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Abstract.Westudy some diophantine problems suggested by the analogy betweenmultiplicative
groups and powers of the modular curve in problems of “unlikely intersections”. We prove a
special case of the Zilber–Pink conjecture for curves.
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1. Introduction

To motivate the title problem, we recall some classical diophantine statements. We
identify (algebraic) varieties with their sets of complex points. Thus, in particular,
Gm D Gm.C/ D C� is the multiplicative group of non-zero complex numbers,
and Y.1/ D Y.1/.C/ D C is the moduli space parameterising elliptic curves defined
over C, up to isomorphism over C, by their j -invariant.

The Multiplicative Manin–Mumford conjecture (MMM; a theorem Laurent [21],
see also [9,24,43]) concerns the distribution of torsion points in a subvarietyV � Gkm.
These are the torsion points in the group, namely the points of the form .�1; : : : ; �k/

where �i 2 C� are roots of unity. MMM states that the torsion points contained in V
are contained in a finite number of torsion cosets contained in V . Torsion cosets are
the cosets of subtori by torsion points; otherwise expressed, they are the irreducible
components of subvarieties defined by systems of multiplicative relations, that is
relations of the form x

a1

1 : : : x
ak

k
D 1. Thus a torsion point is precisely a torsion

coset of dimension zero. The “original” Manin–Mumford conjecture (MM) is the
same statement for a subvariety of an abelian variety, inwhich torsion cosets are cosets
of abelian subvarieties by torsion points. MM is a theorem of Raynaud [39, 40].

The André–Oort conjecture [2, 28] was partly motivated by an informal analogy
with MM. It concerns the distribution of special points in a subvariety V of a
Shimura variety X , and is now “almost” fully proved [17, 45, 46]. For cartesian
powers of the modular curve it is a theorem (“Modular André–Oort”; MAO) proved
in [3, 30]. MAO states that, for V � Y.1/k , the special points of Y.1/k contained
in V are contained in finitely many special subvarieties of Y.1/k contained in V . The
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special subvarieties of Y.1/k are the irreducible components of subvarieties defined
by systems of modular relations, that is relations of the form ˆNij

.xi ; xj / D 0,
where ˆN are the classical modular polynomials. A special point is precisely a
special subvariety of dimension zero. See §2 for a more careful definition of special
points and subvarieties in Y.1/2, and §6 for Y.1/k .

The two statements are unified within Pink’s version [37] of what is now known
as the Zilber–Pink conjecture (ZP). See also [32, 49, 50] for the general formulation
of this far-reaching conjecture, which is very much open, and §7 for the statement
in Y.1/k . ZP governs the interaction between a subvariety V of a mixed Shimura
variety X , and the collection of special subvarieties of X (see [37]). In Gkm, the
special subvarieties are the aforementioned torsion cosets. Thus, within ZP, MMM
and MAO are analogues in a strict sense, and modular relations are analogues of
multiplicative ones.

In the multiplicative setting, the Multiplicative Mordell–Lang conjecture (MML;
a theorem of Laurent [21]) generalises MMM. Let us state it in the special case of
the variety V � G2m defined by uC v D 1 (the unit equation): there are only finitely
many solutions to u C v D 1 when u; v are restricted to the division group of a
finitely generated subgroup of C�. Important special cases, for finitely generated
subgroups of algebraic, or even rational, numbers were established in fundamental
work of Siegel, Mahler, Lang, and Liardet; see [6, 19, 23, 44].

The modular analogue of this statement (“Modular Mordell–Lang”) is proved,
in general form, in [14, 31]. In the special case it asserts that there are only finitely
many solutions to uC v D 1 when u; v are restricted to finitely many Hecke orbits
(or are special points). The Hecke orbit of x 2 C is fy 2 C W 9N ˆN .x; y/ D 0g.
It is the set of j -invariants of elliptic curves which are isogenous to the one with
j -invariant x.

Now we observe that Fermat’s Last Theorem (FLT; theorem of Wiles [47])
may also be expressed in these terms: it asserts that u C v D 1 has no solutions
for u; v 2 Q�n when n � 3. It seems not to have been observed that the condition
on u; v fits naturally into the multiplicative group setting: they are required to be in
the subgroup consisting of nth powers of rational numbers. The modular analogue
of u D xn isˆn.x; u/ D 0. Generalising a little, we are led to investigate the rational
solutions x; y of the system

ˆN .x; u/ D 0; ˆM .y; v/ D 0; uC v D 1; N;M � 1: (�)

This is the “modular Fermat equation” of the title. If x is not special, then neither
is u, andN is unique. If x (and hence u) is special thenN is not unique and to avoid
trivialities we will frame our results in terms of minimal solutions, namely those for
which N is minimal with ˆN .x; u/ D 0, and likewise forM .

Given N;M one may eliminate u; v in (�) to find that .x; y/ lies on a (possibly
reducible) algebraic curve VN;M . The strict analogue of FLTwould takeN DM , but
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this plays no role for us. We prove the following partial analogue of “asymptotic” FLT.
It asserts that there are no rational points on any of the curves VN;M with large prime
maxfN;M g. We say nothing about possible solutions for small N;M .

1.1. Theorem. There exists L such that (�) has no minimal solutions with x; y 2 Q
for which maxfN;M g � L and maxfN;M g is a prime number.

