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Free loci of matrix pencils and domains
of noncommutative rational functions

Igor Klep� and Jurij Volčič��

Abstract.Consider a monic linear pencilL.x/ D I�A1x1�� � ��Agxg whose coefficientsAj

are d �d matrices. It is naturally evaluated at g-tuples of matricesX using the Kronecker tensor
product, which gives rise to its free locus Z .L/ D fX W detL.X/ D 0g. In this article it is
shown that the algebras A and eA generated by the coefficients of two linear pencils L andeL,
respectively, with equal free loci are isomorphic up to radical, i.e., A= radA Š eA= radeA.
Furthermore, Z .L/ � Z .eL/ if and only if the natural map sending the coefficients of eL to
the coefficients of L induces a homomorphism eA= radeA ! A= radA. Since linear pencils
are a key ingredient in studying noncommutative rational functions via realization theory, the
above results lead to a characterization of all noncommutative rational functions with a given
domain. Finally, a quantum version of Kippenhahn’s conjecture on linear pencils is formulated
and proved: if hermitian matrices A1; : : : ; Ag generate Md .C/ as an algebra, then there exist
hermitian matrices X1; : : : ; Xg such that

P
i Ai ˝Xi has a simple eigenvalue.
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1. Introduction

Let k be a field of characteristic 0 and let A0; A1; : : : ; Ag 2 Md .k/. The formal
affine linear combination L.x/ D A0 � A1x1 � � � � � Agxg , where xi are freely
noncommuting variables, is called an affine linear pencil. If A0 D Id is the d � d
identity matrix, then L is a (monic) linear pencil.

Linear pencils are a key tool in matrix theory and numerical analysis (e.g. the
generalized eigenvalue problem), and they frequently appear in algebraic geometry
(cf. [4, 16]). Linear pencils whose coefficients are symmetric or hermitian matrices
give rise to linear matrix inequalities (LMIs), a pillar of control theory, where many
classical problems can be converted to LMIs [2, 12, 39]. LMIs also give rise to
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feasible regions of semidefinite programs in mathematical optimization [42]. In
quantum information theory [31] and operator algebras [33] hermitian linear pencils
are intimately connected to operator spaces and systems, and completely positive
maps [21]. Lastly, LMIs, linear pencils and their determinants are studied from a
theoretical perspective in real algebraic geometry [10, 23, 27, 30].

In this paper we associate to each linear pencil L its free (singular) locus Z .L/,
which is defined as the set of all tuples of matrices X over k such that

L.X/ D I ˝ I �

gX
iD1

Ai ˝Xi

is a singular matrix; here ˝ denotes the Kronecker tensor product. We will address
the following question: If Z .L/ � Z .eL/, what can be said about the relation
between the coefficients of L and eL?

Our interest in linear pencils originates from their relation with the free skew field
of noncommutative rational functions [7, 15, 36]. Namely, if r is a noncommutative
rational function that is regular at the origin, then there exists a monic linear pencilL
and vectors b; c over k such that

r D ctL�1b: (1.1)

Such presentations of noncommutative rational functions, called realizations, are
powerful tools in automata theory [8], control theory [2,25] and free probability [5].
Oneway of defining noncommutative rational functions is throughmatrix evaluations
of formal noncommutative rational expressions [22, 24, 40]. This gives rise to the
notion of a domain of a noncommutative rational function, i.e., the set of all matrix
tuples where it can be evaluated. While a realization of the form (1.1) is not unique,
there is a canonical, “smallest” one r D ct0L�10 b0. The domain of r is then the
complement of the free locus Z .L0/ [24]. It is thus natural to ask: (a) When is a
noncommutative rational function regular, i.e., defined everywhere? (b) When is the
domain of a rational function contained in the domain of another one? (c) What can
be said about the set of all rational functions with a given domain?

1.1. Main results. Our first main result is a Singularitätstellensatz for linear pencils
explaining when free loci of two linear pencils are comparable. If L D I �

P
i Aixi

is a monic pencil of size d , let A � Md .k/ be the k-algebra generated by Ai . We
say that L is minimal if it is of minimal size among all pencils with the same free
locus.

Theorem A (Singularitätstellensatz). Let L and eL be monic linear pencils. Then
Z .L/ � Z .eL/ if and only if there exists a homomorphism eA= radeA ! A= radA
induced by eAi 7! Ai .
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Moreover, if L;eL are minimal and A;eA are semisimple, then Z .L/ D Z .eL/
if and only if there exists an invertible matrix P such that eAi D PAiP

�1 for all
1 � i � g, i.e., the linear pencil eL is a conjugate of L.

The first part of Theorem A is proved as Theorem 3.6 in Subsection 3.3. The
second statement appears in Subsection 3.4 as Theorem 3.11.

Next we combine the Singularitätstellensatz with the aforementioned realization
theory. First we elucidate everywhere-defined noncommutative rational functions.
Theorem 4.2 is an effective version of the following statement.
Theorem B. A regular noncommutative rational function is a noncommutative
polynomial.

A domain of a noncommutative rational function is co-irreducible if it is not an
intersection of larger domains. We say that a noncommutative rational function r is
irreducible if r D ctL�1A b, where LA is a minimal monic pencil and A is simple.
For every co-irreducible domainD we can find a finite family of linearly independent
irreducible functionsR.D/ such that every irreducible function with domainD lies
in the linear span of R.D/. A precise characterization of noncommutative rational
functions with a given domain is now as follows.
Theorem C. If a noncommutative rational function r is defined at the origin, then
its domain equals D1 \ � � � \Ds for some s 2 N and co-irreducible Dj , and r is a
noncommutative polynomial in fx1; : : : ; xgg [R.D1/ [ � � � [R.Ds/.

See Theorem 4.6 in Subsection 4.2 for the proof.
Lastly, we apply our techniques to prove the quantum version of Kippenhahn’s

conjecture [26]. The original conjecture was as follows: if hermitian d � d
matrices H1 and H2 generate the whole Md .C/, then there exist real numbers ˛1
and ˛2 such that ˛1H1 C ˛2H2 has a simple nonzero eigenvalue. While this is false
in general [28], we show it is true in a quantum setting.
Theorem D. If A1; : : : ; Ag 2 Md .k/ generate Md .k/ as a k-algebra, then there
existn 2 N andX1; : : : ; Xg 2Mn.k/ such that

P
i Xi˝Ai has a nonzero eigenvalue

with geometric multiplicity 1. If k D C and Ai are hermitian, then Xi can also be
chosen hermitian.

The proof of Theorem D is given in Subsection 5.2.

1.2. Reader’s guide. The paper is organized as follows. We start by introducing
the basic notation and terminology of monic linear pencils, noncommutative rational
functions and realizations in Section 2. The inclusion problem for free loci is treated
in Section 3. Our main tools are the algebraization trick (Lemma 3.1) and the
role of the nilradical of the algebra generated by the coefficients of a monic pencil
(Proposition 3.3). The first part of the Singularitätstellensatz is stated in Theorem 3.6,
while Theorem 3.11 asserts that minimal pencils with the same free locus are unique
up to conjugation. The connection between the free locus and the semisimple



108 I. Klep and J. Volčič CMH

algebra assigned to a pencil is further investigated in Proposition 3.12 that relates
irreducible components of the free locus to the Artin–Wedderburn decomposition of
the corresponding semisimple algebra.

