircle �1, with K � K0. By Lemma 4.12, the minimal
surfaces Tnk .Snk / converge C1 on compact subsets (up to a subsequence) to a
smooth minimal surface S1 with @1.S1/ D �1. Hence the curvature of Tnk .Snk /
at the point x0 converges to the curvature ofS1 at x0. This contradicts the assumption
that the curvature at the points xn goes to infinity.

It follows that the curvature of S is bounded by �ı2 < KS < ��
2, where ı is

some constant, whereas we can take � D 1.

Remark 4.13. The main result of this section, Theorem A, is indeed a quantitative
version of Lemma 4.11, which gives a control of how an optimal constant ƒ0 would
vary if K0 is chosen close to 0.
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4.3. Schauder estimates. By using equation (2.3), we will eventually obtain
bounds on the principal curvatures of S . For this purpose, we need bounds on
u D sinh dH3.�; P�/ and its derivatives. Schauder theory plays again an important
role: since u satisfies the equation

�Su � 2u D 0 ; (?)

we will use uniform estimates of the form

kukC2.B0.0;R2 //
� CkukC0.B0.0;R//

for the function u, written in a suitable coordinate system. The main difficulty is
basically to show that the operators

u 7! �Su � 2u

are strictly elliptic and have uniformly bounded coefficients.
Proposition 4.14. Let K0 > 1 and R > 0 be fixed. There exist a constant C > 0

(only depending on K0 and R) such that for every choice of:
� A minimal embedded disc S � H3 with @1S aK-quasicircle, withK � K0;
� A point x 2 S ;
� A plane P�;

the function u.�/ D dH3.�; P�/ expressed in terms of normal coordinates of S
centered at x, namely

u.z/ D sinh dH3.expx.z/; P�/

where expx W R2 Š TxS ! S denotes the exponential map, satisfies the Schauder-
type inequality

kukC2.B0.0;R2 //
� CkukC0.B0.0;R// : (4.19)

Proof. This will be again an argument by contradiction, using the compactness
property.

Suppose our assertion is not true, and find a sequence of minimal surfaces Sn
with @1.Sn/ D �n a K-quasicircle (K � K0), a sequence of points xn 2 Sn, and
a sequence of planes Pn, such that the functions un.z/ D sinh dH3.expxn.z/; Pn/
have the property that

kunkC2.B0.0;R2 //
� nkukC0.B0.0;R// :

We can compose with isometries Tn of H3 so that Tn.xn/ D x0 for every n and the
tangent plane to Tn.Sn/ at x0 is a fixed plane. Let S 0n D Tn.Sn/, � 0n D Tn.�n/ and
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P 0n D Tn.Pn/. Note that � 0n are again K-quasicircles, for K � K0, and the convex
hull of each � 0n contains x0.

Using this fact, it is then easy to see — as in the proof of Lemma 4.11 —
that one can find K0-quasiconformal maps ‰n such that ‰n.S1/ D � 0n and ‰n.1/,
‰n.i/ and ‰n.�1/ are at uniformly positive distance from one another. Therefore,
using Theorem 3.2 there exists a subsequence of ‰n converging uniformly to a
K0-quasiconformal map. This gives a subsequence � 0nk converging to � 01 in the
Hausdorff topology.

By Lemma 4.12, considering S 0n as images of conformal harmonic embeddings
� 0n W D ! H3, we find a subsequence of � 0nk converging C1 on compact subsets
to the conformal harmonic embedding of a minimal surface S 01. Moreover, by
Lemma 4.11 and Remark 4.10, the convergence is also C1 on the image under the
exponential map of compact subsets containing the origin of R2.

It follows that the coefficients of the Laplace–Beltrami operators �S 0n on a
Euclidean ball B0.0; R/ of the tangent plane at x0, for the coordinates given by
the exponential map, converge to the coefficients of �S 01 . Therefore the operators
�S 0n � 2 are uniformly strictly elliptic with uniformly bounded coefficients. Using
these two facts, one can apply Schauder estimates to the functions un, which are
solutions of the equations �S 0n.un/ � 2un D 0. See again [15] for a reference. We
deduce that there exists a constant c such that

kunkC2.B0.0;R2 //
� ckunkC0.B0.0;R//

for all n, and this gives a contradiction.

4.4. Principal curvatures. We can now proceed to complete the proof of Theo-
rem A. Fix some w > 0. We know from Section 4.1 that if the Bers norm is smaller
than the constant .1=2/ tanh.w/, then every point x on S lies on a geodesic segment l
orthogonal to two planes P� and PC at distance dH3.P�; PC/ < w. Obviously the
distance is achieved along l .