Our proof of this theorem uses a variant of the o-minimality and point-counting
strategy which has been used over recent years to prove various cases of the André–
Oort (and Zilber–Pink) conjecture, using the Counting Theorem of Pila–Wilkie [35].
The strategywas originally proposed byZannier in the context of theManin–Mumford
conjecture (see [36]), where it relies on torsion points having high degree (relative to
their order).

For André–Oort, the strategy depends on special points having high degree overQ
in a suitable sense (see [33,45]). Our results here likewise depend on Q.u; v/ having
large degree over Q (relative to maxfN;M g, in a sense made precise below). The
applicability of the Counting Theorem in these settings relies ultimately on the result
of Wilkie [48] that the real exponential function gives rise to an o-minimal structure.
The constant L in 1.1 is presently ineffective. Before going further into the specifics,
let us observe that this method has no purchase for FLT or Mordell–Lang type
problems, simply because when u; v are in a group generated by rational numbers,
or a finitely generated group, ŒQ.u; v/ W Q� is bounded.

We can remove the primality condition on maxfN;M g conditionally on a special
case of a statement (“GO1”, see §8) formulated in Habegger–Pila [15]. Consider
x; y 2 Q such that the elliptic curvesEx; Ey , whose j -invariants are x; y, are related
by a cyclic isogeny of degree N . So ˆN .x; y/ D 0 for the modular polynomial ˆN .
If x; y are not special then, as mentioned above, N is unique.

1.2. Strong Galois-Orbit Hypothesis (SGH). There exist c; ı > 0 such that if
.x; y/ 2 Q2 are not special and ˆN .x; y/ D 0, then

ŒQ.x; y/ W Q� � cN ı :

The plausibility of this conjecture is discussed briefly in §3. Essentially, it is on
a par with expectations for the best dependence in the Strong Uniform Boundedness
Conjecture (Merel’s theorem [26]). In §8 we show that SGH is the essential case of
the statement GO1 alluded to above, and that, in view of [15, 34], it implies the full
Zilber–Pink conjecture for Y.1/k (see §7 for the statement). We need just the special
case of 1.2 for x 2 Q to prove an unrestricted version of 1.1.

1.3. Theorem. Assume SGH for x 2 Q. Then there exists L such that (�) has no
minimal solutions with x; y 2 Q for maxfN;M g � L.

The reason we are able to prove Theorem 1.1 is that SGH for x 2 Q and N
a prime number follows from recent results of Najman [27]. His results are more
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precise, but imply in particular that if ˆN .x; y/ D 0 with x 2 Q non-special and
N � 41 a prime then

ŒQ.y/ W Q� � N=3:

Though very much in the spirit of “unlikely intersections”, the conclusion of 1.3
is seemingly not a consequence of the Zilber–Pink conjecture, because rational points
in Y.1/2 are neither special nor contained in finitely many Hecke orbits. Likewise,
FLT is not a consequence of MML because Q�n is not finitely generated.

In §§4–6 we consider generalisations. We can prove analogues of 1.1 and 1.3 for
more general curves and higher-dimensional varieties in Y.1/k . These suggest the
formulation of analogous conjectures in the multiplicative setting which generalise
(asymptotic) FLT. Our methods cannot address them, but we prove (Theorem 6.4)
the analogue of one of our main conjectures (5.4), for the inverse Fermat equation.
This would seem to add credence to the conjectures since un D x is also an analogue
of ˆn.x; u/ D 0. All our conjectures for curves in §4 are implied by the abc
conjecture.

In §7 and §8 we study the relationship between SGH and statements formulated
in [15]. We observe that, if x; y are non-algebraic points with ˆN .x; y/ D 0, then
the large gonality of modular curves [1, 51] implies that we get a high extension
degree even over finitely generated fields. Note that gonality growth of some positive
power of N is necessary if SGH is to be true. This enables us to prove a special case
of the Zilber–Pink conjecture for curves, a counterpart to the result of [14].

1.4. Theorem. Let V � Y.1/3 be a curve which is not defined over Q. Then the
Zilber–Pink conjecture holds for V .

Note that if V as in 1.4 is not contained in any proper subvariety of Y.1/3 defined
over Q then the conclusion follows from the main result of Chatzidakis–Ghioca–
Masser–Maurin [7]. We will use this in extending the above result to curves in Y.1/k
provided that no image under a coordinate projection to Y.1/3 is defined over Q.

In our proofs, the Galois and gonality results mentioned (which show that the
points in question have “many” conjugates), are opposed to upper bounds for rational
points on suitable sets definable in an o-minimal structure. This basic strategy has
been used in many problems along these lines. A new feature here is that the proofs
use a family of definable sets, and rely on uniformity in the Counting Theorem.

2. Proof of Theorems 1.1 and 1.3

A special point in C, also known as a singular modulus, is the j -invariant of a CM
elliptic curve. Equivalently, it is a number � D j.�/ where � 2 H is a quadratic
point (ŒQ.�/ W Q� D 2). Here H is the complex upper half-plane and j W H ! C is
the elliptic modular function.
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2.1. Definition. A special subvariety of C2 is defined to be one of the following:
C2 itself; a modular curve TN defined by ˆN .x; y/ D 0; a line x D � or y D �

where � is a singular modulus; or a point .�; � 0/ where �; � 0 are singular moduli
(a special point of C2). By definition, weakly special subvarieties include the above,
all horizontal and vertical lines, and all points.

