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Abstract. We prove an analog for integrable measurable cocycles of Pansu’s differentiation
theorem for Lipschitz maps between Carnot–Carathéodory spaces. This yields an alternative,
ergodic theoretic proof of Pansu’s quasi-isometric rigidity theorem for nilpotent groups, answers
a question of Tim Austin regarding integrable measure equivalence between nilpotent groups,
and gives an independent proof and strengthening of Austin’s result that integrable measure
equivalent nilpotent groups have bi-Lipschitz asymptotic cones. Our main tools are a nilpotent-
valued cocycle ergodic theorem and a Poincaré recurrence lemma for nilpotent groups.
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1. Introduction

In [13] Pansu proved the following seminal quasi-isometric rigidity theorem for
nilpotent groups.
Theorem 1.1 (Pansu [13]). Finitely generated quasi-isometric nilpotent groups have
isomorphic associated Carnot groups.

He did this in two independently interesting steps. First, he identified the unique
asymptotic cone of a finitely generated nilpotent group equipped with a left-invariant
inner metric as an associated Carnot group with a Carnot–Carathéodory metric [12].
The second step is Pansu’s differentiation theorem.
Theorem 1.2 (Pansu [13]). A bi-Lipschitz map between Carnot groups is differen-
tiable almost everywhere. Moreover, the derivative induces a group isomorphism.

Since asymptotic cones of quasi-isometric groups are bi-Lipschitz, one deduces
Theorem 1.1.

Measure equivalence (hereafter “ME”) is an equivalence relation on groups
introduced by Gromov [7] that is a measure-theoretic parallel of quasi-isometry.
It has been the object of considerable study: Furman’s survey [5] provides a thorough
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overview. However, a fundamental result of Ornstein and Weiss [11] implies that
measure equivalence collapses all amenable groups into one equivalence class.

Ameasure equivalence between two groups implicitly defines a pair ofmeasurable
cocycles over probability measure preserving (pmp) actions of those groups. In
their study of rigidity of hyperbolic lattices [2], Bader, Furman and Sauer have
sharpened measure equivalence to a finer equivalence relation, called integrable
measure equivalence (“IME”), by considering only those measure equivalences for
which these cocycles satisfy an integrability condition.

Recently Austin and Bowen [1] showed that the single ME class of infinite
amenable groups splits into many IME classes. Bowen showed that the growth
type of a group is preserved by IME, and Austin used Bowen’s result to prove the
following.
Theorem1.3 (Austin [1]). Finitely generated integrablemeasure equivalent nilpotent
groups have bi-Lipschitz asymptotic cones.

Notice that combining Theorems 1.2 and 1.3 one deduces the IME analog of
Theorem 1.1.
Theorem 1.4. Finitely generated integrable measure equivalent nilpotent groups
have isomorphic associated Carnot groups.

However this proof is not entirely satisfying as it does not “see” the group
isomorphism through the IME. In his proof, Austin considers the measurable cocycle
as an equivariant family of random maps between the f.g. groups that induces a
sequence of measurable maps �x;n between the associated Carnot groups indexed by
the rescaling 1=n in the asymptotic cone construction. He then proves that with high
probability a subsequence of these maps converge to a bi-Lipschitz map between the
Carnot groups. Austin then asks the natural question [1, Question 5.2]: Is there a
bi-Lipschitz group isomorphism between the Carnot groups to which this sequence
of random maps converge with high probability on bounded sets? We answer this
question in the affirmative.
Theorem A. Suppose � andƒ are IME f.g. nilpotent groups with associated Carnot
groups G1 and H1. Let �x;n be the maps as in [1, Question 5.2]. Then there is a
bi-Lipschitz group isomorphismˆ W G1 ! H1 to which �x;n converge on bounded
sets with high probability as n!1

�x;n �! ˆ:

Remarks 1.5. (1) In [15] Shalom keenly observed that amongst f.g. amenable
groups, quasi-isometry implies uniform measure equivalence, which in particular
implies IME. Therefore Theorem A implies Theorem 1.1. While we do not rely
logically on Theorem 1.2, we do use the idea of the Pansu derivative.

(2) One might say that the isomorphism ˆ is the Pansu derivative of the given
measurable cocycle. Indeed, in the deterministic caseˆ is the usual Pansu derivative.
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(3) Theorem A is for any Carnot–Carathéodory metrics on G1 and H1. All
Carnot–Carathéodory metrics on a given Carnot group are bi-Lipschitz, so in what
follows we may not specify the metric. Moreover ˆ being a group isomorphism
implies it is bi-Lipchitz.

Theorem A is an immediate consequence of Theorem B, which has the spirit of
a nilpotent-valued cocycle ergodic theorem.

Theorem B. Let � ,ƒ be f.g. IME nilpotent groups with associated cocycles
˛ W � �X ! ƒ and ˇ W ƒ � Y ! � , and let G1 and H1 be the associated
Carnot groups of � and ƒ. Then there exists a bi-Lipschitz group isomorphism
ˆ W G1 ! H1 so that for all g 2 G1

1

n
� 
n �! g implies

1

n
� ˛.
n; x// �! ˆ.g/

where the convergence is in the sense of the asymptotic cone, and the second
convergence is in measure. The same is true after exchanging the roles of � ,ƒ,
˛,ˇ, and ˆ,ˆ�1.

See �2.2 for the definition of convergence in the asymptotic cone.

Remarks 1.6. (1) Convergence in measure is the best one can hope for given
the L1 integrability assumption. To have pointwise convergence even in case
� D ƒ D Zd one must assume Ld;1 (Lorentz-space) integrability. The correct
integrability assumption for pointwise convergence of ergodic theorems for nilpotent
groups is commonly believed to be related to the growth type of the group.

(2) All of the theorems stated above are true for f.g. polynomial growth groups,
which by [6] are those groups with finite index nilpotent subgroups. Theorem B is
insensitive to finite index and finite kernels, so we reduce to the torsion-free nilpotent
case. See §2.7.

The proof of Theorem B is a natural extension of ideas developed in [4]. The idea
is that, following Pansu [12], the large scale geometry of f.g. nilpotent groups depends
only on the behavior of the projection to abelianization. Therefore, to understand
the large scale geometric behavior of a random map ˛.�; x/ W � ! ƒ, we project it
to the abelianization and integrate. Since a section of the abelianization generates
the whole group, we can write all elements in terms of that section. We then use
the cocycle identity to decompose arbitrary elements into a product of those coming
from (a section of) the abelianization, which allows us to promote the cocycle ergodic
theorem for cocycles with values in Rd , which is easy, to the desired cocycle ergodic
theorem with values in ƒ.

We remark that while it is almost immediate that the limiting map ˆ is a
homomorphism, the nilpotent Poincaré recurrence Lemma 2.2 is needed to show
that ˆ has (the obvious candidate as) an inverse.
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The rest of the paper is organized as follows. The second section sets notation,
gathers background information regarding nilpotent groups, asymptotic cones, and
measure equivalence, and reduces to the torsion-free nilpotent case. In Section 3 we
study asymptotics along iterates of a single element. In Section 4 we combine the
results of § 3 with Lemma 2.1 to understand asymptotics along arbitrary elements.
Finally in Section 5 we define ˆ, prove Theorem B, and deduce Theorem A.

On a first reading of this paper, one may wish to skip the proofs in Subsection 2.5,
as the statements are intuitive. Also, one may wish to skip the proofs in Section 3,
which are the most technical part of the paper.

We conclude the introduction by noting that, in light of Remark 1.5(1), one
might hope to develop a nilpotent IME rigidity theory parallel to that of quasi-
isometry [9, 14, 15].

Acknowledgements. I would like to express my sincere gratitude to Tim Austin and
to my advisor Alex Furman.

2. Background and notation

2.1. Integrable measure equivalence. Two infinite discrete countable groups � ,ƒ
are measure equivalent if there exists an infinite measure space .�;m/ with a
measurable, measure preserving action of � �ƒ so that the actions A W � Õ .�;m/

and B W ƒ Õ .�;m/ admit finite measure fundamental domains Y;X � �. The
space .�;m/ together with the � � ƒ action is called a measurable coupling of �
and ƒ. By restricting attention to an ergodic component, one may always assume
that m is ergodic for the � �ƒ action.