In Section 4 we apply the preceding results to noncommutative rational functions
and their domains. Corollary 4.1 solves the inclusion problem for domains
of noncommutative rational functions in terms of their minimal realizations.
As a consequence, Theorem 4.2 proves that every regular noncommutative
rational function (in the sense of being defined everywhere) is a polynomial,
which furthermore implies Douglas’ lemma for noncommutative rational functions
(Corollary 4.3). In Subsection 4.2 we introduce the notion of co-irreducible domains
and derive a precise description of functions with a given domain in Proposition 4.4
and Theorem 4.6.

Finally we focus on symmetric and hermitian pencils, which are ubiquitous in real
algebraic geometry [23,30] and optimization [21,27]. Section 5 starts by introducing
the free real locus assigned to a symmetric or hermitian pencil. Theorem 5.4 is the
�-analog of the Singularitätstellensatz, but instead of noncommutative ring theory
its proof crucially relies on properties of hyperbolic polynomials [20,35] and the real
Nullstellensatz [9]. Subsection 5.2 discusses a relaxation ofKippenhahn’s conjecture;
its involution-free and hermitian version are resolved by Corollaries 5.6 and 5.7,
respectively.

2. Preliminaries

In this section we introduce basic notation and the main objects of our study: linear
pencils and their (zero) loci, and noncommutative rational functions together with
their domains.

2.1. Basic notation. Throughout the text let k be a field of characteristic 0. If x D
fx1; : : : ; xgg is an alphabet, then<x> denotes the free monoid over x and 1 2 <x>
denotes the empty word. Let k<x> be the free k-algebra of noncommutative
(nc) polynomials. By k<x>C we denote its subspace of nc polynomials with
zero constant term. For w 2 <x> let jwj 2 N denote the length of w and
<x>h D fw 2 <x>W jwj D hg. If y is another alphabet and x \ y D ;, then
for w 2 <x [ y> let jwjy denote the number of occurrences of elements from y

in w. Lastly, cyc
� denotes the cyclic equivalence relation on words, i.e., w1

cyc
� w2 if

and only if there exist words u and v such thatw1 D uv andw2 D vu. Equivalently,
w1 is a cyclic permutation of w2.
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2.1.1. Free locus of a linear pencil. If A1; : : : ; Ag 2Md .k/, then

L D I �

gX
iD1

Aixi 2Md .k<x>/

is called a monic linear pencil of size d . We write L D LA if we want to emphasize
which coefficients appear in L. The evaluation of L at a point X D .X1; : : : ; Xg/ 2
Mn.k/g is defined using the (Kronecker) tensor product

L.X/ D I ˝ I �

gX
iD1

Ai ˝Xi 2Mnd .k/:

The free (singular) locus of L is the set

Z .L/ D
[
n2N

Zn.L/; where Zn.L/ D fX 2Mn.k/
g
W det.L.X// D 0g :

(2.1)
Clearly, each Zn.L/ is an algebraic subset ofMn.k/g .

2.2. Noncommutative rational functions. We introduce noncommutative rational
functions using matrix evaluations of formal rational expressions following [22, 25].
Originally they were defined ring-theoretically, cf. [7, 15]. A syntactically valid
combination of nc polynomials, arithmetic operations C; �; �1 and parentheses . ; /
is called a noncommutative (nc) rational expression. The set of all nc rational
expressions is denotedRk.x/. For example, .1C x�13 x2/C 1, x1C .�x1/ and 0�1
are elements ofRk.x/.

Every polynomial f 2 k<x> can be naturally evaluated at a point A 2Mn.k/g

by replacing xj with Aj and 1 with I ; the result is f .A/ 2Mn.k/. We can naturally
extend evaluations of nc polynomials to evaluations of nc rational expressions. Given
r 2 Rk.x/, then r.A/ is defined in the obvious way if all inverses appearing in r
exist at A. Let domn r be the set of all A 2 Mn.k/ such that r is defined at r . Then
the domain of a nc rational expression r is

dom r D
[
n2N

domn r

and r is non-degenerate if dom r ¤ ;.
On the set of all non-degenerate nc rational expressions we define an equivalence

relation r1 � r2 if and only if r1.A/ D r2.A/ for all A 2 dom r1 \ dom r2.
Then noncommutative (nc) rational functions are the equivalence classes of non-
degenerate nc rational expressions. By [25, Proposition 2.1] they form a skew field
denoted k .<x />. It is the universal skew field of fractions of k<x> [15, Section 4.5].
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For r 2 k .<x /> let domn r be the union of domn r over all representatives r 2 Rk.x/

of r . Then the domain of a nc rational function r is

dom r D
[
n2N

domn r:

2.2.1. Realizations. Let k .<x />0 � k .<x /> denote the local subring of nc rational
functions that are regular at the origin:

k .<x />0 D fr 2 k .<x />W 0 2 dom rg:

A very powerful tool for operating with elements from k .<x />0 is realization theory.
If r 2 k .<x />0, then there exist d 2 N, c;b 2 kd and a monic linear pencil L of
size d such that

r D ctL�1b:

Such a triple .c; L;b/ is called a realization of r of size d . We refer to [8, 22] for a
good exposition on classical realization theory; also see [40] for realizations about
arbitrary matrix points which can consequently be applied to arbitrary nc rational
functions.

Let us fix r 2 k .<x />0. In general, r admits various realizations. A realization
of r whose size is minimal among all realizations of r is called minimal. The
following facts comprise the importance of minimal realizations.
(1) Minimal realizations are unique up to similarity by [8, Theorem 2.4]. That is, if

.c; L;b/ and .c0; L0;b0/ are minimal realizations of r of size d , then there exists
P 2 GLd .k/ such that c0 D P�tc, L0 D PLP�1 and b0 D Pb.

(2) If .c; L;b/ is a minimal realization of r , then

dom r D
[
n2N

fX 2Mn.k/
g
W det.L.X// ¤ 0g D Z .L/c

by [24, Theorem 3.1] and [41, Theorem 3.10].
(3) By [8, Section II.3], there is an efficient algorithm that provides us with aminimal

realization of r .
Hence the domain of a nc rational function regular at 0 can be described as a
complement of a free locus. Similar result also holds for an arbitrary rational
function [40, Corollary 5.9].

3. Inclusion problem for free loci

In this section we investigate when free loci of two linear pencils are comparable.
The main results are the Singularitätstellensätze 3.6 and 3.11. Theorem 3.6 shows



Vol. 92 (2017) Pencil loci and rational function domains 111

that inclusion of free loci is equivalent to the existence of a homomorphism between
semisimple algebras associated to the two pencils. Theorem 3.11 proves that (under
natural minimality assumptions) two pencils with the same free locus are similar,
i.e. one is a conjugate of the other. Our main technical ingredient in the proofs is the
algebraization trick of Subsection 3.1, which relates properties of a linear pencil to
properties of the matrix algebra generated by the coefficients of the pencils.

3.1. Algebraization trick. Lemma 3.1 will be used repeatedly in the sequel to pass
from a pencil LA to the k-algebra A generated by matrices A1; : : : ; Ag .
Lemma 3.1. For every f 2 k<x>C and Xi ; Y 2 Mn.k/ there exist N 2 N and
X 0i 2MN .k/ such that

dim ker.LA.X/ � f .A/˝ Y / D dim kerLA.X 0/ (3.1)

for all d 2 N and Ai 2Md .k/.

