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Tail bounds for counts of zeros and eigenvalues,
and an application to ratios

Brad Rodgers

Abstract. Let t be random and uniformly distributed in the interval ŒT; 2T �, and consider the
quantityN.tC1= logT /�N.t/, a count of zeros of the Riemann zeta function in a box of height
1= logT . Conditioned on the Riemann hypothesis, we show that the probability this count is
greater than x decays at least as quickly as e�Cx logx , uniformly in T . We also prove a similar
results for the logarithmic derivative of the zeta function, and likewise analogous results for the
eigenvalues of a random unitary matrix.

We use results of this sort to show on the Riemann hypothesis that the averages
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remain bounded as T ! 1, for ˛; ˇ complex numbers with ˇ ¤ 0. Moreover we show
rigorously that the local distribution of zeros asymptotically controls ratio averages like the
above; that is, the GUE Conjecture implies a (first-order) ratio conjecture.
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1. Introduction

1.1. This paper is comprised of two parts. In the first part we prove, conditioned on
the Riemann hypothesis (RH), that local linear statistics of the zeros of the Riemann
zeta function have uniformly sub-exponential tails. More precisely, label the non-
trivial zeros of the zeta function 1=2 C i; with  2 R. We prove the following
theorem.
Theorem 1.1 (Tail bound for zeros). Assume RH. DefineQ.�/ WD 1=.1C �2/. Then
for all x � 2 and all T � 2.
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where the constant C and the implicit constant are absolute.
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Here and in what follows, zeros are counted with multiplicity (in the unlikely
event that some zero is not simple).

To elaborate on the meaning of this result: the ordinates  have density logT=2�
near a height T , and for t 2 ŒT; 2T �, the points f logT

2�
. � t /g are spaced so as to

have a density of roughly 1, at least for  near t . Theorem 1.1 therefore bounds the
frequency with which these respaced zeros can occur in large clumps. The theorem
is only of interest when x is large.

Plainly Theorem 1.1 also implies the same estimate when Q is replaced by
any function � that decays quadratically (with constants depending on �). Letting
� D 1Œ0;1=2��, and defining as usual N.T / WD #f W  2 .0; T /g, we obtain a
corollary that may be easier to understand at a glance.
Corollary 1.2. Assume RH. For all x � 2 and all T � 2,
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� e�Cx logx;

where the constant C and the implicit constant are absolute.
Remark. This result refines a moment bound of Fujii [16, Main Theorem], and
is closely related, even in the method of its proof, to a bound of Soundararajan
[31, Theorem 2], who proves estimates of a similar strength, but in which x grows
with T , and in which the size of the interval may grow at a faster rate than 1= logT .

We note that without assuming RH, it is possible to prove an upper bound e�cx ,
where c is an absolute constant.

We also develop in Theorems 2.6 and Lemma 2.11 estimates for more oscillatory
counts of zeros. As a consequence we obtain an upper bound for the logarithmic
derivative of the zeta function.
Theorem 1.3 (Tail bounds for �0=�). Assume RH, and fix ˛ > 0. For x � 2 and
T � 2,
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where the constant C and the implied constant depend only on ˛.
Remark. This strengthens moment bounds for the logarithmic derivative of the zeta
function, which have been proved under RH and some additional hypotheses by
Farmer, Gonek, Lee, and Lester [15, Corollary 2.1], and subsequently under RH
alone in the author’s thesis (see [27, Theorem 2.1]).

We apply the tail bound, Theorem 1.1, and these other bounds to consider averages
of ratios of the zeta function. We develop an upper bound for these averages.
Theorem 1.4 (Moment bound for ratios). Assume RH. For any ˛; ˇ 2 C with
<ˇ ¤ 0, and for any m � 0, uniformly for T � 2;
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1.2. The second part of the paper requires some knowledge from random matrix
theory. Before all else, we will develop bounds for counts of eigenvalues of random
unitary matrices analogous to those above for zeta zeros.

Moreover, we show rigorously that the asymptotic evaluation of averages of the
sort considered Theorem 1.4 follow from knowing the local distribution of zeros
of the zeta function. Recall the following well-known conjecture about the local
distribution of zeros.
Conjecture 1.5 (GUE Conjecture). Assume RH. For all fixed k and continuous and
quadratically decaying1 test functions � W Rk ! R,
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as T !1, where the ij th entry of the k � k determinant is given by K.xi � xj / D
sin�.xi � xj /=�.xi � xj /.

We also recall a conjecture for the first order asymptotics of ratios of the zeta
function.
Conjecture 1.6 (Local Ratios Conjecture with real translations). Assume RH. For
all fixed k � 1 and all fixed collections of numbers ˛1; : : : ; ˛m; ˇ1; : : : ; ˇm 2 R,
with ˇ` ¤ 0 for all `, and2 ˛i ¤ ˇj for all i; j , we have
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where

E.˛; ˇ/ WD

(
e�˛Cˇ <ˇ < 0;

1 <ˇ > 0:

As an application of the techniques above, we show that the first of these claims
implies the second.
Theorem 1.7. The GUE Conjecture implies the Local Ratios Conjecture with real
translations.

There is a seemingly more general conjecture than Conjecture 1.6 in which
˛1; : : : ; ˛m; ˇ1; : : : ; ˇm are allowed to lie in C, with <ˇ` ¤ 0 for all `. Such a
conjecture may be called just the Local Ratios Conjecture.

1By quadratically decaying, we mean �.x/ D O
�

1

1Cx21
� � � 1

1Cx2
k

�
:A purist may object that it is more

natural to make this conjecture for only compactly supported �, but these two versions of this conjecture
may be seen without too much effort to be equivalent.

2We clearly lose no generality from this restriction.
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This increase in generality is really only apparent. It is possible using similar
methods to see that the GUE Conjecture also implies the Local Ratios Conjecture, for
general ˛ and ˇ. The proof of this claim requires a somewhat more lengthy technical
argument, so we will not prove it here. We will instead say only a few words about
what modifications in the proof of Theorem 1.7 are necessary for it at the end of this
paper.

1.3. The study of the average of ratios of the zeta function has a long history.
Conjecture 1.6wasfirst put forward in the casem D 2 byFarmer [13], who understood
it was closely connected with the local distribution of zeros of the Riemann zeta
function. Farmer showed that them D 2 case of (a uniform version of) what we have
called the Local Ratios Conjecture implies the k D 2 case (pair correlation) of the
GUE Conjecture [14], and later produced similar implications for the m D 3; k D 3
case, while even higher correlations may be obtained from the work in [10]. To our
knowledge the present paper is the first rigorous work in the opposite direction.

More recently, a flurry of work has centered around the average of such ratios
when the translations are not within a distance of O.1= logT / of the critical axis,
but instead are up to a distance of O.1/ away. In this case great deal of effort has
been put into not only producing asymptotic formulas, but extracting all relevant
lower order terms [6], which have many interesting implications [9]. (We have called
Conjecture 1.6 a “Local Ratios Conjecture” to distinguish it from this expanded set of
conjectures.) Indeed, it is worth noting at this point that the formula in (1.1) is not the
usual way to write the ratio conjecture; instead one usually insists that <ˇl ; ˇ0` > 0
and conjectures that

lim
T!1
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is predicted accurately to first order by a randommatrix analogue. The expression for
this limit is somewhat more complicated to write down than the formula on the right
hand side of (1.1) (see for instance [4,7,8]). Nonetheless, in spite of the simplicity
of (1.1), it is not clear whether there is any way to write down the more precise
lower-order Ratio Conjectures in a way reminiscent of it. It would still be interesting
to see if such a combinatorial formalism can be found.

In any case, an asymptotic formula for the left hand side of (1.1) implies an
asymptotic formula for the left hand side of (1.2), and vice-versa. This may be seen
most easily by applying the zeta function’s functional equation. We will have nothing
to say about lower order terms however.

Similarly to Farmer’s papers above, some previous work has studied the
connections of the GUE Conjecture to averages of the logarithmic derivative of
the zeta function [15,17,27].
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We note also the concurrent work [5], which considers some similar questions to
thosewe consider here, but replaces the zeta functionwith a probabilistic construction
called the limiting characteristic polynomial.

1.4. We turn to a quick conceptual sketch of some of our methods. Both the
moment bound, Theorem 1.4, and the conditional implication, Theorem 1.7, are
critically dependent on the tail bound, Theorem 1.1. The strategy in each case is to
write
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(1.3)
(ignoring for the moment all issues with branch cuts, which end up being minor). We
show from the Hadamard product representation for the zeta function that Lt is “very
close” to a linear statistic

P
�
�
logT
2�
. � t /

�
, for some function � of quadratic decay.

This is not literally true: Lt , if written as a sum of zeros, must contain an extra term
in the summand that decays very slowly. This term does not decay quadratically – in
fact its sum converges only because of the symmetry of zeros – but it may be shown
that on average this extra term does not much affect the size of Lt . (This step is not
trivial, but will be the content of Theorem 2.6 and Lemma 2.11.)

Thus it is that we see that we can approximate the ratio (1.3) by the exponential
of a linear statistic of zeros. It is just these linear statistics whose size we have
controlled in our tail bound, Theorem 1.1, and it is in this way that the moment bound
Theorem 1.4 is proved. For the implication in Theorem 1.7, on the other hand, we
note that we are able to asymptotically control the moments of such linear statistics by
using the GUE Conjecture and a standard combinatorial procedure. This asymptotic
control on the moments of linear statistics is not ipso facto enough to pass to the
Local Ratios Conjecture however. It is not the case, that is, that Theorem 1.7 is just
a matter of combinatorial manipulation in random matrix theory.

For instance, instead of Lt , consider the random variables Xn which take the
value 0 with probability 1 � e�n and n2 with probability e�n. Then Xn tends to 0
both in distribution and in the sense of moments: for any fixed k � 0,

EXkn ! 0:

Yet
E eXn D .1 � e�n/C en

2�n
!1;

so it is not true E eXn � E e0.
This sort of a pathology is eliminated by the tail bound of Theorem 1.1 and

related bounds, and it is this control that is necessary to show that the average of
ratios in (1.1) converges to a random matrix limit on the GUE Conjecture.
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Our proof of Theorem 1.1 is not long provided certain computational lemmas are
taken on faith, so we will not sketch it here. We mention only that our proof depends
on an application of Markov’s inequality and a smoothing trick. It is, in this sense, an
application of Soundararajan’s method [30] for bounding the moments of �.1=2C i t/
(see also Harper’s refinement [19]), used also his aforementioned work in [31].

