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An explicit cycle map for the motivic cohomology
of real varieties

Pedro F. dos Santos Robert M. Hardt}* James D. Lewis and Paulo Lima-Filho

Abstract. We provide a direct construction of a cycle map in the level of representing complexes
from the motivic cohomology of real (or complex) varieties to the appropriate ordinary
cohomology theory. For complex varieties, this is simply integral Betti cohomology, whereas
for real varieties the recipient theory is the bigraded Gal(C /R)-equivariant cohomology [19].
Using the finite analytic correspondences from [7] we provide a sheaf-theoretic approach to
ordinary equivariant RO(G)-graded cohomology for any finite group G. In particular, this
gives a complex of sheaves Z(p), on a suitable equivariant site of real analytic manifolds-with-
corner whose construction closely parallels that of the Voevodsky’s motivic complexes Z(p) ¢ .-
Our cycle map is induced by the change of sites functor that assigns to a real variety X its
analytic space X (C) together with the complex conjugation involution.
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1. Introduction

The motivic cohomology of a smooth algebraic variety X over a perfect field F,
as defined by V. Voevodsky in [26], is the hypercohomology of certain motivic
complexes Z.(p) p|, of Zariski sheaves on X.

In order to construct the motivic complexes, Voevodsky introduces the category
of finite correspondences, whose objects are the smooth schemes over F, and the
morphisms between X and Y are certain algebraic cycles in X xY whose components
are finite over X. We give a succinct description of this category and the construction
of the motivic complexes in Section 5. For a thorough account of this theory we refer
the reader to [21].

The aim of this article is to provide a direct construction of a cycle map
from the motivic cohomology of real (or complex) varieties to the appropriate
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ordinary cohomology theory. In the case of complex varieties, this is simply Betti
(singular) cohomology with Z-coefficients, whereas in the case of real varieties
the natural counterpart is the bigraded Gal(C/R)-equivariant cohomology [8,9,19].
A conceptual explanation from the point of view of A!-homotopy theory for the
naturality of this equivariant cohomology theory as the target of the cycle map is
found in [6]. This article provides an alternative and direct explanation from a
sheaf-theoretic point of view.

Following an approach parallel to Voevodsky’s we introduced in [7] the category
of finite analytic correspondences, whose objects are real analytic manifolds-with-
corner and whose morphisms are described in terms of certain subanalytic chains
in the product of two such manifolds. The benefit of using real analytic manifolds
and subanalytic currents lies in the existence of a suitable intersection and slicing
theory, developed in this context in [13] and [14]. These constructions are recalled
in Section 2 below.

In Section 3.2 we recall the definition and basic properties of RO(G)-graded
ordinary equivariant cohomology, introduced in [19]. This is a cohomology theory
indexed by the ring of orthogonal representations of the group G, which plays a similar
role in equivariant topology to the one played by singular cohomology in the non-
equivariant context. In particular, these theories coincide when the group is trivial.
Denoting by 1 the trivial irreducible representation, one gets a natural inclusion
Z = 7Z -1 C RO(G), and the groups that are indexed by trivial representations
coincide with the classical Bredon cohomology, introduced in [3] and [4].

We are mainly interested in the case where G = & := Gal(C/R). Here one has
RO(S) =Z-1®Z-§&, where £ is the sign representation of Gal(C /R). In this case
we adopt the motivic notation Hg* (M;Z) := Hén_p)Hps (M ; Z) and denote the
complex Z (V)& associated to V' = p - § simply by Z(p),. This notation matches
Voevodsky’s notation for motivic cohomology and these equivariant cohomology
groups give additional information about the 2-torsion component of the motivic
cohomology of real varieties. The bigraded equivariant ring structure for smooth
proper curves is computed in [9] and for smooth projective quadrics in [8]. The
results are quite close to calculations of motivic cohomology in [22] and [27].

For a fixed finite group G our approach is the following. Given an orthogonal
representation V' of G, we use finite analytic correspondences to construct in
Section 3.2 a complex of abelian sheaves Z(}')§ on a suitable equivariant site of real
analytic manifolds-with-corner.

Our first main result is the following.