Fix a point x 2 S . Denote again u D sinh dH3.�; P�/. By Proposition 4.14,
first and second partial derivatives of u in normal coordinates on a geodesic ball
BS .x;R=2/ of fixed radius R=2 are bounded by CkukC0.BS .x;R//. The last step for
the proof is an estimate of the latter quantity in terms of w.

We first need a simple lemma which controls the distance of points in two parallel
planes, close to the common orthogonal geodesic. Compare Figure 4.3.

Lemma 4.15. Let p 2 P�, q 2 PC be the endpoints of a geodesic segment l
orthogonal to P� and PC of length w. Let p0 2 P� a point at distance r from p and
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let d D dH3..�jPC/
�1.p0/; P�/. Then

tanh d D cosh r tanhw (4.20)

sinh d D cosh r
sinhwp

1 � .sinh r/2.sinhw/2
: (4.21)

Proof. This is easy hyperbolic trigonometry, which can actually be reduced to
a 2-dimensional problem. However, we give a short proof for convenience of
the reader. In the hyperboloid model, we can assume P� is the plane x3 D 0,
p D .0; 0; 0; 1/ and the geodesic l is given by l.t/ D .0; 0; sinh t; cosh t /. Hence PC
is the plane orthogonal to l 0.w/ D .0; 0; coshw; sinhw/ passing through l.w/ D
.0; 0; sinhw; coshw/. The point p0 has coordinates

p0 D .cos � sinh r; sin � sinh r; 0; cosh r/

and the geodesic l1 orthogonal to P� through p0 is given by

l1.d/ D .cosh d/.p0/C .sinh d/.0; 0; 1; 0/ :

We have l1.d/ 2 PC if and only if hl1.d/; l 0.w/i D 0, which is satisfied for

tanh d D cosh r tanhw ;

provided cosh r tanhw < 1. The second expression follows straightforwardly.

p

q

P−

P+

π

BP−(p, r)
p′

q′

Figure 4.3. The setting of Lemma 4.15. Here dH3.p; p0/ D r and q0 D .�jPC/�1.p0/.

We are finally ready to prove Theorem C. The key point for the proof is that all
the quantitative estimates previously obtained in this section are independent on the
point x 2 S .
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Theorem C. There exist constants K0 > 1 and C > 4 such that the principal
curvatures ˙� of every minimal surface S in H3 with @1S D � a K-quasicircle,
with K � K0, are bounded by:

k�k1 �
Ck‰kBq
1 � Ck‰k2B

(4.22)

where � D ‰.S1/, for ‰ 2 QD.D/.

Proof. Fix K0 > 1. Let S a minimal surface with @1S a K-quasicircle, K � K0.
Let x 2 S an arbitrary point on a minimal surface S . By Proposition 4.1, we find
two planes P� and PC whose common orthogonal geodesic passes through x, and
has length w D arctanh.2k‰kB/.

Now fixR > 0. By Proposition 4.14, applied to the point x and the plane P�, we
obtain that the first and second derivatives of the function

u D sinh dH3.expx.�/; P�/

on a geodesic ball BS .x;R=2/ for the induced metric on S , are bounded by the
supremum of u itself, on the geodesic ball BS .x;R/, multiplied by a universal
constant C D C.K0; R/.

P−

P+

π

BP−(π(x), R)

x

BS(x,R) BH3(x,R)

Figure 4.4. Projection to a plane P� in H3 is distance contracting. The dash-dotted ball
schematically represents a geodesic ball of H3.

Let � W H3 ! P� the orthogonal projection to the plane P�. The map �
is contracting distances, by negative curvature in the ambient manifold. Hence
�.BS .x;R// is contained in BP�.�.x/; R/. Moreover, since S is contained in the
region bounded by P� and PC, clearly supfu.x/ W x 2 BS .0; R/g is less than the
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hyperbolic sine of the distance of points in .�jPC/�1.BP�.�.x/; R// from P�. See
Figure 4.4.

