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Plane algebraic curves of arbitrary genus
via Heegaard Floer homology
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Abstract. Suppose C is a singular curve in CP 2 and it is topologically an embedded surface
of genus g; such curves are called cuspidal. The singularities of C are cones on knots Ki . We
apply Heegaard Floer theory to find new constraints on the sets of knots fKi g that can arise
as the links of singularities of cuspidal curves. We combine algebro-geometric constraints with
ours to solve the existence problem for curves with genus one, d > 33, that possess exactly
one singularity which has exactly one Puiseux pair .pI q/. The realized triples .p; d; q/ are
expressed as successive even terms in the Fibonacci sequence.
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1. Singular curves

Let C be an irreducible algebraic curve in CP 2, defined as the zero set of a homo-
geneous polynomial f of degree d . Such a curve is called cuspidal if the singular
points of C are all unibranched; that is, the singular points are isolated and the link
of each singularity is a knot in S3 (such knots are often called algebraic knots).
Cuspidal curves form a natural family of algebraic curves that are topologically
embedded surfaces.

The theory of cuspidal curves of higher genus has not drawn as much attention
as the case of rational cuspidal curves, those of topological genus zero. One of the
inherent difficulties in the higher genus setting is that the complement of a curve is not
a rational homology ball (in the language of algebraic geometry, a Q–acyclic surface,
see [12]). The effect of this is that one of the main tools in studying rational cuspidal
curves, namely the “semicontinuity of the spectrum,” which is a main ingredient of
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a classification result in [10], becomes considerably less restrictive if the genus is
greater than zero. Section 10 presents a more detailed discussion of these issues.
Notice, however, that in [20] the classification result of [10] was proved using only
the semigroup distribution property of [4,11].

The goal of this paper is to investigate the singularities of cuspidal curves. To state
the main results, we need some background. To each singular point one associates
the ı-invariant and the Milnor number �, which for unibranched singular points are
related by � D 2ı. By definition, ı is the 3-genus of the associated linking circleK.
The genus g of C and the ı-invariants, fıig, of the set of singular points, fzigniD1, are
related by the genus formula:

g.C / D
.d � 1/.d � 2/

2
�

nX
iD1

ıi :

Our goal is to find constraints on the possible sets of singularities beyond those
given by the genus formula. The basic idea is topological. We suppose that a curve
C � CP 2 with some collection of singularities exists. Let Y.C / denote the three-
manifold which arises as the boundary of a closed regular neighborhoodN.C/ of C .
The homeomorphism type of this three-manifold depends only on the degree, genus,
and the links of the singularities of C . The complement CP 2 � Int.N.C // is a
smooth four-manifold with particularly simple algebraic topology; in particular, its
intersection form is identically zero. To show that C cannot exist, then, it suffices
to show that Y.C / cannot bound a four-manifold with trivial intersection form. For
this, we use invariants derived from the Heegaard Floer homology of Y.C / [29].
These invariants are a generalization of the influential “correction terms” associated
to rational homology three-spheres used in the study of homology cobordism groups
and knot concordance. Among the many important references, we mention just
one, [14], which informed our original work on this paper.

In the present situation, two particularly useful invariants derived from the
Heegaard Floer homology complexes associated to Y.C / present themselves, which
we refer to as the “bottom” and “top” correction terms. They depend on a choice
of Spincstructure whose Chern class is torsion. The key feature of these invariants is
that their values bound the characteristic numbers of smooth negative semi-definite
four-manifolds bounded by Y.C /, where negative semi-definite means that the self-
intersection of any closed surface is non-positive. Notice that CP 2 � Int.N.C // is
negative semi-definite with either of its orientations.

One must have means to compute the correction terms. As a first step, we show
that Y.C / has a simple description as surgery on a knot in the connected sum of
copies of S1 � S2. With this, along with the fact that the links of the singularities
are all L-space knots [15] (in particular, their knot Floer homology complexes are
determined by their Alexander polynomials), the computation of the correction terms
becomes algorithmic by way of a surgery formula [30].
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Our main result, Theorem 1 can be seen as a higher genus generalization of [4,
Theorem 6.5], or as a proof of an analogue of [11, Conjecture 2]. Its statement
uses the notion of the semigroup of a singularity. This semigroup of Z�0 is defined
precisely in Section 7.1; in the special case that the link of the singularity is a
.p; q/-torus knot, the semigroup is generated by p and q. If we are given a finite
collection of semigroups S1; : : : ; Sn, we can define a function R W Z�0 ! Z�0 as
follows:

R.u/ D min
k1C���CknDu

ki�0

nX
iD1

#fSi \ Œ0; ki /g:

Note that if ki D 0 for some i , then the number of elements in fSi \ Œ0; ki /g is 0.
Theorem 1. Suppose C is a cuspidal curve of genus g and degree d in CP 2. Let
z1; : : : ; zn denote its singular points, S1; : : : ; Sn the corresponding semigroups, and
R the function defined above. Then for any j D 1; : : : ; d � 2 and any b D 0; : : : ; g,
we have

0 � R.jd � 2b C 1/ �
.j C 1/.j C 2/

2
C b � g: (1.1)

Unpacking the left inequality in (1.1) yields that for any j D 1; : : : ; d�2 and b D
0; : : : ; g, and for any non-negative k1; : : : ; kn such that k1C� � �Ckn D jd C1�2b

nX
iD1

#fSi \ Œ0; ki /g �
.j C 1/.j C 2/

2
� b: (1.2)

Inequality (1.2) depends on the genus g of the curve only through the possible
range b. Stated this way, (1.2) bears a strong resemblance to [11, Proposition 2];
in fact, the case b D 0 of (1.2) is exactly [11, Proposition 2], which was proved
using an elementary dimension counting argument for projective curves. Indeed, the
expression

Pn
iD1 #fSi \ Œ0; ki /g can be interpreted as a number of linear constraints

which is sufficient to ensure that an algebraic curve, viewed as an element in a vector
space of homogenous polynomials, intersects C at zi with multiplicity ki . This
interpretation leads directly to the left-hand inequality in the case b D 0. It would be
interesting to know if algebro-geometric techniques could be used to prove (1.2) for
any other values of b (the argument of [11] would need to be altered to incorporate
the genus) or, for that matter, if algebraic geometry could shed light on the right-hand
inequality in our theorem. Regardless, it is important to stress that while Theorem 1
is stated for algebraic curves, our techniques lie in the realm of smooth topology; that
is, our inequalities are satisfied for C1 maps f W C ,! CP 2 of surfaces which are
topological embeddings, and for which there are a finite collection of points zi 2 C
satisfying df .zi / D 0 near which f appears holomorphic (that is, within local
charts). It is also worth pointing out that our result can be generalized to surfaces in
any smooth 4-manifold with the rational homology of CP 2. In particular, there are
direct analogues of Theorem 1 which restrict the cuspidal curves in fake projective
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planes (slight care is needed to account for the image of the inclusion map on the first
homology of C ); for a description of the 50 distinct complex algebraic surfaces with
the same Betti numbers as CP 2, see [8,24,34]).

Theorem 1 appears to be a useful tool for studying cuspidal curves and can
effectively obstruct many configurations of singularities from arising on curves of
fixed genus and degree (we give some examples in Section 8). Combining Theorem 1
with tools from algebraic geometry yields even better results. For instance, we can
classify singularities of simple form that can occur on a genus one curves possessing
a single singularity. From the perspective of algebraic geometry, the theorem is
most naturally stated in terms of Puiseux pairs; we note that a singularity has one
Puiseux pair .p; q/ precisely when its link is a .p; q/-torus knot (or, equivalently, it
is equisingular to zp C wq D 0). Here p and q are positive, coprime integers.

Theorem2. Suppose thatC is a cuspidal curve of degreed > 33, genus 1, possessing
a single singularity with one Puiseux pair .p; q/. Then there exists j > 0 such that
d D �4j and .p; q/ D .�4j�2; �4jC2/, where �0; �1; : : : are the Fibonacci numbers
(normalized so �0 D 0, �1 D 1) .

In fact, the above is a simplified statement of Theorem 9.1, which additionally
provides a finite list of possible triples .p; qI d/with d � 33. The proof of this result
uses Theorem 1 in conjunction with a multiplicity bound, expressed in Theorem 9.9.
The latter bounds from above the degree of a cuspidal curve under consideration
by a linear function of the multiplicity of its singular point (here, the multiplicity is
the minimum of p and q). The multiplicity bound, in turn, comes from a general
bound on certain numerical invariants of the singular points, the so-called Orevkov
M -numbers. These numbers are derived from the cohomology of a minimal good
resolution of the singular points, and the bound which they satisfy is a consequence of
theBogomolov–Miyaoka–Yau inequality. Note that Theorem2 is only an obstruction:
it says nothing about whether the triples .�4j�2; �4jC2I�4j / are realized by algebraic
curves. As counterpoint, however, we can explicitly construct genus one curves of
degree �4j with one cusp and one Puiseux pair using a technique of Orevkov [26]:

Theorem 3 (Proposition 9.14 below; cf. [26, Theorem C]). For any j D 1; 2; : : :

there exists a curve of genus 1 and degree �4j having a unique singularity with one
Puiseux pair .�4j�2; �4jC2/.

One can also produce curves realizing some of the exceptional cases (all of which
satisfy d � 33) described in Theorem 9.1. Taken together, we solve the geography
problem for cuspidal curves with one singularity and one Puiseux pair (modulo a few
low degree cases where curves have yet to be constructed).

Computer experiments suggest that the only instances of Puiseux pairs .p; q/ and
degrees d that satisfy all the criteria from Theorem 1 but fail the BMY multiplicity
bound are those in the family .p; q/ D .a; 9a C 1/ and d D 3a. It would be
interesting to know whether these are indeed the only additional cases passing the
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criteria of Theorem 1, and whether they can be realized by embedded surfaces in
the C1 category.

In [2] Bodnár and Némethi restated [4, Theorem 6.5] in the language of lattice
homology. A natural question to ask is the following:
Question 4. Is there a reformulation of Theorem 1 in the language of lattice
homologies?

Acknowledgements. The authorswould like to thankKarolineMoe,András Némethi
and András Stipsicz for fruitful discussions. The authors are grateful to the referee
for providing valuable comments and for drawing their attention to the article of
Tono [36]. Similar results to those presented here have been obtained independently
by Józef Bodnár, Daniele Céloria, and Marco Golla; see [3].

2. Overview and Notation

LetN.C/ be a closed regular neighborhood ofC , having three-manifold boundary Y .
The complement of the interior of N.C/ in CP 2 is a smooth four-manifold X with
boundary�Y . In the next section we study the algebraic topology ofX . In particular,
we verify that the intersection form on H2.X/ is identically zero, and study the
restriction map H 2.X/! H 2.�Y /. Taken together, this information serves as the
topological input for the analytic obstructions we consider.

2.1. d-invariants. Heegaard Floer homology provides obstructions to a Spinc three-
manifold bounding a negative semi-definite Spinc four-manifold. These obstructions
are often referred to as d -invariants. To define them, recall that if s is a Spinc structure
onY , thenHeegaard Floer theory yields a chain complexCF1.Y; s/, freely generated
as a module over FŒU; U�1� (we use F D Z2 throughout). The complex is equipped
with a Z filtration, and the filtered homotopy type ofCF1.Y; s/ is an invariant of the
pair .Y; s/. In the case that s has torsion first Chern class, the complex has a grading
by rational numbers. Acting by U in the base ring lowers the filtration level by one
and the grading by two. See [31] for the definition of CF1.Y; s/ (as a relatively
Z-graded complex), and [29] for the definition of its absolute Q-grading.