Theorem 3.9. Let X be an oriented real analytic G-manifold. Then, for any finite
dimensional G-representation V, with dim V = v, one has natural isomorphisms

H" (Xeg. Z(V)8Ix) = Hg "V (X: 1),

between the hypercohomology of X with coefficients in Z(V)&|x and the
G-equivariant cohomology of X with Z coefficients, in the direction of V.
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In Section 5, we take advantage of the fact that the construction of the complexes
Z(V)& closely resembles Voevodsky’s constructions to provide a very natural
description of the cycle map at the level of representing complexes. In a nutshell,
given a finite correspondence I' € Cor(X,Y), where X and Y are smooth real
varieties, the corresponding complex algebraic cycle I'(C) — with the analytic
topology — gives a real analytic current I'(C) which becomes a finite analytic
correspondence in 42 (X(C), Y(C))®. This natural construction yields our next
main result.

Theorem 5.7. Given a smooth real variety X, one has a map of complexes of Zariski
sheaves cx : Z(p)mix —> R«Z(p)sr|x(c) induced by mw : X(C)eq = Xzar (5.2)
and natural in X. This map induces natural bigraded ring homomorphisms

cx : Hy(X,Z(e)) — Hy*(X: D),

Sfrom motivic cohomology to ordinary RO(S)-graded equivariant cohomology.

We must point out that all the constructions done here, in the case of the trivial
group G = {e} yield a complex of sheaves Z(p) p calculating singular cohomology
with coefficients in Z(p) = (2zxi)?Z C C. The same construction provides a cycle
map from the motivic cohomology to the singular cohomology of complex varieties,
satisfying the properties described in the theorem above.

Using this approach to equivariant ordinary cohomology, we present two basic
examples. In Section 3.4 we directly construct the well-known isomorphism

Hé)r’p(*;Z) > 7" Qg Qz L =~ L%,

p-times

for all p > 1. Later, in Section 5.3 we use this example to provide a natural ring
homomorphism p : KM(F) :— @®,>0HYP(F;Z) := ®psoHYT(X(C); 2),
from the Milnor K-theory ring of a number field F to the “diagonal” part of ordinary
equivariant cohomology of X (C), where X := Spec (F ®¢ R). This map descends
to an isomorphism between KM (F)/2KY (F) and @ ;50 H'? (F;Z). Tt is worth
mentioning that the Milnor K -theory ring of a field F is precisely the diagonal part of
the motivic cohomology of Spec(F), thatis, KM (F) = @y Hj; (Spec(F), Z(p)).
In order to prove the main results, particularly Theorem 3.9, we need to endeavor
in sheaf-theoretic considerations of independent interest, similar to the discussions
in [21] related to complexes of sheaves with homotopy-invariant cohomology
presheaves. The main steps to prove Theorem 3.9 are summarized as follows.

(i) The sheaf a associated to a homotopy-invariant presheaf  is also homotopy-
invariant.

(ii) The previous step along with standard spectral sequences arguments imply
that for all » € Z the presheaf X +— H"(Xq: a!Pl}) is homotopy-invariant,
when #* is a complex of presheaves with homotopy-invariant cohomology
presheaves.
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(iii) We show that Cech hypercohomology on G-Man, coincides with sheaf
hypercohomology, and prove a Grothendieck-like theorem establishing an
isomorphism between the Cech hypercohomology of an equivariant good cover
and the usual hypercohomology groups.

In order to keep the exposition as self-contained as possible, we provide the proofs
of these technical results in an appendix, where we briefly discuss G-Man,, as a
site with enough points and the resulting canonical Godement resolutions of abelian
sheaves on G-Man,,.

Acknowledgements. The authors would like to thank the referee for the valuable
suggestions and corrections.

2. Finite analytic correspondences

In this section we review the main properties of the category of finite analytic
correspondences Manfc',;1 introduced in [7]. The constructions take place in the

category Man,, of oriented real-analytic manifolds and real-analytic maps.

2.1. The category of finite analytic correspondences. Let J}C"C(M ) be the group
of k-dimensional locally integral currents on an m-dimensional oriented smooth
manifold M [11, 4.1.24] and, for k > 1, let d : JIICOC(M) — J}c"il(M) denote the
boundary map, adjoint to the exterior derivative of differential forms. For k = 0, a
(locally) integral O-current is simply a (locally) finite sum of point masses.

If X is an oriented real analytic manifold, a k-dimensional locally integral cur-
rent T in X is called a k-dimensional subanalytic chain if spt(T') is contained in some
k-dimensional subanalytic set and spt(d7') is contained in some (k — 1)-dimensional
subanalytic set in case k > 1.

