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Abstract. We generalize an equidistribution theorem à la Bader–Muchnik for operator-valued
measures constructed from a family of boundary representations associatedwithGibbsmeasures
in the context of convex cocompact discrete group of isometries of a simply connected connected
Riemannian manifold with pinched negative curvature. We combine a functional analytic tool,
namely the propertyRDof hyperbolic groups, togetherwith a dynamical tool: an equidistribution
theorem of Paulin, Pollicott and Schapira inspired by a result of Roblin. In particular, we deduce
irreducibility of these new classes of boundary representations.
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1. Introduction

Viewing the group SL.2;R/ as a group acting by isometries of the hyperbolic
plane we have an induced action on the geometric boundary of the hyperbolic plane
which is identified with the circle. The Lebesgue measure is quasi-invariant under
this boundary action (i.e. the sets of Lebesgue measure zero are preserved under
the action) and so there is a naturally associated unitary representation of SL.2;R/
onL2.S1/ called the quasi-regular representation. The quasi-regular representation is
irreducible and is part of a family of irreducible unitary representations of SL.2;R/
on L2.S1/ called the principal series which forms one of the families composing
the unitary dual. For a general locally compact group G, especially when G is
a discrete countable group, there is no hope of computing its unitary dual so we
will restrict ourselves to the problem of determining when the associated quasi-
regular representation of aG quasi-invariant action is irreducible. From a dynamical
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viewpoint the associated quasi-regular representation is interesting because it reflects
the ergodic theoretic properties of the action such as ergodicity and mixing.

Early on, Furstenberg [24] showed that when G is a semisimple Lie group the
space G=P equipped with Haar measure where P is a minimal parabolic subgroup,
nowadays called the Poisson-Furstenberg boundary, can be realized as the Poisson
boundary of a random walk on a lattice in G. Motivated by these results we
further restrict the problem which we state as the following conjecture of Bader
and Muchnik [10]:

Conjecture 1.1. For a locally compact group G and a spread-out probability
measure � on G, the quasi-regular representation associated to a �-boundary of G
is irreducible.

For the rest of the paper we will restrict ourselves to the case whenG is a discrete
countable group. Analogously to the case of SL.2;R/ the action of the free group Fn
on its boundary is quasi-invariant with respect to the Patterson–Sullivan measure
class and thus there is the associated quasi-regular representation. Figà-Talamanca
and Picardello (see [25] and [27]) construct the analog of the principal series which
are unitary representations of Fn on L2.@Fn/ and show they are all irreducible.
For homogeneous trees Figà-Talamanca and Steger [26] show similar irreducibility
results for lattices in the automorphism group. Kuhn and Steger [36] have also
constructed different examples of irreducible representations of the free group. The
conjecture has also been solved for some actions of simple algebraic groups by Bekka
and Cowling in [11]. When G is a lattice in a Lie group Cowling and Steger [21]
showed that the irreducible representations of the ambient semisimple Lie group
restricted to G remain irreducible. In particular the quasi-regular representation
of SL.2;R/ on L2.S1/ restricted to lattices is irreducible. Later on in the context
of CAT(-1) spaces for which a discrete group of isometries G acts cocompactly,
Connell and Muchnik (see [18] and [19]) proved when the geometric boundary is
equipped with a certain class of Gibbs measures that it can be realized as the Poisson
boundary of a random walk in G. This result led Bader and Muchnik [10] to prove
the conjecture for the action of the fundamental group of a compact negatively curved
manifold on the geometric boundary of the universal cover of the manifold, endowed
with the Patterson–Sullivan measure class. Recently the first named author has also
generalized the main theorem of Bader andMuchnik in [10] to the context of CAT(-1)
spaces and so irreducibility of boundary representations associated with Patterson–
Sullivan measures. Moreover Garncarek [29] has generalized the irreducibility result
of [10] for the action of a Gromov-Hyperbolic group on its geometric boundary
endowed with the Patterson–Sullivan measure class. He has also deduced thanks to
the work of [13] that if a symmetric randomwalk on a Gromov-Hyperbolic group has
finite exponential moment with respect to a word metric and such that the associated
Green metric satisfies the Ancona inequality then the action on the Poisson boundary
with respect to the harmonic measure is irreducible thanks to the work of [13]. It is
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not clear at all to us if any of the measures constructed in [19] have finite exponential
moment and satisfies the Ancona inequality and therefore it is not clear at all that
our result of irreducibility would follow from an application of these two results.
Hence it legitimates our dynamical approach to prove irreducibility of quasi-regular
representations associated with the class of measure arising as conditional measures
of theGibbs measures, calledGibbs streams in [19] or also called Patterson densities
in [43]; generalizing the Patterson–Sullivan measures class.

Bader and Muchnik prove in [10, Theorem 3] an equidistribution theorem for
some operator-valued measures associated with Patterson–Sullivan measures. This
theorem can be thought of as a generalization of von Neumann’s ergodic theorem
for quasi-invariant measures for fundamental groups acting on the geometric
boundary of universal covers of compact negatively curved manifolds endowed
with the Patterson–Sullivan measures. These quasi-regular representations are
called boundary representations. It turns out that the irreducibility of boundary
representations follows from this generalization of von Neumann’s ergodic theorem.

We generalize the results of Bader and Muchnik to the action of a convex
cocompact discrete subgroup of isometries of a pinched negatively curved manifold
on its boundary endowed with the Gibbs streams measure class rather called in this
paper Patterson densities measure class. The Patterson densities are constructed by
first assigning a weight to each element of the orbit and then proceeding as in the
construction of the Patterson–Sullivan measures which we think of as the unweighted
case.

Historically it was Sinai who first merged the field of equilibrium statistical
mechanics fromwhich the concept of Patterson density is imported fromwith the field
of hyperbolic smooth dynamical systems. Given a Hölder-continuous potential F on
the unit tangent bundle of a compact negatively curved manifold, the pressure of F
associated with the geodesic flow is given by

P.F / D sup
m

�
hm �

Z
Fdm

�
;

where the supremum is taken over all measures on the unit tangent bundle which
are invariant under the fundamental group of the manifold and the geodesic flow
and hm is the metric entropy of m associated with the geodesic flow. Bowen [7]
proved for negatively curved manifolds that there exists a unique measure called
the Gibbs measure which achieves the supremum and is in fact the eigenmeasure
associated to the transfer operator of F . As we said, the Patterson densities arise as
conditional measures of the Gibbs measure and when F D 0 the Patterson densities
are the Patterson–Sullivan measures and the Gibbs measure is the Bowen–Margulis–
Sullivan measure that maximizes the entropy.

The main tools of this paper are the property RD (Rapid Decay) that hyperbolic
groups satisfy (see [32] and [33]) combined with a spectral characterization
of the amenability of the action on the boundary (see [35] and [5]) together
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with an equidistribution theorem of Paulin–Pollicott–Schapira inspired by Roblin’s
equidistribution theorem which is itself based on the mixing property of the geodesic
flow. Indeed this idea of using the mixing property of the geodesic flow goes back
to Margulis [38] who used it in order to count the closed geodesics on compact
negatively curved manifolds. However, the first object to understand is the Harish-
Chandra function associated with Patterson densities. This function plays a major
role in harmonic analysis of spherical functions and in the theory of irreducible
representations of semismple Lie groups, see for example [28].

Notation. LetM be a complete connected Riemannian manifold with pinched neg-
ative curvature. Let X D fM , let q W X ! M be a universal Riemannian covering
mapwith a covering group� viewed as a non-elementary discrete group of isometries
of X , denote the sphere at infinity by @X and endow X D X [ @X with the cone
topology.

The limit set of � denoted by ƒ� is the set of all accumulation points in @X of
an orbit. Namely ƒ� WD �x \ @X , with the closure in X . Notice that the limit set
does not depend on the choice of x 2 X . We denote by �� the subset of T 1X of
tangent vectors to the geodesic lines inX whose endpoints both lie inƒ� . Following
the notation in [18], define the geodesic hull GH.ƒ�/ as the union of all geodesics
in X with both endpoints inƒ� . The convex hull ofƒ� denoted by CH.ƒ�/, is the
smallest convex subset ofX containingGH.ƒ�/. In CAT(-1) spaces we always have
CH.ƒ�/ D GH.ƒ�/. We say that � is convex cocompact if it acts cocompactly
on CH.ƒ�/.

Let p W T 1X ! X be the base point projection map from the unit tangent bundle
to X . Let g D .gt /t2R be the geodesic flow on T 1M and eg D .egt /t2R the one
on T 1X and equip the unit tangent bundle with the following metric

dT 1X .v;w/ D
1
p
�

Z
R
d
�
p.gt .v//; p.gt .w//

�
e�t2=2dt;

where we use the notation v for an element in T 1X (and v for an element of @X ).
Let F W T 1M ! R be a Hölder-continuous map, called a potential, and leteF D F ı q be the �-invariant potential associated on T 1X . In this work, as it has

been suggested by Kaimanovich, we assume that eF is symmetric, that is eF is invariant
by the antipodal map

� W v 2 T 1X 7! �v 2 T 1X: (1.1)

For all x; y 2 X , let us defineZ y

x

eF WD Z d.x;y/

0

eF .egt�v/�dt
where v D .x; Evx;y/ 2 T

1X and Evx;y is the unit tangent vector at x to a geodesic
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from x through y. Set:

dF .x; y/ WD

Z y

x

eF : (1.2)

A priori dF is not non-negative and is far to be a distance, nevertheless the symmetry
of eF implies

dF .x; y/ D dF .y; x/: (1.3)

Define the Gibbs cocycle as

CFv .x; y/ WD lim
t!C1

Z vt

y

eF � Z vt

x

eF D lim
t!C1

dF .y; vt / � d
F .x; vt /; (1.4)

where vt is any geodesic ray ending at a point v in @X . Observe that if eF D �1 the
Gibbs cocycle is nothing else than the Busemann cocycle, that is the horospherical
distance from x to y relative to v.