The complex CF1.Y; s/ supports an action by H1.Y // Torsion which is well
defined up to filtered chain homotopy, and therefore the homology HF1.Y; s/
inherits an action by H1.Y // Torsion (in fact the action on homology extends to
the exterior algebra on H1.Y /=Torsion [31, Section 4.2.5]). Using this action, we
can define two associated groups,HF1.Y; s/b andHF1.Y; s/t; the “b” and “t” are
shorthand for “bottom” and “top.” To define them, one simply considers the kernel
and cokernel, respectively, of the H1.Y // Torsion action. In the case that Y is a
rational homology sphere, the action is zero, so that both groups equal HF1.Y; s/.
In the case that all triple cup products on H 1.Y / vanish (a necessary and sufficient
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condition that HF1.Y / be “standard” [19]) HF1.Y; s/b and HF1.Y; s/t are
isomorphic to FŒU; U�1�.

There is a subcomplex CF �.Y; s/ D CF1.Y; s/fi<0g consisting of elements of
filtration level less than 0, and the corresponding homology groupHF �.Y; s/ inherits
an H1.Y // Torsion action. Thus there are groups HF �.Y; s/b and HF �.Y; s/t and
homomorphisms induced by inclusion: HF �.Y; s/� ! HF1.Y; s/�, where � D b
or t. These top and bottom complexes were first defined in [29]. One useful reference
is [33]. Since then a general theory has been developed in [18]. Using these
complexes, invariants can be defined as follows.
Definition 2.1. The top and bottom d -invariants of the pair .Y; s/, denoted db.Y; s/
and dt.Y; s/, are defined by the property that .d�.Y; s/ � 2/ is the maximal grading
among all elements in HF �.Y; s/� that map nontrivially into HF1.Y; s/�, where
� D b or t.

The analysis of the restriction map H 2.X/ ! H 2.Y / in the next section
determines the Spinc structures on Y whose d -invariants we must compute
(to ultimately obstruct the existence of X ). To enumerate these Spinc structures,
we will use the following notation.
Definition 2.2. Suppose q is a positive integer. Define Sq to be the set of numbers

�.q � 1/=2;�.q � 1/=2C 1; : : : ; .q � 1/=2:

So, for example,S5Df�2;�1; 0; 1; 2g andS6Df�5=2;�3=2;�1=2; 1=2; 3=2; 5=2g.
The following theorem is a restatement of a Theorem 4.2, proved in Section 4. It is a
consequence of the fact that X D CP 2 � Int.N.C // is negative semi-definite with
either orientation, together with the fact that the d -invariants of the boundary of such
a four-manifold are bounded by a function determined by its intersection form.
Theorem 2.3. Suppose that C is a cuspidal curve in CP 2 with Y D @N.C /. Then
there is an enumeration of torsion Spinc structures on Y , fsmg, by integers in the
range b�d

2C1
2
c � m � bd

2�1
2
c. With respect to this enumeration, for all k 2 Sd ,

the following inequalities are satisfied.

db.Y; sdk/ � �g

and dt.Y; sdk/ � g:

In order to compute the invariants db.Y; s/ and dt.Y; s/ we need to understand
the geometry of Y . Perhaps the most elegant description of Y is as a graph manifold
obtained by splicing the circle bundle over the surface of genus g.C / with Euler
number d2 to the complements of the links of the singularities of C . For the
purposes of computing its Floer homology, however, it is more useful to have a
description of Y as obtained by d2 surgery on a knot KC in Y2g WD #2g S1 � S2.
We provide such a description in Theorem 3.1. Indeed, KC can be described as the
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connected sum B#K1#K2# � � � #Kn, where B � Y2g is a simple knot which depends
only on the genus of C , and Ki � S3, i D 1; : : : ; n are the links of the singular
points of C .

2.2. Computing d-invariants. Let K be a null-homologous knot in a three-mani-
foldM and letMk.K/ denote the manifold constructed by k surgery onK. For each
Spinc structure s, the complex CF1.Mk.K/; s/ is determined by a Z˚ Z–filtered
chain complex CFK1.M;K; t/ called the knot Floer homology chain complex,
associated to K and some Spinc structure t onM . In general, the “surgery formula”
relating the knot Floer complex to the complexes of the surgered manifolds can be
rather complicated. For the manifolds arising in this article, however, it will simplify
considerably due to the fact that the surgery coefficient is large with respect to the
genus of the knot. Indeed, for our purposes it will suffice to understand the homology
of subcomplexes of a single doubly filtered chain complex CFK1.Y2g ; KC ; s0/
associated to KC and the unique Spinc structure on #2g S1 � S2 having trivial first
Chern class.

A key to efficiently understanding this latter complex is that the knots Ki that
occur as links of singularities are so-called L-space knots. For such knots the
complexes CFK1.S3; Ki / are determined by the Alexander polynomials, �Ki

.t/.
Moreover, knot Floer complexes obey a Künneth principle under connected sums:
CFK1.M#N;K#J / ' CFK1.M;K/˝CFK1.N; J /; see [30, Section 7]. Using
this, and the relation .Y2g ; KC / D .Y2g ; B/#.S3; K1/# � � � #.S3; Kn/ established in
Theorem 3.1 below, we have

CFK1.Y2g ; KC / ' CFK
1.Y2g ; B/˝

n
iD1 CFK

1.S3; Ki /;

and CFK1.Y2g ; B/ has been fully described [30, Proposition 9.2]. Making
the connections between these complexes, the Alexander polynomials, and the
d -invariants, leads to the following result. Details are presented in Section 6.
Theorem 2.4. There exist invariants 
m determined by the Alexander polynomi-
als �Ki

.t/ with the following property. If b�d
2C1
2
c � m � bd

2�1
2
c, then

db.Y; sm/ D
.q � 2m/2 � q

4q
C g � 2 max

a;b�0
aCbDg

f
mCa�b C ag

and

dt .Y; sm/ D
.q � 2m/2 � q

4q
C g � 2 min

a;b�0
aCbDg

f
mCa�b C ag:

The Alexander polynomial of an algebraic knot can be interpreted in terms of
the semigroup of the associated singularity. Transferring this interpretation to the
invariants 
m and combining it with Theorem 2.3 and some algebraic manipulation
yields Theorem 1.
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3. Properties of a neighborhood of C , its boundary, and its complement

We continue to let N.C/ denote a closed regular neighborhood of C . Let Y D
@N.C /, a closed oriented three-manifold. The complement of Int(N.C/) in CP 2 is
a smooth four-manifold X with boundary �Y . In this section we provide a surgery
description of Y and homological properties of the pair .X;�Y /.

3.1. A geometric description of N.C / and Y . To describe N.C/, we begin with
a surface of genus g having a single boundary component. We denote this surface
by Fg . The product Fg �D2 has boundary #2g S1 � S2. Contained in its boundary
is the knot B D @Fg � f0g. Notice that B is null homologous in #2g S1 � S2.

Theorem 3.1. If a cuspidal curve C of degree d has singular points with links Ki ,
then N.C/ is built by adding a two handle to Fg �D2 along the knot B #i Ki with
framing d2. In particular, @N.C / D Y is built from #2g S1 � S2 by performing d2
surgery on B #i Ki .

Proof. The neighborhood N.C/ is constructed in steps as follows. Let Di denote
a ball neighborhood of the singular point zi . Joining D1 to each Di , i > 1 with
a one-handle, each a tubular neighborhood of an arc on C , yields a four-ball D.
The boundary of D is a three-sphere S with S \ C D #iKi . The complementary
region C �D is diffeomorphic to the surface Fg with neighborhoodD0 Š Fg �D2

having the knot B in its boundary. Thus, we have N.C/ D D [D0, with the union
identifying a neighborhood of #iKi with a neighborhood of B .

The union D [D0 can be formed in two steps. First, neighborhoods of a point
on #iKi and a point onB are identified. SinceD is a ball, this produces amanifoldD00
diffeomorphic to D0. The union of the two knots becomes B#iKi . The remainder
of the identification is completed by adding a 2–handle to D00 along B#iKi . The
framing is d2, that is, the self-intersection of C .

Corollary 3.2. H1.Y / D Zd2 ˚ Z2g andH2.Y / D Z2g .

3.2. The complementX D CP2
�Int.N.C //. The following theorem summarizes

elementary homological calculations.

Theorem 3.3.

(1) H1.X/ Š Zd andH2.X/ Š Z2g .

(2) The image of the map Tors.H 2.X//! H 2.Y / is isomorphic to Zd � Zd2 .

(3) The mapH 2.X// Torsion! H 2.Y // Torsion is an isomorphism.

(4) Image.H 2.CP 2/! H 2.X// D Tors.H 2.X//.

(5) The intersection form onH2.X/ is identically 0.
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Proof. The map Z Š H2.C / ! H2.CP 2/ Š Z is given by multiplication by d .
Using this, the long exact sequence of the pair .CP 2; C / and excision yields
H1.X; Y / D 0,H2.X; Y / Š Zd ˚ Z2g andH3.X; Y / D 0.

Applying Poincaré duality and the universal coefficient theorem yields:H1.X/ Š
Zd ,H2.X/ Š Z2g , andH3.X/ D 0. In particular, we have part (1) of the theorem.

The long exact sequence of the pair .X; Y / includes the exact sequence

// H3.X; Y /
@3 // H2.Y /

�2 // H2.X/
p2 // H2.X; Y /

@2 //
@2 // H1.Y /

�1 // H1.X/
p1 // H1.X; Y / // 0

which can be written as

0! Z2g
�2
�! Z2g

p2
�! Zd ˚ Z2g

@2
�! Zd2 ˚ Z2g

�1
�! Zd ! 0:

We next observe that the map @2 must be nonzero on the Zd summand. If not,
there would be an exact sequence

Z2g ! Zd2 ˚ Z2g ! Zd ! 0:

Clearly this is impossible: the image of the initial Z2g would have to be of rank 2g.
This implies that no element in the image of Z2g is torsion. The quotient would then
contain elements of order d2. It immediately follows that the map p2 is the 0 map.

Observe also that �1 must be nontrivial on the Zd2 summand: there is no element
in Zd ˚ Z2g that @2 could map to an element of order d2. Given an element of
infinite order in Zd2 ˚ Z2g , by adding an element from Zd2 to it we can assume it
is in the kernel of �1, and thus in the image of @2.

By duality, the mapH 2.X/! H 2.Y / corresponds to the map @2W Zd ˚Z2g !
Zd2˚Z2g , which we have now seen is nontrivial on torsion and injective on the free
summand. Statements (2) and (3) follow quickly.

To prove (4), we consider a portion of the long exact sequence for the pair
.CP 2; X/:

H 2.CP 2/
�1
�! H 2.X/

�2
�! H 3.CP 2; X/:

We have H 2.CP 2/ Š Z and H 2.X/ Š H2.X; Y / Š Zd ˚ Z2g . For the last
term we have by excision and Lefschetz duality, H 3.CP 2; X/ Š H 3.N.C /; Y / Š

H1.N.C // Š H1.C / Š Z2g . Thus, our sequence becomes

Z
�1
�! Zd ˚ Z2g

�2
�! Z2g :

Clearly �2 vanishes on the Zd summand, so this summand must be contained in the
image of �1. Since the domain of �1 is of rank one, the Zd summand is precisely the
image of �1. The proof of (4) is complete.