Finally, we note that in the case that <˛ � <ˇ and =˛ D =ˇ, there is an easier
proof of the bound in Theorem 1.4. In this case one has for all t; T � 2 a pointwise
bound

�

�
1

2
C

˛

logT
C i t

�
�˛;ˇ �

�
1

2
C

ˇ

logT
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�
:

This is a consequence of Lemma 1 of [25]. Nonetheless, such an inequality does not
hold for other ranges of ˛ and ˇ, and Theorem 1.4 cannot in general be reduced to a
pointwise estimate of this sort.

Notation. We follow standard conventions of analytic number theory, so that the
notations f .x/ � g.x/ and f .x/ D O.g.x// are interchangeable, with both
meaning that jf .x/j � Cg.x/ for all x, for a constant C . f .x/ �A g.x/ and
f .x/ D OA.g.x// both mean the constant C may depend on A. The Fourier
transform of a function f is defined by Of .�/ WD

R
e�i2�x�f .x/ dx.

In what follows we will assume the Riemann hypothesis, without further statement
of this assumption in Theorems, Lemmas, etc.

Acknowledgements. I thank Sandro Bettin, Alexei Borodin, Reda Chhaibi, Brian
Conrey, Chris Hughes, Jon Keating, and Kurt Johansson for informative and
encouraging discussions related to this work, and the anonymous referee for a careful
reading and helpful suggestions.

2. Bounding counts of zeros: a proof of Theorem 1.1 and related bounds

2.1. As in many studies of the zeros of the zeta function, a principal tool is the
explicit formula, due in stages to Riemann, Guinand, andWeil [18,26,34], relating the
distribution of zeros to primes. A proof may be found in, for instance, [24, pp. 410–
416] or [21, pp. 108–109].

Theorem 2.1 (The explicit formula). For a compactly supported function g,
piecewise continuous with finitely many discontinuities, such that

g.x/ D 1
2

�
g.x�/C g.xC/

�
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for all x and g.0/ D 1
2
.g.x/C g.�x//CO.jxj/, we have,
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Using Stirling’s formula for the digamma function [1, Cor. 1.4.5], one may verify
that,
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This term in the explicit formula therefore corresponds to an approximation of the
density of zeros near height � . On the other hand,Z 1
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R
g.log t /=

p
t dt serves as an approximation to

P
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p
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Motivated by the explicit formula, we adopt the following notation, for a function �
of quadratic decay:

h�;Zi D h�;ZT .t/i WD
X


�

�
logT
2�

. � t /

�
;

h�;Zoi D h�;ZoT .t/i WD

Z 1
�1

�

�
logT
2�

.� � t /

�
�.�/

2�
d�;

h�;eZi D h�;eZT .t/i WD h�;Zi � h�;Zoi:
Note that there is no question about the convergence of the sums or integrals in

these definitions. We will later generalize this notation slightly, but we need not
worry about this generalization for the moment. Note that for typographical reasons
we will sometimes write Z or ZT in place of ZT .t/. Unless otherwise indicated,
Z D ZT D ZT .t/, and likewise for Zo and eZ.

We will see that the quantity h�;eZi and therefore h�;Zi is approximated by a
Dirichlet polynomial of length depending on the support of O�. It is in this way that
we will control these quantities.
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2.2. Let B0 be an absolute constant to be defined shortly. We define the function

G.�/ WD B0

��
sin�.� C 1=4/
�.� C 1=4/

�2
C

�
sin�.� � 1=4/
�.� � 1=4/

�2�
; (2.2)

with Fourier transform,

OG.x/ D B0
�
1 � jxj

�
C

�
ei�x=2 C e�i�x=2

�
; (2.3)

where B0 is an absolute constant chosen so that

Q.�/ � G.�/; 8� 2 R: (2.4)

(In fact, B0 may be chosen to be 2�2, but we only need to know such a constant
exists, which is apparent from examiningG.�/=Q.�/.) There is nothing very special
about this test function G; we have chosen it to satisfy (2.4) and

supp OG � Œ�1; 1�: (2.5)

As a consequence of (2.4), writing Gk.�/ WD G.�=k/, we see that for all k � 1,

Q.�/ � Gk.�/; 8x 2 R: (2.6)

Moreover,

supp OGk � Œ�1=k; 1=k�; with j OGk.x/j � 2B0 k
�
1 � jkxj

�
C
: (2.7)

To make for a cleaner presentation, we work with notation from elementary prob-
ability, letting t be a random variable uniformly distributed on the interval ŒT; 2T �.
The tail bound Theorem 1.1 then becomes the claim that uniformly for x � 2 and
T � 1,

P
�
hQ;Zi � x

�
� e�Cx logx :

The reason we have defined Gk is that the size of hQ;Zi can be controlled by
hGk;Zi, and that this in turn can be controlled by hGk;Zoi and hGk;eZi. It is easy
to control hGk;Zoi, since the measure defining this quantity is very regular. On the
other hand hGk;eZi can be well-controlled up to the kth moment, with hGk;eZi in
general not being much larger then hG;eZi. More exactly, we prove the following
estimates.
Lemma 2.2. For an absolute constant B1, uniformly for T � 2,

hQ;ZT .t/i � B1 logT; 8t 2 ŒT; 2T �:

Lemma 2.3. For an absolute constantB2; uniformly for T � 2 and 2` � k, we have

EjhGk;eZij2` � .B2 `/`:
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Lemma 2.4. For an absolute constant B3, uniformly for T � 2 and k �
p
T ,

hGk;Z
o
T .t/i � B3 k; 8t 2 ŒT; 2T �:

The first gives an extremely course upper bound for the number of zeros that may
be counted by the test function Q, the second controls the moments of hGk;eZi as
described above, and the third controls the regular approximation hGk;Zoi to the
count of zeros by Gk .

These lemmas have standard proofs that we turn to at the end of this section— the
most nontrivial is Lemma 2.3 and is proved by approximating hGk;eZi by a Dirichlet
polynomial — but before doing so, we show that with these computational estimates
in hand, Theorem 1.1 (our tail bound for zeros) follows quickly.

Proof of Theorem 1.1. Note first that in the case that x > B1 logT , Lemma 2.2
implies that

P .hQ;Zi � x/ D 0:

We may therefore assume x � B1 logT . Lemma 2.3 allows us to see from
Markov’s inequality that for even integers k and positive y,

P .hGk;eZi � y/ � 1

yk
EjhGk;eZijk � .B2 k/

k=2

yk
: (2.8)

Yet
hQ;Zi � hGk;Zi D hGk;eZi C hGk;Zoi: (2.9)

Thus,

P .hQ;Zi � x/ � P .hGk;eZi C hGk;Zoi � x/
� P

�
hGk;eZi � x � B3 k�; (2.10)

for all even k �
p
T , with the last line following from Lemma 2.4. With no loss of

generality, we may assume x � 4B3, and consider k defined to be the positive even
integer satisfying

x

2B3
� 2 < k �

x

2B3

so that in particular
x � B3k � x=2:

As long as T is large enough that B1=2B2 logT �
p
T , then certainly k �

p
T

(since we are considering the case x � B1 logT ). Thus from (2.8) and (2.10),

P .hQ;Zi � x/ �
.B2 � x=2B3/

x=4B3

.x=2/x=2B3�2
� e�Cx logx; (2.11)

for an absolute constant C .3
3An argument with more bookkeeping, though still one which makes no attempt at optimization, shows

that one may take any constant C < 1=16�2, for instance.
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In remains to verify our claim in the case in which T is small enough that
B1=2B2 logT >

p
T . But this bounded range of T can at most alter the implicit

constant in (2.11).

Remark. There is a slightly different approach to this theorem which some readers
may prefer. Instead of the inequality (2.9), wemaymake use of amollification formula
of Selberg [28, Th. 1], which approximates the classical function S.t/ by a Dirichlet
polynomial with error terms whose size depends on the length of the Dirichlet
polynomial. One may then compute moments of, say, S.t C 1= logT / � S.t/ in the
samewaywe have here, with the Dirichlet polynomial replacing the quantity hGk;eZi.

Indeed, to reflect on our approach, in the lemmas, it has been to show the following:

N

�
t C

1

logT

�
�N.t/� hQ;ZT .t/i � hGk;eZT .t/i C k; (2.12)

with k � 1. By the explicit formula, wewill reduce hGk;eZi to a Dirichlet polynomial
in the proof of Lemma 2.3 below in order to compute its moments. In slightly more
traditional notation, with such a Dirichlet polynomial already put in place of hGk;eZi,
(2.12) could be rewritten

N

�
t C

1

logT

�
�N.t/�

1

log x
=

X
p�x

�
1 �

logp
log x

�
logp
p1=2Cit

C
logT
log x

; (2.13)

for t 2 ŒT; 2T � and all 2 � x � T (and x related to k above by k D logT
logx ). For such

Dirichlet polynomials, we will be able to bound kth moments, and thereby control
how frequently N.t C 1= logT / �N.t/ can be large.