The fundamental domains Y andX for theG andH actions give rise to functions

˛ W � �X �! ƒ and ˇ W ƒ � Y �! �

defined uniquely by requiring

B.�/y 2 A.ˇ.�; y/�1/Y and A.g/x 2 B.˛.
; x/�1/X; 8x 2 X 8y 2 Y:

There are associated finite measure preserving actions � Õ .X;mjX / and
ƒ Õ .Y;mjY / (whose actions we denote by �) defined by requiring that

A.
/x D B.˛.
; x/�1/.
 � x/ and B.�/y D A.ˇ.�; y/�1/.� � y/:

If m is ergodic for � � ƒ then the actions � Õ .X;mjX / and ƒ Õ .Y;mjY / are
ergodic. We may assume after renormalizing that both mjX and mjY are probability
measures. Finally, ˛ and ˇ aremeasurable cocycles over the pmp actions in the sense
that

˛.
1
2; x/ D ˛.
1; 
2 � x/˛.
2; x/ and ˇ.�1�2; y/ D ˇ.�1; �2 � y/ˇ.�2; y/

(2.1)
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for all 
1; 
2 2 � , �1; �2 2 ƒ and for m a.e. x 2 X , y 2 Y . Most of our reasoning
will be about these cocycles.

Replacing the fundamental domain Y with one of itsH translates only translates
the cocycle ˇ. Since countably many translates of Y cover �, we may therefore
assume that m.X \ Y / > 0. Moreover, (see [1] for more details) if

x 2 X \ Y \ 
�1.X \ Y /

then
ˇ.˛.
; x/; x/ D 
:

Given finitely generated groups �;ƒ, a cocycle ˛ W � � X ! ƒ over a pmp action
� Õ .X; �/ is integrable if, for some (any) choice of finite generating set for ƒ

kj˛.
; �/jƒk1 D

Z
X

j˛.
; x/jƒd�.x/ <1; 8
 2 �

where j�jƒ is the word norm associated to the generating set. The subadditivity of j�jƒ
implies

kj˛.
; �/jƒk1 � j
 j� �max
s2S
kj˛.s; �/jƒk1

where j�j� is any word norm associated to a finite generating set for � .
Finally, finitely generated groups � and ƒ are integrably measure equivalent if

they admit a measurable coupling so that the associated cocycles (2.1) are integrable.
This is an equivalence relation independent of choice of generating sets. For more
details, see [5].

Recall that measurable events En � .X;m/ occur with high probability (whp)
if m.En/ ! 1 as n ! 1. We say that a sequence of measurable functions
fn W X ! Œ0;1/ is o.n/ in probability (or “whp”) if for all � > 0 one has
m.fn.x/=n < �/ ! 1 as n ! 1. Thus for example dƒ.˛.
n; x/; �/ D o.n/ in
probability means that for all �; ı > 0 there is N so that for all n � N one has
m.dƒ.˛.


n; x/; �/ < nı/ < �. Similarly for O.n/.

2.2. The associated Carnot Lie algebra. Let � be a finitely generated torsion
free nilpotent group. Recall that by a theorem of Mal’cev [10] there is a unique
connected, simply connected nilpotent Lie group G, called the Mal’cev completion
of � , in which � embeds as a (necessarily cocompact) lattice.

Since G is simply-connected, the exponential map exp W g WD Lie.G/! G from
the Lie algebra of G to G is a diffeomorphism, so we can work with the Lie algebra.
Set

g1 WD g; giC1 WD Œg; gi �:

Being nilpotent, G satisfies grC1 D f0g for some r 2 N. Since Œgi ; gj � � giCj the
Lie bracket on g defines a bilinear map�

gi=giC1
�
˝
�
gj =gjC1

�
�! .giCj =giCjC1/;
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which can then be used to define the Lie bracket Œ�;��1 on

g1 WD

rM
iD1

vi ; where vi WD gi=giC1 (2.2)

by extending the above maps linearly.
The resulting pair .g1; Œ�;��1/ is called the Carnot Lie algebra associated

with g. Note that the linear maps

ıt W g1 ! g1; ıt .v1; : : : ; vr/ D .t � v1; t
2
� v2; : : : ; t

r
� vr/;

satisfy ıt .Œv; w�1/ D Œıt .v/; ıt .w/�1 and ıts D ıt ı ıs for v;w 2 g1, t; s > 0.
Hence fıt j t > 0g is a one-parameter family of automorphisms of the Lie algebra g1,
and therefore define a one-parameter family of automorphisms of the Lie group
G1 WD exp1.g1/, that we will still denote by fıt j t > 0g. (Here we denote the
exponential map g1 ! G1 by exp1 to distinguish it from exp W g! G).

Choose a splitting of g as a direct sum of vector subspaces

g D V1 ˚ � � � ˚ Vr ; so that gi D Vi ˚ � � � ˚ Vr ; (2.3)

and choose a vector space identification L W g ! g1 so that L.Vi / D vi the
i th summand of g1. For t > 0 define the vector space automorphism ıt of g by
ıt .v/ D t i � v for v 2 Vi (i D 1; : : : ; r). Note that fıt j t > 0g are not Lie algebra
automorphisms of g in general. Nevertheless they induce maps fıt j t > 0g from G

to G which we still denote ıt . Note also that the maps ıt defined on g and on g1 are
conjugate through L.

Now the Lie bracket Œ�;��t on g, given by

Œv; w�t WD ı 1
t
.Œıt .v/; ıt .w/�/ ;

defines a Lie algebra structure on g that is isomorphic to the original Œ�;�� D Œ�;��1
via ıt .

However, one has
ŒL.v/; L.w/�1 D lim

t!1
Œv; w�t

due to the fact that for v 2 Vi , w 2 Vj the “leading term” of Œv; w� lies in ViCj ,
while the higher terms that belong to ViCjC1˚ � � � ˚ Vr become insignificant under
the rescaling (see [12]). Using the log W G ! g and exp1 W g1 ! G1 maps we
obtain a family of maps

sclt .�/ W �
<
�! G

log
�! g

ı
t�1

�! g
L
�! g1

exp1
�! G1 .t > 0/ (2.4)

that explains the asymptotic cone description of Pansu [12] as follows.
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Let d be an inner left-invariant metric d on � and�
�;
1

t
� d; e

�
GH
�! .G1; d1; e/

the Gromov–Hausdorff convergence. Then a sequence 
i 2 � , rescaled by t�1i with
ti !1 as i !1, converges to g 2 G1 iff sclti .
i /! g in G1.

We shall often write

g D lim
i!1

1

ti
� 
i instead of sclti .
i /! g:

The metric part of the statement shows that for ti !1 and 
i ; 
 0i 2 �

g D lim
i!1

1

ti
�
i ; g0 D lim

i!1

1

ti
�
 0i H) d1.g; g

0/ D lim
i!1

1

ti
�d.
i ; 


0
i /: (2.5)

The limiting distance d1 on G1 is homogeneous in the sense that

d1.ıs.g/; ıs.g
0// D s � d1.g; g

0/ .g; g0 2 G1; s > 0/:

This distance is left-invariant (this follows from Lemma 2.1). The distance d1 arises
from the sub-Finsler Carnot–Carathéodory construction.
Lemma 2.1. Given sequences ti !1, 
i ; 
 0i 2 � with 1

ti
�
i ! g and 1

ti
�
 0i ! g0,

then 1
ti
� 
i


0
i ! gg0.

Proof. This follows from the Baker–Campbell–Hausdorff formula (cf. § 3.3 and [3,
Proof of Lemma 5.5]).

2.3. Nilpotent Poincaré recurrence lemma. To show that the limit map ˆ has
an inverse (Proposition 5.8), we will need the following nilpotent group variant of
Poincaré recurrence.
Lemma 2.2 (Poincaré recurrence for nilpotent groups). Fix g 2 G1 and let A � X
with m.A/ > 0. Then

m
n
x 2 A W 9.nk/k � N9.
nk

/k � � s.t.
1

nk
� 
nk

! g and 8k 
nk
� x 2 A

o
D m.A/:

Lemma 2.3. Fix g 2 G1, let A � X with m.A/ > 0 and let ı > 0. Then

m
n
x 2 A W 9
 2 � 9n 2 N such that d1

�1
n
� 
; g

�
< ı and 
 � x 2 A

o
D m.A/:

Proof that Lemma 2.3 implies Lemma 2.2. Set

Aı D
n
x 2 A W 9
 2 � 9n 2 N such that d1

�1
n
� 
; g

�
< ı and 
 � x 2 A

o
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which has measure m.A/ by Lemma 2.3. Then

A0 D \1lD1A1=l

again has measure m.A/, and has the desired property.

Proof of Lemma 2.3. Suppose that the statement of the Lemma is false. Then there
is g 2 G1, A � X with m.A/ > 0, ı > 0 and E � A with m.E/ > 0 such that for
a.e. x 2 E, for all 
 2 � and n 2 N, if d1. 1n � 
; g/ < ı, then 
 � x … A.