For statement (5), we recall that the intersection form on H2.X/ is given by
a composition H2.X/ ! H2.X; Y / ! H 2.X/ ! Hom.H2.X/;Z/. But the
map H2.X/ ! H2.X; Y / (previously called p2) has already been shown to equal
zero.
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4. Bounds on the d-invariant

Bounds on the d -invariants of Y depend on the relationship between Spinc structures
on Y and those on the complementary space X . We begin with an examination of
this relationship and then apply results of [29] to attain our desired bounds on the
d -invariants.

4.1. Spinc structures on X and Y .
Theorem 4.1. If C is a curve of degree d and X D CP 2 � Int.N.C //, then the
torsion Spinc structure sm on @X extends to X if m D kd for k 2 Sd . Here sm
is the Spinc structure on @X which extends to a structure tm on N.C/ satisfying
hc1.tm/; ŒC �i C d

2 D 2m.

Proof. This result is proved in [5] in the case that C is rational. Here is an outline of
the argument, identifying why it generalizes to the nonrational case.

There is a Spinc structure t on CP 2 having c1.t/ the generator of H 2.CP 2/.
Denote its restriction to X by t0. By Theorem 3.3, c1.t0/ is a torsion class inH 2.X/

mapping to an element of order d inH 2.Y /. (In the rational case,H 2.Y / is torsion,
so the work of Theorem 3.3 was not required.)

We have seen that H 2.X/ D Z2g ˚ Zd . Since this cohomology group acts
effectively on the set of Spinc structures, the orbit of t0 under the action of the torsion
in H 2.X/ is a set of Spinc structures on X with d elements, all that restrict to give
torsion Spinc structures on Y . The map Tors(H 2.X// ! H 2.Y / is injective, so
these structures are distinct.

The enumeration of Spinc structures as the sm is described in more detail in [5].

4.2. Bounds. The following result provides bounds on the bottomand topd -invariants.

Theorem 4.2. If the complex curve C has degree d and topological genus g, then
for k 2 Sd ,

db.Y; sdk/ � �g

and dt.Y; sdk/ � g:

Proof. This is an application of [29, Proposition 9.15], which says that if W is
a negative semi-definite four-manifold for which the restriction map H 1.W / !

H 1.@W / is trivial, then we have the inequality:

c1.s/
2
C b�2 .W / � 4db.@W; sj@W /C 2b1.@W /;

where b�2 .W / is the dimension of the maximal subspace of H2.W / on which the
intersection form is non-degenerate and b1.@W / is the rank of the first cohomology.
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We apply this proposition to �X . The restriction map H 1.�X/ ! H 1.Y / is
trivial since H 1.X/ D 0 and, just as for X , the intersection form on �X is zero.
Hence �X is negative semi-definite. Now triviality of the intersection form implies
b�2 .�X/ D 0 and c1.s/2 D 0 for any s 2 Spinc.�X/. Note that c1.s/2 is defined by
lifting a multiple of c1.s/ 2 H 2.�X/ to H 2.�X; Y / where the intersection form is
defined. Such a lift exists only when c1.sjY / is torsion, but the Spinc structures we
consider on Y all satisfy this assumption. Thus the left hand side of the inequality is
zero for all s 2 Spinc.�X/. Since b1.Y / D 2g, the inequality becomes:

0 � 4db.Y; sjY /C 2.2g/:

This says that db.Y; s/ � �g for any Spinc structure on Y that extends to �X . But
Theorem 4.1 determined exactly which Spinc structures on Y extend: they are those
of the form sdk where k 2 Sd . This proves the first inequality of the theorem.

To prove the second inequality, we apply the same analysis to the pair .X;�Y /,
arriving at

db.�Y; s/ � �g:

Now it suffices to show that db.�Y; s/ D �dt.Y; s/. But this follows easily
by observing that the filtration and grading reversing duality isomorphism [32,
Proposition 2.5]:

CF1.�Y; s/ ' .CF1.Y; s//�

is compatible with the H1.Y // Torsion action, in the sense that if 
 2 H1 acts
on CF1.Y / by the chain endomorphism a
 , then 
 acts on CF1.�Y / by the
adjoint a�
 . Thus the kernel of the H1 action on HF1.�Y / is identified, by a
filtration and grading reversing isomorphism, with the cokernel of the action on
HF1.Y; s/. The stated relationship between db and dt follows immediately.

5. The Heegaard Floer homology of Y2g D #2gS 1 � S 2

Given that Y is built as surgery on a knot in Y2g , we begin by reviewing the structure
of the complex CF1.Y2g/. In particular, in this section we describe an explicit
basis for this complex and its homology, and describe theH1.Y2g// Torsion module
structure in terms of this basis. We then describe the “top” and “bottom” Floer
homology groups. This description will be used in the next section in conjunction
with the knot Floer homology filtration of KC to compute the Floer homology of Y .

5.1. Case of Y1. For Y1 D S1 � S2 and Spinc structure s0 with first Chern class
c1.s0/ D 0, we have CF1.Y1; s0/ ' FŒU; U�1�˚ FŒU; U�1�, where the element 1
has grading 1=2 in the first summand and�1=2 in the second. The boundary operator
on the complex is trivial, and thus we can identify CF1.Y1/ with HF1.Y1/.
Let x� 2 H1.S1 � S2/ Š Z be a generator. Then x� acts FŒU; U�1�-equivariantly
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on HF1.Y1/, taking the element 1 in the first FŒU; U�1� to the element 1 in the
second. Thus we can identify

CF1.Y1/ ' ƒ
�.H 1.Y1//˝ FŒU; U�1�;

where classes in H1.Y1// Torsion act, via the duality pairing between H1/ Torsion
andH 1, on elements in the exterior algebra ƒ�.H 1.Y1//.

5.2. From Y1 to Yn. There is a Künneth principle for the Floer homology of
connected sums of three-manifolds [32, Theorem 6.2], stating that:

CF1.M#N; sM#sN / ' CF1.M; sM /˝FŒU;U�1� CF
1.N; sN /: (5.1)

This homotopy equivalence respects the ƒ�.H1/ Torsion/ module structure, in the
following sense: there is a natural isomorphism

H1.M#N/ Š H1.M/˚H1.N /

withwhich a class
 2H1.M#N/ can be identifiedwith
M˚
N 2H1.M/˚H1.N /.
Then 
 acts on CF1.M#N/ as 
M ˝ IdN C IdM ˝
N under the homotopy
equivalence (5.1).

Using this, together with our description of the Floer homology of Y1 above,
allows us to conclude that

CF1.Yn/ ' ƒ
�.H 1.Yn//˝ FŒU; U�1�

as ƒ�.H1/ Torsion/ ˝ FŒU; U�1�–modules, where H1/ Torsion classes act by the
duality pairing, as above.

5.3. A useful change of basis for Y2. While the module structure on CF1.Yn/
is completely described above, it will be useful to have an alternate description for
CF1.Y2g/ which will be compatible with the filtration of CF1.Y2g/ induced by
the knot B and, ultimately, KC . Our description is determined by a change of basis
for the Heegaard Floer homology of Y2 D Y1#Y1, and the Künneth principle above.
Thus we begin with Y2. Denote the generators of the first cohomology of the two
connect summands of Y2 D Y1#Y1 by x and y. Thus, ƒ�H 1.Y2/ has basis

f1; x; y; x ^ yg:

We denote the hom-dual generators ofH1.Y2/ as x�; y�. We have the following
alternative description [30, Theorem 9.3] of the action of H1.Y2/ on the chain
complex; recall that the action of H1.Y2/ commutes with the action of U . We will
call the complex equipped with this action the knot adapted complex.
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Theorem 5.1. CF1.Y2; s0/'ƒ�H 1.Y2/˝FŒU; U�1� as amodule overFŒU; U�1�.
The rational gradings of 1; x; y; and x^y are�1; 0; 0, and 1, respectively. All these
elements are at filtration level 0. The FŒU; U�1�-equivariant action of H1.Y2/ on
CF1.Y2; s0/ is given by:

� x�.x ^ y/ D y

� x�.x/ D 1C U.x ^ y/

� x�.y/ D 0

� x�.1/ D Uy.
The action of y� is analogous; see Figure 1 for a graphical presentation of the action
of x�.

Proof. As a graded module over FŒU; U�1�, the above description is clearly
isomorphic to our previous description. To obtain the non-standard (i.e. not induced
by the hom-pairing) action of H1/ Torsion, we perform the (equivariant, filtered)
change of basis

1! 1C Ux ^ y; x ! x; y ! y; x ^ y ! x ^ y:

�3

�3

�2

�2

�1

�1

0

0

1

1

2

2

x

y

1

x ^ y

Ux

Uy

U.1/

U.x ^ y/

U�1.1/

U�1.x ^ y/

U�1x

U�1y

U�2.1/

U 2.x ^ y/

Figure 1. The action of x� on the CF1.Y2; s0/. The horizontal coordinate shows the filtration
level, the vertical coordinate shows the grading.
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Remark 5.2. Recall that the action of U lowers filtration levels by one and gradings
by two. Thus, the grading of U i .x ^ y/ is 1 � 2i . The gradings of U ix and U iy
are �2i . The grading of U i .1/ is �1 � 2i .

5.4. Case ofY2g . Applying theKünneth principle to the knot adapted complex gives
rise to a model for CF1.Y2g/ which we will use throughout the article. In terms
of this complex, we will now compute the “bottom” and “top” knot Floer homology
groups. That is, we will find all possible chains in the knot adapted complex which
are homologous to generators for these groups (both of which are a priori isomorphic
to FŒU; U�1�). First, we recall the following definition.

Definition 5.3. Suppose an abelian group G acts on a second abelian groupH ; that
is, there is a homomorphism G ! Hom.H;H/. We define Hbottom to be the kernel
of the action; that is, all elements h 2 H such that g.h/ D 0 for all g 2 G. We
defineHtop to be the cokernel of the action; that is, the quotient ofH by the subgroup
generated by elements of the form g.h/ for some g 2 G and h 2 H . Usually we will
abbreviate “bottom” and “top” by “b” and “t,” respectively.

We establish some notation for elements in the complex CF1.Y2g/:

Definition 5.4. Denote the generators of H 1.Y2g/ D H 1.#g Y2/ in their natural
order by fx1; y1; x2; : : : ; ygg, and let wi D xi ^ yi . Let A denote the set of subsets
of f1; 2; : : : ; gg. For each ˛ 2 A we set w˛ D ^i2˛wi . For ˛ 2 A we let n.˛/
denote the number of elements in ˛.

Theorem 5.5. CF1.Y2g ; s0/ is isomorphic to the FŒU; U�1�moduleƒ�H 1.Y2g/˝

FŒU; U�1�. The bottom homology is given by

HF1.Y2g ; s0/b D F
�
U;U�1

�"X
˛2A

U n.˛/�gw˛

#
:

Furthermore, the top homology HF1.Y2g ; s0/t is generated by any of the
U n.˛/�gw˛ , and any two such U n.˛/�gw˛ are equivalent in the quotient. These
elements are all of grading level g.

In this statement, the brackets around the summation indicate the homology class
represented by the cycle.