Proof. We prove a slightly stronger statement: for every f 2 k<x>C, h 2 N and
X1; : : : ; Xg ; Z1; : : : ; Zh; Y 2Mn.k/ there existN 2 N andX 01; : : : ; X 0g ; Z01; : : : ; Z0h
2MN .k/ such that

dim ker.LA;C .X;Z/ � f .A/˝ Y / D dim kerLA;C .X 0; Z0/ (3.2)

for all d 2 N and A1; : : : ; Ag ; C1; : : : ; Ch 2 Md .k/, where LA;C .x; z/ D
I �

P
i Aixi �

P
k Ckzk .

First observe that�
u1
u2

�
2 ker

�
I M1

M2 M

�
” u2 2 ker.M �M2M1/; u1 D �M1u2

for all matricesM;M1;M2 of consistent sizes and therefore

dim ker.M �M2M1/ D dim ker
�
I M1

M2 M

�
: (3.3)

If the stronger statement holds for f and g, then it also holds for f̨ Cˇg for ˛; ˇ 2 k
since

dim ker.LA;C .X;Z/ � . f̨ C ˇg/.A/˝ Y /
D dim ker.LA;C;f .A/.X;Z; ˛Y / � g.A/˝ ˇY /
D dim kerLA;C;f .A/.X 0; Z0; Y 0/
D dim ker.LA;C .X 0; Z0/ � f .A/˝ Y 0/
D dim kerLA;C .X 00; Z00/

for appropriate X 0i ; Z
0
j ; Y

0 2 MN1
.k/ and X 00i ; Z

00
j 2 MN2

.k/ that exist by
assumption. Hence it suffices to establish the statement for f D w 2 <x> nf1g.
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We prove (3.2) by induction on jwj. The case jwj D 1 is clear, so assume that (3.2)
holds for all words of length ` � 1. If w D xj v for jvj D `, then

dim ker.LA;C .X;Z/ � w.A/˝ Y /

D dim ker
�

I ˝ I �v.A/˝ I

�Aj ˝ Y LA;C .X;Z/

�
D dim ker

�
LA;C

��
0 0

0 X

�
;

�
0 0

0 Z

��
� Aj ˝

�
0 0

Y 0

�
� v.A/˝

�
0 I

0 0

��
D dim kerLA;C .X 0; Z0/

for some X 0i ; Z
0
j 2 MN .k/ by (3.3), conjugation with an invertible matrix, and the

induction hypothesis.

As it follows from the proof, the numberN in the statement of Lemma 3.1 can be
bounded by a function which is polynomial in n and exponential in the degree of f
and number of terms in f .
Corollary 3.2. If Z .LA/ � Z .LB/, then Z .LA � f .A/y/ � Z .LB � f .B/y/

for every f 2 k<x>C.

Proof. If .X; Y / 2 Z .LA�f .A/y/, letX 0 be as in Lemma 3.1. ThenX 0 2 Z .LA/

and therefore X 0 2 Z .LB/ by assumption, so .X; Y / 2 Z .LB � f .B/y/ since the
choice of X 0 is independent of the pencils LA and LB .

3.2. Jointly nilpotent coefficients. The question whether an evaluation of a
pencilLA.x/ is invertible might be independent of some of the variables in x. In this
subsection we show that in this case their corresponding coefficients in LA generate
a nilpotent ideal. Moreover, we provide explicit polynomial bounds originating from
the theory of polynomial trace identities [34] and bounds on lengths of generating
sets of matrix subalgebras [32] to check whether this happens.

Let A be a (possibly non-unital) finite-dimensional k-algebra. If S � A is its
generating set, then we define the length of S as

`.S/ D min
�
l 2 NW

l[
jD1

Sj linearly spans A
�
:

Here Sj is the set of all products of j elements of S . Denote

�.d/ D

8<:1 d D 1;l
d

q
2d2

d�1
C

1
4
C

d
2
� 2

m
d � 2:

By [32, Theorem 3.1] we have `.S/ � �.d/ �
p
2d3=2 for every generating set S

of A �Md .k/.
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In the sequel we also require the following notion. For g; n 2 N let

k
�
�
�
D k

h
�.i/{| W 1 � i � g; 1 � {; | � n

i
be the ring of polynomials in gn2 commutative indeterminates. The distinguished
matrices

„i D
�
�.i/{|

�
{|
2Mn .k Œ��/

are called the generic n � n matrices [11, Section 6.7].

Proposition 3.3. Let A �Md .k/ be the k-algebra generated by

A1; : : : ; Ag ; N1; : : : ; Nh 2Md .k/;

and letN � A be the ideal generated by N1; : : : ; Nh. If m � �.d/ and

det
�
LA.X/ �

X
j

Nj ˝ Yj

�
D det.LA.X// (3.4)

holds for all Xi ; Yj 2Mm.k/, thenN is a nilpotent ideal in A.
Conversely, ifN is nilpotent, (3.4) holds for all Xi ; Yj 2Mn.k/ and n 2 N.

Proof. Assume (3.4) holds. Let„i be genericm�mmatrices. As a matrix over the
ring of formal power series kŒŒ���, LA.„/ is invertible and

LA.„/
�1
D

X
w2<x>

w.A/˝ w.„/ (3.5)

by the Neumann series expansion. Then (3.4) implies

det
�
I ˝ I �

�X
j

Nj ˝ Yj

�
LA.„/

�1

�
D 1

for every Yi 2Mm.k/. In particular, for

p.t/ D det
�
I ˝ I � t

�X
j

Nj ˝ Yj

�
LA.„/

�1

�
2 kŒŒ���Œt �

we have p.t/ D 1, so .
P
j Nj ˝ Yj /LA.„/

�1 does not have nonzero eigenvalues
and is therefore a nilpotent matrix. Hence .

P
j Nj ˝ ‡j /LA.„/

�1 is nilpotent,
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where ‡j are generic m �m matrices, so

0 D tr
���X

j

Nj ˝ ‡j

�� X
w2<x>

w.A/˝ w.„/

��`�
D tr

� X
w2y<x>���y<x>;

jwjYD`

w.A;N /˝ w.„;‡/

�
D

X
w2y<x>���y<x>;

jwjyD`

tr.w.A;N // tr.w.„;‡//

D

X
Œw�2<x[y>=

cyc
�;

jwjyD`

�w tr.w.A;N // tr.w.„;‡//

for every ` 2 N, where 0 < �w D jŒw� \ y<x> � � �y<x> j for w 2 <x [ y>
with jwjy D `. Here Œw� denotes the equivalence class of w with respect to cyc

�. For
every h 2 N, the pure trace polynomial

ph D
X

Œw�2<x[y>h=
cyc
�;

jwjy>0

�w tr.w.A;N // tr.w/

of degree h therefore vanishes on all tuples ofm�mmatrices. By [34, Theorem 4.5,
Proposition 8.3] we have ph D 0 for all h � m. Therefore tr.w.A;N // D 0 for
every w 2 <x [ y>h with jwjy > 0 and h � m. Since m � �.d/, the discussion
above implies that

fw.A;N /W 1 � jwj � m; jwjy > 0g

linearly spansN . Therefore tr.w.A;N // D 0 for everyw 2 <x[y>with jwjy > 0,
henceN � A is a nilpotent ideal.