2.2. Proof of Theorem 1.1. Let F � H be the standard fundamental domain for the
action of SL2.Z/ on H by Mobius transformations. The restriction j W F ! C of the
elliptic modular function is definable in the o-minimal structure Ran exp.

Define the following family of sets inGLC2 .R/2, parameterised byQD.z; w/2H2,

ZQ D f.g; h/ 2 GLC2 .R/
2
W gz; hw 2 F and j.gz/C j.hw/ D 1g:

This family is definable in the o-minimal structure Ran exp; see e.g. [30].
Suppose that we have a solution .x; y/ to .�/ with large prime L D maxfN;M g.

Then we have .u; v/ with ˆN .x; u/ D 0;ˆM .y; v/ D 0. Let us assume for now
neither x nor y is special. So ˆN .x; u/ D 0, ˆM .y; v/ D 0, and by the results of
Najman [27] we have

ŒQ.u; v/ W Q� � cLı :

Take z; w 2 F with j.z/ D x; j.w/ D y and put Q D .z; w/. Thus we have at
least that many conjugate points .u0; v0/ over Q, and each of these gives a solution of
the system (�) with the same .x; y/. Each such .u0; v0/ gives rise to a rational point
on ZQ, and (by [14, Lemma 5.2]) of height bounded by c0L10

By the Counting Theorem [35], which is uniform over the family, if L is
sufficiently large then ZQ contains some positive dimensional real algebraic curve.
The corresponding points .gz; hw/ 2 H2 must be non-constant, as the algebraic
curves in ZQ must account for “many” distinct .u0; v0/. So we get a real algebraic
curve contained in

f.z; w/ 2 H2 W j.z/C j.w/ D 1g:

But then we must have a complex algebraic curve contained in it, which then must
coincide with it. This gives an algebraic curve in H2 whose image under j in C2

is algebraic. Then by the “Ax–Lindemann” theorem [30, Theorem 1.6], the image
curve uC v D 1 must be a modular curve. But it isn’t. Thus L is bounded.

Suppose x (or y) is special. There are only finitely many rational special points,
so one is in a finite union of Hecke orbits, and for these one has a suitable Galois
lower bound ŒQ.u/ W Q� � cN ı , for the minimal N , for suitable absolute positive ı
(by isogeny estimates of Masser–Wüstholz [25], subsequently improved by others
(especially [13, 29]). So one again gets ŒQ.u; v/ W Q� � cLı . (In fact x; y cannot
both be special, asuCv D 1 contains no special points, as shown byKühne [18].)

2.3. Proof of Theorem 1.3. This is exactly the same as above, except we appeal
to SGH for x 2 Q instead of the results of [27] for the Galois lower bounds.
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3. How plausible is SGH?

SGH is related to uniform bounds for torsion in elliptic curves over number
fields (Mazur, Kamienny, Merel [26],. . . ) and Serre’s Uniformity Conjecture
(Bilu–Parent [5],. . . ) and seems in line with expectations. A point .x; y/ 2 TN
parameterises an elliptic curve with a cyclic subgroup of order N defined
over Q.x; y/. According to the Strong Uniform Boundedness Theorem of Merel
(see [26, 41]), the size of the torsion subgroup of K-rational points of an elliptic
curve defined over a numberfield K with ŒK W Q� D d is bounded by some B.d/.
The known bounds for B.d/ are exponential in d but it is conjectured that B.d/ can
be taken polynomial in d (see [41, Remark 2]). The corresponding conjectures for
cyclic subgroups of size N , i.e. for cyclic isogenies, would imply SGH. The results
of Najman [27] support these expectations.

That the gonality (defined in the proof of 7.3 below) of modular curves grows at
least as a positive power of N is certainly necessary for SGH to hold. Conversely,
Frey [12] has shown (using Faltings’s Big Theorem, i.e. his proof of Mordell–
Lang [11]) that if a curve has infinitely many points defined over fields of degree d
over a field of definition K, then the gonality of C=K is at most 2d . Thus, the
modular curve ˆN .x; y/ D 0 has only finitely many points defined over fields of
degree at most cN over Q for some positive c.

4. Generalisation to curves

There is nothing special about the curve uC v D 1 in Theorems 1.1 and 1.3, except
that it is not weakly special. Both theorems hold for the system .�/V in which a non-
weakly-special curve V � C2 replaces the curve u C v D 1 in (�) and indeed 1.3
for V is unconditional if V is not defined over Q. We do not formulate the results as
still more general formulations are in §6.

If V is special, say defined byˆK.u; v/ D 0, then one can have rational solutions
to .�/V with x D y and arbitrarily large maxfN;M g. For if ˆN .x; u/ D 0,
ˆM .x; v/ D 0 then u; v are Hecke equivalent, and one need only choose N;M
such that this Hecke equivalence is given by ˆK . Further, any weakly special curve
whose fixed coordinate is in the Hecke orbit of a rational number will admit rational
solutions with arbitrarily large maxfN;M g coming from the non-fixed coordinate.
But if we require minfN;M g � L then only special subvarieties admit such points
for arbitrarily large L (under SGH for x 2 Q or unconditionally with maxfN;M g
prime).