We have taken the route and notation that we have because we will make use of
the same formalism elsewhere in this paper; we apply it to other estimates for zeta
zeros below, and it applies almost without change to study the eigenvalues of the
unitary group, for instance.
Remark. Without the Riemann hypothesis, the ordinates  needn’t be real, and the
relationship hQ;Zi � hGk;Zi ceases to hold; the same is true of (2.13). On
the other hand, Selberg [29, Th. 2] also proves an uncondtional variant of his
approximation for S.t/, and this has been used by Fujii [16, p. 245] to compute
moment bounds for S.t C 1= logT / � S.t/ unconditionally. Bounds that can be
obtained unconditionally in this way are slightly worse than what we have derived
assuming RH. Unconditionally, using the technique, one can prove

1

T
meas

˚
t 2 ŒT; 2T � W N.t C 1= logT / �N.t/ � x

	
� e�cx;

where c is an absolute constant, but seemingly no better. It would be interesting to
see if this could be improved.
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Remark. Probably the tail bounds in Theorem 1.1 and Corollary 1.2, while sufficient
for our purposes, are not optimal. The bounds here would correspond to the “right
answer” were the zeros were modeled by a Poisson process, but since zeros of the zeta
function tend to repel each other one might guess that the counts are sub-gaussian
in Theorem 1.1 and Corollary 1.2. Such an estimate is true for eigenvalues of the
unitary group (see (4.6) below) but for zeta zeros seemingly this is a harder statement
to prove.

2.3. There is another result similar to Theorem 1.1 that we will require, but which
is somewhat more technical in its statement and proof. We generalize the notation
h�;eZi to a wider class of functions than it was applied to before. In particular, we let
h�;eZi D h�;eZT .t/i

WD lim
V!1

X
j j<V

�

�
logT
2�

. � t /

�
�

Z V

�V

�

�
logT
2�

.� � t /

�
�.�/

2�
d�;

where �; T; and t are such that the limit exists. This is consistent with our previous
use of this notation. Likewise, when the limit exists,

h�;Zi D h�;ZT .t/i WD lim
V!1

X
j j<V

�

�
logT
2�

. � t /

�
;

h�;Zoi D h�;ZoT .t/i WD lim
V!1

Z V

�V

�

�
logT
2�

.� � t /

�
�.�/

2�
d�:

By the explicit formula, it may be verified that h�;eZi exists whenever �.�/ D Of .�/,
for a function f that is (i) compactly supported, (ii) piecewise continuouswith finitely
many discontinuities, (iii) satisfying f .x/ D 1

2
.f .xC/ C f .x�//, and (iv) with f

odd. A more specific example of such a limit existing where the sums and integral
do not absolutely converge is furnished by the function

J.�/ WD
2��

1C .2��/2
: (2.14)

In this case, J.�/ D Of .�/, for the function

f .x/ WD �sgn.x/e�jxj=2i; (2.15)

so one may see by the above discussion that hJ;eZT .t/i is well defined for all T
and t . Alternatively, one may see rather more simply that the limit defining hJ;eZi
converges by exploiting the symmetry of the zeros  and the function �. Indeed, let
us verify this (and prove a little more) for hJ;Zoi, in a lemma we will need later.
Lemma 2.5. Uniformly for T � 2,

hJ;ZoT .t/i D O.1= logT /; 8t 2 ŒT; 2T �:
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Proof. By the symmetry of J ,

hJ;ZoT .t/i

D lim
V!1

Z V

0

J.y/

�
�

�
t C

2�y

logT

�
��

�
t �

2�y

logT

��
dy

logT

�
1

logT

Z 1
0

J.y/

�
min

�
y2

t2 log2 T
;
t2 log2 T
y2

�
CO

�
1

jt � 2�y
logT j C 2

��
dy;

where in the second step in approximating �, we have used Stirling’s formula (2.1)
and then simple Taylor series estimates for the logarithm function. (Note that in the
first line the integrand is positive, so the integral converges absolutely or not at all.)
It is now slightly tedious but straightforward to verify that the integral is O.1/ and
therefore the entire expression is O.1= logT /.

The analogue of Theorem 1.1, our earlier tail bound, that we require is the
following.
Theorem 2.6 (Tail bound for signed counts). For all x � 2 and all T � 2,

P
�
jhJ;eZij � x �� e�Cx logx;

where the constant C and the implicit constant are absolute.

Applying Lemma 2.5 here, we see likewise:
Corollary 2.7 (Tail bound for signed counts). For all x � 2 and all T � 2,

P
�
jhJ;Zij � x

�
� e�Cx logx;

where the constant C and the implicit constant are absolute.

Our proof of Theorem 2.6 is similar to the proof of Theorem 1.1. Again we
require a series of lemmas, to be proved later.
Lemma 2.8. For an absolute constant B 01, uniformly for T � 2,

jhJ;eZT .t/ij � B 01 logT; 8t 2 ŒT; 2T �:
For the next two lemmas we define

W .�/.x/ WD
sgn.x/
�2i

e�jxj
�
1 � jxj=�

�
C
: (2.16)

We have defined W .�/ so that .W .1=k//O, for k � 1, plays the role of something
like a smooth approximation to the function

J.�/1j�j�k : (2.17)
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More exactly, a computation reveals that,

.W .1=k//O.z/ D J.z/C
k

2i

� 1 � exp
�
1Ci2�z

k

�
.1C i2�z/2œ
K.z/; say

�
1 � exp

�
1�i2�z
k

�
.1 � i2�z/2œ
K.�z/

�
: (2.18)

(We have written z instead of � here, because we will later need this expression for
complex values of z as well.) We will see from a Taylor expansion, .W .1=k//O.�/ is
small when j�j � k, and the termsK.�/may be thought of as an error term when j�j
is large. A more exact statement of this is as follows:
Lemma 2.9. For all k � 1,

jJ.�/ � .W .1=k//O.�/j � AGk.�/; 8� 2 R;

where A is an absolute constant.

We also have the moments of .W .1=k//Oare very small when k is large.
Lemma 2.10. For an absolute constantB 02, uniformly for T � 2 and 2` � k �

p
T ,

we have
Ejh.W .1=k//O;eZij2` � .B 02`/`k�2`:

As before, we momentarily delay the proof of these lemmas. Assuming them,
we see that a proof of Theorem 2.6, the tail bound for oscillatory counts, proceeds
in the same manner as that of Theorem 1.1, the tail bound for quadratically decaying
counts.

Proof of Theorem 2.6. If x > B 01 logT , then by Lemma 2.8,

P
�
jhJ;eZij � x� D 0:

So as before we may treat the case that x � B 01 logT . By applying Lemma 2.9, for
all k � 1,

hJ;eZi D h�W .1=k/
�
O;eZi CO�jhGk;eZij�CO�hGk;Zoi�;

where the implicit constant in the first error term may be taken as A, and the implicit
constant in the second 2A. As long as k �

p
T , Lemma 2.4 allows us to bound the

second of these error terms: hGk;Zoi � B3 k: Hence using a union bound,

P
�
hJ;eZij � x� � P

�
jh
�
W .1=k/

�
O;eZij � x=2�C P

�
AjhGk;eZij C AB3 k � x=2�:

A choice of k and bound for both probabilities then proceeds as in the proof of
Theorem 1.1, replacing Lemma 2.3 by Lemma 2.10 to bound the first of these
terms.
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There is one last result of this sort that we will use below.
Lemma 2.11 (Bound on 1=� stubs). For any � � 0 and k � 1=�2, for T D T .�/

sufficiently large,
P
�
jh
�
W .1=k/

�
O;ZT ij � �

�
� �2:

By the approximation (2.17), this roughly corresponds to a statement that when k
is large Xˇ̌

logT
2� .�t/

ˇ̌
�k

1
logT
2�
. � t /

is typically very small. This is a result, in part, of cancellation between the two
“sides” of the sum.

Finally, at the end of this section, we explain how it is that Theorem 2.6 implies
Theorem 1.3.

2.4. We finally turn to proofs of the lemmas above.

Proof of Lemma 2.2. We recall the estimate (see [24, Cor. 14.3]),

N.t C 1/ �N.t/� log
�
jt j C 2

�
; 8t 2 R:

By inspection, it is easy to verify that log.juCvjC2/� log.jujC2/C log.jvjC2/
for all u; v 2 R.

Now note that for t 2 ŒT; 2T �,

hQ;ZT .t/i�

1X
kD�1

�
N.t C k C 1/ �N.t C k/

�
�

1

1C k2 log2 T

� log.T C 2/
1X

kD�1

1

1C k2 log2 T
C

1X
kD�1

1

1C k2 log2 T
log

�
jkj C 2

�
� log.T /:

Proof of Lemma 2.3. This is a more or less standard computation of moments.
However, some added care is necessary since an estimate is required that is uniform
as moments vary. We note that from the explicit formula,

hGk;eZT .t/i D k

logT

Z 1
�1

OG

�
kx

logT

�
.e�ixt C eixt /e�x=2d

�
ex �  .ex/

�
D I � 2<

k

logT
X
r�1

X
p

OG

�
kr

logT
logp

�
logp

pr.1=2�it/“P
r sr , say

;
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where
I WD G

�
logT
2�k

.i=2 � t /

�
CG

�
logT
2�k

.i=2C t /

�
:

HereG.xC iy/ is, of course, the analytic continuation of the function defined before
in (2.2). One may check that

G

�
logT
2�k

.i=2˙ t /

�
�

exp.logT=4k/
t2

�
1

T 7=4
� 1;

for k � 1 and t 2 ŒT; 2T �.
Hence from Hölder’s inequality,�

EhGk;eZi2`�1=2` � 1C
k

logT
X
r�1

�
Ejsr j

2`
�1=2`

: (2.19)

Because supp OG � Œ�1; 1�, a standard argument dating back to Selberg (see
[30, Lem. 3], for a modern treatment that applies directly) reveals4 that for 2` � k

Ejsr j
2`
� `Š �

�X
p

log2 p
pr

OG

�
kr

logT
logp

�2�`
:

By the support of OG, this quantity is null for all r � 1, when k > logT= log 2.
In the case that k � logT= log 2 we need a little more work. When r D 1,X

p

log2 p
p
OG

�
kr

logT
logp

�2
�

X
p�T 1=k

log2 p
p
�

�
logT
k

�2
;

by Chebyshev (see [24, Ch. 2.2]). When r � 2,X
p

log2 p
pr

OG

�
kr

logT
logp

�2
�

Z 1
2

log2 t
t r

dt �
1

2r
:

Returning to (2.19), we see that�
EhGk;eZi2`�1=2` � 1C

k

logT
.`Š/1=2`

�
logT
k
C

X
r�2

1

2r=2

�
� `1=2;

as k � logT= log 2. We have used Stirling’s formula [1, Th. 1.4.1] to bound the
factorial. Exponentiating by 2` gives the lemma.