Hence, using Proposition 4.15 (in particular Equation (4.21)), we get:

kukC0.BS .x;R// � coshR
sinhwp

1 � .sinhR/2.sinhw/2
; (4.23)

where we recall that w D arctanh.2k‰kB/.
We finally give estimates on the principal curvatures of S , in terms of the

complexity of @1.S/ D ‰.S1/. We compute such estimate only at the point
x 2 S ; by the independence of all the above construction from the choice of x, the
proof will be concluded. From Equation (2.3), we have

B D
1q

1C u2 � kgraduk2
.Hessu � uE/ :

Moreover, in normal coordinates centered at the point x, the expression for the
Hessian and the norm of the gradient at x are just

.Hessu/ji D
@2u

@xi@xj
; kgraduk2 D

�
@u

@x1

�2
C

�
@u

@x2

�2
:

It then turns out that the principal curvatures˙� of S , i.e. the eigenvalues of B , are
bounded by

j�j �
C1kukC0.BS .x;R//q
1 � C1kuk

2
C0.BS .x;R//

: (4.24)

The constant C1 involves the constant C of Equation (4.19) in the statement of
Proposition 4.14. Substituting Equation (4.23) into Equation (4.24), with some
manipulation one obtains

k�k1 �
C1.coshR/.tanhw/p

1 � .1C C1/.coshR/2.tanhw/2
: (4.25)

On the other hand tanhw D 2k‰kB. Upon relabelling C with a larger constant, the
inequality

k�k1 �
Ck‰kBq
1 � Ck‰k2B

is obtained.

Remark 4.16. Actually, the statement of Theorem C is true for any choice ofK0 > 1
(and the constantC varies accordingly with the choice ofK0). However, the estimate
in Equation (4.22) does not make sense when k‰k2 � 1=C . Indeed, our procedure
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seems to be quite uneffective when the quasicircle at infinity is “far” from being a
circle — in the sense of universal Teichmüller space. Applying Theorem 3.4, this
possibility is easily ruled out, by replacing K0 in the statement of Theorem C with a
smaller constant.

Observe that the function x 7! Cx=
p
1 � Cx2 is differentiable with derivativeC

at x D 0. As a consequence of Theorem 3.4, there exists a constant L (with respect
to the statement of Theorem 3.4 above, L D 1=b1) such that k‰kB � LdT .Œ‰�; Œid�/
if dT .Œ‰�; Œid�/ � r for some small radius r . Then the proof of Theorem A follows,
replacing the constant C by a larger constant if necessary.
Theorem A. There exist universal constants K0 and C such that every minimal
embedded disc in H3 with boundary at infinity a K-quasicircle � � @1H3, with
K � K0, has principal curvatures bounded by

k�k1 � C logK :

Remark 4.17. With the techniques used in this paper, it seems difficult to give explicit
estimates for the best possible value of the constant C of Theorem A. Indeed, in the
proof of Theorem C, the constant which occurs in the inequality (4.22) depends on
the choices of the bound K0 on the maximal dilatation of the quasicircle, and on the
choice of a radius R. The radius R does not really have a key role in the proof, since
the estimate on the principal curvatures is then used only for the point x (in a manner
which does not depend on x). However, the choice ofR is essentially due to the form
of Schauder estimates, which provide a constant CSch such that

kukC2.B0.0;R2 //
� CSchkukC0.B0.0;R// ;

where CSch depends on the radius R. Moreover, CSch depends on the bounds on the
coefficient of the equation satisfied by u, which in our case is

�Su � 2u D 0 : (?)

The bound on the coefficients of such equation, which depends on the Laplace–
Beltrami operator of the minimal surface S , thus depends implicitly on the
choice of K0 (a compactness argument was used in this paper, in the proof of
Proposition 4.14). Finally, the dependence on the constant K0 appears again in
the proof of Theorem A, when applying the fact that the Bers embedding is locally
bi-Lipschitz (Theorem 3.4). In fact, the local bi-Lipschitz constant depends on the
chosen neighborhood of the identity in universal Teichmüller space.

5. Some applications and open questions

In this section we discuss the proofs of Theorem B, of Corollaries A, B and C, and
mention some related questions.
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5.1. Uniqueness of minimal discs. We recall here Theorem B, which was stated in
the introduction.
Theorem B. There exists a universal constant K 00 such that every K-quasicircle
� � @1H3 with K � K 00 is the boundary at infinity of a unique minimal embedded
disc.

To prove Theorem B, one applies the well-known fact that a minimal disc in H3

with principal curvatures in Œ�1C �; 1 � �� for some � > 0 is the unique one with
fixed boundary at infinity. Under this hypothesis, the curve at infinity is necessarily
a quasicircle (one can adapt the argument of [13, Lemma 3.3]). For the convenience
of the reader, we provide here a sketch of a proof which uses the tools of this paper.
Lemma 5.1. Let S be a minimal embedded disc in H3 with @1S D � . If the
principal curvatures of S satisfy k�k1 < 1, then S is the unique minimal disc with
@1S D � .