We claim that there exist infinitely many .nk; 
nk
/ 2 N � � such that

d1.
1
nk
� 
nk

; g/ < ı and such that if ki < kj then

d1

� 1

nkj

� 
�1nki

nkj

; g
�
< ı:

Indeed, pick any .n1; 
n1
/ so that d1. 1n1

� 
n1
; g/ < ı. Now consider any sequence

1
m
� 
m ! g. Since 1

m
� 
�1n1

! id as m!1, Lemma 2.1 implies that

1

m
� 
�1n1


m ! g:

Thus we may pick n2 WD m large to satisfy the claim. Continuing in this way, the
claim is proved.

Now we see that the sets 
nk
E are pairwise disjoint: indeed, if not, then

m.
�1nki

nkj

E \E/ > 0:

which implies that there is a positive measure set of x 2 E so that 
�1nki

nkj

� x 2

E � A while d1. 1
nkj

� 
�1nki

nkj

; g/ < ı, contradicting the definition of E.
Thus the sets 
nk

E are pairwise disjoint. But asm.E/ > 0, that is also impossible.

Notice that, while one can formulate the Lemmas 2.2 and 2.3 for any group
together with one of its asymptotic cones, the key ingredient that fails for groups that
are not nilpotent is Lemma 2.1. This is easily seen in the free group.

2.4. Logarithmic coordinates. We will use the so called logarithmic coordinates
throughout this paper, which are described as follows. Choose a real basis
fX1; : : : ; Xmg for g that respects the decomposition (2.3). When we write
g D .x1; : : : ; xm/ 2 G we mean that g D exp.x1X1 C � � � C xmXm/. These are the
logarithmic coordinates of G. Thus if g D .x1; : : : ; xm/ and h D .x01; : : : ; x0m/ then
the product gh D .y1; : : : ; ym/ where

exp.x1X1 C � � � C xmXm/ exp.x01X1 C � � � C x
0
1Xm/ D exp.y1X1 C � � � C ymXm/:
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In light of the vector space isomorphism L W g ! g1 the basis for g yields a
basis for g1 that respects the decomposition (2.2). Throughout this paper we will
think of g and g1 as occupying the same real vector space, only with different Lie
brackets Œ�;�� and Œ�;��1. We also use the logarithmic coordinates for g1, the
only difference in definition being the Lie bracket.

Let d D dimV1. Then there exist constants �i 2 N, d < i � m so that � embeds
in G in logarithmic coordinates as

� D f.a1; : : : ; ad ; �dC1adC1; : : : ; �mam/ W ai 2 Zg < G:

Thus we have identified � < G � Rm � G1. Therefore we think of � < G

and G1 as occupying the same copy of Rm. We denote the group product in � < G
by g � h or simply by gh, and the group product in G1 by g ? h. We will always
denote a word norm on a discrete nilpotent group � or ƒ by j�j� or j�jƒ, a word
norm on a nilpotent Lie group G or H by j�jG or j�jH and a Carnot–Carathéodory
norm on a Carnot nilpotent Lie group G1 or H1 by j�j1, and their associated
metrics d� , dƒ, dH , dH , and d1. Thus we can without notational ambiguity omit
the linear identification L W G � G1. For example if 
; � 2 � then j
 j1 means
unambiguously jL
 j1 and 
 ? � means L
 ? L� .

Since V1 Š g=g2, the sets

f.x1; : : : ; xd ; 0; : : : ; 0/ 2 Gg Š Rd and f.a1; : : : ; ad ; 0; : : : ; 0/ 2 �g Š Zd

are complete sets of coset representatives for G=G2, G1=G21 and (the torsion-free
part of) �=�2. We will use these choices of coset representatives in the arguments
that follow. We define the projections on to the abelian and commutator coordinates
for � , G, and G1 by

�ab.a1; : : : ; am/ D .a1; : : : ; ad ; 0; : : : ; 0/

�com.a1; : : : ; am/ D .0; : : : ; 0; adC1; : : : ; am/:

2.5. Some nilpotent geometry. We now collect some basic nilpotent geometry
facts. We make no claim to originality in this subsection.

We will use the following Lemma of Guivarc’h repeatedly throughout this paper
to simplify our arguments. Since asymptotic statements are not sensitive to quasi-
isometry, the Guivarc’h Lemma allows us to prove asymptotic statements for only
one of .H; dH / or .H1; d1/.
Lemma 2.4 (Guivarc’h [8]; see also [3, Theorem 3.7]). Let K be a compact neigh-
borhood of the identity in a simply connected nilpotent Lie group G and dG.g; h/ D
inffn � 1 W g�1h 2 Kng. Then for any homogeneous quasi-norm j�j on G there is a
constant C > 0 so that

1

C
jgj � dG.e; g/ � C jgj C C:
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We now use the Guivarc’h Lemma to give succinct proofs of several nilpotent
geometric facts, which could also be proved by induction on nilpotency class. All
of the statements are true independent of choice of symmetric generating set, but
we work with a fixed generating set S with associated norm j�j� and metric d�
to be concise. All constants depend on � and S . Let us say that two functions
f; g W � ! RC are quasi-isometric if there exists C > 0 so that for all 
 2 � ,
f .
/=C � C � g.
/ � Cg.
/C C . The following lemma is a natural statement
regarding the asymptoticword growth of each coordinate in a nilpotent group. Define,
for each 1 � i � m, the degree di D deg.Xi / to be the greatest j so that Xi 2 gj�1.
Lemma 2.5. For each 1 � i � m there exist 0 < c1 < c2 <1 so that for all n 2 Z

c1n
1=di � j.0; : : : ; n; : : : 0/j� � c2n

1=di

where the non zero term is in the i -th coordinate.
Moreover, if ŒXi1 ; : : : ; ŒXil�1

; Xil � � � � � D cXt where ir 2 f1; : : : ; mg and c ¤ 0,
then

lX
rD1

dir � dt :

Proof. The following is a quasi-norm on G

j.x1; : : : ; xm/jm WD max
i
jxi j

1=di :

.G; j�jG/ restricted to� is quasi-isometric to .�; j�j�/, while by theGuivarc’h Lemma,

.G; j�jG/ is quasi-isometric to .G; j�jm/. But j.0; : : : ; n; : : : ; 0/jm D n1=di . Since �
is discrete we may absorb the additive factors. The moreover statement is obvious
from the definitions.

Lemma 2.6. For each 1 � i � m set

fi .n/ D j.0; : : : ; 0; n; 0; : : : ; 0/j�

gi .n/ D min
aj

j.a1; : : : ; ai�1; n; aiC1; : : : ; am/j� :

where the non-zero coordinate is in the i -th coordinate. Then there exists 1 � C <1

so that for all n 2 N
fi .n/ � cgi .n/:

Proof.

fi .n/ � cn
1=di � cmin

aj

j.a1; : : : ; ai�1; n; aiC1; : : : ; am/jm

� cc1min
aj

j.a1; : : : ; ai�1; n; aiC1; : : : ; am/j� C c2

� .cc1 C c2/min
aj

j.a1; : : : ; ai�1; n; aiC1; : : : ; am/j� .n ¤ 0/

where we have used Lemma 2.5 and the Lemma of Guivarc’h.
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The next lemma says that projecting to the commutator coordinates only reduces
word norm by a universal multiplicative constant.

Lemma 2.7. There is a constant C > 0 so that 8
 2 �

j
 j� � C j�com
 j� :

Proof. Consider the quasi-norm j�jm defined above. For all 
 2 � we have trivially

j
 jm � j�com
 jm:

The Guivarc’h Lemma and the discreteness of � finish the proof.

Lemma 2.8. There exists l > 0 so that for all 
 2 � � �2 and for all n j
nj� � ln.

Proof. If 
 … �2 then j
njm � n. The Guivarc’h Lemma and the discreteness of �
finish the proof.

Lemma 2.9. The functions j�j� ; j�jG ; j�jm; j�j1 W � ! RC are all quasi-isometric to
one another. Moreover,

j
nj� D j.an;1; : : : ; : : : ; an;m/j� D o.n/ ” jan;t j D o.n
d.t// 81 � t � m

j
nj� D j.an;1; : : : ; : : : ; an;m/j� D O.n/ ” jan;t j D O.n
d.t// 81 � t � m

jgnjG D j.an;1; : : : ; : : : ; an;m/jG D o.n/ ” jan;t j D o.n
d.t// 81 � t � m

jgnjG D j.an;1; : : : ; : : : ; an;m/jG D O.n/ ” jan;t j D O.n
d.t// 81 � t � m

jgnj1 D j.an;1; : : : ; : : : ; an;m/j1 D o.n/ ” jan;t j D o.n
d.t// 81 � t � m

jgnj1 D j.an;1; : : : ; : : : ; an;m/j1 D O.n/” jan;t j D O.n
d.t// 81 � t � m

where an;j 2 Z (an;j 2 R) is the j -th coordinate of 
n 2 � (gn 2 G).