4In fact, the argument shows that up to twice our range of ` may be admitted.
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Proof of Lemma 2.4. We have

hG;ZoT .t/i D
1

logT

Z 1
�1

Gk.y/�
�
t C

2�y

logT

�
dy

D
1

logT

�Z
jyj�T logT

C

Z
jyj>T logT

�
Gk.y/�

�
t C

2�y

logT

�
dy:

By our application of Stirling’s formula (2.1), this quantity is

�
1

logT

�Z
jyj�T logT

Gk.y/ logT dy C
Z
jyj>T logT

k2

y2
logy dy

�
� k C k2=T;

which yields the estimate.

Proof of Lemma 2.8. It is easy to verify for <s > 1=2 thatZ 1
0

e�sxe�x=2d. .ex/ � ex/ D �
�0

�

�1
2
C s

�
�

1

s � 1=2
:

On RH, by analytic continuation, this identity remains true for <s > 0. Making use
of this identity, the Fourier transform expression (2.15), and the explicit formula, one
may thus verify that

hJ;eZT .t/i D 1

logT
=
�0

�

�
1

2
C

1

logT
C i t

�
C

1

logT

�
t�

1
2
�

1
logT

�2
C t2

�
t�

1
2
C

1
logT

�2
C t2

�
D

1

logT
=
�0

�

�
1

2
C

1

logT
C i t

�
CO

�
1

logT

�
: (2.20)

From Lemma 12.1 of [24], we see that for t 2 ŒT; 2T �,

�0

�

�
1

2
C

1

logT
C i t

�
D O.1/C

X
j�t j�1

1

1= logT � i. � t /

D O.1/CO.log2 T /
D O.log2 T /;

with the second to last line following from the fact that

N.t C 1/ �N.t/ D O.log.jt j C 2/:

Combining this estimate with (2.20) yields the lemma.
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Proof of Lemma 2.9. A Taylor expansion of the exponential function in (2.18) shows
that for j�j � k (throughout this proof, � is real),�

W .1=k/
�
O.�/� 1=k: (2.21)

In the same range, plainly J.�/� 1. Hence, for j�j � k,

j
�
W .1=k/

�
O.�/ � J.�/j � 1� Gk.�/:

On the other hand, for j�j > k, by (2.18),

j
�
W .1=k/

�
O.�/ � J.�/j �

k

�2
�

k2

�2
� Gk.�/: (2.22)

Proof of Lemma 2.10. Our proof proceeds along the same lines as that of Lemma 2.3.
From the explicit formula,

h
�
W .1=k/

�
O;eZT .t/i D I0 C=

1

logT
X
r�1

X
p

logp
pr.1=2C1= logT�it/

�
1 � k

r logp
logT

�
C–P

r �r , say

;

where

I0 WD
�
W .1=k/

�
O

�
logT
2�

.i=2 � t /

�
C
�
W .1=k/

�
O

�
logT
2�

.�i=2 � t /

�
:

To bound I0, we recall (2.18). It is simple to verify that for t 2 ŒT; 2T �,

J

�
logT
2�

.˙i=2 � t /

�
�

1

T logT
�

1

k

in the range that k �
p
T . On the other hand, a bit more tediously,

K

�
˙

logT
2�

.˙i=2 � t /

�
�

k

.1 � logT=2/2 C t2
exp

�
logT
2k

�
�

k

T 7=4
�

1

k
;

again for k �
p
T . This shows that

I0 �
1

k
:

Thus, as in the Hölder inequality (2.19) of the proof of Lemma 2.3,�
Eh.W .1=k//O;eZi2`�1=2` � 1

k
C

1

logT
X
r�1

�
Ej�r j

2`
�1=2`

: (2.23)
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But also as in that proof, for k > logT= log 2,

�r D 0; 8r � 1:

Otherwise, for k � logT= log 2, the right hand side of (2.23) is likewise bound by

�
1

k
C

1

logT
.`Š/1=2`

�
logT
k
C

X
r�2

1

2r=2

�
� `1=2=k:

This proves the lemma.

Proof of Lemma 2.11. We begin by considering the case that � > 1=2. In this case,
the lemma is tautological:

P
�
jh.W .1=k//O;Zij � �

�
� 1� �2:

We may therefore suppose � 2 .0; 1=2/. From Lemma 2.10, we see (noting that
this condition on � imposes k � 2),

P
�
jh.W .1=k//O;eZij � �� � 1

�2
E
�
jh.W .1=k//O;eZij2�

�
1

.�k/2
� �2:

On the other hand, from (2.21) and (2.22), for all k � 1, we have�
W .1=k/

�
O.�/� J.�/; 8� � 0: (2.24)

Hence, using the symmetry of .W .1=k//O in the first line below,

h.W .1=k//O;ZoT .t/i

D lim
V!1

Z V

0

�
W .1=k/

�
O.y/

�
�

�
t C

2�y

logT

�
��

�
t �

2�y

logT

��
dy

logT

�hJ;ZoT .t/i �
1

logT
:

We are justified in applying the bound (2.24) in passing to the second line because,
as in the proof of Lemma 2.5, �.t C 2�y= logT / ��.t � 2�y= logT / � 0 for all
y � 0.

Thus for sufficiently large T (such that 1= logT is small in comparison to �),

P
�
jh
�
W .1=k/

�
O;Zij � �

�
� P

�
jh
�
W .1=k/

�
O;eZij � �=2�� �2;

as claimed.
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2.5. Finally, we turn to bounding the logarithmic derivative of the zeta function.
Some computational details in the proof are left to the reader.

Proof of Theorem 1.3. We note that by much the same procedure as in (2.20), we
have

1

logT
�0

�

�
1

2
C

˛

logT
C i t

�
D hI˛;eZT .t/i CO˛� 1

logT

�
; (2.25)

for t 2 ŒT; 2T �, where

I˛.�/ WD
1

˛ � i2��
:

Because I˛.�/ D J.�/C O˛.Q.�//, the claim follows directly from Theorems 1.1
and 2.6.

Remark. An alternative approach to the identity (2.25) is to take as a starting point
the classical formula [24, Corollary 10.14],

�0

�
.s/ D

�1

s � 1
C

X
�

�
1

s � �
C
1

�

�
�
1

2
log

�
jt j C 2

�
CO.1/;

where s D � C i t . This is less exact algebraically, but expresses the same idea.

3. Ratio bounds

With the bounds of Theorems 1.1 and 2.6 in place, it is a simple matter to bound
moments of ratios of the zeta function.

Proof of Theorem 1.4. In this proof we assume <ˇ ¤ 0 throughout. Using the
Hadamard product representation for the zeta function [24, Th. 10.12] and Stirling’s
formula for the Gamma function [1, Cor. 1.4.3], it is straightforward (though a little
tedious) to verify that for fixed ˛; ˇ 2 C,

�
�
1
2
C

˛
logT C i t

�
�
�
1
2
C

ˇ
logT C i t

� D .1C o.1//e�.˛�ˇ/=2 lim
V!1

Y
j j�V

˛
2�
� i

logT
2�
. � t /

ˇ
2�
� i

logT
2�
. � t /

; (3.1)

where because <ˇ ¤ 0 the product converges to a finite number (on RH). Here o.1/
is a quantity that tends to 0 uniformly for t 2 ŒT; 2T � as T !1.

Using
Log.z/ WD log jzj C iArg.z/;

with Arg.z/ 2 .��; �� for all z 2 C, and defining

L˛;ˇ .�/ WD Log
� ˛
2�
� i�

ˇ
2�
� i�

�
;
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one sees that the expression (3.1) is equal to

.1C o.1//e�.˛�ˇ/=2 exp
�
hL˛;ˇ ;ZT .t/i

�
: (3.2)

(A little care must be taken, of course, whenever taking the logarithm of a complex
number, but here, due to the exponential, no problems arise. One must check that the
sumdefining hL˛;ˇ ;ZT .t/i converges, but this is straightforward using the symmetry
of  .)

Note that for j�j > max.2�j˛j; 2�jˇj/

L˛;ˇ .�/ D Log
�
1 � ˛

i2��

1 � ˇ
i2��

�
D i.˛ � ˇ/J.�/CO˛;ˇ

�
Q.�/

�
;

while, as long as <ˇ ¤ 0, we have for j�j < max.2�j˛j; 2�jˇj/,

˛
2�
� i�

ˇ
2�
� i�

D exp
�
O˛;ˇ

�
Q.�/

��
;

since for this region of � , the left hand side is bounded above, and the right hand side
is bounded from below. Hence for all � 2 R,

L˛;ˇ .�/ D i.˛ � ˇ/J.�/CO˛;ˇ
�
Q.�/

�
: (3.3)

Thus for fixed ˛; ˇ;m, with <ˇ ¤ 0,ˇ̌̌̌
ˇ�
�
1
2
C

˛
logT C i t

�
�
�
1
2
C

ˇ
logT C i t

� ˇ̌̌̌ˇ
m

D .1C o.1// e�m.˛�ˇ/=2 exp
�
m<hL˛;ˇ ;Zi

�
D .1C o.1// e�m.˛�ˇ/=2 exp

�
O
�
hJ;Zi

�
CO

�
hQ;Zi

��
:

Now the theorem at hand follows from Theorem 1.1 (our tail bound for zeros) and
Corollary 2.7 (our tail bound for oscillatory counts).

Remark. There is an alternative to the identity (3.2) that is more exact algebraically.
Under RH, it may be seen (for instance, with [33, Eq. (14.10.5)] as a starting point)
that for <˛; ˇ > 0,

�
�
1
2
C

˛
logT C i t

�
�
�
1
2
C

ˇ
logT C i t

� D exp
�
hL˛;ˇ ;eZi�: (3.4)

To use this identity in the proof above to treat those values of ˛ or ˇ with negative
real part, the functional equation must be made use of.
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4. A random matrix interlude

4.1. In this section, we develop analogues for the unitary group of our tail bound for
linear statistics (for zeta zeros this was Theorem 1.1), the determinantal evaluation
of correlation functions (for the zeta zeros this was Conjecture 1.5), the evaluation
of ratios of the zeta function (this was Conjecture 1.6), a uniform upper bound on
moments of ratios (this was Theorem 1.4) and also the more technical tail bound
for oscillatory linear statistics (this was Lemma 2.11). We will make use of these
estimates in the next section. We conclude this section by outlining a proof of a tail
bound for the logarithmic derivative of a characteristics polynomial, analogous to
Theorem 1.3. Such an estimate we do not directly need in what follows, but follows
easily from the others and appears to be new in the literature.