Proof. For Y2, the statement is easily verified from our description of the knot
adapted complex given in Theorem 5.1. The general case follows immediately from
the Künneth principle for connected sums.

Example 5.6. The groupHF1b .Y4; s0/ is generated over FŒU; U�1� by

.x1 ^ y1 ^ x2 ^ y2/C U
�1.x1 ^ y1/C U

�1.x2 ^ y2/C U
�2.1/:
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The groupHF1t .Y2g ; s0/ is generated over FŒU; U�1� by either

.x1 ^ y1 ^ x2 ^ y2/; U
�1.x1 ^ y1/; U

�1.x2 ^ y2/ or U�2.1/;

which are equal in the quotient group.

6. Knot Floer homology and d-invariants of surgery

6.1. Description of CFK1.Y2g;B/. A null homologous knot in a three-manifold
M induces a second filtration onCF1.M; s0/, called the knot filtration or Alexander
filtration. In our case we have the doubly filtered complex CFK1.Y2g ; B; s0/. This
complex was computed in [30] and is described as follows:
(1) As a graded, Z–filtered chain complex CFK1.Y2g ; B; s0/ Š CF1.Y2g ; s0/.
(2) The knot filtration of an element U i � �, with � 2 ƒk.H 1.Y2g// is given by
�g C k � i .

(3) TheH1.Y // Torsion action is given as in the knot adapted complex.
The following is immediate.

Theorem 6.1. Ifw˛ is a product of distinctwi (according to our labeling convention
from Definition 5.4) then w˛U g�n.˛/ 2 CFK1.Y2g ; B; s0/ has bifiltration level
.g�n.˛/; n.˛//, where the value of the second coordinate, n.˛/, represents the knot
filtration level.

6.2. Homology of .Y2g;B#K/. Given a knot K � S3, we can form the knot
B#K � Y2g . We will denote this knot byKC , since the case of primary interest will
be that arising from a cuspidal curve, wherebyK is given as the connected sum of the
links of the singular points. Much of what we say here, however, applies to a general
knot in S3. Like the Heegaard Floer complexes of closed three-manifolds, the knot
Floer complexes behave naturally with respect to connected sums, see [30, Section 7].
We have the following.
Theorem 6.2. CFK1.Y2g ; KC ; s0/ ' CFK1.K/ ˝ CFK1.Y2g ; B; s0/; where
the bifiltration is additive under tensors. Moreover, under this equivalence, a class

 2 H1.Y2g/ acts on the knot complex ofKC by Id˝ a
 where a
 is the action of 

on the complex for B .

Recall that H�.CFK1.K// Š FŒU; U�1�. From the previous theorem along
with Theorem 5.5 we have the following.
Theorem 6.3.
(a) We have HFK1.Y2g ; KC ; s0/b Š FŒU; U�1�. Furthermore the generators of

grading g are represented by sumsX
˛2A

a˛ ˝ U
n.˛/�gw˛;

where the a˛ are arbitrary cycles of grading 0 in CFK1.K/, each representing
a generator ofHFK1.K/.
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(b) Similarly, HFK1.Y2g ; KC ; s0/t Š FŒU; U�1�, where generators of grading g
are represented by elements of the form

a˛ ˝ U
n.˛/�gw˛:

Here a˛ is an arbitrary cycle of grading 0 in CFK1.K/ representing a
generator ofHFK1.K/.

6.3. Computing d-invariants of d2-surgery on .Y2g;KC /. We consider d2 sur-
gery on KC in Y2g . The resulting manifold, Y2g;d2.KC /, has H1.Y2g;d2.KC // Š

Z2g ˚ Zd2 . There are thus d2 torsion Spinc structures on Y2g;d2.KC /; these
come with a natural enumeration by integersm, fsmg�d2=2<m�d2=2, as given in [30,
Section 3.4] and described below. We now present a surgery formula describing the
Heegaard Floer homology of these surgered manifolds in terms of the knot Floer
complex of KC .

Recall, for a manifoldM with Spinc structure s we define

CF �.M; s/ D CF1.M; s/fi<0g;

the elements of filtration level less than 0. The homology of this complex is denoted
HF �.M; s/. There is a natural mapHF �.M; s/! HF1.M; s/.

Theorem 6.4 (see [30, Section 4]). For d2 � 2g.K/ C 2g � 1 and for �d2=2 <
m < d2=2, there is an isomorphism of pairs of FŒU � modules,�
CF1.Y2g;d2.KC /; sm/; CF

�.Y2g;d2.KC /; sm/
�

Š
�
CFK1.Y2g ; KC ; s0/; CFK

1.Y2g ; KC ; s0/fi<0;j<mg
�
Œs�:

The grading shift Œs� is given by

s D
.2m � n/2 � n

4n
:

If a class is at bi-filtration level .i; j / in CFK1.Y2g ; KC ; s0/ then it represents a
class at filtration level max.i; j �m/ in CFK1.Y2g;d2.KC /; sm/.

Remark 6.5. In [30, Remark 4.3] the bound given would be presented as d2 �
2g.KC / � 1. We used here the fact that g.KC / D g.K/ C g. Notice that for
the knots we are considering, g.K/C g D .d�1/.d�2/

2
. Thus, the inequality d2 �

2g.K/C 2g � 1 becomes d2 � .d � 1/.d � 2/ � 1, which holds for all d � 1.

Let C ! D be a map of graded FŒU � modules. We denote by 
.C ;D/ the
maximal grading of an element in C that maps nontrivially to D , if defined.

Our principal example is the following. For a manifoldM with Spinc structure s,
there is a natural mapHF �.M; s/! HF1.M; s/.
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Definition 6.6. ForM a rational homology sphere and s a Spinc structure, we define
d.M; s/ D 
.HF �.M; s/;HF1.M; s//C 2.
Remark 6.7. The d -invariant is often defined in terms of HFC.M; s/. The
equivalence with our definition is elementary.

For generalM , a similar definition applies to define bottom and top d -invariants.
Definition 6.8. For generalM and s a torsion Spinc structure, we define

db.M; s/ D 

�
HF �.M; s/b;HF

1.M; s/b
�
C 2

and dt.M; s/ D 

�
HF �.M; s/t;HF

1.M; s/t
�
C 2:

Note that while our definition makes sense for any manifold, it is not as clear what
the geometric meaning of dt and db are when the three-manifold has non-trivial triple
cup products.

For any knot K for which CFK1.K/ is well understood, Theorem 6.4 provides
sufficient information to compute db.Y2g;d2.KC // and dt.Y2g;d2.KC //. The result
is best described in terms of an auxiliary function.
Definition 6.9. Let T be a set of ordered pairs of integers. For any integer m we
define


m.T / D min
.i;j /2T

�
maxfi; j �mg

�
:

In brief, 
m measures the minimum diagonal distance from an element in T to the
lower left quadrant with top right vertex .0;m/. The following result is essentially a
corollary of Theorem 6.4.
Theorem 6.10. For the complex C D CFK1.K/, let T .C/ be the set of all
filtrations levels (ordered pairs) of cycles of grading 0 that represent generators of
HFK1.K/. For large surgery,

d
�
S3n .K/; sm

�
D �2
m

�
T .C/

�
C
�
.2m � n/2 � n

�
=4n:

Example 6.11.
(a) If K is a negative trefoil, then T D f.1; 1/g; if K is a positive trefoil, then

T D f.1; 0/; .0; 1/g.
(b) More generally, suppose that K is a positive L–space knot. Then the complex

CFK1.K/ is what is called a staircase complex, generated by so-called type A
elements of grading 0 and type B elements of grading one. The set T is the set
of all type A vertices of the staircase complex of K. Details are presented, for
instance, in [5].

(c) If K is a connected sum of L-space knots K1; : : : ; Kn and T1; : : : ; Tn are the
corresponding sets Ti D T .CFK1.Ki //, then T is a set of sums t1C � � � C tn,
where ti 2 Ti ; see also [5].

Items (b) and (c) of the above example are the most important in our applications.
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To state the corresponding result for the bottom and top d -invariants, we introduce
additional notation. For a set T of ordered pairs of integers, we let T fa; bg be the
same set shifted by .a; b/. Applying Theorem 6.3 we have the following.
Theorem 6.12. For the complex C D CFK1.K/, let T .C/ be the set of all
filtrations levels (ordered pairs) of cycles of grading 0 that represent generators of
HFK1.K/. Let n be a large integer.
(1) db

�
Y2g;n.KC /; sm

�
D �2 max

a;b�0
aCbDg

˚

m.T .C/fa; bg/

	
C g C s;

(2) dt
�
Y2g;n.KC /; sm

�
D �2 min

a;b�0
aCbDg

˚

m.T .C/fa; bg

	
C g C s;

where s D ..2m � n/2 � n/=4n.
An elementary calculation restates Theorem 6.12 in somewhat simpler terms,

using the same notation as in Theorem 6.12.
Theorem 6.13. For the complex C D CFK1.K/,
(1) db

�
Y2g;n.KC /; sm

�
D �2 max

a;b�0
aCbDg

˚

m�bCa.T .C//C a

	
C g C s;

(2) dt
�
Y2g;n.KC /; sm

�
D �2 min

a;b�0
aCbDg

˚

m�bCa.T .C//C a

	
C g C s;

where s D ..2m � n/2 � n/=4n.
Combining Theorems 4.2 and 6.13, we have the following.

Theorem 6.14. If C is a cuspidal curve of degree d , genus g, then for all k 2 Sd ,
and C D CFK1.K/,

db
�
Y2g;d2.KC /; skd

�
D �2 max

a;b�0
aCbDg

˚

kd�bCa.T .C//C a

	
C g C s � �g

and
dt
�
Y2g;d2.KC /; skd

�
D �2 min

a;b�0
aCbDg

˚

kd�bCa.T .C//C a

	
C g C s � g;

where s D .2kd�d2/2�d2

4d2 andK is the connected sum of the links of the singularities
of C .

7. Semigroups, Alexander polynomials, and the d-invariant

The computation of the obstructions to a set of knots occurring as the links of
singularities has been reduced to computing 
m.CFK1.K// for particular knotsK.
We will now summarize an interpretation of the value of 
m.K/ in terms of classical
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invariants of the singular points and in terms of the Alexander polynomial of K.
The material is presented in greater detail in [5]; further references include [16]
for a discussion of the Heegaard Floer theory and [38] for the relationship between
semigroups and Alexander polynomials.

7.1. Semigroup of a singular point. Suppose that z is a cuspidal singular point
of a curve C and B is a sufficiently small ball around z. There exists a local
parameterization  of C ; that is, a holomorphic map  .t/ D .x.t/; y.t// mapping
a neighborhood of 0 2 C bijectively to a neighborhood of z 2 C , with  .0/ D z.
For any holomorphic function F.x; y/ defined near z we define the order of the zero
of F at z to be the order of the zero of the analytic map t 7! F.x.t/; y.t// 2 C at 0.
Let S be the set integers which can be realized as the order for some F . Then S
is clearly a semigroup of Z�0, which we call the semigroup of the singular point.
The gap sequence, G WD Z�0 n S , has precisely �=2 elements; the largest is � � 1,
where � is the Milnor number.

The following two lemmas appear in Lemma 2.4 and a subsequent discussion
in [5]. Further detail can be found in [38].

Lemma 7.1. The Alexander polynomial of the link of a singular point can be written
as �K.t/ D 1 C .t � 1/

Pk
jD1 t

gj ; where g1; : : : ; gk is the gap sequence of the
semigroup of the singular point. In particular k D #G D �=2 D gk.K/.