This suggests the following “Fermat–Mordell” statement, in which a weakly
special subvariety of Gkm is a coset of an algebraic subtorus. It is a consequence of
the abc Conjecture (see e.g. [6, Ch. 12] and below).
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4.1. Conjecture. Let V � G2m be a curve that is not a weakly special subvariety.
There is n.V / such that there are no rational points .xn; ym/ 2 V , x; y 2 Q,
x; y ¤ 0;˙1 with n;m � n.V /.

Note that 4.1 is formulated in a slightly weaker form than the analogy
with 1.3 would suggest (which would be maxfn;mg � n.V /), in order to avoid
counterexamples if one exponent is small. For example, uC v D 1 contains (lots of)
points of the form u D xn; v D y, with x; y 2 Q and arbitrarily large n. This form
is also adopted in subsequent conjectures.

One could formulate still more general conjectures addressing solutions in
the image of .Q�/2 under morphisms .C�/2 ! .C�/2 of large degree, or even
correspondences, but this appears to require some care and we defer this for now. We
do not discuss here precisely which multiplicative weakly special varieties contain
infinitely many such points.

This conjecture clearly follows fromFaltings’s Theorem [10] if the genusg.V /�2
(with n.V / D 1). If g.V / � 1 the relation on .xn; ym/ could still be of genus one or
less for some small n;m. These conjectures might be approachable for V an elliptic
curve.

One can go further and state the following “Fermat–Mordell–Lang” formulation.
Though apparently quite strong, it is nevertheless a consequence of the abc
Conjecture.
4.2. Conjecture. Let � be a finitely generated subgroup of Q�. There are only
finitely many points .u; v/ D .sxn; tym/ on u C v D 1 with x; y 2 Q, s; t 2 � ,
and n;m � 4.
4.3. Proposition. The abc Conjecture implies Conjecture 4.2.

Proof. Let � be a finitely generated subgroup ofQ�. Enlarging if necessary, we may
assume that � is generated by �1 and some finite set p1; : : : ; pk of prime numbers,
and we set P D p1 : : : pk . Now suppose we have a solution .u; v/ to the equation
in 4.2 with n � m � 4. Let us write x D A=B; y D C=D whereA;B;C;D 2 Z are
non-zero, with .A;B/ D .C;D/ D 1. By incorporating any pi that occur as factors
into s or t , we may assume that A;B;C;D are relatively prime to P (and positive).
Multiplying through by a common denominator for s; t and Bn we have

SAn C TCm
Bn

Dm
D UBn

where S; T; U are integers in � . We may assume they are relatively prime. Since
.D;CT / D 1 we have DmjBn. Multiplying through by Dm however we conclude
that BnjDm, hence they are equal. So we have

SAn C TCm D UBn:

The largest term in absolute value is either TCm or one of the terms involving an nth
power. Changing signs if needed, let us assume first that our equation is as above,
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with all terms positive. By the abc Conjecture (see e.g. [6, Ch. 12]) with � D 1=4

and K D K� we have

UBn < Krad
�
SAnTCmUBn

�1C�
� K

�
P

�
U

S

�1=n�
U

T

�1=n
B3

�5=4
:

Since n � 4 we find
U 3=8B1=4 � KP 5=4:

Then U;B are bounded, whence S; T;A; C are also bounded. The other case,
when TCm is largest, is similar.

Of course one can also formulate a generalisation of 4.2 for with a general (non-
weakly-special) curve in place of u C v D 1. Note that the modular analogues of
these do hold under SGH for x 2 Q (or unconditionally for tuples of isogenies where
the largest degree is prime). That is because the notion of “generation” in the modular
setting is rather weak: the analogous statement is to seek points .u; v/ W uC v D 1

where each of u; v is either in the union of finitely many Hecke orbits or is in the
Hecke orbit of a rational number under a modular correspondence of large (prime)
degree.

5. Generalisation to higher-dimensional varieties

The proof of Theorems 1.1 and 1.3 generalise without difficulty to higher dimensions,
under the assumption of SGH for x 2 Q in generalising 1.3.
5.1. Definition. A special subvariety of Y.1/k is an irreducible component of the
intersection of (any number of) subvarieties of the following form: xi D c where c is
constant and special; ˆ.xk; x`/ D 0 whereˆ is a modular polynomial. For a weakly
special subvariety, the constant coordinates need not be special. See e.g. [14,15,30].
5.2. Theorem. Let V � Y.1/k . Then there exists L.V / with the following property.
Suppose u D .u1; : : : ; uk/ 2 V with ˆNi

.xi ; ui / D 0 (where Ni is minimal with
this property if xi is special), xi 2 Q, i D 1; : : : ; k. Let N D maxfNig. Assume
N � L.V / and further that
(a) N is a prime number, or
(b) SGH holds for x 2 Q

then u lies in a positive dimensional weakly special variety contained in V .