It follows that T is a locally finite sum of chains corresponding to integration over
certain k-dimensional oriented subanalytic strata of some subanalytic stratification
of X and, for k > 1, 0T similarly comes from (k — 1)-dimensional strata of this
stratification; see [14, p. 64].

Notation 2.1. If X is a real analytic manifold, we denote by J;’(X) C J}C"C (X) the
group of k-dimensional subanalytic chains on X .

Definition 2.2. A finite analytic correspondence T between oriented real analytic
manifolds X and Y, of dimensions m and n, respectively, isacurrent 7 € 4 (X xY)
satisfying the following conditions:

(rac.1) T is aclosed current (i.e. 0T = 0).

(rac.2) If rx : X x ¥ — X denotes the natural projection, its restriction 7w x | spi(7)
to the support of T is a proper map.
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(Fac.3) There is d > 0 so that for each x € X, one has #{mr ' (x) N spt(T)} < d.
Denote the abelian group of such correspondences between X and Y by 42 (X, Y).

fin
Example 2.3. (i) Let f : X — Y be a real analytic map and let Iy C X x Y
denote its graph, oriented so that the projection on X is an orientation-preserving
diffeomorphism. The current [I¥] € 4)9(X x Y) represented by integration over Iy

is a finite analytic correspondence.

(ii)) Let X(C) and Y(C) be the complex analytic spaces associated to smooth
complex algebraic varieties X and Y, oriented by a choice of V-1, and
let ' C X x Y be a finite correspondence from X to Y in the sense of [21], and
assume that X is irreducible. It follows from [2, Exposé XII, Props. 2.4 and 3.2]
that I'(C) C X(C) x Y(C) is a closed irreducible analytic subvariety which is finite
and surjective over X(C). In particular, I'(C) represents an element [I'(C)] in
I (X(C), Y(C)). See [16, Thm. 3.1.1].

We need a slightly extended version of the notions introduced above to include
oriented real analytic manifolds-with-corner [15]. Given two such manifolds X
and Y, we let 42 (X,Y) be the group consisting of those T € JI°(X x Y) for

n

which one can find embeddings X C X and Y C Y as closed submanifolds-with-
corner of oriented real-analytic manifolds XandY satisfying dim X = dim X and
dimY = dimY, together with T e Jﬁ‘;(f, ?) whose restriction /fI_(X xY)to X XY
(see [11, 4.1.7]) is equal to T. Note that if 7 € 4’ (X, Y) with X and ¥ manifolds-
with-corner, then 7 is not necessarily closed. From now on, the objects of Man,,
will include all oriented real analytic manifolds-with-corner, and the morphisms are
analytic maps.

It is useful to think of the elements in J{ (X, Y') as multivalued maps from X to Y.
Actually, one can associate to a finite analytic current 7 € J{ (X, Y) a continuous
map from X into the group of integral O-currents in Y, using the slicing techniques
introduced in [10]. In general terms, given a smooth map f : M — N between
smooth manifolds and a current 7' of dimension k on M, the slicing of currents —
under appropriate conditions — produces for almost all y € N a current (7, f, y) of

dimension k — dim(/N) on M called the slice of T over y.

Proposition 2.4 ([7, Prop. 2.5]). Let X,Y € Man, have dimensions m and n,
respectively. Denote by do(Y) the group of integral O-currents in Y with the flat
norm topology. Given T € J¢} (X, Y) the following holds:
(i) Theslice (T, mx, x) exists forall x € X and is a O-dimensional integral current
inX xY.

(i) The function fr : X — dJdo(Y) sending x € X to nys({T, 7wx,x)) is

continuous (where my 4 denotes the push-forward of currents, i.e. adjoint to the
pull-back of forms).

Let X, Y, and Z be oriented real analytic manifolds-with-corner of dimen-
sions m, n, and k, and use [X] to denote the current defined by integration on X
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(with the given orientation). Here, for sets or chains in the product space X x Y x Z,
it will be convenient to abuse notation by identifying a corresponding chain or set
under the standard identifications of X x Y x Z with the (X x Y) x Z or with
X x (Y x Z). For example, if T is a correspondence from Y to Z, we will use,
in X x Y x Z, the notation [X] x T as an abbreviation for the chain 14([X] x T),
where 1(x, (y,2)) = (x, y,z) for (x,(y,2)) € X x (Y x Z).