Conversely, suppose N is nilpotent. Let k be the algebraic closure of k.
Burnside’s theorem on the existence of invariant subspaces [11, Corollary 5.23]
applied to A˝k k yields a vector space decomposition

k
d
D U1 ˚ � � � ˚ Us (3.6)

such that AUk � U1 ˚ � � � ˚ Uk and �k.A ˝k k/�k is either f0g or Endk.Uk/,
where �k W Uk ! k

d and �k W k
d
! Uk are the canonical inclusion and projection,

respectively. We claim that NUk � U1 ˚ � � � ˚ Uk�1; indeed, if �k.NUk/ \
Uk ¤ f0g, then the simplicity of Endk.Uk/ implies I 2 �k.N ˝k k/�k , which is a
contradiction sinceN ˝k k is nilpotent.

Because the determinant of a block-upper-triangular matrix is equal to the product
of determinants of its diagonal blocks, the decomposition (3.6) and the structure of



Vol. 92 (2017) Pencil loci and rational function domains 115

the Kronecker product imply

det
�
LA.X/ �

X
j

Nj ˝ Yj

�
D det.LA.X//

for all Xi ; Yj 2Mn.k/ and all n 2 N.

Corollary 3.4. If L is a monic linear pencil, then L.X/ is invertible for all matrix
tuples X if and only if the coefficients of L are jointly nilpotent.

Of course, just assuming that L.˛/ is invertible for all scalar tuples ˛ 2 kg does
not imply that coefficients of L are jointly nilpotent. For example, if

L D I �

0@0 1 0

0 0 0

1 0 0

1A x1 �
0@0 0 �1

1 0 0

0 0 0

1A x2;
then every linear combination of the coefficients of L is nilpotent and hence
Z1.L/ D ;, but the coefficients are not jointly nilpotent. For an investigation of
linear spaces of nilpotent matrices see e.g. [29].

3.3. Singularitätstellensatz. This subsection contains the main result of this sec-
tion. Theorem 3.6 translates the inclusion between two free loci Z .LA/ � Z .LB/

into a purely algebraic statement about algebras generated by the matricesAi andBi .
For a (possibly non-unital) finite-dimensional k-algebraR let radR be its largest

nilpotent ideal; we call it the (nil)radical of R. If R ¤ radR, then R= radR is
semiprime and hence semisimple [11, Theorem 2.65]. Note that such a ring contains
a multiplicative identity 1 and that an epimorphism of unital rings preserves the
identity.
Remark 3.5. Let N 2 Mn.k/ and consider p D det.I � tN / 2 kŒt �. Then N is
nilpotent if and only if p D 1. This is furthermore equivalent to

p.T / D det .I ˝ I � T ˝N/ ¤ 0

for allT 2Mn.k/ because the companionmatrix associated top is of size degp � n.
If k is an algebraically closed field or a real closed field, then it of course suffices to
test p.T / ¤ 0 for all T 2 k or T 2M2.k/, respectively.
Theorem 3.6 (Singularitätstellensatz). LetA �Md .k/ be the subalgebra generated
by A1; : : : ; Ag and let B � Me.k/ be the subalgebra generated by B1; : : : ; Bg .
Then Z .LA/ � Z .LB/ if and only if there exists a homomorphism of k-algebras
B= radB! A= radA induced by Bi 7! Ai .

Proof. ()) It suffices to prove that for every f 2 k<x>C, f .B/ 2 radB implies
f .A/ 2 radA. If f .B/ generates a nilpotent ideal in B, then

Z .LA � f .A/y/ � Z .LB � f .B/y/ D Z .LB � 0 � y/ (3.7)

by Corollary 3.2 and Proposition 3.3.
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For n 2 N let „i ; ‡ be n � n generic matrices and let

p D det .LA.„/ � f .A/˝ ‡/ :

Suppose there exist 1 � {0; |0 � n such that @p
@t
¤ 0, where t D .‡/{0|0

. Because k
is infinite, there exist Xi 2Mn.k/ and ˛{| 2 k for all { ¤ {0 and | ¤ |0 such that

det.LB.X// ¤ 0;
@p

@t
.X; ˛; t/ ¤ 0:

Let q D p.X; ˛; t/ 2 kŒt �; since q is non-constant polynomial of degree at most nd ,
there exists T 2Mnd .k/ such that q.T / D 0 by Remark 3.5. Now let Y 0 2Mn2d .k/
be a block n � n matrix such that its .{; |/-block equals T if { D {0 and | D |0,
and ˛{|I otherwise. Then

det.LA.X ˝ I / � f .A/˝ Y 0/ D 0;

which contradicts (3.7) since det.LB.X ˝ I // ¤ 0.
Hence the free locus of I �

P
i Aixi � f .A/y does not depend on y and so

Z .LA�f .A/y/ D Z .LA�0 �y/. Therefore f .A/ generates a nilpotent ideal inA
by Proposition 3.3.

(() Let ai and bi be equivalence classes ofAi andBi inA= radA and B= radB,
respectively, and assume there is a homomorphism � W B= radB ! A= radA
satisfying �.bi / D ai . Suppose det.LB.X// ¤ 0 for X 2 Mn.k/g . Then there
exists p 2 kŒt �, p.0/ D 0, such that p

�
I ˝ I �

P
i Bi ˝Xi

�
D I ˝ I by the

Cayley–Hamilton theorem. Let q.t/ D p.1 � t / � p.1/; then q.0/ D 0 and
q
�P

i Bi ˝Xi
�
D .1 C q.1//I ˝ I . If q.1/ ¤ �1, then I ˝ I 2 Mn.B/ and

hence I 2 B, so

q

�X
i

bi ˝k Xi

�
D .1C q.1//1B= radB ˝k I 2 .B= radB/˝k Mn.k/I

On the other hand, ifq.1/D�1, thenq
�P

i Bi ˝Xi
�
D0 and soq

�P
i bi ˝k Xi

�
D0.

Since �.1B/ D 1A, both cases imply

q

�X
i

ai ˝k Xi

�
D .1C q.1//1A= radA ˝k I 2 .A= radA/˝k Mn.k/:

Consequently q
�P

i Ai ˝Xi
�
D .1C q.1//I ˝ I C N for some N 2 Mn.radA/

and therefore p
�
I ˝ I �

P
i Ai ˝Xi

�
D I ˝ I CN , so det.LA.X// ¤ 0 since N

is nilpotent. Thus Z .LA/ � Z .LB/.

Remark 3.7. LetL1 andL2 be monic linear pencils of sizes d1 and d2, respectively.
By Proposition 3.3 and proofs of Lemma 3.1 and Theorem 3.6 one can derive
deterministic bounds on size of matricesX1; : : : ; Xg for checkingZ .L1/ � Z .L2/

that are exponential in g and maxfd1; d2g.
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From here on we write A (resp. B) for the (possibly non-unital) k-algebra
generated by the coefficients A1; : : : ; Ag (resp. B1; : : : ; Bg ) of the pencil LA
(resp. LB ).
Corollary 3.8. Let the notation be as in Theorem 3.6. Then Z .LA/ D Z .LB/ if
and only if there exists an isomorphismA= radA! B= radB induced by Ai 7! Bi .