Proof of 5.2. Let K � C be finitely generated field of definition of V . We take a
definable family of sets

ZQ D f.g1; : : : ; gk/ 2 GLC2 .R/
k
W

gizi 2 F; i D 1; : : : ; k; .j.g1z1/; : : : ; j.gkzk/ 2 V g
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parameterised by points Q D .z1; : : : ; zk/ 2 Hk . Then a point u D .u1; : : : ; uk/

with ˆNi
.xi ; ui /; i D 1; : : : ; k and large L D maxfNig has (by the results of [27]

in case (a) and by SGH for x 2 Q in case (b)) “many” conjugates over K, and
gives rise to a Q for which ZQ has “many” rational points. By the Counting
Theorem, we get a real algebraic arc in ZQ containing “many” of these points,
and from it a real algebraic arc in f.z1; : : : ; zk/ W .j.z1/; : : : ; j.zk// 2 V g, hence
a complex algebraic curve contained there which, by the Ax–Lindemann theorem
for the modular function [30], is contained in a positive dimensional weakly special
subvariety contained there, and it must be defined overK, as all coordinates of u and
its conjugates are. The conjugates of this weakly special subvariety (overK) contain
all the conjugates of u.

If one looks for points with large minfNig, then (by an inductive argument) only
strongly special subvarieties survive: under the same hypotheses and assumptions,
there is L0.V / such that every point in V of this form with minfNig � L0 (and allNi
are prime for the unconditional version) lies in a special subvariety contained in V .

By analogy, one can formulate a conjectural generalisation of FLT in the setting
of subvarieties of multiplicative groups. As observed above, some weakly special
subvarieties of Gkm do have rational points which are arbitrarily large powers.
5.3. Conjecture. Let V � Gkm. There is a positive integer n.V / such that if
P D .x

n1

1 ; : : : ; x
nk

k
/ 2 V.Q/, with all xi 2 Q�; xi ¤ ˙1 and ni � n.V /, then P

lies in a positive dimensional weakly special subvariety of Gkm contained in V .
The General Lang Conjecture [6, 14.3.7] implies that all but finitely many such

points lie in the special set of V . In the next section we will see that we can prove
the analogue of 5.3, for the inverse Fermat equation.

Let SGHd denote the special case of SGH in which ŒQ.x/ W Q� � d . Under the
assumption of SGHd , the proofs of 1.3 and 5.2(b) go through if x; y are restricted to
be of degree at most d over Q. One could then formulate all the conjectures above in
this stronger form, with the hypothesis on the exponents now depending on V; �; d .
The following conjecture is the most ambitious statement taking up all these variants.
5.4. Conjecture. Let V � Gkm be a subvariety defined over C, let � be a finite
rank subgroup of C�, and let d � 1. There exists a constant n.V; �; d/ with
the following property. Suppose P D .u1; : : : ; uk/ 2 V is a point such that, for
i D 1; : : : ; k, we have ui D six

ni

i with si 2 � , xi not a root of unity, ŒQ.xi / W Q� � d
and ni � n.V; �; d/ then P lies in a positive-dimensional weakly special variety
contained in V .

It seems interesting to investigatewhetherVojta’s conjectures (see e.g. [6, Ch. 14]),
which do imply Mordell–Lang, imply the above.

Let us conclude this section with a somewhat different generalisation of 1.3, and
a further conjecture in the multiplicative setting. We enunciate a different weakening
of SGH.
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5.5. Weak Galois-Orbit Hypothesis (WGH). Let F be a number field. There exists
constants c D c.F /; ı D ı.F / such that if .x; y/ 2 F � Q are not special and
ˆN .x; y/ D 0 then ŒF .y/ W F � � cN ı .

5.6. Theorem. Assume WGH holds. Let K be a finitely generated subfield of C,
and let V � Y.1/k . Then there exists an integer L D L.K; V / with the following
property. If u D .u1; : : : ; uk/ 2 V with ˆNi

.xi ; ui / D 0, xi 2 K and Ni minimal
having ˆNi

.xi ; ui / D 0, i D 1; : : : ; k, and maxfNig � L then u lies in a positive
dimensional weakly special subvariety contained in V .

Proof. Wemay assume that V is defined overK. Let F D K\Q. Then F is finitely
generated (see [8, §12.4] or [16, Th. 24.9]), and hence is a number field. Suppose
Ni D maxfNj ; j D 1; : : : ; kg. For xi 2 F and large Ni the conclusion follows
usingWGH and the proof of 5.2(b). For non-algebraic xi (and then also ui ) we apply
Lemma 7.3 below to conclude that ŒK.y/ W K� � cN ı

i for suitable c; ı depending
on K, and then follow the proof of 5.2(b).

It is then natural to conjecture the analogous statement in themultiplicative setting.

5.7. Conjecture. Let K be a finitely generated subfield of C. Let V � Gkm. There
exists an integer n D n.K; V / such that if P D .xn1

1 ; : : : ; x
nk

k
/ 2 V , with xi 2 K�

but not a root of unity, and ni � n.V /, for all i D 1; : : : ; k, then P lies in a positive
dimensional weakly special subvariety of Gkm contained in V .

I do not know whether this statement in the case of plane curves follows from
the abc conjecture. In the special case of V � G2m defined by uC v D 1, it asserts
the impossibility of solving this equation in K�n, where K is a finitely generated
field over Q, for large n (depending on K).

6. Other settings and inverse Fermat

It is natural to consider analogues in the setting of abelian varieties. The most natural
analogue of 1.3 for an elliptic curveE in place ofGm is the following statement, which
is a consequence of Mordell–Lang (ML; Faltings’s Big Theorem [11]) for E �E. A
weakly special subvariety of an abelian variety is a translate of an abelian subvariety.