The foundations of Patterson–Sullivanmeasures theory are in the important papers
[42,50]. See [14,16], and [44] for more general results in the context of CAT(-1)
spaces. These measures are also called conformal densities. In this paper we are
dealing with the Patterson density of .�; F /where F is the potential function defined
above and � a discrete group of isometries of X .

Recall that 
�� means 
��.B/ D �.
�1B/ where 
 is in � and B is a Borel
subset of some measure space. More specifically we say that �F is a Patterson
density of dimension � 2 R for .�; F / if �F is a map which satisfies the following
conditions:
� �F is a map from x 2 X 7! �Fx 2M.X/, i.e. �Fx is a positive finite measure.
� For all x and y in X , �Fx and �Fy are equivalent, and we have

d�Fy

d�Fx
.v/ D eC

F��
v .x; y/:

� For all 
 2 � , and for all x 2 X we have 
��Fx D �F
x .
In this context define the critical exponent of .�; F / for c > 0 large enough as

��;F WD lim sup
1

n

X
n�c�d.
x;x/�n

ed
F .x; 
x/:

Even if the construction of a Patterson density was not done in this general
context with a potential function, the technic is exactly the same. We attribute the
following proposition to Patterson in his seminal paper [42], ensuring the existence
of a Patterson density:
Proposition 1.2 (S.-J. Patterson). If ��;F < 1, then there exists at least one
Patterson density of dimension ��;F with support exactly equal to ƒ� .
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A Patterson density �F of dimension � gives rise to a unitary representations
.��Fx /x2X defined for x 2 X as:

��Fx W � ! U
�
L2.@X; �Fx /

�
�
��Fx .
/�

�
.v/ D e

1
2
CF��v .x; 
x/

�.
�1v/; (1.5)

where � 2 L2.@X; �Fx / and v 2 @X .
The representations .��Fx /x2X are unitarily equivalent. Let x be in X and

denote ��Fx by �x . The matrix coefficient

�x W � ! h�x.
/1@X ; 1@X i 2 RC; (1.6)

is called the Harish-Chandra function, where 1@X denotes the characteristic function
of @X .

Construction of ergodic operator-valuedmeasures. TheBanach space of bounded
linear operators from the Banach space of continuous functions on a locally compact
space Z to the Banach space of bounded operators on a Hilbert space H will
be denoted by L

�
C.Z/;B.H /

�
. The Banach space L

�
C.Z/;B.H /

�
is naturally

isomorphic to the dual of the Banach space C.Z/b̋H b̋H where b̋ denotes the
projective tensor product: ThusL

�
C.Z/;B.H /

�
will be called the space of operator-

valued measures.
Pick x in X , and a positive real number � and define for all integers n � 1 the

annulus
Cn.x/ D

˚

 2 � j n � 1 � d.
x; x/ < n

	
:

Let Dy be the unit Dirac mass centered at a point y 2 X . Consider the sequence of
operator-valued measures defined for all integers n � 1 as:

Mn
x W f 2 C.X/ 7! c�;F e���;F n

X

2Cn.x/

edF .x;
x/D
x.f /
�x.
/

�x.
/
2 B

�
L2.@X; �Fx /

�
;

(1.7)
with the normalization constant

c�;F D
��;F kmF k

1 � e���;F
; (1.8)

where kmF k is the mass of the so-calledGibbsmeasure associated with �F . We refer
to Section 2.3 for definitions and properties of Gibbs measures. The normalization
constant c�;F ensures that for any x in X

c�;F e���;F n
X


2Cn.x/

edF .x;
x/D
x ˝D
�1y * �Fx ˝ �
F
y ;

as n goes toC1 with respect to the weak� convergence on C.X/�.
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If f 2 C.X/, we denote by fj@X its continuous restriction to the space @X .
Let m.f / be the operator in B

�
L2.@X; �Fx /

�
acting on L2.@X; �Fx / by

multiplication and define the operator-valued measure Mx as:

Mx W f 2 C.X/ 7! m.fj@X /P1@X 2 B
�
L2.@X; �Fx /

�
: (1.9)

where P1@X denotes the orthogonal projection on the space of constant functions.

Main results. The main result of this paper is the following theorem:
Theorem 1.3 (Equidistribution à la Bader–Muchnik). Let � be a convex cocompact
discrete group of isometries of a complete connected Riemannian manifold with
pinched negative curvature X . Let eF W T 1X ! R be a Hölder-continuous
�-invariant potential and let �F be a Patterson density for .�; F / of dimension ��;F .

Assume that eF is symmetric and assume that the Gibbs measure associated
with �F is mixing with respect to the geodesic flow. Then for each x in CH.ƒ�/ we
have

Mn
x * Mx

as n!C1 with respect to the weak* topology of the Banach space

L
�
C.X/;B

�
L2.@X; �Fx /

��
:

In other words we have for all f 2 C.X/ and all � , � 2 L2.@X; �Fx /:

lim
n!C1

hMn
x.f /�; �i D

�Z
@X

�d�Fx

��Z
@X

fj@X�d�
F
x

�
:

With the same hypotheses of the above theorem, we deduce immediately an
ergodic theorem à la vonNeumann for the Patterson density .�; F / associatedwith �Fx
on @X .
Corollary 1.4 (Ergodicity à la von Neumann). For all x 2 CH.ƒ�/

c�;F e���;F n
X


2Cn.x/

edF .x;
x/
�x.
/

�x.
/
! P1@X

as n!C1 with respect to the weak operator topology on B.L2.@X; �Fx //.
In the same setting of Theorem 1.3 we have:

Corollary 1.5 (Irreducibility). Assume that eF is cohomologous to a symmetric
potential and assume that the Gibbs measure is mixing. For all x 2 X , the
representations �x W � ! U.L2.@X; �Fx // are irreducible.
Remark 1.6. The assumption of mixing of Gibbs measures with respect to the
geodesic flow is automatic in the case of constant curvature, hence all boundary
representations of convex cocompact groups associated with a Patterson density
with a Hölder-continuous potential eF cohomologous to a symmetric potential is
irreducible. Note that this property does not depend on the base point.
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We obtain also the following theorem which classifies the unitary representations
associated with a Patterson density. We refer to Subsection 2.2 for the definitions
concerning items (3) and (4).
Theorem 1.7. Let � be a convex cocompact discrete group of isometries of X , pick
a point x in X and let �Fx and �Gx be Patterson densities associated with Hölder-
continuous �-invariant symmetric potentials eF and eG on T 1X . Assume that the
Gibbs measure is mixing with respect to the geodesic flow. Then the following
assertions are equivalent:

(1) The unitary ��Fx and ��Gx are equivalent as unitary representations.

(2) The measures �Fx and �Gx are in the same class.

(3) The potentials eF and eG have the same periods.

(4) The Gibbs cocycles associated with F and G are cohomologous in restriction
to �� .

The method of the proof of Theorem 1.3 consists of two steps: given a sequence
of functionals of the dual of a separable Banach space, we shall prove:
Step 1: The sequence is uniformly bounded: existence of accumulation points (by

the Banach–Alaoglu theorem).

Step 2: Identification of the limit using equidistribution theorems (only one
accumulation point).

Structure of the paper. In Section 2 we remind the reader of some standard facts
about the geometry in negative curvature, Gibbs cocycles and about Gibbs measures
generalizing the Bowen–Margulis–Sullivan measures on the unit tangent bundle to
provide the generalization of Roblin’s equidistribution theorem by Paulin, Pollicott
and Schapira. In Section 3 we prove fundamental estimates on the Harish-Chandra
function. In Section 4 we prove uniform boundedness for the sequences of operators
using property RD of de la Harpe et Jolissaint and the amenability of the action on the
boundary, thus concluding Step 1 of the proof of Theorem 1.3. In Section 5 we use
Paulin–Pollicott–Schapira’s equidistribution theorem to achieve Step 2 of the proof
of Theorem 1.3. In Section 6 we prove our Theorem 1.3 and its corollaries as well as
Theorem 1.7.
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2. Preliminaries

2.1. Geometry of negative curvature and potential functions. Recall that X is
a complete simply connected Riemannian manifold with dimension at least 2 and
pinched sectional curvature �b2 � K � �1 with b � 1, equipped with its
Riemannian distance denoted by d . The geometric boundary or the boundary at
infinity, also called Gromov boundary is denoted by @X . We consider � a non-
elementary discrete group of isometries of X .