Proof. For the first statement, recall that .G; j�jG/ restricted to � is quasi-
isometric to .�; j�j�/, while by the Guivarc’h Lemma, .G; j�jG/ is quasi-isometric
to .G; j�jm/. Note that .G; j�jm/ and .G1; j�jm/ are equal (under the implicit linear
identification L), and that .G1; j�j1/ is a quasi-norm. Since any two quasi-norms
on the same group are bi-Lipschitz, we have proven the first statement.

The moreover statement follows from the first statement together with the fact
that

jgnjm D o.n/ ” jan;t j D o.n
d.t// 81 � t � m

and similarly for O.n/.

Note that the stronger statement that the corresponding left-invariant metrics
.G; dG/ and .G1; d1/ are quasi-isometric is not true in general.
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Lemma 2.10. If gn 2 G1 is a sequence such that

(1) j�comgnj1 D o.n/

(2) j�abgnj1 D O.n/

then ˇ̌
.�abgn/

�1 ? gn
ˇ̌
1
D o.n/:

Proof. Let gn D .an;1; : : : ; an;m/ so that �abgn D .an;1; : : : ; an;d ; 0; : : : ; 0/ and
.�abgn/

�1 D .�an;1; : : : ;�an;d ; 0; : : : ; 0/. Using the Baker–Campbell–Hausdorff
formula, the nilpotency of G1 and linearity of the bracket

.�abgn/
�1 ? gn D an;dC1XdC1 C � � � C an;mXm C h:o:t:

where h:o:t: are precisely the terms involving at least one bracket in the product

.�an;1X1 � � � � � an;dXd / ? .an;dC1XdC1 C � � � C an;mXm/: (2.6)

Since the abelian coordinates of .�abgn/�1 ? gn are all zero, by Lemma 2.9
it suffices to show that the t -th coordinate of .�abgn/�1 ? gn is o.ndt / for every
d < t � m. By assumption j�comgnj1 D o.n/, so it suffices to show that the
contributions from (2.6) to each t coordinate are o.nd.t//, for d < t � m. Using
Baker–Campbell–Hausdorff again, for fixed d < t � m the contribution is a sum of
finitely many terms of the form

cŒan;i1Xi1 ; : : : ; Œan;il�1
Xil�1

; an;ilXil � � � � �

where c is a constant from the Baker–Campbell–Hausdorff formula, i1; : : : il 2
f1; : : : ; mg and for at least one r , ir 2 fd C 1; : : : ; mg. Since the number of such
terms depends only on G1, it suffices to show that

an;i1 � � � an;il D o.n
dt /;

which follows immediately from the fact that at least one ir 2 fd C 1; : : : ; mg and
� jan;ir j D O.n/ for 1 � ir � d
� jan;ir j D o.n

dir / for d < ir � m

�
Pl
rD1 dir � dt .

Lemma 2.11. Let gn; hn 2 G. If jgnjG D o.n/ and jhnjG D O.n/ thenˇ̌
g�1n h�1n gnhn

ˇ̌
G
D o.n/:

Moreover the same is true of any Carnot–Carathéodory norm on G1 instead of G.
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Proof. Let gn D .an;1; : : : ; an;m/, hn D .bn;1; : : : ; bn;m/ and suppose jgnjG D o.n/
and jhnjG D O.n/. By Lemma 2.9

jan;t j D o.n
dt / 1 � t � m

jbn;t j D O.n
dt / 1 � t � m:

Say gn D exp vn D exp.an;1X1C� � �Can;mXm/ and hn D expwn D exp.bn;1X1C
� � � C bn;mXm/, so

g�1n h�1n gnhn D exp�vn exp�wn exp vn expwn D exp.Œvn; wn�C � � � / (2.7)

where the dots stand for terms involving three or more brackets. Let us examine the
coefficient cr of Xr in (2.7); it is a sum of finitely many terms of the form

can;i1 � � � an;isbn;j1
� � � bn;jt

where
X
1�p�s
1�q�t

dip C djq
� dr ;

where c is a (possibly zero) constant depending only on G, and s ¤ 0, i.e. there
is at least one an;i term. Employing Lemma 2.9 again it suffices to show that each
of these possible coefficients is o.ndr /. Indeed there is a constant c (coming from
the O.nd.jq//) so that for all � > 0 and all sufficiently large nˇ̌

an;i1 � � � an;isbn;j1
� � � bn;jt

ˇ̌
� �n

P
dip cn

P
diq � c�ndr :

To see that the same is true for G1 with a Carnot–Carathéodory norm j�j1, note
that the proof only used Lemma 2.9 and nilpotency.

2.6. Notation. All of the above was true of a general finitely generated torsion-free
nilpotent group � , though of course the groups G, G1, as well as the corresponding
dimension of the abelianization d D dim.G=ŒG;G�/, the nilpotency step s and the
vector space dimension m all depend on � .

Let us fix two finitely generated torsion-free nilpotent groups � and ƒ that are
integrablymeasure equivalent with integrable cocycles as in (2.1) for which the action
� Õ .X;m/ is pmp ergodic. We denote their Mal’cev Lie groupsG andH and their
Carnot lie groups G1 and H1, respectively. Let us now fix finite generating sets S
and T for � and ƒ respectively. We will denote their respective word norms j�j�
and j�jƒ and the metrics d� and dƒ. Let us also fix a compact generating setK � H
and denote the corresponding word norm and metric j�jH and dH . Finally, there are
the unique Carnot–Carathéodory metrics on H1 and G1 associated to d� and dƒ
by [12]. Let us denote both by d1, as no confusion can arise.

Keep in mind that, since we are not assuming Pansu’s Theorem 1.2 a priori we
do not know whether G1 and H1 are isomorphic groups or that the dimensions of
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their abelianization are the same. So let us say that in logarithmic coordinates

ƒ < H � H1 � Rm dim.h=h2/ D d

� < G � G1 � Rm0 dim.g=g2/ D d 0:

We will only work in the Lie algebras h and h1 of H and H1. Let us identify as
in (2.3)

V D V1 ˚ � � � ˚ Vs D h D h1

with Lie brackets Œ�;��H and Œ�;��1. The projections we will use are for ƒ, H
andH1:

�ab.a1; : : : ; am/ D .a1; : : : ; ad ; 0; : : : ; 0/

�com.a1; : : : ; am/ D .0; : : : ; 0; adC1; : : : ; am/:

We will think of the image �ab.H/ Š Rd in order to integrate, but for notational
ease we suppress the identification. Now we may define two maps essential to what
follows

˛ab W � �X ! H ˛ab.
; x/ D �ab ı ˛.
; x/

˛ab W � ! H ˛ab.
/ D

Z
X

˛ab.
; x/ dm.x/:

2.7. Reduction to torsion-free nilpotent groups. Here we reduce Theorem B to
the case of torsion-free nilpotent groups. Finitely generated polynomial growth
groups have finite index nilpotent subgroups, which themselves have finite normal
torsion subgroups. Let � 0 < � be a finite index subgroup. The action � 0 Õ .X;m/

has at most Œ� W � 0�-many ergodic components permuted by the � action. Let
�1; : : : ; �l 2 � be a complete set of representatives for � 0n� . Consider an ergodic
component X 0 and the integrable cocycle ˛0 W � 0 �X 0 ! ƒ obtained by restriction.
Suppose 1

n
� 
n ! g 2 G1. For each n write 
n D 
 0n�ni

where �ni
2 f�1; : : : ; �lg

and 
 0n 2 � 0. Then
1
n
� 
 0n ! g so by Theorem B 1

n
� ˛.
 0n; x/! ˆ.g/ for some ˆ

that a priori depends on the ergodic component X 0. Now the cocycle equality
˛.
n; x/ D ˛.


0
n�ni

; x/ D ˛.
 0n; �ni
x/˛.�ni

; x/ implies

dƒ.˛.
n; x/; ˛.