The unitary group U.N/ is the group of N � N complex matrices g satisfying
g�g D I . In what follows we endow this group with Haar probability measure. Any
such unitary matrix g has N eigenvalues that lie on the unit circle, which we write
as fei2��1 ; : : : ; ei2��N g with �i 2 Œ�1=2; 1=2/ for all i .

The k level correlations of eigenvalues are in this case known exactly [3,
Eq. (39.12)].

Theorem 4.1 (The Weyl–Gaudin–Dyson integration formula). For k � N and any
integrable function � W Œ�N=2;N=2/k ! C,

EU.N/
X

j1;:::;jk
distinct

�.N�j1 ; : : : ; N�jk / D

Z
Œ�N=2;N=2/k

�.x/ det
k�k

�
KN .xi � xj /

�
dkx;

where KN .x/ WD sin.�x/
N sin.�x=N/ :

This implies that for any integrable function � W Rk ! C,

EU.N/
X

j1;:::;jk
distinct

�.N�j1 ; : : : ; N�jk / �

Z
Rk
�.x/ det

k�k

�
K.xi � xj /

�
dkx:

This formula of course mirrors the GUE Conjecture, so that the points f logT
2�
. � t /g

may be modeled by the random points fN�ig.
In fact, instead of the collection of points fN�1; : : : ; N�N g, it will be even more

natural to work with these points pulled back to have period N ; that is we consider



332 B. Rodgers CMH

the collection of points
S
�2ZfN.�1 C �/; : : : ; N.�N C �/g. The reader may check

that here too we have,

EU.N/
X

j1;:::;jk
distinct

X
�2Zk

�
�
N.�j1 C �/; : : : ;N.�jk C �/

�
D

Z
Rk
�.x/ det

k�k

�
KN .xi � xj /

�
dkx

�

Z
Rk
�.x/ det

k�k

�
K.xi � xj /

�
dkx: (4.1)

We label the characteristic polynomial of a random unitary matrix g in the
following way:

ƒ.A/ WD det.1 � e�Ag/; (4.2)

where A may be any complex number.
Note that

ƒ.˛=N/

ƒ.ˇ=N/
D

NY
iD1

e�˛=2N sin�.�i C i˛=2�N/
e�ˇ=2N sin�.�i C iˇ=2�N/

D e�.˛�ˇ/=2 lim
V!1

NY
iD1

VY
�D�V

˛
2�
� iN.�i C �/

ˇ
2�
� iN.�i C �/

; (4.3)

where in passing to the last line we have made use of the classical identity

sin�z D �z
1Y
`D1

�
1 �

z2

`2

�
:

Aside from being useful later on, by comparison with (3.1), the identity (4.3)
makes transparent the similarity between ratios of characteristic polynomials and
ratios of the zeta function. For these ratios, we note a formula that, in effect, is due
to Borodin, Olshanksi, and Strahov [2].
Theorem 4.2. For complex numbers A1; : : : ; Am and B1; : : : ; Bm with <B` ¤ 0

for all ` and Ai ¤ Bj for all i; j ,

EU.N/

mY
`D1

ƒ.A`/

ƒ.B`/
D

det
�
E.NAi ;NBj /

eAi�e
Bj

�
det

�
1

eAi�e
Bj

�
Recall that the function E is defined in Conjecture 1.6.
In fact, the authors in [2] do not prove exactly Theorem 4.2, but rather a somewhat

more general statement which may be seen with a little work to imply it. An account
of this short derivation from [2] to Theorem 4.2 will be found in Section 5.4 of the
forthcoming paper [5]. There is also another proof, based on supersymmetry, in the
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paper [23]. This paper uses a rather different notation, but Theorem 4.2 is in fact a
specialization of identity (4.35) there.

As a simple corollary,
Corollary 4.3 (An asymptotic ratio evaluation). For complex numbers ˛1; : : : ; ˛m
and ˇ1; : : : ; ˇm with <ˇ` ¤ 0 for all `, and ˛i ¤ ˇj for all i; j ,

EU.N/

mY
`D1

ƒ.˛`=N/

ƒ.ˇ`=N/
�

det
�
E.˛i ;ˇj /

˛i�ˇj

�
det

�
1

˛i�ˇj

� ;

as N !1.
Furthermore, with a little more work,

Corollary 4.4. For complex numbers ˛; ˇ with <ˇ ¤ 0, and for any m � 0,
uniformly in N

EU.N/
ˇ̌̌ƒ.˛=N/
ƒ.ˇ=N/

ˇ̌̌m
�˛;ˇ;m 1:

Proof. From Hölder’s inequality, if 2k is an even integer larger than m

EU.N/
ˇ̌̌ƒ.˛=N/
ƒ.ˇ=N/

ˇ̌̌m
�

�
EU.N/

ˇ̌̌ƒ.˛=N/
ƒ.ˇ=N/

ˇ̌̌2k�m=2k
:

Let A WD ˛=N and B WD ˇ=N , and note that for a unitary matrix g,ˇ̌̌det.1 � e�Ag/
det.1 � e�Bg/

ˇ̌̌2k
D

det.1 � e�Ag/k det.1 � e�Ag�1/k

det.1 � e�Bg/k det.1 � e�Bg�1/k

D
det.1 � e�Ag/k det.1 � eAg/k

det.1 � e�Bg/k det.1 � eBg/k
:

As long as A ¤ B , the average of this quantity can be computed exactly and seen to
be uniformly bounded using Theorem 4.2. And if A D B the corollary is trivial.

4.2. We also have results that mirror Theorem 1.1 and Lemma 2.11 for the linear
statistics of (pulled-back) eigenvalues. In analogy with our discussion of zeta zeros,
for a matrix g 2 U.N/ with eigenangles f�ig as before, we use the notation

h�; Ei D h�; EN .g/i WD lim
V!1

NX
iD1

VX
�D�V

�
�
N.�i C �/

�
;

h�; Eoi WD lim
V!1

Z V

�V

�.x/ dx;

h�; eEi D h�; eEN .g/i WD h�; Ei � h�; Eoi;
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when these limits exist. Clearly if � decays quadratically the limits exist, for any
unitary matrix g. As before, we sometime substitute E or EN for EN .g/.

For � D Of with f 2 L1.R/ and of bounded variation, the integral defining
h�;Eoi may be seen to converge to .f .0C/ C f .0�//=2 (see [22, Th. 4.3.4] for
instance). Likewise, by the Poisson summation formula (see [24, Th. D.3] for
instance) it may be seen for such � that the sum defining h�;Ei converges also.
Indeed, in this latter case the Poisson summation formula tells us that

h�; EN .g/i D
1

N

X
j2Z

Tr.gj /F.�j=N /; (4.4)

where for typographical reasons we write F.x/ WD .f .xC/ C f .x�//=2: Hence
also,

h�; eEN .g/i D 1

N

X
j¤0

Tr.gj /F.�j=N /: (4.5)

We prove, in analogy with Theorem 1.1,

Theorem 4.5 (A tail bound for eigenvalues). For Q defined as in Theorem 1.1, for
all N � 1 and x � 2,

P
�
hQ; EN i � x

�
� e�Cx logx;

where the constant C and the implicit constant are absolute.

Remark. This result is not optimal; in fact one may show,

P
�
hQ; EN i � x

�
� e�Cx

2

: (4.6)

This follows from a straightforward modification of the argument in [32, Lemmas 15
and 16], who are not concerned with the unitary group directly, but prove a similar
estimate for the determinantal point process with sine-kernel. Nonetheless, their
argument requires some knowledge of the theory of determinantal point processes,
and the weaker estimate in Theorem 4.5 will be sufficient for our purposes.

Likewise, in analogy with Lemma 2.11,

Lemma 4.6 (Bound on 1=� stubs for eigenvalues). For any � � 0 and k � 1=�2, for
all N � 1,

P .jh.W .1=k//O; EN ij � �/� �2:

Indeed, these results are proved in much the same way, except that we will replace
analytic number theorywith a randommatrix result ofDiaconis and Shashahani [12]5.

5Though note in this source there is a minor mistake in the statement of the result. This is corrected
in, for instance, [11].
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Theorem 4.7 (Diaconis–Shahshahani). Consider a D .a1; : : : ; ak/ and b D

.b1; : : : ; bk/ with a1; a2; : : : ; b1; b2; : : : 2 N�0. If
Pk
jD1 jaj C

Pk
jD1 jbj � 2N;

then

EU.N/

kY
jD1

Tr.gj /ajTr.gj /bj dg D ıab
kY
jD1

j aj aj Š (4.7)

AsDiaconis and Shahshahani note, ifC1; C2; : : : are independent standard normal
complex variables (that is Cj

law
D X C iY with X and Y independent and identically

distributed NR.0; 1=2/ variables), then the right hand side of (4.7) may also be
written

E
kY
jD1

.
p
jCj /

aj .
p
jCj /

bj : (4.8)

For convenience, by anology with Tr.g�j / D Tr.gj /, we also define the random
variables C�j WD Cj , so that small moments of the traces Tr.gj / may be identified
with small moments of gaussians. (Though a caution: this identification between
moments of Tr.gj / and

p
jj jCj holds only for small moments as in the theorem!)

We are now in a position to prove an analogue of Lemma 2.3.