If one expands the Alexander polynomial further, the following arises.

Lemma 7.2. If K is the link of an isolated singularity of a curve C and �K.t/ is
expanded as

�K.t/ D 1C .t � 1/g.K/C .t � 1/
2

��2X
jD0

kj t
j ;

then kj D #fm > j Wm 62 Sg.

Example 7.3. Consider the knot T .4; 7/. Its Alexander polynomial is

.t28 � 1/.t � 1/

.t3 � 1/.t7 � 1/
D 1 � t C t4 � t5 C t7 � t9 C t11 � t13 C t14 � t17 C t18

D 1C .t � 1/
�
t C t2 C t3 C t5 C t6 C t9 C t10 C t13 C t17

�
D 1C 9.t � 1/C .t � 1/2

�
9C 8t C 7t2 C 6t3 C 6t4

C 5t5 C 4t6 C 4t7 C 4t8 C 3t9 C 2t10 C 2t11

C 2t12 C t13 C t14 C t15 C t16
�
:

The semigroup is .0; 4; 7; 8; 11; 12; 14; 15; 16; 18; 19; 20; 21; 22; 23; : : : /. The gap
sequence is 1; 2; 3; 5; 6; 9; 10; 13; 17.
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Definition 7.4. For any finite increasing sequence of positive integers G, we define

IG.m/ D #fk 2 G [ Z<0W k � mg; (7.1)

where Z<0 is the set of the negative integers. We call IG the gap function, because
in most applications G will be a gap sequence, that is the complement of some
semigroup.

Notice that km D IG.mC 1/, where km is defined in Lemma 7.2.

7.2. Expressing 
m.K/ in terms of the semigroup. We now wish to restate
Theorem 6.14 in terms of the coefficients of the Alexander polynomial, properly
expanded. For the gap sequence for the knot Ki , denoted GKi

, let

IKi
.s/ D #fk � sW k 2 GKi

[ Z<0g:

Earlier we defined for a Heegaard Floer complex C D CFK1.K/ the set of
integer pairs T .C/ of filtration levels of cycles in C which represent generators of
HFK1.K/. By definition we have 
m.T .C// D min.i;j /2T .maxfi; j � mg/. We
have already seen that computing 
m is the main step in computing d -invariants of
manifolds built by surgery on K (or by surgery on K #B � Y2g ). We have the
following results.
Theorem 7.5 ([4, Proposition 4.6]). If the knot K is the link of a singularity on a
cuspidal curve, then 
m.K/ D IGK

.m C h/, where GK is the gap sequence of K
and h is its genus.

For two functions I; I 0WZ! Z bounded belowwe define the following operation:

I ˘ I 0.s/ D min
m2Z
fI.m/C I 0.s �m/g: (7.2)

Theorem 7.6 ([4, Theorem 5.6]). For K D #Ki with the Ki the links of the
singularities on a cuspidal curve, we have 
m.CFK1.K// D I.m C h/, where
I D I1 ˘ � � � ˘ In, and h is the genus of K.

7.3. Proof of Theorem 1. We need some preliminaries. For a semigroup S � Z�0
we introduce another function.

R.m/ WD # fS \ Œ0;m/g : (7.3)

The function R is closely related to I.m/ defined above, in fact in [5, Lemma 6.2] it
is proved that

R.m/ D m � hC I.m/;

where h D #.Z�0 nS/. If S is a semigroup of a (unibranched) singular point, then h
is the genus of the link of the singularity.
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Given two semigroups S1 and S2, we can consider two gap sequences G1, G2
and the corresponding gap functions I1 and I2. Then

R1 ˘R2 D m � hC I1 ˘ I2;

where h D #.Z�0 n S1/C #.Z�0 n S2/.
The proof of Theorem 1 is now a direct application of the above results. By

Theorem 3.1, the manifold Y is a surgery on B #K, where K is a connected sum
of the links of singular points of C . We use now Theorem 6.14 together with
Theorem 7.5 to see that for k 2 Sd we have

max
a;b�0;aCbDg

˚
I.kd � b C aC h/C a

	
�
s

2
� g

min
a;b�0;aCbDg

˚
I.kd � b C aC h/C a

	
�
s

2
� 0;

(7.4)

where

s D
.2kd � d2/2 � d2

4d2
D
.d � 2k � 1/.d � 2k C 1/

4

and h is the genus of the connected sum of links of singularities; that is

h D
.d � 1/.d � 2/

2
� g D 1C d

.d � 3/

2
� g:

Substituting a D g � b yields

kd � b C aC h D

�
k C

d � 3

2

�
d � 2b C 1:

We write j D k C d�3
2

and notice that k 2 Sd if and only if j D �1; : : : ; d � 2.
Then (7.4) takes the following form

0 � I.jd C 1 � 2b/C g � b �
s

2
� g; for all b D 0; : : : ; g:

Expressing s=2 in variables j and d yields .j�dC1/.j�dC2/
2

. Nowwe replace I byR.
After straightforward simplifications, we obtain

0 � R.jd C 1 � 2b/C b �
.j C 1/.j C 2/

2
� g:

Note that the cases j D �1; 0 are excluded in the statement of our theorem, as they
contain no information.
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8. Examples

Wewill present here several applications of the results of the previous sections, along
with detailed computations. More substantial applications in algebraic geometry will
be presented in Section 9 and especially in Section 9.4.

8.1. A degree 21, genus one example. Consider the case of d D 21. If a degree d
curve is of genus one and has a single singularity of type .p; q/, then one would have

.d � 1/.d � 2/

2
�
.p � 1/.q � 1/

2
D 1:

This simplifies to .p � 1/.q � 1/ D 378. There are eight relatively prime pairs
.p; q/ that satisfy this equation: .2; 379/, .3; 190/, .4; 127/, .7; 64/, .8; 55/, .10; 43/,
.15; 28/, and .19; 22/.

For each possibility, Theorem 1 provides 38 two-sided inequalities that must be
satisfied by the associated function R. (The value of j ranges from 1 to d � 2 and b
ranges from 0 to g D 1.) The first of these inequalities, with j D 1 and b D 0, is:

3 � R.22/ � 4:

The semigroup generated by f2; 379g contains 11 elements in the interval Œ0; 22/,
and thus R.22/ D 11 does not satisfy this inequality. Similarly, the semigroup
generated by f3; 190g contains eight elements in the interval Œ0; 22/, and thus
R.22/ D 8 does not satisfy the inequality. The semigroup generated by f4; 127g
contains six elements in the interval Œ0; 22/, and thus R.22/ D 6 does not satisfy the
inequality.

In the next two cases, .7; 64/ and .8; 55/, all these inequalities are satisfied. In
Section 9 we will discuss the realization of these curves and place the example
d D 21, .p; q/ D .8; 55/ in a general sequence of realizable curves, related to the
fact that 8; 21; and 55 are the Fibonacci numbers �6; �8; and �10.

For the pair .10; 43/, we need to consider a different value of j to find the first
obstruction. Here we let j D 2 and b D 0, giving the inequality

6 � R.43/ � 7:

The semigroup generated by .10; 43/ contains five elements in the interval Œ0; 43/, and
thus R.43/ does not satisfy the inequality. Finally, we can rule out the possibilities
of .15; 28/ and .19; 22/ by returning to the inequality 3 � R.22/ � 4. In both cases,
R.22/ D 2.

8.2. A degree seven, genus three example. As a second example, we consider
a singular curve of genus 3, showing that there is no degree seven curve with one
singular point, whose Puiseux pair is .4; 9/.
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A generic curve of degree d D 7 has genus 15 and the .4; 9/-torus knot has
genus 12. Thus a degree seven curve with one singular point, whose Puiseux pair
is .4; 9/would have genus 3. Theorem 1 provides 20 two-sided inequalities; the value
of j is between 1 and 5 and the value of b is between 0 and 3. Of these inequalities,
exactly two provide obstructions. For j D 1, b D 0 and j D 3, b D 3, we have the
constraints:

3 � R.8/ � 6;

7 � R.16/ � 10:

The semigroup generated by f4; 9g has two element in Œ0; 8/, so R.8/ D 2 does
not satisfy the first inequality. This semigroup contains six elements in the interval
Œ0; 16/ (these elements are f0; 4; 8; 9; 12; 13g) and thus R.16/ D 6 does not satisfy
the second inequality.

8.3. A degree nine, genus eight example. The obstructions given by Theorem 1
become weaker as the genus increases, necessarily so, since more singularity types
can be realized. We present here one more example, one in which the obstruction
remains effective despite the genus being large relative to d . We consider the case
of d D 9 and the curve having a singular point, whose Puiseux pair is .5; 11/.

Since the generic genus of a degree nine curve is 28 and the .5; 11/-torus knot
has genus 20, a curve of degree nine and having one singular point whose Puiseux
pair is .5; 11/ would have genus eight. Thus, Theorem 1 provides 63 two-sided
inequalities, as j ranges from 1 to 7 and b ranges from 0 to 8. Precisely one of these
provides an obstruction. In the case j D 5; b D 8 we get inequalities

13 � R.30/ � 21:

The semigroup generated by f5; 11g contains 12 elements in the interval Œ0; 30/, and
thus the inequality is not satisfied.

8.4. A singularity T.4; 7/ on a degree six curve. The singularity was discussed
briefly in Example 7.3. Since a generic degree six curve has genus 10 and the
.4; 7/-torus knot has genus nine, a degree six curve having one singular point, whose
Puiseux pair is .4; 7/, is of genus one. There are eight constraints given by Theorem 1.
Two of these are

3 � R.7/ � 4

and 5 � R.11/ � 6:

Since for .4; 7/, R.7/ D 2 and R.11/ D 4, these inequalities are violated.
This example is of special interest. We will see in Example 10.1 that another

important criterion, semicontinuity of the spectrum, is insufficient to obstruct this
case.



238 M. Borodzik, M. Hedden and C. Livingston CMH

9. Genus one curves with one singularity having one Puiseux pair

In the section we prove our classification result for genus one curves with a single
singular point with one Puiseux pair. The bulk of the work lies in the obstruction
of curves, for which we use Theorem 1 together with the multiplicity bound from
Section 9.3 below. For the sake of exposition, we introduce some (non-standard)
terminology. Throughout the section, we will call a curve C of type .p; q/, if it
has precisely one singularity and that singularity has one Puiseux pair .p; q/. Let
�0; �1; : : : be the sequence of Fibonacci numbers such that �0 D 0, �1 D 1 and
�nC1 D �n C �n�1. The main theorem of this section is the following.

Theorem 9.1. Suppose C � CP 2 is an algebraic curve of genus one, degree d , and
of type .p; q/. Then either: (A) d D �4n, p D �4n�2, q D �4nC2 for some n > 0;
or (B) the values of .p; q/ and d are on the following list.

(a) .p; q/ D .2; 5/, d D 4;

(b) .p; q/ D .2; 11/, d D 5;

(c) .p; q/ D .3; 10/, d D 6;.

(d) .p; q/ D .6; 37/, d D 15;.

(e) .p; q/ D .9; 64/, d D 24;.

(f) .p; q/ D .10; 73/, d D 27;

(g) .p; q/ D .12; 91/, d D 33;

(h) .p; q/ D .p; 9p C 1/, d D 3p for p D 2; : : : ; 10.