0
n; �ni

x// D
ˇ̌
˛.�ni

; x/
ˇ̌
ƒ

which is bounded by a constant independent of n with high probability by Markov’s
inequality. Therefore

d1

�1
n
� ˛.
 0n; x/;

1

n
� ˛.
n; x/

�
D o.n/ whp:

Now let N be a finite normal subgroup of � . Then �=N acts ergodically by pmp
transformations on .X;m/=N . Since N is finite, we can find a measurable section
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s W X=N ! X of � W X ! X=N . For every x 2 X , there is nx 2 N so that
nx � s�.x/ D x. Define

f W X ! ƒ f .x/ D ˛.nx; s�.x//

and the cocycle cohomologous to ˛ via f

˛f .
; x/ D f .
x/�1˛.
; x/f .x/:

Notice that f takes finitelymany values, so ˛f is integrable. A direction computation
shows that ˛f restricted to N is the trivial map, so ˛f descends to a cocycle

˛f W �=N �X=N ! ƒ:

Finally, if 
n 2 � is such that 1
n
� 
n ! g, then also 1

n
� 
n ! g where


 D 
N 2 �=N . Thus 1
n
� ˛f .
n; �x/ ! ˆ.g/. Again since f takes finitely

many values, another application of the Markov inequality shows that

dƒ.˛
f .
n; x/; ˛.
n; x// D o.n/ whp

which finishes the proof.

3. Asymptotic behavior along iterates

In this section we analyze the asymptotic behavior of ˛.
n; x/ as n!1 for a given

 2 � . In the following section, we use the cocycle equation and the results of
this section to understand the asymptotic behavior of an arbitrary ˛.
; x/. The idea
in this section is to use the cocycle identity to see that ˛.
n; x/ typically behaves
like a homomorphism in to a nilpotent group. Crucially, one parameter families
of elements in to nilpotent groups experience an asymptotic decay in the higher
order terms (commutator coordinates). In this section we use ergodicity to extend
this phenomenon to a cocycle. Moreover, the position in the abelian coordinates
stabilizes asymptotically, so that we have a perfect picture of the asymptotics of
iterates: the higher order terms vanish, and the abelian coordinates tend to their
average value.

The main result of this section is the following proposition.
Proposition 3.1. For every 
 2 �

1

n
� ˛.
n; x/ �! ˛ab.
/ in probability:

Equivalently,

d1.˛.

n; x/; ın˛ab.
// D o.n/ in probability:

We will prove Proposition 3.1 by analyzing the abelian and commutator
coordinates separately.
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3.1. Abelianization direction. In this subsection we prove the following lemma
describing the asymptotic behavior of ˛ along iterates in the abelianization.
Lemma 3.2. For a.e. x 2 X and every 
 2 �

1

n
˛ab.


n; x/! ˛ab.
/

where the convergence is of vectors in Rd .
The proof of the lemma is an easy application of the following found in the more

general sub-additive case in [1] and [4].
Proposition 3.3. Suppose c W � �X ! R is a measurable cocycle over � Õ .X;m/

which is pmp ergodic. Then for a.e. x 2 X and every 
 2 �

1

n
c.
n; x/!

Z
X

c.
; x/ dm.x/:

Proof of Lemma 3.2. ˛ab is itself a cocycle taking values in Rd which we can
decompose as d independent cocycles with values in R. Indeed there are cocycles
˛i W � �X ! R for 1 � i � d so that

˛ab.
; x/ D .˛1.
; x/; : : : ; ˛d .
; x/; 0; : : : ; 0/:

We can similarly decompose the averages

˛ab.
/ D

�Z
X

˛1.
; x/ dm.x/; : : : ;

Z
X

˛d .
; x/; 0; : : : ; 0

�
:

Applying Proposition 3.3 to each of the ˛i finishes the proof.

3.2. Commutator direction. The purpose of this subsection is to prove the
following lemma describing the asymptotic behavior of ˛ along iterates in the
commutator direction.
Lemma 3.4. For every 
 2 �

j�com ı ˛.

n; x/jƒ D o.n/ in probability:

Moreover, the same is true if one replaces the norm j�jƒ with j�j1.
The moreover statement follows immediately from Lemma 2.9. The proof of the

main statement requires some preparation. The idea is to use the cocycle equation
to write ˛.
nk; x/ D ˛.
n; x1/˛.


n; x2/ � � �˛.

n; xk/ where xiC1 D 
nix. Using

Lemma 3.2 whp the abelianization of each of the ˛.
n; xi / � nv for some v, so that
the commutator of ˛.
nk; x/ is roughly the sum of the commutators of the ˛.
n; xi /.
This allows us to promote a linear bound on the commutator to an o.n/ bound since
the commutator direction “should” grow at least quadratically.
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To begin, we use a weakened form of Proposition 3.2 from [1] to obtain theO.n/
bound. Recall that given a pmp action � Õ .X;m/ a map c W � � X ! RC is a
subadditive cocycle if

c.
1
2; x/ � c.
1; 
2 � x/C c.
2; x/ 8
1; 
2 2 � m � a.e. x 2 X:

Proposition 3.5. Given a subadditive cocycle c W � � X ! RC, there is M � 1
such that for any � > 0 there is C D C.�/ such that

j
 j� � C H) m.jc.
; x/j �M j
 j�/ < �:

We would like to use Proposition 3.5 to draw conclusions about the size of the
commutator of ˛.
; x/. To do this, we use Lemma 2.7 which says that projection to
the commutator increases word norm by at most a universal multiplicative constant,
and Lemma 2.8 which says that the norm of iterates of an element with nontrivial
abelianization grows linearly up to a multiplicative constant. Combining this with
Proposition 3.5 we easily deduce the following O.n/ bound on the commutator
growth. Since the word length of iterates of 
 2 �2 does not grow linearly, we must
deal with this easy case separately.
Lemma 3.6. For every 
 2 � ��2 there isM 0 � 1 so that for any � > 0 there is N
so that for all n � N

m.j�com ı ˛.

n; x/jƒ > M

0n/ < �:

Proof. We apply Proposition 3.5 to the subadditive cocycle c W � � X ! Œ0;1/

defined by c.
; x/ D j˛.
; x/jƒ. We obtainM and setM 0 D M j
 j�=k where k is
from Lemma 2.7. Fix � > 0. Then there is C so that

j
 j� � C H) m.j˛.
; x/jƒ �M j
 j�/ < �:

Set N D C=l where l is from Lemma 2.8. Then since j
nj� � nj
 j� ,

n � N H) j
nj� � C H) m.j˛.
n; x/jƒ �Mnj
 j�/ < �:

Finally, by Lemma 2.7

n � N H) m.j�com˛.

n; x/jƒ �M

0n/ < �:

The proof of Lemma 3.4 is easy in case 
 2 �2.
Lemma 3.7. If 
 2 �2 then

j�com ı ˛.

n; x/jƒ D o.n/ in probability:

Proof. By Markov’s inequality there is � D maxs2S kj˛.s; �/jƒk1 so that for every
M 2 N

m.j˛.
n; x/jƒ > M�j
nj�/ < 1=M:
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For 
 2 �2 there is a constant c > 0 so that for all n 2 N we have j
nj� � c
p
n

(Lemma 2.5 and Lemma 2.9). Thus for such 
 we have j˛.
n; x/jƒ D o.n/ whp.
Lemma 2.7 completes the proof.

We need one more lemma before we can prove Lemma 3.4. Let us illustrate the
idea behind the lemma through the example of the Heisenberg group. Recall that in
logarithmic coordinates, the multiplication in the Heisenberg group is

.x; y; z/.x0; y0; z0/ D .x C x0; y C y0; z C z0 C 1=2.xy0 � x0y//:

The non-linear growth in the z-coordinate is given by the area enclosed by the
triangle formed by .x; y/; .x C x0; y C y0/ and .0; 0/. So, if a pair of elements have
very similar abelianizations, the z-coordinate of their product is approximately the
sum zCz0. Now supposewe have k elementswith uniformly controlled z-coordinates
and very similar abelianizations. Then the z-coordinate of their product grows
approximately linearly. Thus the z-coordinate is o.k/ since the z-coordinate “should”
grow quadratically. The following lemma generalizes this idea to general finitely
generated torsion-free nilpotent groups.