Proposition 2.5. Forany analytic correspondences S € J¢) (X, Y )andT € J3 (Y, Z),
the following statements hold:

(1) The intersection current (S X [Z]) N ([X] x T) existsin X x Y x X.

(2) Let p = pxz : X xY x Z — X x Z be the projection . Then the restriction
of p to the support of (S x [Z]) N ([X] x T) is proper.

(3) The current T o S := py[(S x [Z]) N ([X] x T)] lies in d% (X, Z), and is called
the composition of T and S.

Proof. First we need an easy remark about dimensions of subanalytic sets.

If f: M — N is an analytic map and A is a nonempty subanalytic subset of M
such that AN £~y is finite for all y € f(A), then dim A = dim f(A).

In fact, A admits a locally finite partition .M into analytic strata S so that f|g
is an immersion and dimS = dim f(S). Hence, dimA = maxgey dimS =
maxsep dim f(S) = dim f(A).

For the finite correspondences S from X to Y and T from Y to Z, we see that,
for each x € X, there are only finitely many y € Y with (x, y) € spt(7) and, for
each y € Y, only finitely many z € Z with (y, z) € spt(S). Thus, for each x € X,
there are only finitely many points (x, y,z) € (spt(X) x Z) N (X x spt(T)). We
may now apply the above remark to the projection onto X to see that

dim [(spt(X) x Z) N (X x spt(T))] = dim X = m.

Note that S x [ Z] is an (m+k)-dimensional subanalytic chain with spt(Sx[Z]) =
spt(S)x Z and 9(S x[Z]) = (0S)x[Z]+(—1)"SxI[Z] = 0+O0and that [ X[ xT
is an (m + n)-dimensional subanalytic chain with spt([X] x T) = X x spt(T) and
A[X]xT)=0.

Thus the two chains S x [Z] and [ X ] x T have supports intersecting in the correct
dimension (m + k) + (m + n) — (m + n + k) = m, which establishes the existence
of the intersection current in conclusion (1); see [14, §4.5].

For the properness in conclusion (2), assume that K is a compact subset of X x Z
and denote by gy : X xZ — X, qv:YxZ—>Y,px : X xY — X, and
py : X xY — Y the evident projections. It follows that gy (K) is a compact subset
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of X and, since § € J{ (X,Y) is a finite correspondence the intersection A4 :=
p}l (gx (K)) N spt(S) is a compact subset of X x Y. Therefore, py (A) is a compact
subset of ¥ and the previous argument shows that B := g3 (py (4)) N sptT is a
compact subset of Y x Z. Itis clear that spt(S x [Z]) Nspt([X] x T) N p~1(K) is
a closed subset of (4 x Z) N (gx(K) x B) C gx(K) x B and the latter is compact.

For conclusion (3) we now readily see that the push-forward current p4[(S x [Z])
N([X] x T)] is a subanalytic chain with zero boundary because dpy = pyd. Itis a
finite analytic correspondence from X to Z because, as we saw above, the projection
of its support onto X is a finite to one map. O
Proposition 2.6. With manifolds X, Y, Z and currents S€ d2 (X, Y ) and Te ) (Y, Z)
as in Proposition 2.5, suppose that W is an {-dimensional oriented real analytic
manifold-with-corner, and R € 47’ (W, X). Then

To(SoR)=(ToS)oR.

Proof. We use the formula [13, Th. 5.8(11)] to “lift” and apply the associativity of
the intersection product of chains that intersect suitably, as in [13, Th. 5.8(7)].
Specifically for the projection pyyxz of W x X xY x Z onto W x X x Z and
any subanalytic cycle Q in W x X x Y x Z that intersects R x [Y] x [Z] suitably,
pwxz,Q intersects R x [Z] suitably, and [13, Th. 5.8(11)] gives the formula

(Rx[Z]) N pwxz,Q = pwxz,[(Rx [Y] x [Z]) n Q].