6.1. A consequence of ML. Let E be an elliptic curve (defined over C), and let
C � E � E be a curve which is not weakly special. There exists L D L.E;C /

with the following property. If X; Y;U; V 2 E are points such that: U D Œn�X ,
V D Œm�Y , .U; V / 2 C , X; Y 2 E.Q/ then n;m � L.

Since E.Q/ is finitely generated, U; V are in a finitely generated subgroup
of E �E. The statement then follows from ML for E �E.
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One can consider a variant formulation. Let E be an elliptic curve in the form
y2 D x3 C ax C b. Multiplication by n on E induces an operation on C as
follows: Œn�x D z if Œn�.x; y/ D .z; w/ on E. There is a corresponding notion
of “weakly special” variety in C2, comprising vertical and horizontal lines and the
curves where Œn�x D Œm�y identically for some n;m.
6.2. Conjecture. Let E as above and V � C2 not “weakly special”. There exists
L D L.E; V / with the following property. If x; y 2 Q and .Œn�x; Œm�y/ 2 V then
maxfn;mg � L.

This statement is presumably not a consequence of ZP (as the pointswith rationalx
are not finitely generated).

We now consider the analogue of Conjecture 5.3 for the inverse Fermat equation:
after all, ˆn.x; u/ D 0 is likewise the analogue of x D un. On the inverse Fermat
equation itself see e.g. Lenstra [22].

Recall that, if K is a field, c 2 K, the polynomial xn � c is reducible over K
iff c 2 Kp for some prime number pjn, or c 2 �4K4 and 4jn (see e.g. Lang [20,
VI, 9.1]). The first condition is a natural minimality for u with un D c 2 K: it
guarantees that n is the order of u overK in that no smaller power of u lies inK. The
second condition reflects the example x4C 4 D .x2� 2xC 2/.x2C 2xC 2/. Under
the first condition only, one can get a lower bound on ŒK.u/ W K�, when K D Q,
from results of Risman [42].
6.3. Lemma. Let � have order n overQ. Then ŒQ.�/ W Q��� n

1=2�� for any � > 0.

Proof. Write h D ŒQ.�/ W Q�. By [42, Cor. 2], we have n D t` where ` divides h
and �.t/ divides h (and t is square-free). Either t or ` must exceed

p
n.

6.4. Theorem. Let V � Gkm. There is a positive integer n.V / with the following
property. Suppose P D .u1; : : : ; uk/ 2 V and, for each i D 1; : : : ; k, uni

i D xi
where xi 2 Q�, and ni is the order of ui over Q. Suppose maxfn1; : : : ; nkg � n.
Then P lies in a positive-dimensional weakly special variety contained in V .

Proof. Under our assumptions, by Lemma 6.3, the point .u1; : : : ; uk/ has degree
at least cmaxfn1; : : : ; nkgı over Q for some absolute c; ı, and hence will have
large degree over some fixed finitely generated field of definition of V . Let
F D R � Œ0; 2��i , a fundamental domain for the action of 2�iZ on C by translation.
The restriction exp W F ! C� of the exponential function is definable in Ran exp. We
take the definable family of sets

ZQ D f.r1; : : : ; rk/ 2 Rk W zj D 2�irj 2 F; j D 1; : : : ; k;
and . exp.z1 C 2�ir1/; : : : ; exp.zk C 2�irk// 2 V g:

parameterised by points Q D .z1; : : : ; zk/ 2 Cn. The rest of the proof is the same
as the proof of 5.2, using the Ax–Lindemann theorem for exp (a special case of
Ax–Schanuel [4]).
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7. Proof of Theorem 1.4

In this section we prove Theorem 1.4. The key point is that modular curves have large
gonality, and this implies that transcendental points .x; y/ W ˆN .x; y/ D 0 give rise
to extensions of large degree over an arbitrary (but fixed) finitely generated extension
of Q. We first give a statement of the Zilber–Pink conjecture (ZP) for subvarieties
of Y.1/k . See [15] for various alternative formulations.

7.1. Definition. Let V � Y.1/k . A subvariety A � V is called atypical (for V
in Y.1/k) if there is a special subvariety T � Y.1/k such that A � V \ T and

dimA > dimV C dimT � k:

7.2. Zilber–Pink Conjecture for Y.1/k. Let V � Y.1/k . Then V has only finitely
many maximal atypical subvarieties.

7.3. Lemma. Let K be a finitely generated subfield of C. There exist positive
constants c; ı (depending on K) with the following property. Let P D .x; y/ 2 C2

be a point with non-algebraic coordinates such that ˆN .x; y/ D 0. Then

ŒK.x; y/ W K� � cN ı :

Proof. Let us write K D L.�/ where L is a pure transcendental extension of Q
and ŒK W L� is a finite algebraic extension. Do this minimising ŒK W L� say. Write
L D Q.t1; : : : ; tn/ with the ti independent transcendental elements.

For a curve C over a field F with function-field F.C/ we write dF .C / for its
gonality: the minimum extension degree ŒF .C / W F.t/� over t 2 F.C/.