Remark 9.2. (a) Theorem 9.1 does not state that any of these cases can be
realized as an algebraic curve, nor does it state in how many ways each case can
be realized if some realization exists. In Proposition 9.14 and Proposition 9.15 we
clarify that cases (a)–(d) can be realized by an algebraic curve and that the main case
.�4n�2; �4nC2/ can be realized.

(b) All the special cases have degree at most 33.

We begin with the following simple result.

Proposition 9.3. If a degree d curve is of genus one and has one singularity with
one Puiseux pair .p; q/, then .p � 1/.q � 1/ D d.d � 3/.

Proof. This is an immediate corollary of the genus formula, restating the condition
that .d � 1/.d � 2/=2 D .p � 1/.q � 1/=2C 1.

The rest of this section is devoted to proving Theorem 9.1.
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9.1. Preliminary bounds. Assuming that C satisfies the assumptions of Theo-
rem 9.1 and the d , p, and q are as in the statement of that theorem, we begin by
developing some basic bounds.
Lemma 9.4. If d � 5, then p � d � 3 and q � d C 3.

Proof. First observe that p � d � 1: since p < q and .p � 1/.q � 1/ D .d � 3/d ,
it immediately follows that p � 1 � d � 2.

We now improve this to show that p � d � 2. By Theorem 1, setting j D 1 and
b D 1, we find

2 � R.d � 1/ � 3:

If p D d � 1, then 0 is the only element of the semigroup generated by p and q
that is in the interval Œ0; d � 1/, in which case R.d � 1/ D 1, giving a contradiction.

Finally, we consider the case that p D d � 2, which we write as p � 1 D d � 3.
Clearly q � 1 D d and q D d C 1. By Theorem 1, setting j D 2 and b D 1 we find

5 � R.2d � 1/ � 6:

The following integers are the first six elements in the semigroup generated by d � 2
and d C 1 in increasing order:˚
0; d � 2; d C 1; 2.d � 2/; .d � 2/C .d C 1/; 2.d C 1/

	
D
˚
0; d � 2; d C 1; 2d � 4; 2d � 1; 2d C 2

	
:

Thus,R.2d�1/ � 4, with equalitywheneverd � 5, giving the desired contradiction.
(If d D 4, then the element 3d � 6 would also be an element in the semigroup that
is less than 2d � 1.)

For the lower bound on q, we observe that the minimum value of q would occur
if p D d � 3. Solving for q yields q D d C 2 C 4

d�4
. Since q is an integer and

d > 4, it follows that q � d C 3.

We now place a stronger upper bound on p and a lower bound on q.
Lemma 9.5. Suppose C satisfies the conditions of Theorem 9.1. If d > 6, then
p < 1

2
d and q � 2d � 1.

Proof. First observe that by Theorem 1 with j D 1 and b D 0,

3 � R.d C 1/ � 4:

If p > 1
2
d then there are at most two elements (0 and p) in the semigroup

generated by p and q in the interval Œ0; d C 1/, giving a contradiction.
If p D 1

2
d , then one computes q � 1 D 2.d�1/.d�2/�2

d�2
, which is not an integer

since d > 4.
Given that p < 1

2
d , elementary algebra shows that q > 2d � 1 � 4

d�2
. Since

d > 6 and q is an integer, q � 2d � 1 as desired.
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For bounds in the reverse direction, we have the following lemma.
Lemma 9.6. If d > 8, then p > d�2

3
and q � 3d C 16.

Proof. Again applying Theorem 1 with j D 1 and b D 1, we have

R.d � 1/ � 3:

That is, at most two positive multiples of p are in the interval Œ0; d � 2�. Thus,
p > d�2

3
as desired.

Simple algebra now yields that q < 3d C 7C 30
d�5

< 3d C 17.

9.2. A Bogomolov–Miyaoka–Yau based inequality. We begin with a summary
of a result of Orevkov [26] which is based on the Bogomolov–Miyaoka–Yau
inequality [23].

Associated to each singular point on a curve C there is an Orevkov M -number,
defined in full generality in [26]; we note here that in the case of singularities having
link a .p; q/-torus knot, that is, having a single Puiseux pair .p; q/, the value is
M D p C q � Œq=p� � 3.

We have the following consequence of the Bogomolov–Miyaoka–Yau inequal-
ity [23]; because the details are fairly technical, we delay presenting them until
Section 9.6.
Theorem 9.7. If C � CP 2 is a cuspidal curve of genus g > 0 and degree d with
singular points z1 : : : ; zn and correspondingM numbersM 1; : : : ;M n, then

nX
iD1

M i � 3d C 4g � 5: (9.1)

Example 9.8. Theorem 1 does not prohibit the existence of a curve of degree 3p
(p D 1; 2; : : :) with genus 1 and a singularity .pI 9pC1/. One can indeed check that
this case satisfies (1.1) for all j . Nevertheless it does not satisfy (9.1) if p � 11. In
fact, we haveM D pC9pC1�9�3 D 10p�11 and the bound isM � 3d �1 D
9p � 1. This is satisfied only when p � 10.

9.3. The multiplicity bound. We will now prove a multiplicity bound similar to
one given by Orevkov in [26, Theorem A]. We restrict to the case of interest, g D 1
and one singular point, but with care the argument extends to arbitrary genus and
multiple singularities. In the case of a singular point with one Puiseux pair .p; q/,
the multiplicity is the minimum of p and q which, since we assume throughout
that p < q, is given by p.
Theorem 9.9. Suppose that C is a cuspidal curve of degree d , genus g D 1, and
with one singular point of multiplicitym. Then d < ˛mCˇ, where ˛ D 1

2
.3C
p
5/

and ˇ D 3
2
C

11
10

p
5.
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Proof. By [6, Proposition 2.9] we have the Milnor number � andM number satisfy
� � m.M � m C 2/ (this is immediate for a singularity with one Puiseux pair).
Therefore, by the genus formula

.d � 1/.d � 2/ � 2g � m
�
M �mC 2

�
:

Using the assumption that g D 1 and Theorem 9.7, it follows that

d2 � 3d � m.3d � 1 �mC 2/:

This can be rewritten as

d2 � 3.1Cm/d C .m2 �m/ � 0:

Viewing this as a quadratic polynomial in d yields

2d � 3.1Cm/C

q
9.1Cm/2 � 4.m2 �m/:

This simplifies to

2d � 3C 3mC
p
5m

r
1C

22

5m
C

9

5m2
;

which we can rewrite as

2d � 3C .3C
p
5/mC

p
5m

�r
1C

22

5m
C

9

5m2
� 1

�
:

The proof is completed by showing that for m � 2,

m

�r
1C

22

5m
C

9

5m2
� 1

�
<
11

5
:

This is an elementary exercise in calculus, perhaps most easily solved for substituting
m D 1

x
to consider q

1C 22
5
x C 9

5
x2 � 1

x

on the interval .0; 1
2
�. The first derivative of this function is easily seen to be negative,

and L’Hôpital’s rule determines the limit at 0 to be 11
5
.

9.4. Classification theorem. Theorem 9.1 will be deduced from the multiplicity
bound (Theorem 9.9) along with a technical result, Lemma 9.11, which follows the
proof of a sequence of simpler lemmas. Throughout the rest of this section we
assume C is a curve of degree d and genus one, with exactly one singular point, and
that singular point is of type .p; q/. We remind the reader that p < q.
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We need to introduce some notation. Let �0; �1; : : : be the sequence of Fibonacci
numbers such that �0 D 0, �1 D 1 and �nC1 D �n C �n�1. Most elementary texts
on number theory include the necessary background, for instance regarding such
facts as gcd.�n; �nC1/ D 1 D gcd.�n; �nC2/ as well as nonlinear relations, such as
Cassini’s Identity �n�1�nC1��2n D .�1/n, and its generalization �n�r�nCr ��2n D
.�1/n�rC1�2r .

Our next step is to rule out some special cases of possible values of p.
Lemma 9.10. Suppose C is as in the assumptions of Theorem 9.1 and is not one of
the exceptional cases .p; q/ D .2; 5/; .2; 11/; .3; 10/; or .6; 37/. Then p ¤ �2j�1

�2jC1
d

for all j > 0.

Proof. Suppose that p D �2j�1

�2jC1
d for some j . Since �2j�1 is coprime to �2jC1, we

see that d
�2jC1

is an integer.
Since .p � 1/.q � 1/ D d.d � 3/, we have�

�2j�1d � �2jC1
�
.q � 1/ D �2jC1d.d � 3/:

The left hand side can be rewritten using the identity �2jC1 D 3�2j�1 � �2j�3 to
give �

.d � 3/�2j�1 C �2j�3
�
.q � 1/ D �2jC1d.d � 3/:

Taking these equalities modulo d and d � 3, respectively, we arrive at

�2jC1.q � 1/ D 0 mod d
and �2j�3.q � 1/ D 0 mod .d � 3/:

Thus d divides �2jC1.q � 1/, d � 3 divides �2j�3.q � 1/ and so lcm.d; d � 3/
divides lcm.�2jC1; �2j�3/.q � 1/. The value of lcm.d; d � 3/ is either d.d � 3/
or d.d � 3/=3, depending upon whether or not d is divisible by 3. In either case, we
have

d.d � 3/j3�2j�3�2jC1.q � 1/:

Since .p � 1/.q � 1/ D d.d � 3/, if follows that

.p � 1/j3�2j�3�2jC1: (9.2)

Notice that in the case that d is not divisible by 3, we have the stronger constraint
.p � 1/j�2j�3�2jC1.

Denote x D �2j�1 and y D d
�2jC1

2 Z, so that xy D p. Notice that x2 C 1 D
�22j�1 C 1 D �2j�3�2jC1, which follows from the basic identities satisfied by the
Fibonacci numbers. By (9.2) xy � 1 divides 3.x2 C 1/; that is, there exist c > 0

such that
c.xy � 1/ D 3x2 C 3:
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Taking both sides modulo x, we infer that c D kx � 3 for some integer k > 0.
Substituting this, after simplifications we obtain

.ky � 3/x D 3y C k: (9.3)

This equation has only a finite number of positive integral solutions, which we now
enumerate. First, if x D 1, then

y D 1C
6

k � 3

and the only solutions for the triple .x; y; k/ are f.1; 2; 9/; .1; 3; 6/; .1; 4; 5/; .1; 7; 4/g.
Similarly, the only solutions with y D 1 are f.2; 1; 9/; .3; 1; 6/; .4; 1; 5/; .7; 1; 4/g. If
x � 2 and y � 2, we write

k D 3

�
x C y

xy � 1

�
:

An easy calculus exercise shows that on the domain fx � 2; y � 2g the maximum
of the right hand side is achieved at .2; 2/, with value k D 4. For k D 1; 2; 3; and 4,
one finds the only solutions for .x; y; k/ are˚
.4; 13; 1/; .5; 8; 1/; .8; 5; 1/; .13; 4; 1/; .2; 8; 2/; .8; 2; 2/;

.2; 3; 3/; .3; 2; 3/; .1; 7; 4/; .2; 2; 4/; .7; 1; 4/
	
:

Thus, the values of .x; y/ to consider are˚
.1; 2/; .1; 3/; .1; 4/; .1; 7/; .2; 2/; .2; 3/; .2; 8/; .4; 13/; .5; 8/

	
and their symmetric pairs.