The validity of Z .LA/ � Z .LB/ can now be effectively tested. Using
probabilistic algorithms for finding the radical of a finite-dimensional algebra (see
e.g. [14]) we first reduce the problem to the case where A and B are semisimple.
Then we find ` � �.maxfd; eg/ such that fw.A/W 1 � jwj � `g linearly spans A
and fw.B/W 1 � jwj � `g linearly spans B. Next, we determine the linear relations
between the elements of fw.B/W 1 � jwj � `C 1g. Finally we check whether they
are also satisfied by fw.A/W 1 � jwj � `C 1g.

3.4. Irreducible free loci. In this subsection we discuss irreducible components of
free loci and how they correspond to the Artin–Wedderburn decomposition of the
semisimple algebra A= radA assigned to a pencil LA.
Remark 3.9. LetA be a finite-dimensional simplek-algebra. ThenA ŠMm.�/ for
some finite-dimensional division k-algebra �. Up to isomorphism there is exactly
one simple unital left A-module, namely �m, and every unital left A-module is
isomorphic to a direct sum of copies of�m. Let ı D m dimk�; then there exists an
irreducible representation � W A!Mı.k/, which is unique up to conjugation by the
Skolem–Noether theorem [11, Theorem 4.48], and every representation ofA factors
through it.

We will also use the following refinement of the Skolem–Noether theorem.
Lemma 3.10. For 1 � j � s let �j W A.j / ! Mdj

.k/ be an irreducible
representation of a simple k-algebra A.j /. If � W A.1/ � � � � � A.s/ ! Md .k/
is a unital embedding, then there exists P 2 GLd .k/ such that

P �.a/P�1 D .I ˝�1.a//˚� � �˚ .I ˝�s.a// 2Md .k/ 8a 2 A.1/�� � ��A.s/:

Proof. Consider vector subspaces Uj D im �.1A.j // for 1 � j � s; it is easy to
check that kd D U1 ˚ � � � ˚ Us , �.A.j //Uj � Uj and �.A.j //Uj 0 D 0 for j 0 ¤ j .
Hence we have a unital embedding A.j / ! Endk.Uj /. By the Skolem–Noether
theorem there exists Pj 2 Endk.Uj / such that

Pj �jA.j /.aj /P
�1
j D I ˝ �j .aj /

for all aj 2 A.j /. If P0 2 GLd .k/ is the transition matrix corresponding to the
decomposition kd D U1 ˚ � � � ˚ Us , then let P D P0.P1 ˚ � � � ˚ Ps/.

A pencil L is minimal if it is of the smallest size among all pencils whose free
loci are equal to Z .L/. (Note: (i) a pencil of a minimal realization is not necessarily
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minimal; (ii) a realization with a minimal pencil is not necessarily minimal.) A
minimal pencil LA is irreducible if A is simple.
Theorem3.11. LetLA andLB beminimal pencils of size d and assume thatA andB
are semisimple. Then Z .LA/ D Z .LB/ if and only if there exists P 2 GLd .k/
such that Bi D PAiP�1 for i D 1; : : : ; g.

Proof. If Z .LA/ D Z .LB/, then d D e by minimality. As elements of Md .k/,
1A and 1B are idempotents. If for example 1A were a nontrivial idempotent, then
the restriction and projection of matrices Ai to subspace im 1A would yield a smaller
pencil with the same free locus, which contradicts the minimality assumption. Hence
1A D 1B D I . By Corollary 3.8 and semisimplicity we have

A
�1
 � C.1/ � � � � � C.s/

�2
�! B

for some simple algebras C.j / and isomorphisms �1; �2 satisfying �2��11 .Ai / D Bi .
Let �j W C.j / ! Mdj

.k/ be an irreducible representation of C.j /. By Lemma 3.10
and minimality there exist P1; P2 2 GLd .k/ such that

P1�1.c/P
�1
1 D �1.c/˚ � � � ˚ �s.c/ D P2�2.c/P

�1
2

for all c 2 C.1/ � � � � � C.s/. Therefore P D P�12 P1 satisfies Bi D PAiP�1.

A free locus is irreducible if it is nonempty and not a union of two smaller free
loci. Note that Z .L1 ˚ L2/ D Z .L1/ [Z .L2/.
Proposition 3.12.

(i) If A= radA is isomorphic to the product of s simple algebras, then Z .LA/

has exactly s irreducible components.

(ii) Every irreducible free locus equals Z .L/ for some irreducible L.

Proof. (i) Let� W A= radA! A.1/�� � ��A.s/ be an isomorphism to a direct product
of simple algebrasA.j /. LetA.j /i be the image ofAi under the homomorphismA!
A.j / ! Mdj

.k/, where A.j / ! Mdj
.k/ is an arbitrary faithful representation.

Then Corollary 3.8 yields

Z .LA/ D Z .LA.1/˚���˚A.s// D Z .LA.1// [ � � � [Z .LA.s//:

Also, j1 ¤ j2 implies Z .LA.j1// ¤ Z .LA.j2//. Otherwise there would exist
an isomorphism  W A.j1/ ! A.j2/ given by A.j1/

i 7! A
.j2/
i . If �j1

D �ji
�

and �j1
D �ji

�, where �j W A.1/ � � � � � A.s/ ! A.j / is the natural projection,
then �j2

D  �j1
and so �j1

.f .A// D 0 if and only if �j2
.f .A// D 0 for every

f 2 k<x>C, which contradicts the surjectivity of �. Hence it suffices to prove
that Z .LA/ is irreducible if A is simple.
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SupposeZ .LA/ D Z .LA0/[Z .LA00/ D Z .LA0˚A00/ and let B be the algebra
generated by matrices A0i ˚ A

00
i . Then A Š B= radB by Corollary 3.8, hence there

is an embedding

A ,! .A0 �A00/= rad.A0 �A00/ D .A0= radA0/ � .A00= radA00/

such that the induced homomorphisms A ! A0= radA0 and A ! A00= radA00
are surjective. Since A is simple, the induced map A ! A0= radA0 is trivial or
injective. In the latter case A Š A0= radA0 via Ai 7! A0i , so Theorem 3.6 implies
Z .LA/ D Z .LA0/. Since Z .LA/ ¤ ;, Theorem 4.2 implies that A0= radA0
and A00= radA00 cannot be both trivial, so we conclude that Z .LA/ D Z .LA0/ or
Z .LA/ D Z .LA00/. Therefore Z .LA/ is irreducible.

(ii) If Z .LB/ is irreducible, then B= radB D A is a simple algebra by (i). By
Remark 3.9 there exists an irreducible representation A!Md .k/. Set Ai to be the
image of Bi under the homomorphism B ! A ! Md .k/; then LA is the desired
irreducible pencil.

The radical of a finite-dimensional algebra and theWedderburn decomposition of
a semisimple algebra can be computed using probabilistic algorithmswith polynomial
complexity [18, 19]. By Proposition 3.12 we can therefore efficiently determine
irreducible components of a free locus. In a forthcoming paper it will be shown that
if k is algebraically closed and Z .L/ is an irreducible free locus, then Zn.L/ is an
irreducible algebraic set inMn.k/g for sufficiently large n 2 N.