2.1.1. Busemann functions, Bourdon’s metric. Let x be in X , let r be a geodesic
ray and define the Busemann function associated with the geodesic ray r as

br.x/ D lim
t!1

d.x; r.t// � t:

Let x and y be in X and consider the unique semi-infinite geodesic Œxy/ passing
through x and y, starting at x. Define wyx as the unique point at the boundary so that

wyx WD Œxy/ \ @X: (2.1)

The limit limt!1 d.x; r.t// � d.y; r.t// exists, is equal to br.x/ � br.y/, and is
independent of the choice of r . The horospherical distance from x to y relative to v
is defined as

ˇv.x; y/ D lim
t!1

d.x; r.t// � d.y; r.t//: (2.2)

Recall that the Gromov product of two points a; b 2 X relative to x 2 X is

.a; b/x D
1

2
.d.x; a/C d.x; b/ � d.a; b//:

Let v;w be in @X such that v ¤ w. If an ! v 2 @X , bn ! w 2 @X , then

.v; w/x D lim
n!1

.an; bn/x

exists and does not depend on the sequences an and bn. If r is a geodesic ray
representing v we have:

.v; y/x D lim
t!C1

1

2
.d.x; r.t//C d.x; y/ � d.r.t/; y//;

then we obtain:
ˇv.x; y/ D 2.v; y/x � d.x; y/: (2.3)

Thus, if z 2 X is a point on the geodesic connecting v and w, then

.v; w/x D
1

2
.ˇv.x; z/C ˇw.x; z//:
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The geometric boundary is endowed with the Bourdon metric which defines
the same topology on the boundary as the cone topology (see [17, Chapitre III.H,
Proposition 3.7 and Proposition 3.21]. Indeed the formula

dx.v; w/ D e�.v;w/x (2.4)

defines a metric on @X when we set dx.v; v/ D 0. This is due to Bourdon and we
refer to [14, Théorème 2.5.1] for more details. We have the following comparison
formula:

dy.v; w/ D e
1
2
.ˇv.x; y/C ˇw.x; y//dx.v; w/: (2.5)

If x and y are points of X and R is a positive real number, we define the shadow
OR.x; y/ to be the set of v in @X such that the geodesic ray issued from x with limit
point v hits the closed ball of center y with radius R > 0.

The Sullivan shadow lemma is a very useful tool in ergodic theory of discrete
groups, and it has been generalized to the context of Gibbs measure by Moshen
in [39], see also [43, Proposition 11.1].
Lemma 2.1. Let � be a discrete group of isometries of X and �F be a Patterson
density of dimension � for .�; F /. For all � � ��;F and for any compact subset
K � X there exists a positive contant C > 0 such that for all x and y in �K � X :

1

C
ed
F .x; y/ � �d.x; y/

� �Fx .OR.x; y// � C ed
F .x; y/ � �d.x; y/:

Assuming that � is convex cocompact we will use the above lemma with K �
CH.ƒ�/ being the closure of a fundamental domain of the action of � acting
on CH.ƒ�/. If � is cocompact, then the limit set is the entire geometric boundary
and the shadow lemma holds everywhere on X .

We say that X is a ı-hyperbolic space if we have the following inequality: for all
x; y; z; t 2 X

.x; z/t � minf.x; y/t ; .y; z/tg � ı; (2.6)

see [17, 3.17 Remarks (4), p. 433]. Using the Bourdon metric on the boundary
we can compare a shadow to certain balls. More precisely we have the following
proposition. This lemma, rather easy and well known, will be very useful since the
boundary admits the structure of a metric space.
Lemma 2.2.
(1) Let R � 4ı. Then

B.wyx ; e
�d.x;y// � OR.x; y/:

(2) Let any R > 0, and set C D e2ıCR. Then

OR.x; y/ � B
�
wyx ; C e�d.x;y/

�
:
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Proof. We first prove the first inclusion. Let v such that .v; wyx /x > d.x; y/. We
let z be on Œxv/ such that d.x; z/ D d.x; y/. We have

d.y; z/ D d.x; y/C d.x; z/ � 2.y; z/x :

We have

.y; z/x � minf.y; wyx /x; .z; w
y
x /xg � ı

D minfd.x; y/; .z; wyx /xg � ı
� minfd.x; y/; .z; v/x; .v; wyx /xg � 2ı
� minfd.x; y/; d.x; z/; d.x; y/g � 2ı
D d.x; y/ � 2ı;

it follows that d.y; z/ � 4ı.
We now prove the second inclusion. Let v 2 OR.x; y/ such that Œxv/ \

BX .y;R/ ¤ ¿ and let z 2 Œxv/ so that d.y; z/ < R. We have

.v; wyx / � minf.v; y/x; .y; wyx /xg � ı
D minf.v; y/; d.x; y/g � ı
� minf.v; z/x; .z; y/x; d.x; y/g � 2ı
D minfd.x; z/; .z; y/x; d.x; y/g � 2ı
� minfd.x; y/ �R; d.x; y/ �R; d.x; y/g � 2ı
D d.x; y/ �R � 2ı:

2.1.2. Gibbs Cocycle and some geometric properties. Given eF W T 1X ! R a
�-invariant Hölder-continuous potential we define, as in 1.4 from the Introduction,
the Gibbs cocycle CFv .x; y/ where v 2 @X and x; y 2 X . We shall give some
properties of the Gibbs cocycle but first of all note that if eF D �1 then

CFv .x; y/ D ˇv.x; v/:

Hence, for every s 2 R we have:

CF�sv .x; y/ D CFv .x; y/C sˇv.x; y/: (2.7)

Observe that if x belongs to the geodesic ray from y to v then

CFv .x; y/ D

Z y

x

eF :
The Gibbs cocycle satisfies the following cocycle property: for all x; y; z 2 X and
v 2 @X we have

CFv .x; z/ D C
F
v .x; y/C C

F
v .y; z/ and CFv .y; x/ D �C

F
v .x; y/; (2.8)
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and the following �-invariance property: for all 
 2 � , all x; y 2 X and v 2 @X :

CF
v.
x; 
y/ D C
F
v .x; y/: (2.9)

We now provide a lemma stating some useful properties and local estimates of the
Gibbs cocycle.
Lemma 2.3. Fix R > 0 and assume that eF is bounded on p�1.CH.ƒ�// � T 1X .
There exists positive constants C.R/;D.R/ and E.R/ so that:
(1) For all x 2 CH.ƒ�/ and for all y 2 X such that d.x; y/ � R and for all

v 2 @X we have
jCFv .x; y/j � C.R/:

(2) For all x in X , for all y 2 CH.ƒ�/ and for all v 2 OR.x; y/ we haveˇ̌
CFv .x; y/C d

F .x; y/
ˇ̌
� D.R/:

(3) For all x 2 CH.ƒ�/ and for all y; z such that d.y; z/ � R we have

jdF .x; y/ � dF .x; z/j � E.R/:

For a proof of items (1) and (2) see [43, Lemma 3.4] and for item (3) see
[43, Lemma 3.2].

2.2. Gibbs Cocycles, cohomology, periods and unitary representations. Follow-
ing [37], we recall some fundamental correspondences between potential functions,
Hölderian cocycles, and periods. We complete theses fundamental observations by
adding a correspondence dealing with unitary boundary representations.

We say that a function defined on the boundary @X is Hölder-continuous if it is
Hölder-continuous with respect to Bourdon’s metric associated with some base boint
in X . Note that this definition does not depend on the choice of the base point. We
say that a cocycle C W � �@X ! R is aHölderian cocycle if for all 
 the map C.
; �/
is Hölder-continuous and if it satisfies the cocycle equality

C.
1
2; v/ D C.
1; 
2v/C C.
2; v/;

for all 
1; 
2 2 � and for all v 2 @X . We say that two cocycles C and C 0 are
cohomologous if there exists a functionH W @X ! R such that

C.
; �/ � C 0.
; �/ D H.
�/ �H.�/: (2.10)

Let 
 be a hyperbolic isometry, also called a loxodromic element, and denote by 
C
its attractive fixed point. Observe that the quantity

C.
; 
C/
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depends only on the conjugacy class of 
 . Let x be on the axis of 
 and consider the
cocycle

C W .
; v/ 2 � � @X 7! CFv .x; 
x/:

Observe that
C.
; 
C/ D

Z x


x

eF
and by assumption on the symmetry of eF we have also

C.
; 
C/ D

Z 
x

x

eF :
We call the quantity

R 
x
x
eF the period of 
 and we denote it by Per.‚/. The set

Per.eF / WD fPer.‚/ with 
 a loxodromic elementg; (2.11)

is called the periods of eF . Observe that if eF D 1 then Per.‚/ is nothing but the
translation length of 
 and Per.eF / is the length spectrum ofM .
Remark 2.4. Observe also that this definition of periods of eF coincides with the
definition of periods of a Hölderian cocycle in [37].

Let eF � D T 1X ! R be another Hölder-continuous �-invariant function. We
say that eF � is cohomologous to eF if there exists a function differentiable along every
flow line G W T 1X ! R such that

eF �.v/ � eF .v/ D d

dt jtD0
G.gtv/: (2.12)

Consider the cocycle

CF W .
; v/ 7! CFv .x; 
x/:

First note that ifeF is bounded thenCF is Hölder-continuous . Then observe that ifeF �
is cohomologous to eF then CF and CF � are cohomologous (see [43, §3.3 Remarks
and Proposition 3.5] formore details). The periods are an invariant of the cohomology
class of potentials and also of cocycles. We have
Proposition 2.5. Let eF and eG be two Hölder continuous �-invariant functions on
the unit tangent bundle of X . Pick x 2 X . The following assertions are equivalent
(1) �Fx and �Gx are in the same class.
(2) The functions eF and eG have the same periods.
(3) The Gibbs cocycles CF and CG associated with eF and eG are cohomologous in

restriction to �� .