Lemma 4.8. For an absolute constant B 02, uniformly for N � 1 and 2` � k, we
have

EjhGk;eEN ij2` � .B 02`/`:
Proof. From (4.5),

hGk;eEN .g/i D 1

N

X
j¤0

Tr.gj / OGk.�j=N /

D
1

N

X
jj j�N=k
j¤0

Tr.gj / OGk.�j=N /;

with the second line following because supp OGk � Œ�1=k; 1=k�, as in (2.7).
We have then

EjhGk;eEN .g/ij2` D E

ˇ̌̌̌
1

N

X
jj j�N=k
j¤0

p
jj jCj OGk.�j=N /

ˇ̌̌̌2`
;

because onemay see that any product
Q

Tr.gj /aj
Q

Tr.gj /bj that would occur in the
expansion of j

P
Tr.gj / OGk.�j=N /j2` must have

P
jaj C

P
jbj � 2` �N=k � N ,
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which is certainly less than 2N . Yet, recalling (2.3), we see that OGk is even, so that

1

N

X
j¤0

p
jj jCj OGk.�j=N / D

1

N

X
j>0

p
j .2<Cj / OGk.j=N /

law
D NR

�
0;

2

N 2

X
j�0

j OGk.j=N /
2
�
;

with the last reduction because the random variables 2<Cj are i.i.d real gaussians
with mean 0 and of variance 2.

Therefore

EjhGk;eEN .g/ij2` D .2` � 1/ŠŠ� 2

N 2

X
j�0

j OGk.j=N /
2
�`
;

with .2` � 1/ŠŠ WD .2` � 1/ � .2` � 3/ � � � 3 � 1: From (2.7), we know j OGk.x/j �
k.1 � jkxj/C, so

2

N 2

X
j�0

j OGk.j=N /
2
�

k2

N 2

X
0<j<N=k

j.1 � jk=N/2C � 1:

Using Stirling’s formula to bound .2`�1/ŠŠ D .2`/Š=2``Š, we obtain the lemma.

Likewise we have an analogue of Lemma 2.4.
Lemma 4.9. For an absolute constant B 03,

hGk;E
o
i D B 03k:

Proof. This is evident from the definition of hGk;Eoi:

We now prove the tail bound for eigenvalues, Theorem 4.5, in the same manner
that we proved Theorem 1.1.

Proof of Theorem 4.5. For even integers k, and all positive y,

P
�
hGk;eEi � y� � 1

yk
EjhGk;eEijK � .B 02k/

k=2

yk
;

yet

P
�
hQ;Ei � x

�
� P

�
hGk;eEi C hGk;Ei � x�

D P
�
hGk;eEi � x � B 03k�:

With no loss of generality, we may assume x � 4B 03 and take k to be the positive even
integer satisfying x=2B 03 � 2 � k � x=2B 03. In particular, we have x � B 03k � x=2
and the theorem follows, as before by combining the two lines above.
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Our proof Lemma 4.6, the bound for 1=� stubs, is likewise parallel to that of
Lemma 2.11.

Proof of Lemma 4.6. From the Poisson summation formula (4.4),

h
�
W .1=k/

�
O;EN i D

1

N

X
j¤0

Tr.gj /W .1=k/.�j=N /:

(Note that .W .1=k/.0C/ C W .1=k/.0�//=2 D 0. This enables us to dispense with
the j D 0 term of the summand.)

As jW .1=k/.x/j � 1 for all x 2 R and W .1=k/.x/ D 0 for jxj � 1=k, we see
from Theorem 4.7 of Diaconis and Shashahani, as long as k � 2,

Ejh
�
W .1=k/

�
O;EN ij

2
D

1

N 2

X
j¤0

jj j �W .1=k/.�j=N /2

�
1

N 2

X
jj j�N=k

jj j

�
1

k2
:

Now, as in the proof of Lemma 2.11, for � > 1=2, trivially,

P
�
jh
�
W .1=k/

�
O;Eij � �

�
� 1� �2:

On the other hand, if � � 1=2, then the conditions of the lemma at hand force that
k � 2, so that

P
�
jh
�
W .1=k/

�
O;Eij � �

�
�
1

�2
E
�
jh
�
W .1=k/

�
O;Eij2

�
�

1

.�k/2
� �2:

4.3. As with the zeta function, we can apply this technique to get tail bounds for
the logarithmic derivative of the characteristic polynomial of a unitary matrix, which
may be of independent interest.
Theorem 4.10. Fix ˛ > 0. For all x � 2 and N � 1,

P
� 1
N

ˇ̌̌ƒ0
ƒ

� ˛
N

�ˇ̌̌
� x

�
� e�Cx logx;

where the constant C and the implied constant depend only on ˛.
The proof of Theorem 4.10 follows closely that of Theorem 1.3, and we do not

require Theorem 4.10 in the remainder of this paper, so we will only indicate the
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main points here. Note first that much as the proof of Theorem 4.5 follows the proof
of Theorem 1.1, by following in turn the proof of Theorem 2.6, one may show that

P
�
hJ;eEN i � x�� e�Cx logx; (4.9)

where J is defined by (2.14).
On the other hand, we will show below that

1

N

ƒ0

ƒ

� ˛
N

�
D hI˛;eEN i: (4.10)

With this identity in place, exactly as in the proof of Theorem 1.3, we note again
that Ia.�/ D J.�/CO.Q.�//, and therefore Theorem 4.10 follows from (4.10) and
Theorem 4.5.

We turn therefore to a demonstration of (4.10). A computation reveals

1

N

ƒ0

ƒ

� ˛
N

�
D

1

N

NX
iD1

1

e˛=N�i2��i � 1
: (4.11)

Using the expansion,

1

ei2�z � 1
D �

1

2
C

1

i2�

1X
`D�1

1

z � `
;

(where the infinite sum is understood as a symmetric limit of partial sums), another
computation reveals that the right hand side of (4.11) is equal to

�
1

2
C

NX
iD1

1X
`D�1

1

˛ � i2�N.�i C `/
: (4.12)

By definition,
NX
iD1

1X
`D�1

1

˛ � i2�N.�i C `/
D hI˛;EN i;

and from computation

hI˛;E
o
i D lim

L!1

Z L

�L

1

˛ � i2��
d� D

1

2
;

so that the expression (4.12) is equal to hI˛;eEN i as claimed. This concludes our
outline.

As with other bounds in this paper, probably the quantityƒ0=ƒ.˛=N/ is in reality
subgaussian, but we do not pursue the matter here.
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5. The average of ratios: a proof of Theorem 1.7

5.1. Webegin our proof of Theorem1.7 by demonstrating the following proposition.
Proposition 5.1. Assume the GUE Conjecture. Then for any continuous and
quadratically decaying function � W R! R,

lim
T!1

E eh�;ZT i D lim
N!1

E eh�;EN i;

with both limits existing.

Proof. We note in the first place that the GUE Conjecture and the implication (4.1)
of the Weyl–Gaudin–Dyson integration formula imply for any non-negative integer `
and continuous and quadratically decaying function �,

lim
T!1

Eh�;ZT i
`
D lim
N!1

Eh�;EN i
`: (5.1)

This is because both h�;ZT i` and h�;EN i` can respectively be written as a linear
combination of correlation sums,

�j .f1; : : : ; fj / WD
X

1;:::;k
distinct

f1

�
logT
2�

.1 � t /

�
� � � fj

�
logT
2�

.j � t /

�
;

and

Dj .f1; : : : ; fj / WD
X
�2Z

X
i1;:::;ij
distinct

f1.N.�i1 C �// � � � fj .N.�ij C �//;

and on the GUE Conjecture �j and Dj have the same average as T;N ! 1. For
instance,

h�;Zi D �1.�/;

h�;Zi2 D �1.�
2/C�2.�; �/;

h�;Zi3 D �1.�
3/C 3�2.�; �

2/C�3.�; �; �/;

and so on, and likewise for h�;Ei.
Now, we note that for x � 0 and arbitrary k � 0,

0 � ex �

kX
`D0

x`

`Š
�

xkC1

.k C 1/Š
ex; (5.2)

as

ex �

kX
`D0

x`

`Š
D

1X
`DkC1

x`

`Š
�

xkC1

.k C 1/Š

1X
jD0

xj

j Š
;
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with the inequality following from the relation 1
.kC1Cj /Š

�
1

.kC1/Š
1
j Š
. Hence,ˇ̌̌̌

E

�
eh�;Zi �

kX
`D0

h�;Zi`

`Š

�ˇ̌̌̌
�

1

.k C 1/Š
E
�
h�;ZikC1eh�;Zi

�
�

1

.k C 1/Š

1X
rD0

.r C 1/kC1er P
�
h�;Zi 2 Œr; r C 1/

�
(5.3)

Now, for r � 0, by the tail bound in Theorem 1.1,

P
�
h�;Zi 2 Œr; r C 1/

�
� e�Cr log.rC2/;

where the constant C and the implicit constant depend on �. More trivially, from the
Taylor expansion of ex ,

.r C 1/kC1 � kŠ .r C 1/erC1:

Applying these estimates to (5.3),ˇ̌̌̌
E

�
eh�;ZT i �

kX
`D0

h�;ZT i
`

`Š

�ˇ̌̌̌
�

1

k C 1

1X
rD0

.r C 1/e2rC1e�Cr log.rC2/

�
1

k C 1
;

uniformly in T .
By the same reasoning (replacing Theorem 1.1 with its random matrix analogue

Theorem 4.5), ˇ̌̌̌
E

�
eh�;EN i �

kX
`D0

h�;EN i
`

`Š

�ˇ̌̌̌
�

1

k C 1
:

uniformly in N .
Hence, applying (5.1) to the above, we see that as T !1,

E eh�;ZT i D lim
N!1

E eh�;EN i CO
� 1

k C 1

�
C o.1/:

As k may be chosen arbitrarily, the proposition follows.

Remark. This theorem is only a slight modification of a standard theorem in
probability theory: that the distribution of a point process is controlled by its
correlation functions, provided the point process has rapidly decaying tails (c.f. [20,
Lemma 4.2.6]). In our context, convergence in distribution translates to the claim
that if F is bounded and continuous, limT!1 F.h�;ZT i/ D limN!1 F.h�;EN i/.
The fact that ex is unbounded entailed additional difficulties over the usual proof.
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5.2. We are finally in a position to use the GUE Conjecture to evaluate the average
of ratios of the zeta function.