Sketch of proof. Suppose � is such that there exists two minimal surfaces S and S 0
with @1S D @1S 0 D � , and that the principal curvatures of S are in Œ�1C�; 1���.
As observed after the proof of Lemma 4.3, the �-equidistant surfaces from S give a
foliation of a convex subset C of H3, for � 2 .� arctanhk�k1; arctanhk�k1/. By
Corollary 2.5, the minimal surface S 0 is also contained in C.

Now, let �0 the supremum of the value of � on the minimal surface S 0. If this
supremum is achieved on S 0, then the minimal surface S 0 is tangent to the smooth
surface S�0 at distance �0 from S . But by Equation (4.4), when � > 0 the mean
curvature of S� is negative (in our setting, a concave surface, for instance obtained
for large positive �, has negative principal curvatures). Hence by the maximum
principle, necessarily �0 � 0.

If the supremum is not attained, let us pick a sequence of points xn 2 S 0 such
that the value of � at xn converges to �0 as n ! 1. One can apply isometries Tn
of H3 so that xn is mapped to a fixed point x0. By the usual argument (see also
Lemma 4.11), one can apply Theorem 3.2 to ensure that the quasicircles Tn.�/
converge to a quasicircle �1, and then Lemma 4.12 to get the C1 convergence on
compact sets of the minimal discs Tn.S 0/ to a minimal disc S 01 with @1S 01 D �1,
up to a subsequence. Moreover, one can also assume that the minimal discs Tn.S/
converge to a minimal disc S1. Indeed, consider the points yn on S such that the
geodesic of H3 through yn, perpendicular to S , contains xn. The isometries Tn
map yn to a compact region of yn (as d.x0; Tn.yn// D d.xn; yn/ � arctanhk�k1),
thus one can repeat the previous argument (first compose with isometries Rn which
map Tn.yn/ to a fixed point y0, and extract a subsequence of Rn converging to an
isometry R1). By the C1 convergence, the minimal surface S1 still has principal
curvatures in Œ�1C�; 1���, and therefore one can repeat the argument of the previous
paragraph, applied to S1 and S 01, to show that �0 � 0.

In the same way, one proves that the infimum of � on S 0 must be nonnegative,
and thus � must always be zero on S 0. This proves that S D S 0.
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The proof of Theorem B then follows from Lemma 5.1. With respect to the
constantsK0 and C of Theorem A, by choosing some constantK 00 < minfK0; e1=C g
one obtains that every minimal embedded disc with boundary at infinity a
K-quasicircle, with K � K 00, has principal curvatures bounded by k�k1 < 1.

5.2. Quasi-Fuchsian manifolds. In this subsection we collect the applications of
TheoremA to quasi-Fuchsianmanifolds. A quasi-Fuchsianmanifold is a Riemannian
manifold isometric to H3=G, where G is subgroup of Isom.H3/, which acts freely
and properly discontinuously onH3, isomorphic to the fundamental group of a closed
surface †, and such that the limit set (i.e. the set of accumulation points in @1H3

of orbits of the action of G) is a quasicircle. The topology of a quasi-Fuchsian
manifold is † � R, where † is the closed surface. Therefore the results obtained
in the previous sections hold for the universal cover S D Q†0 of any closed minimal
surface †0 homotopic to † � f0g.

Recall that Teichmüller space T .†/ of a closed surface† is the space of Riemann
surface structures on †, considered up to biholomorphisms isotopic to the identity.
In the same way, the classifying space for quasi-Fuchsian manifolds, which we denote
byQF.†/, is the space of quasi-Fuchsian metrics on†�R up to isometries isotopic
to the identity. By the celebrated Bers’ Simultaneous Uniformization Theorem [4],
QF.†/ is parameterized by T .†/�T .†/. The construction is as follows: since the
limit setƒ ofG is a Jordan curve, the complement ofƒ in @1H3 has two connected
components �C and �� on which G acts freely, properly discontinuously and by
biholomorphisms. This construction thus provides two Riemann surface structures
on †, namely the structures given by the quotients �C=G and ��=G. Bers proved
that these two Riemann surface structures, as points in T .†/, can be prescribed and
determine uniquely the quasi-Fuchsian structure inQF.†/.