Proof. Thanks to Remark 2.4 we refer to [37, §III, Proposition 1] for the equivalence
between (1) and (2) and between (1) and (3). For (2) implies (3) we refer to [43,
Remark 3.1].
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At the level of unitary representations we say that ��Fx and ��Gx are equivalent if
there exists a unitary operator U W L2.@X; �Fx /! L2.@X; �Gx / such that:

U��Fx D ��Gx U: (2.13)

Lemma 2.6. Let �F and �F � be two Patterson densities of dimension � . Pick x
in X and consider the unitary representations ��Fx and �

�F
�

x
. If F and F � are

cohomologous then ��Fx and �
�F
�

x
are equivalent.

Proof. Since eF and eF � are cohomologous then the cocycles

CF W .
; v/ 7! CFv .x; 
x/ and CF
�

W .
; v/ 7! CF
�

v .x; 
x/

are cohomologous. Thus the multiplication operator by e 12H from L2.@X; �Fx /

to L2.@X; �F
�

x / intertwines the unitary representations ��Fx and �
�F
�

x
where

H W @X ! R satisfies the identity (2.10).

2.3. Gibbs measures and Roblin–Paulin–Pollicott–Schapira’s
equidistribution theorem.

2.3.1. Hopf parametrization. Let us now recall a parametrization of T 1X in terms
of the boundary at infinity of X .

If v D .x; Ev/ is an element of T 1X , consider the unique geodesic defined by Ev
represented by an isometry r W R ! X such that r.0/ D q.v/ and d

dt jtD0
r D Ev.

We denote by v� and vC the endpoints of the geodesic such that r.�1/ D v� and
r.C1/ D vC.

Let us define @2X D @X � @X � �, where � is the diagonal of @X � @X . For
every base point x0 in X , the space T 1X may be identified with @2X � R, by the
map which maps a unit tangent vector v to the triple .v�; vC; t / where t represents
the algebraic distance on the image of the geodesic represented by r between r.0/
and the closest point of the geodesic to x0. This parametrization, depending a priori
on x0, differs from the one defined by another base point x00 only by an additive term
on the third factor (independent of the time t ).

2.3.2. The potential gap. For all x in X and for all v;w 2 @X define the gap map
as

Dx;F .v; w/ WD exp
�
1

2

�Z wt

x

eF � Z wt

vt

eF C Z x

vt

eF��:
We observe thatDx;F generalizes Bourdon’s metric dx since for F D �1 we obtain
Dx;F D dx . Note the � invariance property D
x;F .
v; 
w/ D Dx;F .v; w/ for all

 2 � and for all v;w 2 @X .
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2.3.3. The Gibbs states of .�;F /. Let � be a real number and let .�Fx /x2X be a
Patterson density of dimension � for .�; F /. Once we have fixed a base point x0 2 X
and used the Hopf parametrization, define the Gibbs measures on T 1X associated
with .�Fx /x2X as

dm.v/ D
d�x0.v�/d�x0.vC/dt

D2
F��;x0

.v�; vC/
: (2.14)

The groups � and R act on @2X � R via 
.v�; vC; t / D .
v�; 
vC; t / and via the
goedesic flow s.v�; vC; t / D .v�; vC; t C s/. Observe that both actions commute.
Thus define mF on �nT 1X D T 1M , and we call mF the Gibbs measures on T 1M
associated with .�Fx /x2X . If kmF k < 1 we say that mF is finite. The finiteness
of the Gibbs measures will always be satisfied when we consider convex cocompact
groups.

2.3.4. Mixing property of Gibbs measures. We say that gt is mixing on �nT 1X
with respect to mF if for all bounded Borel subsets A;B � �nT 1X we have
limt!C1mF .A \ gt .B// D mF .A/mF .B/.

There exists a condition which guarantees that the geodesic flow on T 1X

is mixing: it is related to the non-arithmeticity of the spectrum of � , see [9].
More precisely: the translation length of an element 
 2 � is defined as
t .
/ WD inffd.x; 
x/; x 2 Xg. The spectrum of � is defined as the subgroup
of R generated by t .
/ where 
 ranges over the hyperbolic isometries in � . We
say that � has an arithmetic spectrum if its spectrum is a discrete subgroup of R.
We refer to [43, Theorem 8.1] for a proof of the fact that the non-arithmeticity
of the spectrum implies the mixing property of the geodesic flow with respect the
to the Gibbs measures. The non-arithmeticity condition is verified in the following
cases: for isometries group of Riemannian surfaces, hyperbolic spaces and isometries
groups of CAT(-1) spaces with a non-trivial component in their limit set. We refer
to [22] and to [44, Proposition 1.6, Chapitre 1] for more details.

We have finished the preparations to state Theorem 1.3 and its corollary which
will be one of our main tools. The main idea of these equidistribution results goes
back to the pioneering work of Margulis [38] who made a connection between the
mixing property of the geodesic flow with the counting of closed geodesics on a
compact negatively curved manifold. The form of the following equidistribution
results, due to Paulin, Pollicott and Schapira [43, Theorem 9.1], is inspired by the
results of T. Roblin in [44, Théorème 4.1.1]. We refer also to [8] for an introduction
to Roblin’s equidistribution theorem.

Theorem 2.7 (Paulin, Pollicott and Schapira). Let � be a discrete group of isometries
ofX and assume that ��;F is finite and positive. Assume thatmF is finite and mixing
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under the geodesic flow on T 1M . Then for all x; y 2 X and for all c > 0:

��;F kmF k

1 � e�c��;F
e���;F n

X
f
2�jn�c<d.x;
y/�ng

edF .x;
y/D
�1x ˝D
y * �Fx ˝ �
F
y

as n!C1 with respect to the weak* convergence of C.X �X/�.
As a corollary we obtain the following result that we shall use in the Step 2 of the

computation of the limit in Section 5.
For a subset A in @X with a vertex x, denote by Cx.A/ that is the union of the

geodesic rays or lines starting from x and ending atA, and this a subset ofCx.A/ � X

so that Cx.A/ \ @X D A.
Corollary 2.8. Let � be a discrete group of isometries of X . Assume that mF is
finite and mixing under the geodesic flow on T 1M . If U and V are two Borel sets,
then for all x; y 2 X and for all c > 0:

lim sup
n!C1

��;F kmF k

1 � e�c��;F
e���;F n

X
Cn.x/

edF .x;
x/.D
x ˝D
�1x/.�Cx.U / ˝ �Cx.V //

� �Fx .U /�
F
x .V /:

We recall that we have defined the normalization constant c�;F as

c�;F WD
��;F kmF k

1 � e���;F
:

3. The Harish-Chandra function

The goal of this section is to prove the following estimate on the Harish-Chandra
function.
Proposition 3.1 (Harish-Chandra’s estimate). Let �F D .�Fx /x2X be a Patterson
density of dimension ��;F . There exists a constant R > 0 and a constant C > 0

(depending onR) such that for all 
 2 � satisfying d.x; 
x/ � R with x inCH.ƒ�/
we have

C�1d.x; 
x/e
1
2
dF .x; 
x/ � 1

2
��;F d.x; 
x/

� �x.
/ � Cd.x; 
x/e
1
2
dF .x; 
x/ � 1

2
��;F d.x; 
x/:

Remark 3.2. It would be probably more appropriate to call these estimates Harish-
Chandra Anker’s estimates because Anker has improved estimates established by
Harish-Chandra in the setting of semisimple Lie groups. He improved notably the
lower bound by adding a polynomial, see [6].
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3.1. Some technical lemmas. The following lemma is due to S. Alvarez in [3].
Since our methods are rather analytical and since our conventions are different, we
give another shorter proof.

Lemma 3.3. For any R � 4ı, there exits r > 0 such that for all x; y; z aligned in
this order we have for all v 2 @XnOR.x; y/:

ˇv.y; z/ � r � d.y; z/:

Proof. We have ˇv.y; z/ D 2.v; z/y � d.y; z/. The hyperbolic inequality (2.6)
implies that .v; z/y � .v; wzy/y C ı. An upper bound of the quantity .v; wzy/y is
equivalent to a lower bound of dy.v; wzy/. We have ˇwzy .x; y/ D d.x; y/ (because
wzy D w

y
x ) and ˇv.x; y/ D 2.v; y/x � d.x; y/. Thus the hyperbolic inequality (2.6)

implies

ˇv.x; y/C ˇwzy .x; y/ D 2.v; y/x � 2minf.v; wyx /x; .w
y
x ; y/xg � 2ı

D 2minf.v; wyx /x; d.x; y/g � 2ı:

Since v 2 @XnOR.x; y/ we have dx.v; wyx / � e�d.x;y/ by Lemma 2.2, equivalently
.v; w

y
x /x � d.x; y/. Thus

e
1
2
.ˇv.x; y/C ˇwzy .x; y// �

e�ı

dx.v; w
y
x /
D

e�ı

dx.v; wzy/
:

By the conformal equivalence of the metric on the boundary we have:

dy.v; w
z
y/ D dx.v; w

z
y/e

1
2
.ˇv.x; y/C ˇwzy .x; y//;

hence
e�ı � dy.v; wzy/;

and we set r D 4ı to conclude the proof.

Before proceeding we will need to set up some notation. We follow the
decomposition used by Alvarez in [3].