4. Domains of noncommutative rational functions regular at the origin

In this section we shall explain how our results on free loci pertain to domains
of nc rational functions. The main results are Corollary 4.1 and Theorem 4.6.
While Corollary 4.1 relates the inclusion of domains of nc rational functions to
homomorphisms between the algebras associated to their minimal realizations,
Theorem 4.6 analyzes the precise structure of nc rational functions with a given
domain.

Recall that k .<x />0 � k .<x /> denotes the local subring of nc rational functions
that are regular at the origin. As explained in Subsection 2.2, the domain
of r 2 k .<x />0 is the complement of the free locus of a pencil corresponding to
the minimal realization of r by [24, Theorem 3.1]. Hence Theorem 3.6 yields the
following result about comparable domains of elements in k .<x />0.

Corollary 4.1. For r; r 0 2 k .<x />0 let .c; LA;b/ and .c0; LA0 ;b0/ be their minimal
realizations. Then dom r � dom r 0 if and only if there exists a homomorphism of
k-algebras A= radA! A0= radA0 induced by Ai 7! A0i .
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4.1. Regular nc rational functions. In this subsectionwe prove that every regular nc
rational function, i.e. one that is defined at every matrix tuple, is in fact a polynomial.
While this can be already deduced from Corollary 4.1, we present a more precise
proof which gives us explicit polynomial bounds for testing whether a nc rational
function is a polynomial.
Theorem 4.2. Let r be a nc rational function with minimal realization of size d and
let

m D

8̂<̂
:
�.d/ k is an algebraically closed field;
2�.d/ k is a real closed field;
d�.d/2 otherwise:

If domm r DMm.k/g , then r is a nc polynomial of degree at most d � 1.

Proof. Let .c; LA;b/ be the minimal realization of r about 0, i.e. r D cL�1A b.
By [24, Theorem 3.1], det.LA.X// ¤ 0 for every Xi 2Mm.k/. In particular,

det
�
I ˝ I � T ˝

X
i

Ai ˝ Yi

�
¤ 0

for all Yi 2 M�.d/.k/ and T 2 Mk.k/ with k � m
�.d/

. Hence
P
i Ai ˝ Yi is a

nilpotent matrix by Remark 3.5 and thus

det
�
I ˝ I �

X
i

Ai ˝ Yi

�
D 1

for all Yi 2 M�.d/.k/. By Proposition 3.3, the algebra generated by A1; : : : ; Ag is
nilpotent, so

r D c
�
I �

X
i

Aixi

��1
b D

d�1X
jD0

c
�X

i

Aixi

�j
b

is a polynomial.

4.1.1. Douglas’ lemma for nc rational functions. Douglas’ lemma [17, Theorem1]
is a classical results in operator theory. Its finite-dimensional version states that for
A;B 2 Mn.C/ we have AA� � BB� if and only if there exists C 2 Mn.C/ with
kCk � 1, such that A D BC . As an application of the characterization of regular
nc rational functions we give a version of Douglas’ lemma for nc rational functions.
Corollary 4.3. Let r; s 2 C .<x />. Then

r.X/�r.X/ � s.X/�s.X/ for all X 2 dom r \ dom s (4.1)

if and only if there exists � 2 C, j�j � 1, such that r D �s.
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Proof. If s D 0, then r D 0, so we can assume that s ¤ 0. Denote

D D dom r \ dom s \ dom s�1:

By (4.1),
.r.X/s�1.X//�.r.X/s�1.X// � I 8X 2 D:

Let f D rs�1; then dom f � D and kf .X/k � 1 for all X 2 D. By definition,
D\Mn.C/g is Zariski open inMn.C/g and nonempty for infinitely many n 2 N, so
boundedness implies domn f DMn.C/g for infinitely many n 2 N. Consequently f
is regular everywhere, so it is a polynomial by Theorem 4.2. Since it is bounded in
norm by 1, it is constant by Liouville’s theorem, so rs�1 D � 2 C and j�j � 1.

4.2. Characterization of nc rational functionswith a given domain. LetDom0 D
fdom rW r 2 k .<x />0g. A set in Dom0 is co-irreducible if it is not an intersection
of two larger sets in Dom0. Thus a domain is co-irreducible if and only if it is the
complement of an irreducible free locus. A nc rational function r 2 k .<x />0 is
irreducible if it admits a realization .c; L;b/ with L irreducible. Note that such a
realization is automatically minimal by Remark 3.9.
Proposition 4.4. If r is irreducible, then dom r is co-irreducible. Conversely, for
every co-irreducible set D 2 Dom0 there exists a unique d 2 N and a pencil L of
size d such that irreducible rational functions whose domains are D are exactly of
the form

ctL�1b; b; c 2 kd n f0g:

Proof. The first part follows fromProposition 3.12. Now let r 2 k .<x />0 and suppose
that D D dom r 0 is co-irreducible. If .c0; LA0 ;b0/ is a minimal realization of r 0,
then A0= radA0 is simple by Proposition 3.12. Fix some irreducible representation
� W A0= radA0 ! Md .k/. Let Ai be the image of A0i under the homomorphism
A0 ! Md .k/ and set L D LA. Then D is the complement of Z .L/ by
Corollary 3.8 and D D dom.ctL�1b/ for every b; c ¤ 0. On the other hand,
if r 00 is an irreducible function with dom r D D and .c00; LA00 ;b00/ is its minimal
realization, then Z .L/ D Z .LA00/ and so A00i D PAiP

�1 for some P 2 GLd .k/
by Theorem 3.11. Hence r D .P tc00/L�1.P�1b00/.

Let R.D/ be the set of irreducible functions whose domains equal D. If we
adopt the notation of Proposition 4.4, then the elements ofR.D/ are exactly nonzero
linear combinations of d2 linearly independent irreducible functions et{L�1e| for
1 � {; | � d .

The next lemma is essentially a version of Wedderburn principal theorem [37,
Theorem 2.5.37] for (possibly non-unital) k-subalgebras inMd .k/.
Lemma4.5. LetA �Md .k/ be ak-algebra,A= radA Š A.1/�� � ��A.s/ withA.j /
simple, and let �j W A.j / !Mdj

.k/ be irreducible representations. Then there exist
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a subalgebra S � A and P 2 GLd .k/ such thatA D S ˚ radA (as vector spaces)
and PSP�1 is precisely the image of

A.1/�� � ��A.s/
.I˝�1/�����.I˝�s/
�������������! 0˚.I˝Md1

.k//˚� � �˚.I˝Mds
.k// �Md .k/:

Proof. IfA is unital, then Wedderburn’s principal theorem yields the decomposition
A D S ˚ radA, where S � A is a subalgebra. If A is not unital, let A] be
the unitization of A [11, Section 2.3]; i.e. A] D k ˚ A, A is an ideal of A] and
radA] D radA. Hence A] D S 0 ˚ radA] by Wedderburn’s principal theorem and
thereforeA D A\ .S 0˚ radA/ D .A\S 0/˚ radA, so S D A\S 0 is the required
subalgebra.

Since S is semisimple, it has the multiplicative identity 1S . Let U D ker 1S and
V D im 1S . Then kd D U ˚ V , SU D 0 and SV � V . Therefore we have a unital
embedding

A.1/ � � � � �A.s/ Š S � Endk.V /;

so Lemma 3.10 applies.