We define the projection on to the first t commutator coordinates

�t W ƒ! ƒ �t .a1; : : : ; am/ D .0; : : : ; 0; adC1; : : : ; at ; 0; : : : 0/:

Let d1 be the l1 metric on Rd and j�j1 be the l1 norm, so that j.x1; : : : ; xd /j1 D
jx1j C � � � C jxd j.
Lemma 3.8. Fix 0 < M < 1 and v 2 Rd . For each d � t < m for all ı > 0

there exists K 2 N and ı0 > 0 so that for all k � K and � � 1, whenever there exist
�1; : : : ; �k 2 ƒ such that

d1.�ab�i ; v/ < �ı
0
jvj1 (3.1)

j�t�i jƒ < �ı
0 (3.2)

j�com�i jƒ < �M (3.3)

then
j�tC1�1 � � ��kjƒ < �kı:

Proof of Lemma 3.4. Fix 
 2 � � �2. We obtain M as in Lemma 3.6 and set
v D ˛ab.
/. We prove by induction that for every d � t � m

j�t˛.

n; x/jƒ D o.n/ in probability:

For t D d there is nothing to show. Suppose the result is known for t . Fix
� > 0 and ı > 0. We apply Lemma 3.8 with the given ı,M and v to obtain k D K
and ı0. LetN be as in Lemma 3.6 applied to �=k, so that for all � � N we have with
probability at least 1 � �=k

j�com˛.

�; x/jƒ < �M:
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By taking N larger if necessary, applying the inductive hypothesis to ı0=3 and �=k
we obtain N so that for all � � N with probability at least 1 � �=k we have

j�t˛.

�; x/jƒ < �ı

0=3:

By taking N larger again if necessary, by Lemma 3.2 for all � � N with probability
at least 1 � �=k

d1.�ab˛.

�; x/; �v/ < �ı0jvj=3:

Since the � action on .X; �/ is measure preserving, the previous three statements
remain true if we replace any instance of x with gx for any g 2 � .

Finally, let N be larger if necessary so that k � ı0N . Now let p � kN . Write
p D �k C r where 0 � r < k and � � N . Using the cocycle equation

˛.
k�Cr ; x/ D ˛.
�; x/˛.
�; 
�x/ � � �˛.
�; 
 .k�2/�; x/˛.
�Cr ; 
 .k�1/�; x/:

Since �; �C r � N , with probability at least 1 � 3� we have simultaneously for all
0 � i � k � 2 ˇ̌

�com˛.

�; 
 i�x/

ˇ̌
ƒ
< �Mˇ̌

�t˛.

�; 
 i�x/

ˇ̌
ƒ
< �ı0=3

d1.�ab˛.

�; 
 i�x/; �v/ < �ı0jvj1=3

and ˇ̌̌
�com˛.


�Cr ; 
 .k�1/�x/
ˇ̌̌
ƒ
< .�C r/Mˇ̌̌

�t˛.

�Cr ; 
 .k�1/�x/

ˇ̌̌
ƒ
< .�C r/ı0=3

d1.�ab˛.

�Cr ; 
 .k�1/�x/; .�C r/v/ < .�C r/ı0jvj1=3:

Since r � ı0� the final three inequalities implyˇ̌̌
�com˛.


�Cr ; 
 .k�1/�x/
ˇ̌̌
ƒ
< 2�Mˇ̌̌

�t˛.

�Cr ; 
 .k�1/�x/

ˇ̌̌
ƒ
< �ı0

d1.�ab˛.

�Cr ; 
 .k�1/�x/; �v/ < ı0jvj1

where for the final inequality we have used the triangle inequality with intermediate
term .�C r/v.

Therefore with probability at least 1 � 3� we apply Lemma 3.8 and obtain

j�tC1˛.

p; x/jƒ < k�ı < pı:

Proof of Lemma 3.8. Fix 0 < M <1, v 2 Rd , d � t < m, ı > 0 and 1 > ı0 > 0.
We will show in the proof how to choose ı0 as a function of ı; jvj1; t . Choose K
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large so thatM=
p
K � ı2, and fix k � K and � � 1. Suppose we have �1; : : : ; �k

satisfying conditions (3.1)–(3.3). Let us denote �i D .ai;1; ai;2; : : : ; ai;m/ for each
1 � i � k, keeping in mind that only ai;1; : : : ; ai;tC1 are relevant. Throughout this
proof c will denote an ever-changing constant that is independent of ı, ı0 and �.

We are concerned with the absolute value of the t C 1 coordinate of the product
�1 � � ��k . By Lemma 2.5 it suffices to show that the absolute value of this coordinate
is at most c.�kı/d.tC1/. The estimate we seek will follow from the Baker–Campbell–
Hausdorff equation and the following constraints on the ai;j implied by conditions
(3.1), (3.2) and (3.3):ˇ̌

ai;j � ai 0;j
ˇ̌
� c�ı0jvj1 81 � i; i 0 � k 81 � j � d (3.4)ˇ̌

ai;j
ˇ̌
� c.�ı0/d.j / 81 � i � k 8d < j � t (3.5)

jai;tC1j � c.�M/d.tC1/ 81 � i � k (3.6)ˇ̌
ai;j

ˇ̌
� c�d.j / 81 � i � k 81 � j � t: (3.7)

Indeed, setting v D .v1; : : : ; vd /, from (3.1) we have
Pd
jD1

ˇ̌
ai;j � vj

ˇ̌
� �ı0jvj1

which implies in particular
ˇ̌
ai;j � vj

ˇ̌
� �ı0jvj1 for all i , giving (3.4). Combin-

ing (3.2), Lemma 2.6 and Lemma 2.5 we immediately arrive at (3.5). Similarly
combining (3.3), Lemma 2.6 and Lemma 2.5 we arrive at (3.6). It only remains to
prove (3.7) in the case 1 � j � d , which follows from

ˇ̌
ai;j � vj

ˇ̌
� �ı0jvj1 above

and
ˇ̌
vj
ˇ̌
� jvj1.

By the Baker–Campbell–Hausdorff equation we can express the product �1 � � ��k
as a sum of terms of the form

cŒ�i1 ; : : : ; Œ�il�1
; �il �; : : :� (3.8)

where ij 2 f1; : : : ; kg for each 1 � j � l � m. We emphasize that it is possible
that the indices are repeated, i.e. that ij D ij 0 while j ¤ j 0. We are only interested
in the brackets that contribute to the coefficient of XtC1. We replace each �i withPm
jD1 ai;jXj in each of the summands (3.8) above. Using linearity of the Lie

bracket, the result is a sum of terms of the form

cŒai1;j.i1/Xj.i1/; : : : ; Œail�1;j.il�1/Xj.il�1/; ail ;j.il /Xj.il /� � � � � (3.9)

where for each ir we have chosen j.ir/ 2 f1; : : : ; t C 1g. By Lemma 2.5, we have
that

lX
rD1

dj.ir / � dtC1 (3.10)

so that in particular l � tC1. We will show that each such term is small by analyzing
the possibilities for the choices j.ir/ above. We consider three cases.
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For the first case we consider all terms with j.ir/ D t C 1 for some r . Note that
in this case, in view of (3.10) in fact (3.9) becomes

cai1;tC1XtC1:

In view of (3.6), summing these over all 1 � i1 � k, the total contribution to the
t C 1 term from this case is, in absolute value, at most

ck.�M/dtC1 � cndtC1ıdtC1k1CdtC1=2

by our choice of k. This suffices since we may assume dtC1 � 2.
For the second case, we consider all terms in which at least one of the

j.ir/ 2 fd; : : : ; t C 1g. By linearity we pull out all of the constants ai;j and consider
the size of their product. By our assumption and (3.5) one of the terms is at most
c.�ı0/dj.ir / and by (3.7) the rest of the terms are at most c�dj.ir / . Therefore their
product is at most

cı0�
Pl

rD1 dj.ir / � cı0�dtC1 :

Since there are finitely many such terms independent of ı0, by taking ı0 small as a
function of ı; c; t and the number of such terms, the total contribution to the t C 1
coordinate of the product �1 � � ��k from terms of the second type is as desired.