Definition of Ai;R.
/. Fix R > 0 such that Lemma 2.2 is available. Let 
 be in �
such that d.x; 
x/ � R and consider the geodesic Œxw
xx / starting at x and passing
through 
x and ending at w
xx 2 @X . Let zi for i D 0; : : : ; N be a finite sequence of
points belonging to Œxw
xx / aligned in the following order: zN ; : : : ; z0, with z0 D 
x
and so that the choice of zN satisfies d.x; zN / < R=2, and d.zi ; ziC1/ D R=2.
Observe that d.x; 
x/ D d.x; zN /CN R

2
.
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For i D 1; : : : ; N notice that OR.x; zi�1/ � OR.x; zi /: Indeed, let � be in
OR.x; zi�1/ and thus .�; zi�1/x � d.x; zi�1/ �R. We have

.�; zi /x � minf.�; zi�1/x; .zi ; zi�1/xg � ı
D minf.�; zi�1/x; d.x; zi /g � ı
� minfd.x; zi�1/ �R; d.x; zi /g � ı
D minfd.x; zi / �R=2; d.x; zi /g � ı
D d.x; zi / �R=2 � ı

� d.x; zi / �R;

where the last inequality follows from the fact that R � 2ı.
We set

Ai;R.
/ WD OR.x; zi /nOR.x; zi�1/:

Observe that AN;R D @XnOR.x; zN�1/.
We can decompose the boundary as the following disjoint union

@X WD tNiD1Ai;R.
/ tOR.x; 
x/: (3.1)

Proposition 3.4. We suppose here that eF is symmetric. Let �F be a Patterson
density of dimension � � ��;F so that the estimates in Moshen’s Shadow lemma hold
(Lemma 2.1). There exists a constant C > 0 such that for all 
 2 � , v 2 Ai;R.
/,
and 1 � i � N we have that

C�1ed
F .zi ; 
x/ � �d.zi ; 
x/ � eC

F��
v .zi ; 
x/ � C ed

F .zi ; 
x/ � �d.zi ; 
x/:

Proof. Recall that CF��v .zi ; 
x/ D C
F
v .zi ; 
x/C �ˇv.zi ; 
x/.

If ˇv.zi ; 
x/ � 0 then Lemma 3.3 implies that d.zi ; 
x/ � r for some positive
real number r . Therefore the estimates follow from Lemma 2.3(2). Now we call z0
the point of the intersection of the horosphere centered at v passing through 
x and
the geodesic passing through v and 
x. If ˇv.zi ; 
x/ < 0, then 
x; z0 and v are
aligned in this order. Thus we can write

lim
t!C1

Z vt


x

F D

Z z0


x

F C lim
t!C1

Z vt

z0
F:

Since ˇv.
x; z0/ D d.
x; z0/ we have

CF��v .zi ; 
x/ D C
F��
v .zi ; z

0/C

Z z0


x

F � �;

besides, the symmetry of F implies

CF��v .zi ; 
x/ D C
F��
v .zi ; z

0/C
�
dF .z0; 
x/ � �d.z0; 
x/

�
: (3.2)
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Notice that

d.zi ; z
0/ � d.zi ; 
x/C d.
x; z

0/

D d.zi ; 
x/C ˇv.
x; z
0/

D d.zi ; 
x/C ˇv.
x; zi /

� d.zi ; 
x/C r � d.
x; zi /

D r:

Thus, the fist term on the right hand side equality (3.2) is bounded by Lemma 2.3(1).
In the second term on the right hand side equality (3.2) the quantity dF .z0; 
x/ �
dF .zi ; 
x/ C E.r/, for some positive constant E.r/ by Lemma 2.3(3); and the
triangle inequality implying d.z0; 
x/ � d.zi ; 
x/C r completes the proof.

Proposition 3.5. There exists a positive constantC > 0 such that for all i D 1; : : : ; N
and for all v 2 Ai;R.
/ we have:

C�1e�
1
2
�d.x; zi /e�d.x; zi / � e

�
2
ˇv.x; zi / � C e�

1
2
�d.x; zi /e�d.x; zi /:

Proof. The proof is based on the hyperbolic inequality (2.6).
Let us prove the right hand side inequality. We have

ˇv.x; zi / D 2.v; zi /x � d.x; zi /:

We shall just control the Gromov product .v; zi /x for v 2 Ai;R.
For all i , for all v we have:

.v; w
xx / � minf.v; zi /x; .zi ; w
xx /xg � ı
D minf.v; zi /x; d.x; zi /g � ı
D .v; zi /x � ı:

Therefore,

e
�
2
ˇv.x; zi / � e�ı

e�
1
2
�d.x; zi /

d�x .v; w

x
x /

:

If v 2 Ai;R then v is not in OR.x; zi�1/, and thus v is not in B.w
xx ; e�d.x;zi�1//
hence by Lemma 2.2 we have dx.v; w
x / � e�d.x;zi�1/ D e�d.x;zi /�R2 . We deduce

e
�
2
ˇv.x; zi / � e�.ı CR=2/e�

1
2
�d.x; zi /e�d.x; zi /:

We prove now the left hand side inequality. To do so, write ˇv.x; zi / D
ˇv.x; zi�1/C ˇv.zi�1; zi /. Note that for all v 2 @X we have ˇv.zi�1; zi / � �R=2.
Now write again

ˇv.x; zi�1/ D 2.v; zi�1/x � d.x; zi�1/:
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We have

.v; zi�1/x � minf.v; w
xx /x; .w

x
x ; zi�1/xg � ı

D minf.v; w
xx /x; d.x; zi�1/g � ı:

If v is in Ai;R, then v is not in B.w
xx ; e�d.x;zi�1//. Hence .v; w
xx /x � d.x; zi�1/.
It follows that

.v; zi /x � d.x; zi�1/ � ı:

We deduce that

e
�
2
ˇv.x; zi / � e�.ı�R=4/e�

1
2
�d.x; zi�1/e�d.x; zi�1/:

Since we have d.x; zi�1/ D d.x; zi /CR=2 it follows that

e
�
2
ˇv.x; zi / � e�ıe�

1
2
�d.x; zi /e�d.x; zi /:

Hence, we set C D e�.ıCR=2/ to conclude the proof.

3.2. Proof of estimates. We are ready to establish the Harish-Chandra estimates.

Proof. We only prove the upper bound, the lower bound follows by the same method.
Pick x 2 CH.ƒ�/ and write the Harish-Chandra function as a sum of integrals

over the partition (3.1) as follows:

�x.
/ D

NX
iD1

Z
Ai;R

e
1
2
CF��v .x; 
x/

d�Fx .v/C

Z
OR.x;
x/

e
1
2
CF��v .x; 
x/

d�Fx .v/:

To prove the proposition we will show that each integral is comparable to

e
1
2
dF .x; 
x/ � 1

2
�d.x; 
x/

:

The upper bound overOR.x; 
x/.Z
OR.x;
x/

e
1
2
CF��v .x; 
x/

d�Fx .v/

� C�Fx .OR.x; 
x//e
�
1
2
dF .x; 
x/C 1

2
�d.x; 
x/

� C e
1
2
dF .x; 
x/ � 1

2
�d.x; 
x/

;

where the first inequality follows from Lemma 2.3(2) since 
x is in CH.ƒ�/, and
the second inequality follows from the upper bound of Mohsen’s shadow Lemma
(Lemma 2.1), the compact K being the closure of a fundamental domain of the
action of � on CH.ƒ�/.
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TheupperboundoverAi;R.
/. Wehave established twouseful inequalities dealing
with the terms we shall control: the first one follows from Proposition 3.4. There
exists C > 0 such that we have for all i , for all v 2 Ai;R.
/:

e
1
2
CF��v .zi ; 
x/ � C e

1
2
dF .zi ; 
x/ �

1
2
�d.zi ; 
x/: (3.3)

The second one is from Proposition 3.5. There exists C > 0 so that

e
�
2
ˇv.x; zi / � C e�

1
2
�d.x; zi /e�d.x; zi /: (3.4)

Combining these two estimates will yield the bound over Ai;R.
/. We will use a
constant C which absorbs the other constants. Now estimating over Ai;R.
/ we get,Z

Ai;R.
/

e
1
2
CF��v .x; 
x/

d�Fx .v/ D

Z
Ai;R.
/

e
1
2
CF��v .zi ; 
x/e

1
2
CFv .x; zi /

� e
1
2
�ˇv.x; zi /d�Fx .v/

Inequality (3.3) � C e
1
2

�
dF .zi ; 
x/ � �d.zi ; 
x/

�
�

Z
Ai;R.
/

e
1
2
CFv .x; zi /e

1
2
�ˇv.x; zi /d�Fx .v/

Lemma 2.3(2) � C e
1
2

�
dF .zi ; 
x/ � �d.zi ; 
x/

�
e�

1
2
dF .x; zi /

�

Z
Ai;R.
/

e
1
2
�ˇv.x; zi /d�Fx .v/

Inequality (3.4) � C e
1
2

�
dF .zi ; 
x/ � �d.zi ; 
x/

�
e�

1
2
dF .x; zi /

� e�
1
2
�d.x; zi /e�d.x; zi /�Fx .Ai;R.
//

D C e
1
2
dF .zi ; 
x/e�

1
2
�d.x; 
x/e�

1
2
dF .x; zi /

� e�d.x; zi /�Fx .Ai;R.
//

Moshen’s shadow Lemma � C e
1
2
dF .zi ; 
x/ �

1
2
�d.x; 
x/e�

1
2
dF .x; zi /

� e�d.x; zi /ed
F .x; zi / � �d.x; zi /

D C e
1
2
dF .x; 
x/ � �

2
d.x; 
x/

:

Combining the upper bound over OR.x; 
x/ with the upper bound over Ai;R.
/
for all i D 1; : : : ; N leads to

�x.
/ � C.N C 1/e
1
2
dF .x; 
x/ � �

2
d.x; 
x/

:

Since N R
2
D d.zN ; 
x/ � d.x; 
x/ we obtain the left hand side inequality of

Harish-Chandra’s estimates.
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Remark 3.6. In particular we prove that there exists C > 0 such that for all i D
1; : : : ; N : Z

Ai;R.
/

e
1
2
CF��v .x; 
x/

d�Fx .v/ � C e
1
2
dF .x; 
x/ � 1

2
�d.x; 
x/

: (3.5)

4. Uniform boundedness via RD

4.1. Quasi-regular representations. Let � be a discrete countable group acting on
a measure space .S; �/ with a �-quasi-invariant measure �. This action gives rise
to a unitary representation after correction by the square root of the Radon Nikodym
derivative of the action:

�� W � ! U.L2.S; �//

defined for � 2 U.L2.S; �// and for s 2 S as

�
��.
/�

�
.s/ D

�
d
��

d�

� 1
2

.s/�.
�1s/: (4.1)

This unitary representation is called the quasi-regular representation associated with
� Õ .S; �/ (also called Koopman representation).