Let P be such a point. We may assume that x; y are algebraic over K. Let us
choose t1; : : : ; tm such that x (and hence y) are algebraic over t1; : : : ; tm but not over
t1; : : : ; tm�1. Let M D Q.t1; : : : ; tm�1/ and write t D tm. The extension of fields
M.t; x; y/=M.x; y/ corresponds to a dominant morphism of curves overM . Thus

dM .M.t; x; y// � dM .M.x; y//

(see e.g. Poonen [38], where this fact is proved but described as well known). Let
dC.ˆN .x; y/ D 0/ denote the C-gonality of the modular curve. Then we have

dM .M.x; y// � dC.ˆN .x; y/ D 0/:

Now dC.ˆN .x; y/ D 0/ � c0N for some positive constant c0 (see [51] and
also [1] where an explicit such bound is given). Therefore

ŒL.x; y/ W L� D ŒM.t; x; y/ WM.t/� � c0N;

and so ŒK.x; y/ W K� � c1N with c1 D c0=ŒK W L�. This proves the lemma.



Vol. 92 (2017) On a modular Fermat equation 97

7.4. Proof of Theorem 1.4. For A � Y.1/k , write hAi for the smallest special
subvariety of Y.1/k containing A. If hV i ¤ Y.1/3 then V is atypical, and is then
the unique maximal atypical subvariety. Conversely, if V is atypical then it must be
contained in a proper special subvariety. So we may assume that V is not contained
in any proper special subvariety, and that atypical subvarieties of V are points which
are contained in some special subvariety of codimension 2.

Suppose two coordinates, say x; y, are constant on V . They must be non-special
and not in the same Hecke orbit. So a point .x; y; z/ satisfying two special relations
must be either a special point z that is in the Hecke orbit of either x or y (but then x
or y would be special), or a z which is in the Hecke orbit of both x and y (but then x
and y would be in the same Hecke orbit). Both are impossible.

Suppose just one coordinate, say x, is constant. Then the image Vyz of V under
projection to the y; z-plane is a non-special curve, and we seek points which are
either special or in the Hecke orbit of x. Finiteness follows by “Modular Mordell–
Lang” [14, 31].

So we may assume that no coordinate is constant on V . We are looking for points
P D .x; y; z/ satisfying two special relations. Let P be such a point. It has one
of the following forms: it is defined by two coordinates being special; or by one
coordinate being special and a modular relation on the other two coordintates; or by
modular relations between two distinct pairs of coordinates.

Now if two coordinates are special, then we get a special point on the image of V
under projection to those coordinates. This image is not special (since hV i D Y.1/3),
and so for each choice of pair of coordinates there are only finitely many such points.

If P is a point of the second type, we distinguish two subcases. In the first
subcase, the two modular related points are algebraic. Then P is an algebraic
point of V and in a finite set. In the second subclass, the two modular-related
coordinates are transcendental over Q. Such P then has “many” conjugates over K,
by a combination of Lemma 7.3 and Landau–Siegel. We conclude this case by
o-minimality and point-counting, much as we deal with the following final case.

The last case concerns points P satisfying modular relations on two distinct
sets of coordinates. So all three coordinates of P are in the same Hecke orbit. By
Lemma 7.3, P has “many” conjugates overK, and thus V contains “many” pointsP 0
which are intersections with special subvarieties of the same complexity as the one
containing P .

Let Z � H3 be the preimage of V in H3 intersected with F 3, where F is the
standard fundamental domain for the action of SL2.Z/. Then Z is definable. For
g; h 2 GLC2 .R/ we have the Mobius subvarietyMg;h � H3 defined by

Mg;h D f.u; gu; hgu/ 2 H3 W u 2 Hg:

We consider the following definable subset of GLC2 .R/2:

W D f.g; h/ WMg;h \Z ¤ ;g:
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Each conjugate P 0 of P over K gives rise to a rational point .g; h/ 2 W whose
height is � chP iC , and we get � c0hP iC 0 such points. By the Counting Theorem,
W contains positive-dimensional semi-algebraic sets, and the intersection points of
the corresponding Mobius subvarieties with Z must move, by the same argument
used in [14], in order to account for the “many” distinct pre-images of the P 0.

Complexifying the real parameter of themoving family ofMobius subvarieties we
get a complex surface inH3 which intersectsZ in a set of at least one real dimension,
and hence in a set of one complex dimension, and so contains the premiere of V . By
Ax–Schanuel [34] (though in this case in fact just the special case “Ax-Logarithms”
established in [14]), V is contained in a proper weakly special subvariety of C3.

But this is a contradiction, as V is not contained in a proper special subvariety
(by hypothesis), and no coordinate is constant on V (as we reduced to this case).
7.5. Proposition. Let V � Y.1/4 be a curve which is not contained in any proper
special subvariety and assume that no image of V under a coordinate projection
to Y.1/3 is defined over Q. Then there are only finitely many points .w; x; y; z/ 2 V
such that, for some N;M , ˆN .w; x/ D 0;ˆM .y; z/ D 0.

Proof. Suppose two coordinates are constant on V . Say w is one of them. If x is
also constant we cannot have ˆN .w; x/ D 0, for then V would be contained in a
proper special; and for other x there are no points of the required form. If, say, z is
also constant then x; y are non-constant (by above) and V projects to a curve Vxy
in the xy-plane. We are looking for points in Vxy whose x; y coordinates are in the
Hecke orbits of w; z, respectively, and finiteness follows by Modular Mordell–Lang
as above.