Using the projections pwy : WxXXxZ - WxXand pxz : X XY XZ - X xZ
and this formula, we now derive that

(ToS)oR
= pwx,[(R < [Z]) N (W] x (T o S))]
= pwx,[(Rx [Z]) 0 (W] % pxz,[(S x [Z]) N ([X] x T)])]
= pwx,[(R x [Z]) N pwxz, (W] x [(S x [2]) n ([X] x T)])]
= pwx,[(Rx [Z]) N pwxz, (W] x $ x [2]) N (IW] x [X] x T))]
= pwx, pwxz,[ (R x [Y] x [Z]) n ((IW] x S x [Z]) n ([W] = [X] x T))]
= pwx,[(Rx [Y]x [Z]) n (W] x S x [Z]) n (W] x [X] x T))], (%

N
N

where pwx, is the projection W x X xY x Zto W x X.
By a similar argument we derive the formula

To(SoR)
= pwz,[(Rx[Y] < [Z]) n (W] x S x [Z])) N (W] x [X] x T)]. (%%
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Arguing as in the proof of Proposition 2.5, we see that for each w € W, there are
only finitely many points (w, x,y,z) € W x X x Y x Z so that (w, x) € spt(R),
(x,y) € spt(S), and (v, z) € spt(T). Thus,

dim [(spt(R) x ¥ x Z) N (W x spt(S) x Z) N (W x X xspy(T))] = ¢,
which is the correct intersection dimension
C+n+h)+U+m+k)y+L+m+n)—2(l +m+n+k).

Thus the three chains R x [Y] x [Z], [W] x S x [Z], and [W] x [X] x T intersect
suitably, and the associative law [13, Th. 5.8(7)] implies that (x) = (xx), and the
proposition follows. O

Definition 2.7. Let Manﬂ;1 be the category with oriented real analytic manifolds-with-
corner as objects and J{ (X, Y) as the morphisms between X and Y.
It follows from Propositions 2.5 and 2.6 that one has a faithful embedding

jin : Man, < Man™, 2.1)
which is the identity on objects and sends an analytic map f : X — Y to the current
defined by its graph [T¥] € 42 (X.Y).
2.2. The category of equivariant analytic correspondences. We now work in the
equivariant category G-Man, whose objects are oriented real analytic manifolds-
with-corner with a finite group G acting by analytic automorphisms (not necessarily
orientation-preserving), and whose morphisms are the equivariant analytic maps.
There is an induced action of G on 4 (X, Y') which, as in the non-equivariant case,
leads to the definition of the category of equivariant finite analytic correspondences
G-Man™ having analytic G-manifolds-with-corner as objects and 42 (X,Y)¢ as
morphisms between X and Y [7, Definition 4.2].

Remark 2.8. It is easy to check that the assignment J{’ (X,Y) — Map(X, do(Y))
described in Proposition 2.4(ii) is equivariant. In particular, if T € J2(X,Y)¢

fin
then fr is an equivariant map, thatis fr € Map(X, do(Y))°.

2.3. Homology of finite analytic chains. The ropological simplex

n
& = {o,...t) R Y g =Tand; 20,0 =0,....n}  (22)
i=0

is an oriented analytic manifold-with-corner that we endow with the trivial G-action,
for any finite group G. This gives a canonical cosimplicial object &° = {&" | n > 0}
in the categories Man,,, Manx‘, G-Man,, and G-Manfc',f.
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@

Any X € Man® yields a simplicial object J2 (4°, X) whose resulting chain
complex (with differentials given by the alternating sum of the simplicial face
maps) is denoted J{ (4%, X). It follows from Proposition 2.4 that one obtains
a map of complexes s : J2 (4", X) — Sing,(do(X)), where Sing, (do(X)) =
Homy, (4%, Jo(X)). This map will be used to compare the resulting homology
theories. Furthermore, the equivariance of the slicing map implies that in the
equivariant context s is a map of complexes of G-modules. In particular, for each
subgroup H C G, it maps J{ (&, X)H into Sing, (do(X)H).

Theorem 2.9. Let X be a compact oriented analytic manifold. The map

s 2 (A%, X) — Sing, (Jo(X))
is a quasi-isomorphism, i.e. it gives an isomorphism in homology. More generally,
if G is a finite group acting on X by analytic automorphisms and acting trivially
on &%, then for each subgroup K C G the map s : I (&, X)X — Sing, (4o(X)X)
is a quasi-isomorphism.