In the following we will denote by �� W � ! U.`2.�// the left regular
representation.

Recall that a unitary representation � is weakly contained in a unitary
representation � if for all functions f 2 `1.�/ we have

k�.f /k � k�.f /k: (4.2)

We refer to [12, Appendix F] and to [23, Section 18] for more details.
Let � be a unitary representation of � and let � be a bounded measure on � and

define the operator �.�/ as:

�.�/ WD
X

2�

�.
/�.
/;

and observe �.�/ 2 B.L2.S; �//.

4.2. Spectral characterization of amenable action. The ideas of this subsection
are related to the ideas of Nevo in [40] where we can find that for hyperbolic groups
it is possible to bound operator norms of unitary representations which are weakly
contained in (a tensor power of) the regular representation using property RD, and the
resulting effective ergodic theorem. Moreover in [41], it is shown that the operator
norm of any probability measure on a group, acting in the unitary representation
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associated with any of the Poisson boundaries, is equal to the convolution norm in
the regular representation. The same results holds for the operator norm in the unitary
representation associated with any quasi-invariant measure on the boundary.

It is well known that the amenability of a discrete group can be characterized
by the fact that the trivial representation is weakly contained in the left regular
representation. Kuhn was probably inspired by this property to prove an analog
result for quasi-regular representations associated with ergodic amenable actions in
Zimmer’s sense in [35]. We describe briefly which notion of amenable action we
shall consider.

We know since Spatzier in [47] that the action of�1.M/, the fundamental group of
a compact manifold with negative sectional curvatureM , on the geometric boundary
of the universal cover ofM is amenable in Zimmer’s sensewith respect to the standard
measure class. Eventually, Spatzier and Zimmer showed in [48, Theorem 3.1] that
this action is amenable with respect to any quasi-invariant measure. Later, after the
work of Adams [1], Kaimanovich [34] proved that the action of a closed subgroup of
isometries of a hyperbolic space with a finite critical exponent (-critical exponent- in
the usual sense without a potential function) is topologically amenable. In this paper,
we consider the action of a discrete group of isometries on the geometric boundary
as a topological space. The notion of topological amenability is the more appropriate
notion we shall consider since the space appears naturally as a topological space
rather than only as a measurable space.

Definition 4.1. An action � Õ S on a topological space S is topologically amenable
if there exists a sequence of continuous maps

�n W s 2 S 7! �ns 2 Prob.�/

of probabilities on � such that

lim
n!C1

sup
s2S

k
��
n
s � �

n

sk ! 0

as n!1.

It turns out that in the case of a topological space topologically amenable and
amenable in Zimmer’s sense are equivalent, see [5]. Therefore we will not have to
pay attention to any quasi-invariant measure on the geometric boundary.

It is shown in [2] that for a locally compact group G acting on .S; �/ that
the definition of amenable action in Zimmer’s sense is equivalent to the existence
of a G-equivariant conditional expectation from L1.G � S/ to L1.S/. Hence
if � is a discrete group of isometries of a complete simply connected pinched
negatively curved Riemannian manifold X , with a finite critical exponent, we have
that .� � @X; @X/ is a �-pair in the sense of [4].
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We deduce from [4, Corollary 3.2.2] the following.
Proposition 4.2. Let � be a discrete group of isometries of X a complete simply
connected Riemmanian manifold with pinched curvature, with a finite critical
exponent. For any quasi-invariant measures � on the geometric boundary @X we
have for any bounded � measure on �

k��.�/k � k��.�/k:

Remark 4.3. Indeed, by [46, Lemma 2.3] due to Shalom with the same hypothesis
we have the other inequality and thus we obtain for any bounded � measure on � an
equality

k��.�/k D k��.�/k:

4.3. Property RD. The property RD comes from the theory of C*-algebras and has
been introduced in the important paper [31] by Haagerup.

A length function j � j on a discrete countable group � is a function j � j W � ! RC,
satisfying jej D 0 where e is the neutral element of � , j
�1j D j
 j and j
1
2j �
j
1j C j
2j. Let s > 0 and define the Sobolev space associated with � denoted by
H s.�/ as the space

H s.�/ WD
n
f W � ! C such that kf k2H s WD

X
�

jf .
/j2.1C j
 j/2s <1
o
:

Given a discrete countable group equipped with a length function j � j we say
that � satisfies property RD with respect to j � j if the space H s convolves
H s.�/ � `2.�/ � `2.�/ in the following way:

9C; s > 0 such that for all f 2 H s.�/; � 2 `2.�/;

we have kf � �k2 � Ckf kH sk�k2:

In terms of operator norm, property RD means that there exist two positive
constants C and s > 0 such that the multiplication operator by convolution by a
function inH s.�/ is continuous:

9C; s > 0 such that for all f 2 H s.�/, we have k��.f /k � Ckf kH s :

This inequality means, in operator algebraic terms that we have the continuous
inclusion

H s.�/ ,! C �r .�/: (4.3)

Remark 4.4. If we specialize the property RD to the abelian group Z (with its
standard word length function) we obtain the well known fact, using the Fourier
transform, that an element in L2.S1/ with Fourier coefficients “Rapidly Decreasing”
to 0 define a continous function on the circle S1.



Vol. 92 (2017) Boundary representations associated with Gibbs measures 373

It is obvious that convex cocompact groups in CAT(-1) spaces are Gromov
hyperbolic. Hence they have RD and the next proposition follows. We extract the
following inequality expressed in norm of convolution operators established in [33].
Proposition 4.5. Let X be a complete simply connected Riemannian pinched
negatively curved manifold and let � be a convex cocompact discrete group of
isometries of X . Pick a point x in X and recall the definition of an annulus
Cn WD Cn.x/. Let �n be the characteristic function of Cn, then

k��.f�n/k � Cnkf k2:

Proof. In [33, Proposition 3.2.4], Jolissaint proves that there exists a positive
constant c, depending only on the action of � on X , with the following property:

Let k; l;m 2 N. If k; l and m satisfy jk � l j � m � k C l with f; g are in the
group algebra C� are supported in Ck and Cl respectively, then

k.f � g/�mk2 � ckf k2kgk2:

If k; l and m satisfy jk � l j > m or m > k C l , then

k.f � g/�mk2 D 0:

Following the techniques in [31, Lemma 1.3, Lemma 1.4] and in [33,
Proposition 1.2.6] we have: for f supported in Ck and for all g supported in Cl
that

k.f � g/�mk2 �
X
l>0

k.f � g�l/�mk2

� Ckf k2

kCmX
lDjk�mj

kg�lk2

� Ckf k2

2min .k;m/X
l>0

kg�mCk�lk2

� Ckf k2k
1
2

� 2min .k;m/X
l>0

kg�mCk�lk
2
2

� 1
2

:

Thus

kf � gk22 D
X
m>0

k.f � g/�mk
2
2

� C 2kkf k2
X
m

� 2min .k;m/X
l>0

kg�mCk�lk
2
2

�
� C 2k2kf k22kgk

2
2:
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Thus we obtain for f supported in Ck and for all g 2 `2.�/ that

sup
kgk2�1

kf � gk � Ckkf k2;

with some positive constant C > 0.

We use the equality on operators norms given by the amenability of the
action on the boundary and we express the inequality of norm operators given in
Proposition 4.5 in its dual form with the matrix coefficients associated with the
boundary representation. We obtain:
Proposition 4.6. Let X be a complete simply connected Riemannian pinched
negatively curved manifold and let � be a convex cocompact discrete group of
isometries of X . Let � be a �-quasi-invariant measure on @X and consider �� its
associated quasi-regular representation. There exists C > 0 such that for all unit
verctors �; � 2 L2.@X; �/ we haveX


2Cn

jh��.
/�; �ij
2
� Cn2:

Proof. Observe that it is sufficient to prove the above inequality only for positive
vectors �; � in L2.@X; �/.

Using Proposition 4.2 and Proposition 4.5 we have for a positive function f
supported in the annulus Cn

k��.f /k D k��.f /k � Cnkf k2:

Consider
f .�/ D �Cn.�/h��.�/�; �i;

with � and � two nonzero unit positive vectors in L2, and notice that f is a positive
function on � supported on Cn. We have

0 �
X

2Cn

h��.
/�; �i
2
D h��.f /�; �i

� k��.f /k

� Cnkf k2

� Cn
� X

2Cn

h��.
/�; �i
2
�1=2

:

Divide each term of the above inequality by
�P


2Cn
h��.
/�; �i

2
�1=2 and take the

square to obtain: X

2Cn

h��.
/�; �i
2
� C 2n2:
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4.4. Uniform boundedness. We shall consider the operator:

T nx WD cF;�e
��n

X

2Cn.x/

edF .x;
x/
�x.
/

�x.
/
: (4.4)

with c�;F given in (1.8) and recall that Cn.x/ D fn � 1 � d.x; 
x/ < ng. Observe
that T nx is nothing else than

T nx DMn
x.1X /;

where 1X denotes the unit function on the compact set X .
The Harish-Chandra estimates are fundamental to prove the uniform boundedness

of the sequence of operators defined above. The potential function F is always
assumed to be symmetric.