Proof of Theorem 1.7. Throughout this proof we take ˇ; ˇ` ¤ 0, and regard m, and
˛; ˇ; ˛1; : : : ; ˛m; ˇ1; : : : ; ˇm to be fixed, with ˛i ¤ ˇj for all i; j . By (3.2),

exp.hL˛;ˇ ;ZT .t/i/ D .1C o.1//e.˛�ˇ/=2
�
�
1
2
C

˛
logT C i t

�
�
�
1
2
C

ˇ
logT C i t

� ;
uniformly for t 2 ŒT; 2T �. From this and the bound of powers of ratios, in
Theorem 1.4, one sees that

1

T

Z 2T

T

mY
`D1

�
�
1
2
C

˛`
logT C i t

�
�
�
1
2
C

ˇ`
logT C i t

� dt D � mY
`D1

e.˛`�ˇ`/=2
�

E exp
�
h

mX
`D1

L˛`;ˇ` ;ZT i
�
Co.1/:

(5.4)
We record the observation, also following from (3.2), that

exp
�
<hL˛;ˇ ;ZT .t/i

�
D .1C o.1//e.˛�ˇ/=2

ˇ̌̌̌
ˇ�
�
1
2
C

˛
logT C i t

�
�
�
1
2
C

ˇ
logT C i t

� ˇ̌̌̌ˇ: (5.5)

This implies, of course, that the left hand side of (5.5) has a uniformly bounded mth
moments for fixed ˛; ˇ; and m, with ˇ ¤ 0, by Theorem 1.4.

We define

L
.1=k/

˛;ˇ
.�/ WD L˛;ˇ .�/ � i.˛ � ˇ/.W

.1=k//O.�/:

Intuitively, L.1=k/
˛;ˇ

should be thought of as an approximation to the function
L˛;ˇ .�/1j�j�k . In particular, from (3.3) and Lemma 2.9, which demonstrate that both
L˛;ˇ and .W .1=k//O may be decomposed into a linear combination of the function J
and a function that decays quadratically, we see that

L
.1=k/

˛;ˇ
.�/�k Q.�/: (5.6)

Because .W .1=k//O is real valued, we have that for ˛; ˇ 2 R; with ˇ ¤ 0,

exp
�
<hL

.1=k/

˛;ˇ
;ZT .t/i

�
D exp

�
<hL˛;ˇ ;ZT .t/i

�
(5.7)

and so the left hand side of (5.7) also has a uniformly bounded mth moments for
fixed ˛; ˇ and m, with ˇ ¤ 0.
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In the proof that follows we let � > 0 be arbitrary but small, and choose k � 1=�2.
Defining

A WD

mX
`D1

.˛` � ˇ`/;

and returning to (5.4), we have

E exp
�
h

mX
`D1

L˛`;ˇ` ;Zi
�
D E exp

�
h

mX
`D1

L
.1=k/

˛`;ˇ`
C iA

�
W .1=k/

�
O;Zi

�
: (5.8)

We split this average into two parts, writing

H�� WD
˚
t 2 ŒT; 2T � W jh

�
W .1=k/

�
O;Zi � �

	
;

H<� WD
˚
t 2 ŒT; 2T � W jh

�
W .1=k/

�
O;Zi < �

	
:

Then (5.8) is equal to

E 1H�� � exp
�
h

mX
`D1

L
.1=k/

˛`;ˇ`
C iA

�
W .1=k/

�
O;Zi

�
—

WDM

C E 1H<� � exp
�
h

mX
`D1

L
.1=k/

˛`;ˇ`
C iA

�
W .1=k/

�
O;Zi

�
—

WD N

:

For sufficiently large T (depending on �), by Cauchy–Schwarz,

jM j �
p

P .H��/

p
E exp

�
2<h

mX
`D1

L
.1=k/

˛`;ˇ`
;Zi

�
� �;

with the last line following from Lemma 2.11 (our bound on 1=� stubs) to bound
P .H��/ and (5.7) to bound the other term.

On the other hand,

N D E 1H<� exp
�
h

mX
`D1

L
.1=k/

˛`;ˇ`
;Zi CO.�/

�
D E 1H<� exp

�
h

mX
`D1

L
.1=k/

˛`;ˇ`
;Zi

�
CO

�
� � E 1H<� exp

�
<h

mX
`D1

L
.1=k/

˛`;ˇ`
;Zi

�
;
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as for small �, we have eO.�/ D 1CO.�/: Using (5.7), we see that

E 1H<� exp
�
<h

mX
`D1

L
.1=k/

˛`;ˇ`
;Zi

�
� 1;

so that

N D
�
E 1H<� exp

�
h

mX
`D1

L
.1=k/

˛`;ˇ`
;Zi

��
CO.�/

D

�
E exp

�
h

mX
`D1

L
.1=k/

˛`;ˇ`
;Zi

�
� E 1H�� exp

�
h

mX
`D1

L
.1=k/

˛`;ˇ`
;Zi

��
CO.�/:

And as before, for sufficiently large T , by Cauchy–Schwarz,6

E 1H�� exp
�
h

mX
`D1

L
.1=k/

˛`;ˇ`
;Zi

�
�
p

P .H��/

p
E exp

�
2<h

mX
`D1

L
.1=k/

˛`;ˇ`
;Zi

�
� �:

Putting everything together, we have that

E exp
�
h

mX
`D1

L˛`;ˇ` ;ZT i
�
D E exp

�
h

mX
`D1

L
.1=k/

˛`;ˇ`
;ZT i

�
CO.�/; (5.9)

uniformly for sufficiently large T .
In exactly the same manner, this argument may be repeated for eigenvalues of the

unitary group, using the results of section 4. We see that

EU.N/

mY
`D1

ƒ.˛`=N/

ƒ.ˇ`=N/
D

� mY
`D1

e.˛`�ˇ`/=2
�

E exp
�
h

mX
`D1

L˛`;ˇ` ;EN i
�
Co.1/; (5.10)

in analogy to (5.4), and

E exp
�
h

mX
`D1

L˛`;ˇ` ;EN i
�
D E exp

�
h

mX
`D1

L
.1=k/

˛`;ˇ`
;EN i

�
CO.�/; (5.11)

uniformly for all N , in analogy with (5.9).

6Note that it is really only in the inequalities that follow that we have exploited the assumption that ˛; ˇ
are real. It is from this assumption that we can easily bound E exp.h

Pm
`D1<L

.1=k/

˛`;ˇ`
;Zi/ uniformly

in k, by using that fact that<iA.W .1=k//O D 0.
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Using (5.4) and (5.9), we see that

1

T

Z 2T

T

mY
`D1

�
�
1
2
C

˛`
logT C i t

�
�
�
1
2
C

ˇ`
logT C i t

� dt
D

� mY
`D1

e.˛`�ˇ`/=2
�

E exp
�
h

mX
`D1

L
.1=k/

˛`;ˇ`
;ZT i

�
CO.�/C o.1/;

as T !1. Likewise, passing from (5.10) to (5.11),

EU.N/

mY
`D1

ƒ.˛`=N/

ƒ.ˇ`=N/
D

� mY
`D1

e.˛`�ˇ`/=2
�

E exp
�
h

mX
`D1

L
.1=k/

˛`;ˇ`
;EN i

�
CO.�/Co.1/;

as N !1.
Proposition 5.1 implies that the main terms on the right hand sides of these

identities are asymptotically equal:

lim
T!1

E exp
�
h

mX
`D1

L
.1=k/

˛`;ˇ`
;ZT i

�
D lim
N!1

E exp
�
h

mX
`D1

L
.1=k/

˛`;ˇ`
;EN i

�
:

Hence,

1

T

Z 2T

T

mY
`D1

�
�
1
2
C

˛`
logT C i t

�
�
�
1
2
C

ˇ`
logT C i t

� dt D lim
N!1

EU.N/

mY
`D1

ƒ.˛`=N/

ƒ.ˇ`=N/
CO.�/C o.1/:

Because � is arbitrary, our theorem now follows from the evaluation in Corollary 4.3.

5.3. We have said that similar methods may be used to show that the GUE
Conjecture implies not only the Local Ratio Conjecture with real translations, but in
fact the Local Ratio Conjecture in general. We conclude by giving a very brief sketch
of how this may be done. We note that in the above argument, the only place we have
used the assumption that ˛1; : : : ; ˛m; ˇ1; : : : ; ˇm are real is in exploiting the fact that
then <iA.W .1=k//O D 0. We do note really need for this term to be 0 though; we
need only for its exponential moments to be uniformly bounded in k. That is, if one
shows that uniformly for large k,

P
�
jh
�
W .1=k/

�
O;Zij � x

�
� e�Cx logx; (5.12)

this is enough to bound the terms

E exp
�
2<h

mX
`D1

L
.1=k/

˛`;ˇ`
;Zi

�
uniformly in k, and the proof proceeds as before. (5.12) in turn may be proven in
much the same way as Theorem 1.1, Theorem 2.6 and Corollary 2.7.
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We note the converse implication, that the Local Ratios Conjecture implies the
GUE Conjecture, may be derived from the combinatorial work of Conrey and Snaith
[10, Th. 8], along with a uniform bound like Theorem 1.3. Indeed, using a Tauberian
argument, it should be possible to show that just the Local Ratio Conjecture with real
translations also implies the GUE Conjecture, but we do not treat the matter here.

References

[1] G. E. Andrews, R. Askey, R. and Roy, Special Functions, Encyclopedia of Mathematics
and its Applications, 71, Cambridge University Press, 1999. Zbl 0920.33001MR 1688958

[2] A. Borodin, G. Olshanki, and E. Strahov, Giambelli compatible point processes, Advances
in Applied Mathematics, 37 (2006), no. 2, 209–248. Zbl 1108.05093 MR 2251437

[3] D. Bump,Lie groups, Graduate Texts inMathematics, 225, Springer, 2004. Zbl 1053.22001
MR 2062813

[4] D. Bump and A. Gamburd, On the averages of characteristic polynomials from
classical groups, Communications in mathematical physics, 265 (2006), no. 1, 227–274.
Zbl 1107.60004 MR 2217304

[5] R. Chhaibi, J. Najnudel, andA.Nikeghbali, The circular unitary ensemble and theRiemann
zeta function: the microscopic landscape and a new approach to ratios, Invent. Math., 207
(2017), no. 1, 23–113. Zbl 06677816 MR 3592756

[6] J. B. Conrey, D. W. Farmer, and M. R. Zirnbauer, Autocorrelation of ratios of L-
functions, Comm. Number Theory and Physics, 2 (2008), no. 3, 593–636. Zbl 1178.11056
MR 2482944

[7] J. B. Conrey, D. W. Farmer, and M. R. Zirnbauer, Howe pairs, supersymmetry, and ratios
of random characteristic polynomials for the unitary groups U(N), preprint.