Recall that we have x D �2j�1, y D d
�2jC1

, and p D xy. The only possibilities
for x are x D 1; 2; 5; and 13, in which case y D d

2
; d
5
; d
13
; and d

34
, respectively. The

possible pairs .x; y/ are thus

f.1; 2/; .1; 3/; .1; 4/; .1; 7/; .2; 1/; .2; 2/; .2; 3/; .2; 8/; .5; 8/; .13; 4/g:

An immediate calculation yields the following possibilities for .p; d/:˚
.2; 4/; .3; 6/; .4; 8/; .7; 14/; .2; 5/; .4; 10/; .6; 15/; .16; 40/; .40; 104/; .52; 136/

	
:

For most of these, the corresponding value of q D 1C d.d�3/
p�1

is not an integer. The
values of .p; q; d/ that can arise as integer triples are˚

.2; 5; 4/; .3; 10; 6/; .2; 11; 5/; .6; 37; 15/
	
:

Lemma 9.11. Suppose C is as in the assumptions of Theorem 9.1 and is not one of
the exceptional cases. If d � �2k�1 C 2 and d � 6, then p < �2k�1

�2kC1
d .
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Proof of Lemma 9.11. We proceed by induction over k. The base case, k D 1, is
that p < 1

2
d , which is the statement of Lemma 9.5.

Notice that the sequence

ak D
�2k�1

�2kC1

is decreasing, converging to 2

3C
p
5
. So suppose we have already proved that p <

�2k�3

�2k�1
d for some k and assume that p > �2k�1

�2kC1
d (by Lemma 9.10 we do not have to

consider the possibility that p D �2k�1

�2kC1
d ).

Assume momentarily that

q >
�2k�1

�2k�3
d:

Then the number of the elements in the semigroup generated by p and q in the
interval Œ0; �2k�1d� is the number of lattice points in the trianglen

.x; y/ 2 R2�0 W x
p

�2k�1d
C y

q

�2k�1d
� 1

o
:

This is at most the number of the lattice points in the triangle

T D
n
.x; y/ 2 R2�0 W x

1

�2kC1
C y

1

�2k�3
< 1

o
I

notice that since p > �2k�1

�2kC1
d and q > �2k�1

�2k�3
d , we replaced the inequality � 1 with

the strict inequality < 1, essentially deleting the hypothenuse of the triangle.
Counting lattice points in a polygon with lattice points as vertices can be done

using Pick’s theorem. In our situation, though, the triangle is especially simple so
we can use an elementary argument, which can be found for instance in [35, p. 64],
to conclude that the number of lattice points in T is

R D
.�2kC1 C 1/.�2k�3 C 1/

2
� 1:

Finally, elementary properties of Fibonacci numbers permit us to rewrite this as

R D
.�2k�1 C 1/.�2k�1 C 2/

2
� 1:

To summarize, under the assumptions thatp > �2k�1

�2kC1
d and q > �2k�1

�2k�3
d;we have

that the number of elements in the semigroup generated by p and q in the interval
Œ0; �2k�1d� is at most R. However, Theorem 1 with j D �2k�1 and b D 0 states
that

0 � R.�2k�1d C 1/ �
.�2k�1 C 1/.�2k�1 C 2/

2
� 1;
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and in particular,

R.�2k�1d C 1/ �
.�2k�1 C 1/.�2k�1 C 2/

2
:

Noting that R D R.�2k�1d C 1/ yields a contradiction. (We have used here that
d � �2k�1C2, since Theorem 1 requires that j � d �2.) Thus, (1.1) is not satisfied
for j D �2k�1 and b D 0.

With this contradiction, we can now conclude that under the assumption p >
�2k�1

�2kC1
d we must have q � �2k�1

�2k�3
d:

Recall that our induction hypothesis is that p < �2k�3

�2k�1
d . That p is an integer

implies that

p �
�2k�3

�2k�1
d �

1

�2k�1
:

We can use these inequalities to conclude

.p � 1/.q � 1/ �

�
�2k�3

�2k�1
d �

1

�2k�1
� 1

��
�2k�1

�2k�3
d � 1

�
:

This can be written as

.p � 1/.q � 1/ � d2 �

�
�2k�3

�2k�1
C
�2k�1

�2k�3

�
d C 1 �

d

�2k�3
C

1

�2k�1
: (9.4)

The term in parenthesis can be rewritten as

�2k�3

�2k�1
C
�2k�1

�2k�3
D
�2k�3

�2k�1
C
�2k�1

�2k�3
C
�2kC1

�2k�1
�
�2kC1

�2k�1
:

Using the facts that �2k�3C�2kC1 D 3�2k�1 and �2k�3�2kC1��22k�1 D 1, the first
and the third term yield 3, while the second and the last give � 1

�2k�1�2k�3
, so (9.4)

can be rewritten as

.p � 1/.q � 1/ � d2 �

�
3 �

1

�2k�3�2k�1

�
d C 1 �

d

�2k�3
C

1

�2k�1
; (9.5)

which can be rewritten as

.p � 1/.q � 1/ � d2 � 3d C
d

�2k�1�2k�3
C 1 �

d

�2k�3
C

1

�2k�1
:

Since .p � 1/.q � 1/ D d2 � 3d , this implies that

d

�2k�1�2k�3
C 1 �

d

�2k�3
C

1

�2k�1
� 0:

This is equivalent to

d � �2k�3

�
�2k�1 C 1

�2k�1 � 1

�
:
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The conditions of the theorem include d � �2k�1 C 2, so this equality implies

�2k�1 C 2 � �2k�3

�
�2k�1 C 1

�2k�1 � 1

�
:

Clearing the denominator and writing �2k�3 D �2k�1 � �2k�2 yields

.�2k�1 � 1/.�2k�1 C 2/ � .�2k�1 � �2k�2/.�2k�1 C 1/:

Expanding, this becomes

�22k�1 C �2k�1 � 2 � �
2
2k�1 C �2k�1 � �2k�2�2k�1 � �2k�2:

Finally, this can be rewritten as

�2k�2�2k�1 C �2k�2 � 2;

which is false for k � 1.
With this final contradiction we see that p � �2k�1

�2kC1
d must hold, so the induction

step is accomplished.

We shall need another result.
Lemma 9.12. If d > 6 and pCq > 3d , then p � 3

8
d ; equivalently, if p > 3

8
d then

p C q � 3d .

Proof. Suppose that p C q > 3d and 8p > 3d . The eight multiples ap with
a D 0; : : : ; 7, are possibly in Œ0; 3d �, but 8p is not. The conditions imply that pCaq
is not in the interval for any a > 0. It is possible that q is in the interval, but 2q is
not, since in Lemma 9.5 we showed that q � 2d � 1. This gives a maximum of 9
elements in S \ Œ0; 3d �, while (1.1) for j D 3 and b D 0 implies that there must be
at least 10.

Proof of Theorem 9.1. We suppose d > 6; for d � 6 the result is a straightforward
computation.

We consider three cases. The first case is p � 3
8
d . Combining this with the result

of Theorem 9.9, which states that d < ˛pCˇ, yields .8
3
� ˛/p < ˇ. This places an

upper bound on d ; performing the arithmetic and using simple bounds on ˛ and ˇ
yields d � 300. All of these can be analyzed with a computer search, which yields
the exceptional cases (a)–(h) of Theorem 9.1. Notice that the only examples having
degree more than 33 are in item (h) of that list, but the BMY inequality rules these
out: see Example 9.8 following Theorem 9.7.

Suppose now that p > 3
8
d . By Lemma 9.12, p C q � 3d . The second case is

that p C q � 3d � 1, so q � 3d � 1 � p. Substituting this into (1.1) we obtain

.p � 1/.3d � p � 2/ � d.d � 3/:
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We proceed as in the proof of Theorem 9.9. The inequality can be rewritten in terms
of a quadratic polynomial in d :

d2 � 3pd C .p2 C p � 2/ � 0:

Applying the quadratic formula yields

2d � 3p C
p
5p2 � 4p C 8 D 3p C

p
5p

s
1 �

4

5p
C

8

5p2
:

This in turn can be written

2d � 3p C
p
5p C

p
5p

 s
1 �

4

5p
C

8

5p2
� 1

!
:

The term in parenthesis equals 0 for p D 2 and is negative for p > 2. Thus, in
general, we have d < ˛p.

For some k, d 2 Œ�2k�1C 2; �2kC1C 1�. By Lemma 9.11 we have p < �2k�1

�2kC1
d .

Combined with d < ˛p we find

�2kC1

�2k�1
<
d

p
< ˛: (9.6)

The sequence �2kC1

�2k�1
are the even convergents of the continued fraction expansion

of ˛. As such, they form an increasing sequence converging to ˛, offering the closest
lower approximations for given denominators. More precisely, (9.6) implies that
p > �2k�1. (See, for instance, [25], for these results concerning continued fractions.
In particular, Theorem 7.13 of [25] states the required result concerning the sense in
which convergents of continued fractions provide the best rational approximations to
an irrational number.)

We now have �2k�1 < p < �2k�1

�2kC1
d , implying that d > �2kC1, and thus

d D �2kC1 C 1. We now have

�2kC1

�2k�1
<
�2kC1 C 1

p
;

so

p < �2k�1 C
�2k�1

�2kC1
:

Since p is an integer,
p � �2k�1;

a contradiction.
The last case is p C q D 3d . Expanding .p � 1/.q � 1/ D d.d � 3/, we find

p C q D pq C 3d � d2 C 1. Combining these gives that pq D d2 � 1. Writing
.q � p/2 D .q C p/2 � 4pq yields .q � p/2 D 5d2 C 4.
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We need to find all the integers d such that 5d2 C 4 is a square. This problem
is a case of Pell’s equation. One accessible reference is [10, Section 5.1], where
this precise problem is solved. The result states that 5d2 C 4 is a square if and only
if d D �2i for some integer i . For a more general number theoretic discussion, a
good reference is the discussion of the Unit Theorem in [21].

As a brief aside, we include here a summary of the argument.

Lemma 9.13. If .x; y/ is an integer solution to 5y2 C 4 D x2 then y D ˙�2n for
some n.

Proof. This equation can be rewritten as .x
2
C

y
2

p
5/.x

2
�
y
2

p
5/ D 1. Notice that x

and y must have the same parity, and thus solutions correspond precisely to units
of norm one in the algebraic number ring ZŒ1C

p
5

2
�. (Units have norm either plus

or minus one.) For a real quadratic number ring, the set of units forms an abelian
group isomorphic to Z2 ˚ Z (see, for instance, [21] or [9]). In our case, the infinite
summand is generated by an element of the form a

2
C
b
2

p
5, where a and b are positive

and have the same parity. Clearly, a generator of this form will have the minimum
possible value of a. Since 
 D 1

2
C

1
2

p
5 does have norm �1, this is the generator

of the set of units modulo torsion.
The first five powers of 
 are 1

2
C

1
2

p
5, 3

2
C

1
2

p
5, 4

2
C

2
2

p
5, 7

2
C

3
2

p
5 and

11
2
C

5
2

p
5. Notice the numerators of the coefficients of

p
5 in 
n are the Fibonacci

numbers, �n and the numerator of the rational parts can be expressed as 3�n�1C�n�2.
For instance, 11 D 3 � 3 C 2. That this pattern continues is an easy inductive
argument using the defining recursion relation for Fibonacci numbers. Finally, since 

has norm �1, only even powers of 
 have norm one, and thus only the Fibonacci
numbers �2n appear as solutions for y in our original equation 5y2 C 4 D x2.