Suppose just one coordinate, say w is constant. So y; z are non-constant and
satisfy some algebraic relation. If this relation is not defined over Q then, with
finitely many exceptions, the sought points have y; z non-algebraic. Let K be a
finitely generated field of definition of V . Then ŒK.x/ W K� � cN ı for some c; ı > 0
by isogeny estimates, and ŒK.y; z/ W K� > cM ı for some c; ı > 0 by gonality,
and an argument using o-minimality, point-counting and Modular Ax–Lindemann
concludes as above.

So we can suppose that no coordinates are constant on V , and so every pair
of coordinates satisfy some algebraic relation. Suppose neither of the relations
R.w; x/ D 0, S.y; z/ D 0 are defined over Q. Then, with finitely many exceptions,
each pair .w; x/; .y; z/ consists of transcendental points. These have large degree
over K in relation to the complexity maxfN;M g, and we conclude as above.

If on the other hand both these pairs of relations are over Q then w; x; y; z are all
algebraic, and there are only finitely many points when even three of the coordinates
are, under our hypotheses.

We are reduced to the case that R.w; x/ D 0, say, is defined over Q, but
S.y; z/ D 0 is not. Consider the curve image Vxyz under projection to the xyz
coordinates. We are looking for points where x is algebraic, and y; z have a modular
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relation. If Vxyz is not contained in a proper subvariety of Y.1/3 defined over Q then
the finiteness of such .x; y; z/ is a trivial consequence of the main theorem of [7].

Sowemay assume thatVxyz is contained in a proper subvarietyW defined overQ,
defined say by P.x; y; z/ D 0. We observe that there can be only finitely many x for
which the relation P.x; y; z/ on y; z is divisible by modular relation. For other x,
if x is algebraic and ˆM .y; z/ D 0 then y; z must also be algebraic, and there are
only finitely many such points.

7.6. Theorem. Let V � Y.1/k be a curve such that no image of it under projection
to three coordinates is defined over Q. Then ZP holds for V .

Proof. As above, we may assume that V is not contained in any proper special
subvariety of Y.1/k . We consider atypical points, and these involve either 2
coordinates (for two points being special), or 3 coordinates, or 4 coordinates (the
case of modular correspondences between disjoint pairs of coordinates). In each
case, finiteness is covered by either 7.4 or 7.5.

8. SGH and GO1

In this section we show that SGH in fact implies the statement formulated as GO1
in [15], of which it is a special case.

We define the complexity of a special subvariety as follows. If x 2 C is special,
we denote by D.x/ the discriminant of the corresponding quadratic order (i.e. the
endomorphism ring of the elliptic curve E with j -invariant x). Alternatively, D.x/
is the discriminant b2 � 4ac where az2C bz C c D 0 is the minimal polynomial of
some pre-image z D j�1.x/ of x over Z.
8.1. Definition. The complexity of a special subvariety T � Y.1/k is

�.T / D maxfD.xi /; N.xh; x`/g

where D.xi / ranges over all constant coordinates, and N.xh; x`/ D N if xh; x` are
non-constant coordinates which are related by a modular polynomial ˆN , and we
range over all such related pairs.
8.2. Formulation GO1 [15]. Let V � Y.1/k be defined over a field K which
is finitely generated over Q. There are positive constants c; � with the following
property. IfP 2 V defined over a field extension ofK then ŒK.P / W K� � c�.hP i/�:
8.3. Proposition. SGH implies GO1 for the subvarieties Y.1/k � Y.1/k ,
k D 1; 2; : : : as subvarieties defined over Q.

Proof. Suppose x D .x1; : : : ; xk/ 2 Y.1/k . Some xi may be special, and some pairs
of coordinates may be related by modular polynomials. For the special xi we have
Landau–Siegel. Suppose xi1 ; : : : ; xik are all in the sameHecke orbit. The complexity
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of h.xi1 ; : : : ; xik /i is then the maximumN of theNab such thatˆNab
.xia ; xib / D 0,

and by SGH we have ŒQ.x1; : : : ; xn/ W Q� � cN ı .

8.4. Proposition. GO1 for Y.1/k � Y.1/k , k D 1; 2; : : : implies GO1 in general.

Proof. Assume the truth of GO1 for Y.1/n � Y.1/n; n D 1; 2; : : : and let V � Y.1/n
defined over a field K finitely generated over Q. Let us write K D L.�/ where L is
purely transcendental over Q and ŒK W L� is algebraic. Let P D .x1; : : : ; xn/ 2 V .
We may suppose all coordinates are algebraic over K.

Some coordinates ofP may be special, and some related bymodular polynomials.
If xi is special, then it is algebraic and its degree overQ is bounded below by c�.x/ı
be Landau–Siegel. If ˆN .xi ; xj / then we distinguish two cases. If one (and hence
both) xi ; xj are algebraic, the required lower bound follows from SGH. If they are
not algebraic, then ŒQ.xi ; xj / W Q.xi /� D degˆN , and the required degree bound
follows via the gonality argument in the proof of 7.2.

Note that GO1, is stronger than the conjectured “LGO” used in [15] to give a
conditional proof of the Zilber–Pink conjecture for Y.1/k (a second condition in [15],
a suitable “Ax–Schanuel” statement for the modular function, has subsequently been
affirmed in [34]). Thus SGH implies the full Zilber–Pink conjecture for Y.1/k .
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