[8] J. B. Conrey, P. J. Forrester, and N. C. Snaith, Averages of ratios of characteristic
polynomials for the compact classical groups, Int. Math. Res. Not. IMRN, (2005), 397–431.
Zbl 1156.11334 MR 2130839

[9] J. B. Conrey and N. C. Snaith, Applications of the L-functions ratios conjectures,
Proceedings of the London Mathematical Society, 94 (2007), no. 3, 594–646.
Zbl 1183.11050 MR 2325314

[10] J. B. Conrey and N. C. Snaith, Correlations of eigenvalues and Riemann zeros, Comm.
Number Theory and Physics, 2 (2008), no. 3, 477–536. Zbl 1169.11035 MR 2482941

[11] P. Diaconis and S. Evans, Linear functionals of eigenvalues of random matrices, Trans.
Amer. Math. Soc., 353 (2001), 2615–2633. Zbl 1008.15013 MR 1828463

[12] P. Diaconis and M. Shahshahani, On the eigenvalues of random matrices, Journal of
Applied Probability, 31A (1994), 49–62. Zbl 0807.15015 MR 1274717

[13] D. W. Farmer, Long mollifiers of the Riemann zeta-function, Mathematika, 40 (1993),
no. 1, 71–87. Zbl 0783.11031 MR 1239132

[14] D. W. Farmer, Mean values of �0=� and the GUE hypothesis, Int. Math. Res. Not., (1995),
71–82. Zbl 0829.11043 MR 1317644

https://zbmath.org/?q=an:0920.33001
http://www.ams.org/mathscinet-getitem?mr=1688958
https://zbmath.org/?q=an:1108.05093
http://www.ams.org/mathscinet-getitem?mr=2251437
https://zbmath.org/?q=an:1053.22001
http://www.ams.org/mathscinet-getitem?mr=2062813
https://zbmath.org/?q=an:1107.60004
http://www.ams.org/mathscinet-getitem?mr=2217304
https://zbmath.org/?q=an:06677816
http://www.ams.org/mathscinet-getitem?mr=3592756
https://zbmath.org/?q=an:1178.11056
http://www.ams.org/mathscinet-getitem?mr=2482944
https://zbmath.org/?q=an:1156.11334
http://www.ams.org/mathscinet-getitem?mr=2130839
https://zbmath.org/?q=an:1183.11050
http://www.ams.org/mathscinet-getitem?mr=2325314
https://zbmath.org/?q=an:1169.11035
http://www.ams.org/mathscinet-getitem?mr=2482941
https://zbmath.org/?q=an:1008.15013
http://www.ams.org/mathscinet-getitem?mr=1828463
https://zbmath.org/?q=an:0807.15015
http://www.ams.org/mathscinet-getitem?mr=1274717
https://zbmath.org/?q=an:0783.11031
http://www.ams.org/mathscinet-getitem?mr=1239132
https://zbmath.org/?q=an:0829.11043
http://www.ams.org/mathscinet-getitem?mr=1317644


346 B. Rodgers CMH

[15] D. W. Farmer, S. M. Gonek, Y. Lee, and S. J. Lester, Mean values of �0=�.s/, correlations
of zeros and the distribution of almost primes, Quart. J. of Math., 64 (2013), 1057–1089.
Zbl 1297.11099 MR 3151604

[16] A. Fujii, Explicit formulas and oscillations, in Emerging Applications of Number Theory,
D. Hejhal, J. Friedman, M. Gutzwiller, A. Odlyzko (eds.), 219–267, Springer, 1999.
Zbl 0972.11074 MR 1691526

[17] D. A. Goldston, S. M. Gonek, and H. L. Montgomery, Mean values of the logarithmic
derivative of the Riemann zeta-function with applications to primes in short intervals, J.
Reine Angew. Math, (2001), 105–126. Zbl 0984.11044 MR 1856259

[18] A. P. Guinand, A summation formula in the theory of prime numbers, Proc. London Math.
Soc, 2 (1948), no. 50, 107–119. Zbl 0031.11003 MR 26086

[19] A. J. Harper, Sharp conditional bounds formoments of theRiemann zeta function, preprint.
[20] J. B. Hough, M. Krishnapur, Y. Peres, and B. Virág, Zeros of Gaussian analytic functions

and determinantal point processes, University Lecture Series, 51, AmericanMathematical
Society, 2009. Zbl 1190.60038 MR 2552864

[21] H. Iwaniec and E. Kowalski, Analytic number theory American Mathematical Society
Colloquium Publications, 53, American Mathematical Society, 2004. Zbl 1059.11001
MR 2061214

[22] T. Kawata,Fourier Analysis in Probability Theory, Academic Press, 1972. Zbl 0271.60022
MR 0464353

[23] M. Kieburg and T. Guhr, Derivation of determinantal structures for random matrix
ensembles in a new way, J. Phys. A: Math. Theor., 43 (2010), no. 7, 075201, 31pp.
Zbl 1189.82055 MR 2586140

[24] H. L. Montgomery and R. C. Vaughan, Multiplicative number theory I: Classical theory
Cambridge University Press, 2007. Zbl 1142.11001 MR 2378655

[25] M. Radziwiłł, The 4.36th Moment of the Riemann Zeta-Function, Int. Math. Res. Not.
IMRN, (2012), 4245–4259. Zbl 1290.11120 MR 2975381

[26] B. Riemann, Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse, Ges. Math.
Werke und Wissenschaftlicher Nachlass, 2 (1859), 145–155.

[27] B. Rodgers, Arithmetic consequences of the GUE Conjecture for zeta zeros, preprint.
[28] A. Selberg, On the remainder in the formula for N.T /, the number of zeroes of �.s/ in

the strip 0 < t < T , Avh. Norske Vid. Akad. Oslo. I., 1 (1944), 27pp. Zbl 0061.08401
MR 15426

[29] A. Selberg, Contributions to the theory of the Riemann zeta-function,Arch.Mat. Naturvid.,
48 (1946), no. 5, 89–155. Zbl 0061.08402 MR 0020594

[30] K. Soundararajan, Moments of the Riemann zeta function, Annals of Math., 170 (2009),
981–993. Zbl 1251.11058 MR 2552116

[31] K. Soundararajan, Partial sums of theMöbius function, J. Reine Angew.Math., 631 (2009),
141–152. Zbl 1184.11040 MR 2542220

[32] T. Tao and V. Vu, The Wigner-Dyson-Mehta bulk universality conjecture for Wigner
matrices, Elect. J. Prob., 16 (2011), 2104–2121. Zbl 1245.15041 MR 2851058

[33] E. C. Titchmarsh and D. R. Heath-Brown, The theory of the Riemann zeta-function, Oxford
University Press, 1986. Zbl 0601.10026 MR 882550

https://zbmath.org/?q=an:1297.11099
http://www.ams.org/mathscinet-getitem?mr=3151604
https://zbmath.org/?q=an:0972.11074
http://www.ams.org/mathscinet-getitem?mr=1691526
https://zbmath.org/?q=an:0984.11044
http://www.ams.org/mathscinet-getitem?mr=1856259
https://zbmath.org/?q=an:0031.11003
http://www.ams.org/mathscinet-getitem?mr=26086
https://zbmath.org/?q=an:1190.60038
http://www.ams.org/mathscinet-getitem?mr=2552864
https://zbmath.org/?q=an:1059.11001
http://www.ams.org/mathscinet-getitem?mr=2061214
https://zbmath.org/?q=an:0271.60022
http://www.ams.org/mathscinet-getitem?mr=0464353
https://zbmath.org/?q=an:1189.82055
http://www.ams.org/mathscinet-getitem?mr=2586140
https://zbmath.org/?q=an:1142.11001
http://www.ams.org/mathscinet-getitem?mr=2378655
https://zbmath.org/?q=an:1290.11120
http://www.ams.org/mathscinet-getitem?mr=2975381
https://zbmath.org/?q=an:0061.08401
http://www.ams.org/mathscinet-getitem?mr=15426
https://zbmath.org/?q=an:0061.08402
http://www.ams.org/mathscinet-getitem?mr=0020594
https://zbmath.org/?q=an:1251.11058
http://www.ams.org/mathscinet-getitem?mr=2552116
https://zbmath.org/?q=an:1184.11040
http://www.ams.org/mathscinet-getitem?mr=2542220
https://zbmath.org/?q=an:1245.15041
http://www.ams.org/mathscinet-getitem?mr=2851058
https://zbmath.org/?q=an:0601.10026
http://www.ams.org/mathscinet-getitem?mr=882550


Vol. 92 (2017) Tail bounds for counts of zeros 347

[34] A. Weil, Sur les “formules explicites” de la theorie des nombres premiers, Comm. Sem.
Math. Univ. Lund, (1952), 252–265. Zbl 0049.03205 MR 0053152

Received June 15, 2015

B. Rodgers, Institut für Mathematik, Universität Zürich,
Winterthurerstr. 190, CH-8057 Zürich, Switzerland
E-mail: rbrad@umich.edu

https://zbmath.org/?q=an:0049.03205
http://www.ams.org/mathscinet-getitem?mr=0053152
mailto:rbrad@umich.edu

	Introduction
	
	
	
	

	Bounding counts of zeros: a proof of Theorem 1.1 and related bounds
	
	
	
	
	

	Ratio bounds
	A random matrix interlude
	
	
	

	The average of ratios: a proof of Theorem 1.7
	
	
	