Solving the pair of equations p C q D 3d and .p � 1/.q � 1/ D d.d � 3/ for p
and q, with q > p, yields

p D
3

2
d �

1

2

p
5d2 C 4 D �2i�2

q D
3

2
d C

1

2

p
5d2 C 4 D �2iC2:

Notice, that gcd.p; q/ D gcd.�2i�2; �2iC2/ D �gcd.2i�2;2iC2/. If i is odd, then p
and q are both divisible by 3, so they are not coprime, and the case is ruled out. We
are left with the case p D �4i�2, q D �4iC2 and d D �4i .

9.5. Construction of curves. We will now use Orevkov’s argument (see [26, Sec-
tion 6]) to construct curves with .p; q/ D .�4j�2; �4jC2/ and degree �4j .
Proposition 9.14. For any j D 1; 2; : : : there exists a curve of genus 1 and degree�4j
having a unique singularity with of type .�4j�2; �4jC2/.
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Proof. Fix a curveN of degree 3with one node. Let f WCP 2 ! CP 2 be a Cremona
transformation as in [26]. Let F1 be a cubic that passes through the node ofN and is
tangent to one branch with the tangency order eight. Such curve exists by a parameter
counting argument; that is, the space of all cubics has dimension

�
3C2
2

�
� 1 D 9, we

need one parameter to make F1 pass through the node, and each order of tangency
is one more condition, so we need altogether eight conditions. Notice that F1 has
genus one and does not intersect N away from the node.

We define inductively Fj D f .Fj�1/. Since f is biregular away from CP 2 nN ,
each curves Fj has genus one and a single cusp. The characteristic sequence of
the point of F1 which is tangent to N is .1; 8/ (by this we mean that it is a smooth
point of F1 and the order of tangency is eight), and .1; 8/ D .�2; �6/. The image of
this point under the composite f ı f ı � � � ı f is the singular point of Fj and the
characteristic sequence becomes .�4j�2; �4jC2/ by the same argument as in [26].
The degree of Fj is computed via the genus formula and the relation

.�4j�2 � 1/.�4jC2 � 1/ D �4j .�4j � 3/:

Proposition 9.15. Cases (a), (b), (c) and (d) from Theorem 9.1 can be realized;
that is, there exists a curve of degree 4 with singularity .2I 5/, a curve of degree 5
with singularity .2I 11/, a curve of degree 6 with singularity .3I 10/ and a curve of
degree 15 with singularity .6I 37/.

Proof. In [36, Example 1] there is given a construction of curves (b) and (d). A
degree 4 curve with a .2I 5/ singularity can be given by an explicit equation. We are
thankful to Karoline Moe for giving us an explicit construction of curve (c); we will
not present her proof here.

The following result is well known to experts, we refer to [1] for a modern
approach.

Proposition 9.16. There exists a curve of degree 6 with a singularity .2I 19/. This is
case (h) from the list with p D 2.

9.6. The BMY inequality. Here we provide background for the proof of Theo-
rem 9.7. Our approach closely follows [7,26]. The Bogomolov–Miyaoka–Yau
inequality, see [17,23], is one of the main tools in studying curves in algebraic
surfaces.
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To formulate the BMY inequality we need some preliminaries. We let X be a
(closed) algebraic surface. Recall that a divisor onX is a formal sum

P
˛iDi , where

˛i 2 Z and Di are closed algebraic curves on X . One of the main examples is the
canonical divisor K. This is a divisor which represents a class in H2.X IZ/ that is
Poincaré dual to the first Chern class of the cotangent bundle of X .

Let D be a reduced effective divisor (that is, each irreducible component of D,
which is a reduced algebraic curve, has coefficient one) with the property that X nD
is of log-general type. We refer to [22, Section I.1] for the definition of log-general
type and note that in our applications X n D will always be of this type. There
exists a so called Zariski–Fujita decomposition of the divisorKCD; this is a unique
decomposition K CD D H C N , where H and N are rational divisors and H is
the numerically effective (in [22] this is called “arithmetically effective”) part and N
is the negative part of K CD; see [13] or [22, Section I.3].

The two fundamental proprieties of this decomposition are that H � N D 0 and
N 2 � 0. The BMY inequality as given in [17] or [26, Theorem 2.1] says that
H 2 � 3�.X nD/, where � is the Euler characteristic; for our purpose the following
formulation is sufficient.
Theorem9.17 (BMY inequality). SupposeX is an algebraic surface,K its canonical
divisor, andD a divisor onX such thatX nD is of log-general type (see [13]). Then

.K CD/2 � 3�.X nD/: (9.7)

If, in addition, in the Zariski–Fujita decomposition K C D D H C N we have
N ¤ 0, then we cannot have an equality in (9.7).

Suppose that C � CP 2 is a cuspidal curve of positive genus g > 0 with singular
points z1; : : : ; zn, n > 0. For some m > 0, appropriately blowing up m points
resolves the singularities, providing what is called a good resolution (also known as
an SNC resolution, where SNC stays for “simple normal crossings”); in particular,
it constructs a curve C 0, the strict transform of C , in a manifold X diffeomorphic
to CP 2#mCP

2.
The steps of forming the good resolution of C build a sequence of divisors in X ,

E1; : : : ; Em, each of multiplicity one (they corresponds to the exceptional divisors of
the blow-ups constituting the good resolution). The reduced exceptional divisor E
is the sum

P
Ei ; see [38, Section 8.1]. We set

D D C 0 CE:

This is a reduced effective divisor on X .
A result of Wakabayashi [37] states that the complement of a positive genus

algebraic curve inCP 2 of degree d � 4 is of log-general type. By the genus formula,
any curve of degree 3 or less is either nonsingular or genus 0. In particular, C is of
degree four or more and Wakabayashi’s result implies that the complement CP 2 nC
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is of log-general type [37]. Since CP 2 nC Š X nD, we have X nD is log-general
type, so Theorem 9.17 applies.

In order to show that the inequality in (9.7) is sharp, we use the following result
proved in [27]; see [28] for more detailed exposition.
Lemma 9.18. If C has n cuspidal singular points and K C D D H C N is the
Zariski–Fujita decomposition, then N 2 < �n

2
. In particular, if C has at least one

cuspidal singular point, then N is not trivial.
Since X nD Š CP 2 n C , we have �.X nD/ D .2gC 1/. Thus, (9.7) becomes

.K CD/2 < 3.2g C 1/:

This can be written as

K.K CD/CD.K CD/ < 6g C 3:

By the adjunction formulaD.K CD/ D 2g � 2; see [37, Section 7.6]. Substituting
this, we obtain

K.K CD/ < 4g C 5:

The homology of X splits as an orthogonal sum, with one summand spanned
by L (representing a generator of H2.CP 2/) and separate summands, one for each
singular point. Details are presented in [26, Section 2]. Accordingly, we write
K D K0 C K1 C � � � C Kn and D D D0 C D1 C � � � C Dn. Here K0 and D0
belong to the summands spanned by L and Ki , and the Di belong to the summands
corresponding to the singular points zi . Note that K0 D �3L andD0 D dL.

Using this decomposition, we can write the inequality as a summation:

K0.K0 CD0/C

nX
iD1

Ki .Ki CDi / < 4g C 5:

Substituting the values of K0 andD0 we obtain.

9 � 3d C

nX
iD1

Ki .Ki CDi / < 4g C 5:

According to [7, Proposition 4.1], Ki .Ki CDi / can be identified with the Orevkov
M -number (where it was called the codimension). Thus,X

i>0

M i < 3d C 4g � 4:

As both sides of the above inequality are integers, we haveX
i>0

M i � 3d C 4g � 5:

Theorem 9.7 is proved.
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10. The semicontinuity of the spectrum

The spectrum† of a singular point of a plane curve is a collection of rational numbers
from the interval .0; 2/, where each rational number can occur multiple times. The
count with multiplicity, #†, is the Milnor number of the singularity. It is one of the
strongest invariants of singularities. From a topological point of view, the spectrum
can be (almost) recovered from the Tristram–Levine signatures of the link. For a
singularity xp � yq D 0 (that is a singularity whose link is T .p; q/), the spectrum is
the set

†p;q D

�
i

p
C
j

q
; 1 � i � p � 1; 1 � j � q � 1

�
;

where if a number x can be presented in � different ways as a sum i
p
C

j
q
, it means

that x appears in †p;q with multiplicity �.
There is a property of semicontinuity of spectra. Following [10, Section 2.4] we

will formulate it as follows.
Suppose C is an algebraic curve in CP 2 of arbitrary genus and not necessarily

cuspidal. Suppose degC D d . Let z1; : : : ; zn be the singular points and†1; : : : ; †n
the corresponding spectra. Let

†d;d WD

�
i

d
C
j

d
; 1 � i; j � d � 1

�
be the spectrum of the singularity xd � yd D 0. Then for any x 2 R we have

#
�
†d;d \ .x; x C 1/

�
�

nX
jD1

#
�
†j \ .x; x C 1/

�
: (10.1)

Equation (10.1), the spectrum semicontinuity property, is one of the strongest
obstructions to the existence of curves in CP 2 with prescribed singularities. It
is most effective if the total number of elements of the spectra

P
#†j is close to

#†d;d D .d � 1/2, that is, if the (geometric) genus of C is small. The spectrum was
effectively used in [10] to classify rational cuspidal curves with one cusp and one
Puiseux pair at that cusp. We will show it is of limited effectiveness in case of curves
of genus one.

Substituting x D �1C l
d
. into (10.1), where l D 1; : : : ; d � 1 we obtain

nX
jD1

#
�
†j \

�
0;
l

d

��
�
1

2
.l � 1/.l � 2/: (10.2)

This equation in [10] is referred to as .SSl/. We shall examine how these inequalities
apply to the classification problem of cuspidal curves of genus one with one singular
point and one Puiseux pair, as in Theorem 9.1.
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Example 10.1. The case where C has degree 6 and is of type .4; 7/ (so its genus
is 1) satisfies all the SSl inequalities, but cannot occur by discussion in Section 8. In
fact there is only one singular point with spectrum

† D

�
11

28
;
15

28
;
18

28
;
19

28
;
23

28
;
25

28
;
26

28
;
27

28
; : : :

�
(the spectrum is symmetric around 1, so we give only elements in spectrum in the
interval Œ0; 1�). The values of #† \ .0; l

d
/ for l D 1; : : : ; 6 are 0; 0; 1; 3; 6; 9, which

are less than or equal to 0; 0; 1; 3; 6; 10, as given by the right hand side of (10.2).
Theorem 1, however, obstructs the existence of such curve, see Section 8.4.

Similarly, one can show that the property .SSl/ admits, for example, a genus one
curve of degree 75 and with a singularity of type .28; 201/.
Example 10.2. If C is a curve of type .p; q/, then, according to [10, Example 2.4],
.SSd�1/ reads as

.p � 1/.q � 1/

2
C

j q
d

k
�

jpq
d

k
�
.d � 2/.d � 3/

2
:

Since .p � 1/.q � 1/ D d.d � 3/, this givesjpq
d

k
� d � 3C

j q
d

k
:

Writing pq D d.d � 3/C p C q � 1 we arrive at�
p C q � 1

d

�
�

j q
d

k
:

This inequality is trivially satisfied whenever p � 1.
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