Theorem4.6. Let r 2 k .<x />0. Then dom r D D1\� � �\Ds for some co-irreducible
Dj 2 Dom0 and r is a nc polynomial in x [R.D1/ [ � � � [R.Ds/ of degree at
most d , where d is the size of the minimal realization of r .

Proof. Let .c; LA;b/ be aminimal realization of r . Then dom r is a finite intersection
of co-irreducible domains by Proposition 3.12. LetA D S˚radA andP 2 GLd .k/
be as in Lemma 4.5. Write Ai D Si C Ni with respect to this decomposition and
set S D

P
i Sixi and N D

P
i Nixi . As a matrix over the ring of noncommutative

formal power series k<<X>>, LA D I � S �N is invertible and

L�1A D .I � S/
�1
�
I �N.I � S/�1

��1
D .I � S/�1

1X
jD0

�
N.I � S/�1

�j
:

Since .radA/d D 0 and consequently

�
N.I � S/�1

�d
D

� 1X
jD0

NSj
�d
D 0;

we have

L�1A D .I � S/
�1

d�1X
jD0

�
N.I � S/�1

�j
:

Therefore r is a polynomial of degree d in x and the entries of .I � S/�1. Let

PSiP
�1
D 0˚ .I ˝ A

.1/
i /˚ � � � ˚ .I ˝ A

.s/
i /:
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By the construction, A.j / is a simple algebra and LA.j / is a simple pencil. Since

.I � S/�1 D P�1
�
I ˚ .I ˝ L�1

A.1//˚ � � � ˚ .I ˝ L
�1
A.s//

�
P;

the entries of .1 � S/�1 are polynomials of degree at most 1 in the elements of
R.D1/ [ � � � [R.Ds/ by Proposition 4.4.

Example 4.7. Let fx; yg be our alphabet and consider rational functions

r1 D .1 � x � y.1 � x/
�1y/�1.1C x.1 � x C y/�1/

D
�
0 1 0

�0@1 � x �y 0

�y 1 � x �x

0 0 1 � x C y

1A�10@01
1

1A ;
r2 D .1 � x � y/

�1.1 � x/.1 � x � y/�1 C .1 � x � y/�1x.1 � x C y/�1

D
�
1 1 0

�0@1 � x � y �y �x

0 1 � x � y 0

0 0 1 � x C y

1A�10@01
1

1A :
It is easy to check that the given realizations are minimal, so

dom r1 D dom r2 D dom s1 \ dom s2;

where s1 D .1 � x � y/�1 and s2 D .1 � x C y/�1 are irreducible functions. It
is evident that r2 D s1..1 � x/s1 C xs2/ is a polynomial in x; s1; s2. On the other
hand, it becomes clear that r1 is a polynomial in x; s1; s2 only after we rewrite it as

r1 D
1

2
..1 � x � y/�1 C .1 � x C y/�1/.1C x.1 � x C y/�1/

D
1

2
.s1 C s2/.1C xs2/:

5. Symmetric and hermitian pencils

In the final section we turn our attention to pencils with symmetric and hermitian
matrix coefficients. Here the free loci are defined with tuples of symmetric and
hermitian matrices, respectively. We call them free real loci. We investigate when
two real loci are comparable; we show that this is equivalent to the existence of
a �-homomorphism between �-algebras generated by the pencils (Theorem 5.4).
The main new ingredients needed to make this work are the theory of hyperbolic
polynomials [20, 35] and the real Nullstellensatz from real algebraic geometry [9].
Finally, in Subsection 5.2 we formulate and prove a free (quantum) version of
Kippenhahn’s conjecture [26] on simple eigenvalues of hermitian pencils.
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Let Hn.C/ � Mn.C/ and Sn.R/ � Mn.R/ be the R-spaces of hermitian and
symmetric matrices, respectively. If the coefficients of L are symmetric matrices,
then L is a symmetric pencil and

Z s.L/ D
[
n2N

Z s
n .L/; Z s

n .L/ D Zn.L/ \ Sn.R/
g

is its free real locus. Similarly, if the coefficients of L are hermitian matrices, then L
is a hermitian pencil with free real locus

Z h.L/ D
[
n2N

Z h
n .L/; Z h

n .L/ D Zn.L/ \Hn.C/
g :

5.1. Singularitätstellensätze for real loci. In this subsection we prove the �-analog
of Theorem 3.6.

5.1.1. RZ polynomials. Let t and u D fu1; : : : ; ugg be commutative indetermi-
nates. Then p 2 RŒu� is a real zero (RZ) polynomial [23] if p.0/ ¤ 0 and for every
˛ 2 Rg , p.t˛/ 2 RŒt � has only real roots. This is essentially the dehomogenized
version of hyperbolic polynomials that arise in convex optimization [3, 35], partial
differential equations [6] and real algebraic geometry [10, 27, 30].

Proposition 5.1. Let p 2 RŒu� be a RZ polynomial. If q 2 CŒu� and p.˛/ D 0

implies q.˛/ D 0 for all ˛ 2 Rg , then p.˛/ D 0 implies q.˛/ D 0 for all ˛ 2 Cg .

Proof. It clearly suffices to prove the statement for q 2 RŒu�. Let p D p1 � � �ps ,
where pj 2 RŒu� are irreducible. Fix 1 � j � s; then pj is a RZ
polynomial. Since pj is also square-free, there obviously exist ˛; ˇ 2 Rg such that
pj .˛/pj .ˇ/ < 0. By [9, Theorem 4.5.1], the ideal in RŒu� generated by pj is real.
Since pj .˛/ D 0 implies q.˛/ D 0 for all ˛ 2 Rg , there exists hj 2 RŒu� such that
q D hjpj by the Real Nullstellensatz [9, Theorem 4.1.4]. Hence qs D .h1 � � � hs/p,
so p.˛/ D 0 implies q.˛/ D 0 for all ˛ 2 Cg .

5.1.2. Inclusion of free real loci. Each symmetric or hermitian pencil L gives
rise to the RZ polynomial detL. We now use the properties of RZ polynomials
presented above to show that Z s.L1/ � Z s.L2/ (or Z h.L1/ � Z h.L2/) if and
only if Z .L1/ � Z .L2/.

Proposition 5.2. Let L be a monic pencil.

(i) If L is hermitian, then Z h
n .L/ is Zariski dense in Zn.L/ for every n 2 N.

(ii) If L1 and L2 are symmetric, then

Z s.L1/ � Z s.L2/ ) Z .L1/ � Z .L2/:
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Remark 5.3. Note that Z h
n .L/ is not Zariski dense in Zn.L/ if L is symmetric and

n � 2. For example, if„ D .�ij /2i;jD1 is a 2� 2 generic matrix, then the polynomial
.1 � �11/.1 � �22/ � �

2
12 vanishes on Z s

2 .1 � x/ but not on Z2.1 � x/.