For the third and final case we group each term into pairs and use antisymmetry,
as follows. We may assume all terms i.jr/ 2 f1; : : : ; dg. In particular the inner
most term Œail�1;j.il�1/Xj.il�1/; ail ;j.il /Xj.il /� has j.il�1/ D s; j.il/ D t for some
s; t 2 Œ1; : : : ; d �. We pair the terms for which j.il�1/ D s; j.il/ D t with that for
which j.il�1/ D t; j.il/ D s, and all other j.ir/ equal. By anti-symmetry of the
bracket, the sum of these two terms is

Œai1;j.i1/Xj.i1/; : : : ; Œail�1;j.il�1/Xj.il�1/; ail ;j.il /Xj.il /� � � � �

C Œai1;j.i1/Xj.i1/; : : : ; Œail�1;j.il /Xj.il /; ail ;j.il�1/Xj.il�1/� � � � �

D Œai1;j.i1/Xj.i1/; : : : ; .ail�1;j.il�1/ail ;j.il /�ail�1;j.il /ail ;j.il�1//ŒXj.il�1/; Xj.il /� � � � �

Pulling the constants out and considering the absolute value of the coefficient, we are
concerned with the absolute value of

ai1;j.i1/ � � � ail�2;j.il�2/.ail�1;j.il�1/ail ;j.il / � ail�1;j.il /ail ;j.il�1//: (3.11)

By properties (3.4) and (3.7) and the triangle inequality we haveˇ̌
.ail�1;j.il�1/ail ;j.il / � ail�1;j.il /ail ;j.il�1//

ˇ̌
�
ˇ̌
ail�1;j.il�1/ail ;j.il / � ail ;j.il /ail ;j.il�1/

ˇ̌
C
ˇ̌
ail ;j.il /ail ;j.il�1/ � ail�1;j.il /ail ;j.il�1/

ˇ̌
�
ˇ̌
ail ;j.il /

ˇ̌ˇ̌
ail�1;j.il�1/ � ail ;j.il�1/

ˇ̌
C
ˇ̌
ail ;j.il�1/

ˇ̌ˇ̌
ail ;j.il / � ail�1;j.il /

ˇ̌
� c�c�ı0jvj1 C c�c�ı

0
jvj1 D c�

2ı0jvj1:
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Now by (3.7) each of the other terms in the product (3.11) has absolute value at
most c�. Putting this together with the preceding and noting that l � dtC1, the
absolute value of (3.11) is at most c�dtC1ı0jvj1. Since there are a finite number of
such terms independent of ı0, by taking ı0 small as a function of ı; c; jvj1, the total
contribution to the absolute value of the t C 1 coordinate of �1 � � ��k from terms
from the third case is as desired. This finishes the proof.

3.3. Proof of Proposition 3.1. Finally we can combine Lemmas 2.10, 3.2 and 3.4
to prove Proposition 3.1.

Proof of Proposition 3.1. Fix 
 2 � . Chow’s Theorem and Lemma 3.2 imply

d1.˛ab.

n; x/; n˛ab.
// D o.n/ in probability (3.12)

which implies in particular that

j˛ab.

n; x/j1 D O.n/ in probability: (3.13)

Now we use the triangle inequality

d1.˛.

n; x/; n˛ab.
// � d1.˛.


n; x/; ˛ab.

n; x//C d1.˛ab.


n; x/; n˛ab.
//:

The second summand is o.n/ by (3.12). For the first summand, we apply Lemma 2.10
with hn.x/ D ˛.
n; x/; by (3.13), j�abhn.x/j1 D O.n/ in probability, while
Lemma 3.4 implies j�comhn.x/j1 D o.n/ in probability.

4. Asymptotic behavior along arbitrary elements

In this section we prove the following.
Theorem 4.1. Let 
n 2 � be a sequence satisfying


n D s
an;1

1 � � � s
an;k

k

where si 2 S are fixed, in order, independent of n and for each i , N 3 an;i !1 as
n!1. Then whp

d1.˛.
n; x/; ıan;1
˛ab.s1/ ? � � � ? ıan;k

˛ab.sk// D o.max an;i /:

We note that, for any sequence 
n 2 � , it is possible to write the 
n to satisfy the
hypotheses of Theorem 4.1. Indeed, by Proposition 3.3 in [1], there is always a K
so that every 
 D s

a1

1 � � � s
ak

k
with ai 2 N, s 2 S and k � K. By increasing K,

one may assume that every 
 is represented with the same ordered generating set.
By increasing K again, we ensure an;i ! 1 as n ! 1 for each i . Indeed, for
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every 
 , look at a D max ai , and for each 1 � j � k so that aj < a=2, rewrite
s
aj

j D s
a
j s
aj�a

j . We will not use either of these observations.
There is a natural way to compare the two points above. Using the cocycle

equation we write

˛.
n; x/ D ˛.s
an;1

1 ; x1/ � � �˛.s
an;k

k
; xk/

where xi WD s
an;iC1

iC1 � � � s
an;k

k
x. Proposition 3.1 relates ˛.san;i

i ; xi / and ıan;i
˛ab.si /.

We use the uniform boundedness of k and Lemma 2.1 to extend Proposition 3.1 to
Theorem 4.1.

Proof of Theorem 4.1. By the cocycle equation, it is enough to show that whp

d1.˛.s
a1

1 ; x1/ � � �˛.s
ak

k
; xk/; ıan;1

˛ab.s1/ ? � � � ? ıan;k
˛ab.sk// D o.max an;i /:

For each n, let an D max an;i . Now suppose the conclusion is false. Then there are
�; ı > 0 and a subsequence (we keep the index n) so that

m.x W d1.˛.s
an;1

1 ; x1/ � � �˛.s
an;k

k
; xk/; ıan;1

˛ab.s1/?� � �?ıan;k
˛ab.sk// > ıan/ > �:

Notice that 0 � an;i=an � 1. Therefore, after taking a diagonal subsequence, we
may assume that an;i=an ! ai for each 1 � i � k. Proposition 3.1 implies that, for
every 1 � i � k, whp as n!1

1

an;i
� ˛.s

an;i

i ; x/ �! ˛ab.si /:

The above, and an easy calculation in coordinates using the definition of the ıt and
that an;i=an ! ai shows that for all 1 � i � k, whp as n!1.

1

an
� ˛.s

an;i

i ; x/ D ıan;i=an

1

an;i
� ˛.s

an;i

i ; x/ �! ıai
˛ab.si /:

Invoking Lemma 2.1, whp as n!1

1

an
� ˛.s

an;1

1 ; x1/ � � �˛.s
an;k

k
; xk/ �! ıa1

˛ab.s1/ ? � � � ? ıak
˛ab.sk/

which is equivalent to

d1.˛.s
an;1

1 ; x1/ � � �˛.s
an;k

k
; xk/; ıana1

˛ab.s1/ ? � � � ? ıanak
˛ab.sk// D o.an/:

But

d1.ıana1
˛ab.s1/ ? � � � ? ıanak

˛ab.sk/; ıan;1
˛ab.s1/ ? � � � ? ıan;k

˛ab.sk// D o.an/;

so we have a contradiction.
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5. Construction of ˆ and proof of Main Theorem

In this section we construct ˆ, prove Theorem B and deduce Theorem A.
Definition 5.1. Let .G1; ıt / be a Carnot nilpotent lie group with its one-parameter
family of automorphisms. A finite symmetric subset S � G1 generates G1 with
respect to ıt , t � 0, if for every g 2 G1 there exist k 2 N, s1; : : : ; sk 2 S and
a1; : : : ; ak 2 RC so that

g D ıa1
s1 ? � � � ? ıak

sk : (5.1)

Example 5.2. In the Mal’cev coordinates on G1, the set of d 0 D dim.G1=G21/
elements

f.1; 0; : : : ; 0/; .0; 1; 0; : : : 0/; : : : ; .0; : : : ; 1; 0; : : : ; 0/g

together with their inverses form a finite symmetric generating set forG1with respect
to the homotheties ıt .

More generally any finite symmetric set with real span containing V1 D g=g2

generates G1 with respect to ıt . Indeed, the group generated by exp1.V1/ is a
connected subgroup of G1, so by the Lie correspondence, its Lie algebra is a sub
algebra of g1 containing V1. Since V1 generates g1 as a Lie algebra, the group
generated by exp1.V1/ is all of G1.

We can now give a definition of ˆ that will a priori depend on a choice of
representation of g 2 G1 in the generating set S . Later on we will prove that
there was in fact no choice involved. Let S � G1 be the set of 2d 0 elements from
Example 5.2.
Definition 5.3 (First Definition of ˆ).

ˆ.g/ D ıa1
˛ab.s1/ ? ıa2

˛ab.s2/ ? � � � ? ıak
˛ab.sk/

where
g D ıa1

s1 ? � � � ? ıak
sk

is a fixed choice of representation of g as in (5.1).
Proposition 5.4. For each g 2 G1 there is a sequence 
n 2 � so that

� 1
n
� 
n ! g

� 1
n
� ˛.
n; x/! ˆ.g/ with high probability as n!1.