Finally, recall that the Teichmüller distance between two points of T .†/, namely
two Riemann surface structures A1 and A2 on †, is defined as:

dT .†/..†;A1/; .†;A2// D
1

2
inf
f�id

logK.f / ;

where K.f / is the maximal dilatation of f and the infimum is taken over all f W
.†;A1/! .†;A2/ quasiconformal and isotopic to the identity.
Corollary A. There exist universal constants C > 0 and d0 > 0 such that, for
every quasi-Fuchsian manifoldM D H3=G with dT .†/.�C=G;��=G/ < d0 and
every minimal surface S inM homotopic to † � f0g, the supremum of the principal
curvatures of S satisfies:

k�k1 � CdT .†/.�C=G;��=G/ :

Corollary A follows directly from Theorem A. Indeed, let us choose d0 D
.1=2/ logK0. If the Teichmüller distance between�C=G and��=G is less than d0,
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then for every d < d0, d larger than the Teichmüller distance, one can obtain (by
lifting to the universal cover) a K-quasiconformal map between �C and �� with
K D e2d � K0. Thus the limit set � is a K-quasicircle, with K � K0. Thus by
Theorem A the lift S D Q†0 of any minimal surface inM satisfies

k�k1 � C logK D 2Cd

Since the choice of d was arbitrary, one obtains

k�k1 � 2CdT .†/.�C=G;��=G/

and the statement is concluded, replacing C by 2C .
Clearly, the simplest example of quasi-Fuchsian manifolds are Fuchsian

manifolds, namely those quasi-Fuchsian manifolds which contain a totally geodesic
(and thus minimal) surface homotopic to † � f0g. The lift to H3 of such surface is
a totally geodesic plane, whose boundary at infinity is a circle. Fuchsian manifolds
are parameterized by the induced metric on this totally geodesic surface, and thus
the space F of Fuchsian metrics on † � R, up to isometry isotopic to the identity,
is parameterized by T .†/. As a subset of QF , F is precisely the diagonal in
T .†/ � T .†/.

It is easy to see that the totally geodesic surface in a quasi-Fuchsian manifold is
the unique minimal surface. Although the uniqueness of the minimal surface in a
quasi-Fuchsian manifold does not hold in general, there is a larger class of manifolds
where uniqueness is guaranteed. According to the terminology in [18], we have the
following definition of almost-Fuchsian manifolds:
Definition 5.2. Aquasi-Fuchsianmanifold is almost-Fuchsian if it contains aminimal
surface homotopic to † � f0g with principal curvatures in .�1; 1/.

We will denote by AF.†/ the subset of QF.†/ of almost-Fuchsian manifolds.
Uhlenbeck in [24] first observed that the minimal surface in an almost-Fuchsian
manifold is unique. This follows also from the proof of Lemma 5.1, in a simplified
version for the compact case. A direct consequence of our results is the following:
Corollary B. If the Teichmüller distance between the conformal metrics at infinity
of a quasi-Fuchsian manifoldM is smaller than a universal constant d 00, thenM is
almost-Fuchsian.

Indeed, in Corollary A, if the Teichmüller distance is small enough, then the
principal curvatures are bounded by 1 in absolute value. Finally, if we endow
QF Š T .†/ � T .†/ by the 1-product metric, namely

dT .†/�T .†/..A1;A01/; .A2;A02// D dT .†/.A1;A2/C dT .†/.A01;A02/ ;
then Corollary B can be restated by saying that if the distance of a point
.�C=G;��=G/ from the diagonal is less than d 00, then the quasi-Fuchsian manifold
determined by .�C=G;��=G/ is almost-Fuchsian. We state this in Corollary C
below.
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Corollary C. There exists a uniform neighborhood N.F.†// of the Fuchsian locus
F.†/ inQF.†/ Š T .†/ � T .†/ such that N.F.†// � AF.†/.

5.3. Further directions. There is a number of questions left open on quasi-Fuchsian
and almost-Fuchsian manifolds. In particular, the results presented in this paper hold
for quasi-Fuchsian manifolds such that the two Riemann surfaces at infinity are close
in Teichmüller space. The understanding of the subset of almost-Fuchsian manifolds
far from the Fuchsian locus is far from being completed. More in general, it is an
interesting and challenging problem to understand the geometric behavior of minimal
discs in hyperbolic space with boundary at infinity a Jordan curve, especially when
this Jordan curve becomes more exotic and phenomena of bifurcations occur.

The techniques of this paper, as observed in Remark 4.2, motivate towards a
definition of thickness or width of the convex core of a quasi-Fuchsian manifold or,
more in general, the convex hull of a quasicircle in @1H3. One might expect to
find a relation between such notion of thickness and, for instance, the Teichmüller
distance between the conformal ends of the quasi-Fuchsian manifold, or the maximal
dilatation of the quasicircle. Again, it seems challenging to provide relations which
hold far from the Fuchsian locus.
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