Proof of Proposition 5.2. (i) Fix n 2 N and an element of the coordinate ring
of Mn.C/g , i.e. a complex polynomial q in gn2 variables. Assume that q D 0

on Z h
n .L/. For every Xi ; Yi 2 Hn.C/ let

pX;Y WD det.L.uX C vY // 2 RŒu; v�; qX;Y WD q.uX C vY / 2 CŒu; v�:

By assumption we have

pX;Y .˛; ˇ/ D 0 ) qX;Y .˛; ˇ/ D 0 8˛; ˇ 2 Rg :

Since pX;Y is a RZ polynomial, Proposition 5.1 implies

pX;Y .˛; ˇ/ D 0 ) qX;Y .˛; ˇ/ D 0 8˛; ˇ 2 Cg :

If Z 2 Mn.C/g is arbitrary, then Z D 1
2
.Z C Z�/C 1

2
i.iZ� � iZ/ and Z C Z�,

iZ� � iZ are tuples of hermitian matrices, so q D 0 on Zn.L/.
(ii) Let � W C ! M2.R/ be the standard �-embedding of R-algebras. For every

n 2 N, the ampliation map

�n D idMn.R/˝R� WMn.C/ DMn.R/˝R C !M2n.R/

is again a �-embedding. If L1 is symmetric and X 2 Hn.C/g , then L1.X/ is
invertible if and only if �dn .L1.X// D L1.�n.X// is invertible. ThereforeZ s.L1/ �

Z s.L2/ impliesZ h.L1/ � Z h.L2/ and the conclusion follows fromconsideringL1
and L2 as hermitian pencils and applying (i).

Let LA be a symmetric (resp. hermitian) pencil. As before, letA denote the real
(resp. complex) algebra generated by A1; : : : ; Ag . We claim that A is semisimple.
Indeed, suppose that f .A/ 2 radA for some f 2 R<x> (resp. f 2 C<x>). Since
f .A/� 2 A, we have f .A/�f .A/ 2 radA. In particular, f .A/�f .A/ is a positive
semi-definite nilpotent matrix, so f .A/�f .A/ D 0 and thus f .A/ D 0.
Theorem 5.4.

(i) LetLA andLB be symmetric pencils. Then Z s.LA/ � Z s.LB/ if and only if
there exists a �-homomorphism of R-algebras B! A induced by Bi ! Ai .

(ii) LetLA andLB be hermitian pencils. Then Z h.LA/ � Z h.LB/ if and only if
there exists a �-homomorphism of C-algebras B! A induced by Bi ! Ai .

Proof. Since A and B are semisimple, this assertion is a direct consequence of
Proposition 5.2 and Theorem 3.6.
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Let Od � GLd .R/ and Ud � GLd .C/ be the orthogonal and the unitary group,
respectively.

Corollary 5.5.

(i) Let LA and LB be symmetric minimal pencils of size d . Then Z s.LA/ D

Z s.LB/ if and only if there exists Q 2 Od such that Bi D QAiQ
t for

i D 1; : : : ; g.

(ii) Let LA and LB be hermitian minimal pencils of size d . Then Z h.LA/ D

Z h.LB/ if and only if there exists U 2 Ud such that Bi D UAiU
� for

i D 1; : : : ; g.

Proof. We prove just (i) since the proof of (ii) is analogous. If Z s.LA/ D Z s.LB/,
then by Theorem 5.4(i) there exists a �-isomorphism A ! B given by Ai 7! Bi .
The rest follows as in the proof of Theorem 3.11 from the �-version of Lemma 3.10,
which in turn is a consequence of the following claim: if C is a simple R-algebra and
�; �0 W C ! Md .R/ are irreducible �-representations, then there exists Q 2 Od such
that

�0.c/ D Q�.c/Q�1 8c 2 C: (5.1)

Indeed, by the Skolem–Noether theorem there exists Q0 2 GLd .R/ such that (5.1)
holds. Because � and �0 are �-homomorphisms,

Q0�.c/
tQ�10 D �

0.c/t D .Q0�.c/Q
�1
0 /t D Q�t0 �.c/

tQt
0

holds for every c 2 C. Therefore Qt
0Q0 lies in the centralizer of �.C/ in Md .R/.

Since � is irreducible representation, Qt
0Q0 belongs to the center of Md .R/,

so Qt
0Q0 D ˛I for ˛ > 0 because Qt

0Q0 is positive-semidefinite. Now
Q D 1p

˛
Q0 2 Od satisfies (5.1).

In free real algebraic geometry an analogous result for free spectrahedra
(distinguished convex sets associated to symmetric linear pencils) has been
established in [21] using nontrivial operator algebra techniques, e.g. Arveson’s
noncommutative Choquet boundary [1].

5.2. Kippenhahn’s free conjecture. Kippenhahn’s conjecture [26, Section 8] can
be restated as follows: if H1;H2 2 Md .C/ are hermitian matrices that generate
Md .C/ as a C-algebra, then there exist ˛1; ˛2 2 R such that the dimension of the
kernel of I �˛1H1�˛2H2 is exactly one. While this conjecture has been established
for matrices of small size [13,38], it is false in general by [28]. However, we prove it
is true in a free setting.

Corollary 5.6. If A1; : : : ; Ag 2 Md .k/ generate Md .k/ as k-algebra, then there
exist n 2 N and X1; : : : ; Xg 2Mn.k/ such that dim kerLA.X/ D 1.
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Proof. By assumption there exists f 2 k<x>C such that f .A/ D E1;1. By
Lemma 3.1 there exist Xi 2Mn.k/ such that

1 D dim ker.I �E1;1/ D dim ker
�
I �

X
i

0 �Ai�1 �f .A/

�
D dim kerLA.X/:

5.2.1. Hermitian case. The original Kippenhahn’s conjecture deals with hermitian
matrices and their real linear combinations. Likewise, the free version can be
strengthened for hermitian pencils.
Corollary 5.7. If A1; : : : ; Ag 2 Hd .C/ generate Md .C/ as C-algebra, then there
exist n 2 N and X1; : : : ; Xg 2 Hn.C/ such that dim kerLA.X/ D 1.

Proof. The set
On D fX 2 Zn.LA/W dim kerLA.X/ D 1g

is Zariski open in Zn.LA/ and nonempty for some n 2 N by Corollary 5.6. Since
Z h
n .LA/ is Zariski dense in Zn.LA/ by Proposition 5.2, we have

On \Z h
n .LA/ ¤ ;:

Similar reasoning as in Remark 3.7 implies that n 2 N from the statement of
Corollary 5.7 can be bounded by an exponential function in g and d .

5.2.2. Symmetric case. Let LA be a symmetric pencil. In contrast to the hermitian
case in Proposition 5.2(i), Z s

n .LA/ is not Zariski dense in Zn.LA/ for n � 2. Hence
we cannot use the same arguments as in Corollary 5.7 to prove the real version of
Kippenhahn’s free conjecture. Nevertheless, we can at least deduce the following.
Corollary 5.8. If A1; : : : ; Ag 2 Sd .R/ generate Md .R/ as R-algebra, then there
exist n 2 N and X1; : : : ; Xg 2 Sn.R/ such that dim kerLA.X/ D 2.

Proof. Since A1; : : : ; Ag generateMd .R/ as R-algebra, they also generateMd .C/
as C-algebra. Hence there exist X1; : : : ; Xg 2 Hn.C/ such that dim kerLA.X/ D 1
by Corollary 5.7. If �n WMn.C/!M2n.R/ is the �-embedding of R-algebras from
the proof of Proposition 5.2(ii), then �.Xi / 2 S2n.R/ and dim kerLA.�.X// D 2.
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