Proof. Fix g 2 G1 and the choice of representation of g

g D ıa1
s1 ? � � � ? ıak

sk

as in (5.1). For each n 2 N and each 1 � i � k set mn;i D bnaic, the greatest
integer less than or equal to nai . Then for each 1 � i � k as n!1

mn;i

n
! ai : (5.2)
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Now define for n 2 N

n D s

mn;1

1 s
mn;2

2 � � � s
mn;k

k
:

First notice that for each 1 � i � k we have

1

n
� s

mn;i

i ! ıai
si :

Therefore by Lemma 2.1
1

n
� 
n ! g;

giving the first item. For the second item we invoke Theorem 4.1, which says that
whp

d1.˛.
n; x/; ımn;1
˛ab.s1/ ? � � � ? ımn;k

˛ab.sk// D o.maxmn;i /:

By (5.2) the right hand side is o.n/. Thus whp as n!1

d1.ı1=n˛.
n; x/; ımn;1=n˛ab.s1/ ? � � � ? ımn;k=n˛ab.sk//! 0

But as n!1

ımn;1=n˛ab.s1/ ? � � � ? ımn;k=n˛ab.sk/! ˆ.g/

which finishes the proof.

The next Proposition says that 1
n
� ˛.�n; x/! ˆ.g/ uniformly as 1

n
� �n ! g.

Proposition 5.5. Fix g 2 G1. For all �1; �2 > 0 there exist ı > 0 and N 2 N
so that whenever � 2 � and n � N are such that dG1.

1
n
� �; g/ < ı, then with

probability at least 1 � �1 we have

dH1

�1
n
� ˛.�; x/;ˆ.g/

�
< �2:

In particular, for any sequence 1
n
� �n ! g we have 1

n
� ˛.�n; x/ ! ˆ.g/ in

probability.

Proof. Fix g 2 G1 and �1; �2 > 0. Choose ı > 0 small so that �.1C �2/2ı=�1 < �2
where � D maxs2S kj˛.s; �/jƒk1. Let 
n be the sequence from Proposition 5.4.
Choose N large so that for all n � N , dG1. 1n � 
n; g/ < ı and so that
dH1.

1
n
� ˛.
n; x/;ˆ.g// < �2 with probability at least 1 � �1. Choose N larger

if necessary so that the maps scl�n and sclƒn are .1C �2/-bi-Lipschitz for all n � N .
Now suppose dG1. 1n � �; g/ < ı where n � N . Then dG1. 1n � �;

1
n
� 
n/ < 2ı,

which implies d�.�; 
n/ < .1C �2/n2ı. Set � D ��1
n, so j� j < .1C �2/n2ı. By
Markov’s inequality

m.j˛.�; x/jƒ � �j� j=�1/ � �1:
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Thus by our choice of ı, with probability at least 1 � �1, we have

j˛.�; x/j � n�2:

Using the cocycle equation ˛.
n; x/ D ˛.�; �x/˛.�; x/ and that sclƒn is .1C �2/-bi-
Lipschitz we have

dH1

�1
n
� ˛.
n; x/;

1

n
� ˛.�; �x/

�
< .1C �2/�2:

with probability at least 1��1. Since dH1. 1n �˛.
n; x/;ˆ.g// < �2 with probability
at least 1 � �1, we are done.

The next corollary says that the definition of ˆ is independent of the choice of
representation of g in the generating set S .
Corollary 5.6. Suppose g 2 G1 can be written

g D ıa0
1
s01 ? � � � ? ıa0

k0
s0k0 :

where a0i 2 RC and s0i 2 S . Define

ˆ0.g/ D ıa0
1
˛ab.s

0
1/ ? � � � ? ıa0

k0
˛ab.s

0
k0/:

Then ˆ.g/ D ˆ0.g/.

Proof. Repeat the proof of Proposition 5.4 withˆ0 in place ofˆ. Doing so we obtain

 0n 2 � so that 1

n
� 
 0n ! g and so that ı1=n˛.
 0n; x/ ! ˆ0.g/ in probability. By

Proposition 5.5 ı1=n˛.
 0n; x/! ˆ.g/ in probability. Therefore ˆ0.g/ D ˆ.g/.

5.1. ˆ is a bi-Lipschitz group automorphism. We can now show thatˆ is a group
isomorphism. Since any twoCarnot–Carathéodorymetrics on the sameCarnot group
are bi-Lipschitz to one another, we deduce that ˆ is bi-Lipschitz. Let ‰ denote the
result of the above construction applied to the cocycle ˇ instead of ˛. By symmetry,
all of the results above apply equally to ‰. We will see that ‰ and ˆ are inverses.
Proposition 5.7. ˆ is a homomorphism.

Proof. Fix g; h 2 G1 and 1
n
� 
n ! g and 1

n
� �n ! h. Then by Lemma 2.1 and

Proposition 5.5
� 1
n
� ˛.
n; �nx/! ˆ.g/ in probability

� 1
n
� ˛.�n; x/! ˆ.h/ in probability

� 1
n
� 
n�n ! gh

� 1
n
� ˛.
n�n; x/! ˆ.gh/ in probability.
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Invoking Lemma 2.1 in ƒ, with high probability

1

n
� ˛.
n; �nx/˛.�n; x/! ˆ.g/ ? ˆ.h/:

Combining this with the fourth item, the proof is complete.

Proposition 5.8. ˆ and ‰ are inverse maps. Consequently, they are group iso-
morphisms.

Recall (§2.1) that the fundamental domains X and Y satisfy m.X \ Y / > 0 and
that x 2 X \ Y \ 
�1.X \ Y / implies that ˇ.˛.
; x/; x/ D 
 .

Proof. Fix g 2 G1 and � > 0. We will show that d1.‰.ˆ.g//; g/ < 2�. Using
the symmetry of ˛ and ˇ, we apply Proposition 5.5 to the cocycle ˇ, the map ‰ and
the elementˆ.g/ to obtainN 2 N and ı > 0 so that for any 
n 2 � with n � N and
any x 2 X , for a positive measure set of y 2 X \ Y

dH1

�1
n
� ˛.
n; x/;ˆ.g/

�
< ı H) dG1

�1
n
� ˇ.˛.
n; x/; y/; ‰.ˆ.g//

�
< �:

(5.3)
Now applying Proposition 5.5 to ˛, ˆ and g we obtain ı0 > 0 and N 0 2 N so that
whenever n � N

dG1

�1
n
� 
n; g

�
< ı0

implies that for a positive measure subset of X \ Y both (5.3) occurs and

dH1

�1
n
� ˛.
n; x/;ˆ.g/

�
< ı:

Choose ı0 < � if necessary, and setN D max.N;N 0/. Then with positive probability
in X \ Y , for n � N

dG1

�1
n
� 
n; g

�
< ı0 H) dG1

�1
n
� ˇ.˛.
n; x/; x/; ‰.ˆ.g//

�
< �: (5.4)

Now we invoke Lemma 2.2 (Poincaré recurrence) applied to X \ Y , g and ı0 to
assert that with positive probability in X \ Y there exists n � N and 
n 2 � with
dG1.

1
n
� 
n; g/ < ı

0, such that 
nx 2 X \ Y and such that (5.4) occurs. Therefore
with positive probability

dG1

�1
n
� 
n; ‰.ˆ.g//

�
< � and dG1

�1
n
� 
n; g

�
< �:
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5.2. Theorem B implies Theorem A.

Proof. We recall the definition of the maps �x;n. For each n 2 N the maps
sclG1n .�/ W � ! G1 map � more and more densely into G1 and similarly for
sclH1n .�/ W ƒ! H1 (see §2). For every g 2 G1 and every n 2 N let jn.g/ 2 �
be an element of � minimizing the distance between sclG1n .�/ and g. Then for
g 2 G1 we define

�x;n.g/ D sclH1n .˛.jn.g/; x//:

Now fix R > 0, ı > 0 and � > 0. Let BG1R .e/ denote the ball of radius R > 0 in
.G1; d1/ about the identity. ByTheoremB, for everyg 2 G1 there is � D �.g/ > 0
so that whenever sclG1n .
n/ 2 B

G1
� .e/, with probability at least 1 � ı we have

dH1.ˆ.g/; sclH1n .˛.
n; x/// < �:

By the compactness ofBG1R .e/we obtain a finite setF � BG1R .e/with the property
that for every g 2 BG1R .e/ there is g0 2 F so that dG1.g; g0/ < � and so that

g 2 B
G1
�.g0/=2

.g0/:

Now set � D minF �.g/ and chooseN large so that for alln � N , for allg 2 BG1R .e/

we have
dG1.sclG1n .jn.g//; g/ < �=2:

Then for all n � N and every g 2 BG1R .e/ there is g0 2 F so that with probability
at least 1 � ı

dH1.ˆ.g0/; scl
H1
n .˛.jn.g/; x/// < �

and
dG1.ˆ.g/;ˆ.g0// < L�

where L is the Lipschitz constant for ˆ. This finishes the proof.
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