Proof. The proof follows from the same arguments found in [7, Th. 3.1]. 0

Remark 2.10. For each subgroup K C G, standard arguments yield an isomorphism
between the homology groups H,(Sing, (do(X)X)) and the homotopy groups
7e(Jo(X)X).  The equivariant version of the Dold-Thom theorem in [18]
and Theorem 2.9 yield a natural isomorphism between H.(J% (4%, X )¢) and
the G-equivariant Bredon homology HC (X;Z) with coefficients in the Mackey
functor Z.

3. Equivariant analytic presheaves with transfer and ordinary cohomology

For a fixed finite group G we introduce the notion of G-analytic presheaves with
transfers on G-Man,,. When G is the trivial group this specializes to the analytic
presheaves with transfers. Our constructions run in parallel with the development
of motivic cohomology in [21]. In particular, we define complexes of sheaves on
G-Man,, that are the topological counterpart to Voevodsky’s motivic complexes.

3.1. Equivariant analytic presheaves with transfers.

Definition 3.1 ([7]). An equivariant analytic presheaf with transfers is a contravariant
functor ¥ : (G-Man[")® —s Ab. We denote by G-PST* the category of equivariant
analytic presheaves with transfers and natural transformations.
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Example 3.2. Any object X € G-Man,,, represents an equivariant analytic presheaf
with transfers Z¢ X € G-PST® given by

Z2X : (G-ManfM* — Ab

U+— Jp

(U, X)°®.

Given a pointed object (X, x) in G-Man,,, consising of X € G-Man,, and x € X,
define Z{ (X, x) € G-PST® as the cokernel of the map Z = Z{¢x — Z¥X. Since
the map x — X splits, there is a natural splitting Z X =~ Z & Z2 (X, x).

Example 3.3. Consider X € G-Man,,. The G-topological group 4o (X) described in
Proposition 2.4 naturally represents an abelian presheaf Z%pX on G-Top defined by

U G-Top(U, Jo(X)). If x € XG we set do(X, x) = JoX/Jo(x) and ng(X, X):

U +— G-Top(U, do(X, x)). In [7, Lem. 4.6] it is shown that these presheaves on
G-Top extend to presheaves with transfers Z$*X and Z$* (X, x) on G-PST®.

Given an arbitrary equivariant presheaf with transfers ¥ € G-PST®, let
A,¥ € G-PST? 3.1

denote the functor that sends U € G-Man™ to 4,% (U) := F (U x 4&"). Using the
functoriality of ¥ one can easily verify that the collection & ,F := {&,F | n > 0}
becomes a simplicial equivariant analytic presheaf with transfers, and we denote
by & . F the associated chain complex whose differentials d, are the alternating sum
of the face maps. Denote by &*F the complex of G-PST®’s (negatively graded)
associated to & % . In other words, &"F = A _, ¥ with the differential

d" . A'F — A'"T1F | defined by d"(a) = (—1)"d_,. (3.2)

Definition 3.4. Endow the category G-Man, with the Grothendieck topology
generated by the pre-topology where an equivariant covering family of U € G-Man,,
is a collection {f; : U; — U};e; of open embeddings in G-Man,, satisfying
U = ;e fi(Ui). Denote by Cov(U) the set of coverings of U and recall that
the following holds:

(T1) For {U; — U} in Cov(U), and a morphism V — U in G-Man,, all fiber
products U; xy V exist and {U; xy V — V}isin Cov(V).

(T2) Given {U; — U} in Cov(U), and a family {V;; — U;} € Cov(U;), for all
i € I, the family {V;; — U} obtained by composition also belongs to Cov(U ).

(T3) If ¢ : U’ — U is an isomorphism in G-Man,,, then {¢ : U' — U} is in
Cov(U).
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Let (G-Many),, denote the equivariant analytic site, consisting of the category
G-Man,, endowed with this topology.

(a) Given X € G-Man,,, denote by X, the small equivariant site of X where the
objects are the G-invariant open subsets of X and the coverings are as above.

(b) Given areal linear representation V' of G of dimension v, let its representation
sphere SV be the one-point compactification VV U {oo}. Using Examples 3.2 and 3.3,
define two complexes in G-PST?:

ZV)G = (& ZG>(S” 0)) [-v] and Z(V)E := (4*Z2(S" 00)) [-v].
By definition,
ZWV)ET (U) = (& 22(SV.00)} " (U) = Z2(5" 00)(U x &)
and the differential
dj - Z(V)E (U) — 2(V)g7H (U)

is d; (@) = (=1)°(=1)""/dy—; = (—=1)/dy—_; by definition of shifted complexes
and (3.2), where

dy-j  Z2(S%,00)(U x &) — Z2(S¥,00) (U x A7)

is the simplicial differential. These complexes should respectively be seen as
topological and differential-geometric G-equivariant analogues of Voevodsky’s vth
motivic complex in the category of smooth schemes over C.