Proposition 4.7. We have supn kT nx k < C1:

Proof. Pick x 2 X , let � WD �Fx be a Patterson density of .�; F / of dimension �
and consider �� the quasi-regular representation associated. Then Proposition 4.6
implies for all unit vectors �; � 2 L2.@X; �/ we haveX


2Cn.x/

jh��.
/�; �ij
2
� Cn2:

Observe that Cauchy–Schwarz inequality implies that for all unit vectors
�; �; �

0

; �
0

2 L2.@X; �/ we haveX

2Cn.x/

jh��.
/�; �ih��.
/�
0; �0ij � Cn2:

Therefore for all unit vectors �; �; � 0; �0 we have

Cn2 �
X


2Cn.x/

jh��.
/�; �ih��.
/�
0; �0ij

D

X

2Cn.x/

jh��.
/�; �ih��.
/�
0; �0ij

�2x.
/
�2x.
/

Proposition 3.1 � C 0
X


2Cn.x/

d2.x; 
x/edF .x;
x/e�� j
 j
jh��.
/�; �ih��.
/�

0; �0ij

�2x.
/

� n2C 0e��n
X


2Cn.x/

edF .x;
x/
jh��.
/�; �ih��.
/�

0; �0ij

�2x.
/

�
C 0

c�;F
n2

 
c�;F e��n

X

2Cn.x/

edF .x;
x/
jh��.
/�; �ih��.
/�

0; �0ij

�2x.
/

!
:
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Applying the above inequality for � 0 D �0 D 1 we obtain for all unit vectors �
and � in L2.@X; �/:

Cn2 �
C 0

c�;F
n2jhT nx �; �ij:

Hence
sup
n
kT nx k <1;

and the proof is done.

Remark 4.8. Notice that Bader and Muchnik in [10] use a different method to prove
uniform boundedness of the sequence of operators. Our method combining the
property RD with the equality concerning the spectral radius gives another short
proof of the uniform boundedness when the quasi-invariant measure is the Patterson–
Sullivan measure class.
Remark 4.9. Notice also that this uniform bound for the Patterson–Sullivan measure
class gives a sharp estimate of the spectral gap of ��.�n/where �n is the probability
measure on the groups supported over an annulus Cn

�n D
1

jCnj
�Cn :

More specifically we obtain

C�1ne�
1
2
��n � k�.�n/k � Cne�

1
2
��n;

for some positive constant C > 0 and where �� is the usual critical exponent in the
Patterson–Sullivan theory, with a potential F D 0.

5. Analysis of matrix coefficients

5.1. Technical tools. Let � be a discrete group of isometries of X and let �F be a
Patterson density of dimension �: Let .dx/x2X be a family of visual metrics.

Let U be a subset of @X and a > 0 be a positive real number and define Ux.a/
the subset of @X as

Ux.a/ D fvj inf
w2U

dx.v; w/ < e�ag: (5.1)

We will write U.a/ instead of Ux.a/ once x has been fixed. Recall that

\a>0U.a/ D U :

In order to have Harish-Chandra’s estimates available we pick x 2 CH.ƒ�/ for
the rest of this section. The following lemma generalizes Lemma 5.2 of [10].
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Lemma 5.1. Let a > 0 be a positive real number, let 
 be in � and let w
xx 2 @X .
Consider the ball @X defined as Ba D B.w


x
x ; e�a/ and let U be a Borel subset of

@XnBa. There exists Ca such that we have

h�x.
/1@X ; �U i
�x.
/

�
Ca

d.
x; x/
:

Proof. Define the following sets of indices

I D fi such that Ai;R.
/ \ @XnBa ¤ ¿g;

and
J D fi such that e�d.x;zi�1/ � e�ag:

If i is in I , thenAi;R.
/ is not included inBa. SinceAi;R.
/ � B.w
xx ; C e�d.x;zi�1//
then B.w
xx ; C e�d.x;zi�1// cannot be included in Ba where C D e2ıCR (see
Lemma 2.2). This means that i satisfies C e�d.x;zi�1/ � e�a.

There is only a finite number of i such that d.x; zi�1/ � a C log.C / D
a C 2ı C R. Hence by denoting Na WD jJ j the cardinal of J , we obtain
jI j D jfi such that Ai;R.
/ \ @XnB� ¤ ¿gj � jJ j D Na.

Since U is in @XnBa we have:

h�.
/1@X ; �U i �
NX
iD1

Z
Ai;R.
/\@XnB�

eCF��;v.x; 
x/d�Fx .v/

�

X
i2I

Z
Ai;R.
/\@XnB�

eCF��;v.x; 
x/d�Fx .v/

Remark 3.6 � CNae
�
2
.dF .x; 
x/ � d.x; 
x//

Left hand side inequality of
Proposition 3.1 �

Ca

d.x; 
x/
�x.
/:

It turns out that the following results are very close to the results of [10, Section 5].
We shall indicate all the minor modifications that we need to do to achieve Step 2.

Recall the notation of a cone of basis A � @X of vertex x in X :

Cx.A/:

Proposition 5.2. Pick x 2 CH.ƒ�/ and let �n 2 `1.�/ such that

sup
n
k�nk`1 < C1;

and which satisfies
lim

n!C1
�n.
/ D 0;

for all 
 2 � .
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Then for every Borel subset U � @X we have for all a > 0

lim sup
n!C1

X

2�

�n.
/
h�x.
/1; �U i

�x.
/
� lim sup

n!C1

X

2�

�n.
/D
x.�Cx.U.a///:

Proof. LetU be aBorel subset of @X and leta be a positive number and considerU.a/
(seeDefinition (5.1)). LetN0 be nonnegative integer. Consider the following partition
of �:

� D �1 t �2 t �2

with

�1 D f
 2 �jd.x; 
x/ � N0g;

�2 D f
 2 �j
x 2 Cx.U.a//g \ �
c
1 ;

and �3 D f
 2 �j
x … Cx.U.a//g \ �
c
1 :

Note that 
x … Cx.U.a// is equivalent to w
xx … U.a/. Therefore

U \ B.w
xx ; e
�a/ D ¿

so that Lemma 5.1 is available. The proof follows now exactly the proof of [10,
Proposition 5.1] and [15, Proposition 5.1].

5.2. Application of Paulin–Pollicott–Schapira’s equidistribution theorem. The
purpose of this section is to use Corollary 2.8 for computing the limit of the sequence
of operator-valued measures .Mn

x/n2N� .
We assume here that �F is a Patterson density of dimension ��;F and that the

Gibbs measure is mixing with respect to the geodesic flow. The following proposition
generalizes Proposition 5.5 of [10].

Proposition 5.3. Let U; V;W � @X be Borel subsets such that �Fx .@U / D
�Fx .@V / D �

F
x .@W / D 0. Then we have:

lim
n!C1

hMn
x.�Cx.U //�V ; �W i D �

F
x .U \W /�

F
x .V /:

We need some lemmas to prepare the proof of this proposition.

Lemma 5.4. Let U be a Borel subset of @X with �Fx .@U / D 0 and letW be a Borel
subset of @X such that �Fx .@W / D 0, satisfying U \W D ¿. Then we have

lim sup
n!C1

hMn
x;�.�Cx.U //1@X ; �W i D 0:
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Proof. For all integers n we have:

hMn
x.�Cx.U //1@X ; �W i

D c�;F e���;F n
X


2Cn.x/

edF .x;
x/D
x.�Cx.U //
h�x.
/1@X ; �W i

�x.
/

D

X

2�

�n.
/
h�x.
/1@X ; �W i

�x.
/
;

where the inequality follows from the fact that �x preserves the cone of positive
functions, and where

�n.
/ WD c�;F e���;F ned
F .x;
x/�Cn.x/.
/D
x.�Cx.U //:

Observe that Corollary 2.8 implies that

sup
n
k�nk`1 < C1:

Proposition 5.2 implies for b > 0:

lim sup
n!C1

hMn
x.�Cx.U //1@X ; �W i

� lim sup
n!C1

X

2�

�n.
/D
x.�Cx.W.b///

D lim sup
n!C1

c�;F e���;F n
X


2Cn.x/

edF .x;
x/D
x.�Cx.U /\Cx.W.b///

D lim sup
n!C1

c�;F e���;F n
X


2Cn.x/

edF .x;
x/D
x.�Cx.U\W.b///:

Note the general fact @.A \ B/ � @A [ @B . Since all, but at most countably many
of the sets W.b/ have zero measure boundary Corollary 2.8 implies that

lim sup
n!C1

hMn
x.�Cx.U //1@X ; �W i � �

F
x

�
U \W.b/

�
:

With the hypothesis U \W D ¿, we have by letting b !C1

lim sup
n!C1

hMn
x.�Cx.U //1@X ; �W i D 0:

Lemma 5.5. Let U be a Borel subset of @X and let V be a Borel subset of @X . For
a > 0 we have

lim sup
n!C1

hMn
x.�Cx.U //�V ; 1@X i

� lim sup
n!C1

c�;F e���;F n
X


2Cn.x/

edF .x;
x/D
�1x.�Cx.U //D
x.�Cx.V.a///:
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Proof. We have for all integer n:

hMn
x.�Cx.U //�V ; 1@X i

D h�V ;M
n
x.�Cx.U //

�1@X i

D c�;F e���;F n
X


2Cn.x/

edF .x;
x/D
�1x.�Cx.U //
h�x.
/1@X ; �V i

�x.
/

�

X

2�

�n.
/
h�x.
/1@X ; �V i

�x.
/
;

with
�n.
/ D c�;F e���;F ned

F .x;
x/�Cn.x/.
/D
�1x.�Cx.U //:

Applying Proposition 5.2 to �n defined above we obtain for all a > 0:

lim sup
n!C1

hMn
x.�Cx.U //�V ; 1@X i

� lim sup
n!C1

c�;F e���;F n
X


2Cn.x/

D
�1x.�Cx.U //D
x.�Cx.V.a///:

Lemma 5.6. Let U; V;W � @X be Borel subsets such that

�Fx .@U / D �
F
x .@V / D �

F
x .@W / D 0:

Then
lim sup
n!C1

hMn
x.�Cx.U //�V ; �W i � �

F
x .U \W /�

F
x .V /:

Proof. Let a > 0 and b > 0, and consider V.a/ and W.b/ such that �Fx .@W.b// D
0 D �Fx .@V .a//. Let W.b/c D @XnW.b/. Set U1 D U \ W.b/ and U2 D
U\W.b/c . Observe thatU1\W.b/c D ¿ D U2\W.b/. It is easy to see that we can
extendU1 andU2 toX by Cx.U1/ and Cx.U2/ such that Cx.U / D Cx.U1/tCx.U2/

since U D U1 t U2. We have:

hMn
x.�Cx.U //�V ; �W i D hM

n
x.�Cx.U1//�V ; �W i C hM

n
x.�Cx.U2//�V ; �W i

� hMn
x.�Cx.U1//�V ; 1@X i C hM

n
x.�Cx.U2//1@X ; �W i:

Applying Lemma 5.4 to the second term and Lemma 5.5 to the first term of the right
hand side inequality above, we obtain:

lim sup
n!C1

hMn
x.�Cx.U //�V ; �W i

� lim sup
n!C1

c�;F e���;F n
X


2Cn.x/

D
�1x.�Cx.U1//D
x.�Cx.V.a///:
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Then, since �Fx .@U1/ D 0 D �Fx .@V .a//, Corollary 2.8 leads to

lim sup
n!C1

hMn
x.�Cx.U //�V ; �W i � �

F
x .U \W.b//�

F
x .V .a//:

Because the above inequality holds for all but at most countably many values of a
and b, by letting them go toC1 we obtain the required inequality.

Proof of Proposition 5.3. By Lemma 5.6 it is sufficient to prove that

lim inf
n!C1

hMn
x.�Cx.U //�V ; �W i D �

F
x .U \W /�

F
x .V /:

If B is a Borel subset of @X , we set B0 D B and B1 D @XnB . We have

hMn
x.1X /1@X ; 1@X i D hM

n
x.�Cx.U 0/

C �Cx.U 1/
/�V 0 C �V 1 ; �W 0 C �W 1i

D

X
i;j;k

hMn
x.�Cx.U i /

/�V j ; �W k i

D hMn
x.�Cx.U //�V ; �W i C

X
i;j;k¤.0;0;0/

hMn
x.�Cx.U i /

/�V j ; �W k i:

Since lim infn!C1hMn
x.1X /1@X ; 1@X i D limn!C1hMn

x.1X /1@X ; 1@X i D k�Fx k2
we have:

k�Fx k
2
� lim inf
n!C1

hMn
x.�Cx.U //�V ; �W i C

X
i;j;k¤.0;0;0/

lim sup
n!C1

hMn
x.�Cx.U i /

/�V j ; �W k i

� lim sup
n!C1

hMn
x.�Cx.U //�V ; �W i C

X
i;j;k¤.0;0;0/

lim sup
n!C1

hMn
x.�Cx.U i /

/�V j ; �W k i

�

X
i;j;k

�Fx .U
i
\W k/�Fx .V

j /

D k�Fx k
2;

where the last inequality comes from Lemma 5.6. Hence the inequalities of the above
computation are equalities, so

lim inf
n!C1

hMn
x.�Cx.U //�V ; �W i D �

F
x .U \W /�

F
x .V /

D lim sup
n!C1

hMn
x.�Cx.U //�V ; �W i

and the proof is done.
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6. Conclusion

6.1. Standard facts about Borel subsets of measure zero frontier. Recall two
standard facts about measure theory:
Lemma 6.1. Assume that .Z; d; �/ is a metric measure space. Then the � -algebra
generated by the Borel subsets with measure zero frontier generates the Borel
� -algebra.

Let �A be the characteristic function of a Borel subset A of @X .
Lemma 6.2. Assume that .Z; d; �/ is a metric measure space such that � is a
finite Borel measure. Then the closure of the subspace spanned by the characteristic
functions of Borel subsets having zero measure frontier is

Spanf�Aj�.@A/ D 0g
L2

D L2.Z;�/:

6.2. Proofs.

Proof of Theorem 1.3. Let �F be a �-invariant Gibbs conformal density of dimen-
sion ��;F with eF a symmetric potential function and � convex cocompact. Let x be
in the CH.ƒ�/ and consider �x associated with �Fx . There are two steps.

Step 1: .Mn
x/n�N is uniformly bounded. Note that the norm of operators of Mn

x

is less or equal than the norm of Mn
x.1X /. Recall that

Mn
x.1X / D T

n
x

where T nx is the sequence of operators defined in (4.4). Proposition 4.7 completes
the first step.

Step 2:Computation of the limit of .Mn
x/n2N� . As in [10] and in [15], the sequence

.Mn
x/n2N� has actually one accumulation point that we denote by M1x . We shall

compute it:
Since we assume that the Gibbs measure is mixing it follows from Proposition 5.3

and from the definition (1.9) ofMx that for all Borel subsetsU; V;W � @X satisfying
�Fx .@U / D �

F
x .@V / D �

F
x .@W / D 0 we have

hM1x .�Cx.U //�V ; �W i D �
F
x .U \W /�

F
x .V / D hMx.�Cx.U //�V ; �W i:

Observe also that the above equality holds for all balls of the spaceX instead ofCx.U /
and everything is null in this case. Since fCx.U /jU � @X such that �Fx .@U / D 0g

together with the balls of X generate the Borel � -algebra of X and since the equality
holds for all Borel subsets having zero measure boundary Lemma 6.2 completes the
proof.
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Proof of Corollary 1.4. Observe that Mx.1X / is the orthogonal projection onto the
space of constant functions and apply the definition of weak� convergence to the
triple .1X ; �; �/ for �; � 2 L2.@X; �Fx /.

Proof of Corollary 1.5. Since .��Fx /x2X are unitarily equivalent, it suffices to prove
irreducibility for some ��Fx with x in X . We pick x in CH.ƒ�/. Since eF is
cohomologuous to a symmetric potential by Lemma 2.6 we can assume that eF
itself is symmetric. Therefore Theorem 1.3 shows that the vector 1@X is cyclic for
the representation ��Fx by applying the weak� convergence to the triple .f; 1@X ; �/.
Moreover, Corollary 1.4 shows that the orthogonal projection onto the space of
constant functions is in the von Neumann algebra associated with ��Fx . Thus, a
classical argument [29, Lemma 6.1] completes the proof.

Before giving the proof of Theorem 1.7 we say that an operator T 2 B.H /,
where H D L2.X;m/ is a Hilbert space for some measure space .X;m/, is a
positive operator if it preserves HC the cone of positive functions. For example,
any quasi-regular representation is a positive operator as well as the operators we
consider in (4.4).

Proof of Theorem 1.7. The implications: .2/ ) .3/ ) .4/ ) .1/ follow from
Proposition 2.5. We only have to prove .1/ ) .2/. We follow a standard method,
see for example [29, Lemma 7.3]:

Let �F WD ��Fx and �G WD ��Gx be equivalent unitary representations associated
with �Fx and �Gx , with eF and eG two symmetric potentials. There exists U a unitary
operator from L2.@X; �Fx / to L2.@X; �Gx / satisfying

U�F D �GU:

The map
ˆ W T 2 W ��G .�/ 7! U �T U 2 W ��F .�/

is a spatial isomorphism of von Neumann algebras. It follows from the irreducibility
of these representations (Corollary 1.5) that the von Neumann algebras

W ��F .�/ D B.L2.@X; �Fx // and W ��G .�/ D B.L2.@X; �Gx //:

Consider now the maximal abelian von Neumann algebras

L1.@X; �F / � B.L2.@X; �Fx // and L1.@X; �G/ � B.L2.@X; �Gx //

acting on L2 by multiplication. Now observe that the set of projections

fp 2 B.L2.@X; �Fx // such that p and 1 � p are orthogonal positive projectionsg

is equal to the set
f�B where B is a Borel subset of @Xg:
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Since the isomorphism ˆ preserves the cone of positive operators and since
L1.@X; �F / is generated by its projections �B with B Borel subsets, the
automorphism ˆ restricts to an algebra isomorphism from

ˆ W L1.@X; �G/! L1.@X; �F /:

It is well known that there exists' W .@X; �F /! .@X; �G/ ameasure class preserving
Borel isomorphism such that

ˆ.f / D f ı '

for all f 2 L1.@X; �G/. Therefore �G and �F are in the same class.
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