(¢) For X in G-Man,, denote by Z(V)tgpb( and Z(V)g&|x the complexes
of abelian sheaves on X, obtained as the sheafification of Z(V)té’p and Z(V)g,
respectively, restricted to the small equivariant site of X .

Notation 3.5. Given a site €, denote by € and € the categories of presheaves and

sheaves of Sets on €, respectively. Similarly, denote by € g and € g the categories
of presheaves and sheaves of R-modules on €, for a given ring R.

Definition 3.6. An equivariant analytic presheaf with transfer ¥ is homotopy
invariant if for each U € G-Man,, the projection & : U x I — U, where I = [0, 1]
is the unit interval induces an isomorphism 7* : ¥ (U) — F (U x I).

Proposition 3.7. If ¥ is an equivariant analytic presheaf with transfers then the

complex &*F has homotopy-invariant cohomology presheaves. In other words,
givenn > 0 let 7" (A" F) be the G-PST®

kerd : F(U x &") — F (U x 4"
Imd : F(U x 4"t - F(U x &)

JHAF) U —>

Then J~" (A" F) is homotopy invariant, for all n > 0.
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Proof. This follows exactly as in [21, Lect. 2]: define 6; : A"t! — A" x Al by
sending the vertex v; to v; x {0}, for j <7, and to v;_; x {1} otherwise. Then
sn = »_; F(1y x 6;) is a chain homotopy from i} to i, where ig : X < X x A!
is the inclusion x +— (x,a). By [21, Lemma 2.16] it follows that J~"(&*F) is
homotopy invariant. O

The notions of homotopy-invariant presheaves with transfer and complexes of
presheaves with transfer having homotopy-invariant cohomology sheaves play an
important role in the development of motivic cohomology. As we shall see in the
following self-contained discussion, this is an equally relevant notion in our context.

Asin [21, Lect. 2], one can introduce arbitrary colimits and limits (objectwise) in
G-PST®. For example, define the smash product of pointed real analytic G-manifolds
(X1,x1)s -+ (X, Xn) by

Z3 (X1 AN Xy)

n
= Coker{@Zt“r’(Xl X oo X {xj X e X X)) = ZO(Xy X - x Xp) b, (3.3)
j=1

In particular, given p > 1, define Z (AP X) := ZE(X A--- A X).

Remark 3.8. In some cases the topological space X; A- -+ A X, admits a real analytic
G-manifold structure, such as the case of representation spheres in Definition 3.4. To
avoid confusion we do not use X1 A --- A X, to denote a real analytic G-manifold.

3.2. Ordinary equivariant cohomology and Z(V)¢. The paper [19] introduces
a generalization of Bredon’s G-equivariant cohomology groups, called ordinary
RO(G)-graded equivariant cohomology. As explained in [19] the appropriate
coefficients for this theory are Mackey functors over G. For our purposes the
Mackey functor that plays the role of the integers in singular cohomology is the
Mackey functor constant with value Z, denoted Z (see for example [7]). For a based
G-space X the reduced ordinary RO(G)-graded cohomology with Z coefficients
assigns to each orthogonal G-representation V' an abelian group H g (X; Z) together
with suspension isomorphisms in the direction of arbitrary representations:

o HE(X:2) > HET(SY A X: 1),

where SW = W U {oo} is the representation sphere of W. As usual, there is an
unreduced theory defined by Hg(X;Z) = ﬁg(XJr;Z), with X4 := X U {+}.
The functors X +— H g(X ; Z) are contravariant in X and satisfy expected
properties such as invariance under equivariant homotopy equivalences, existence
of long exact sequences for pairs and sending wedges to products. They also
satisfy natural compatibility relations involving the suspension isomorphisms, the
morphisms of representations and the direct sum operation (see [20]). Using these
properties it is possible to extend the cohomology theory on virtual representations
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by setting ﬁg_W(X;Z) = ﬁg(SW A X;Z), yielding an RO(G)-graded theory
with a multiplication pairing that sends H ¢(X:2)® H g (X; Z) into H OC‘;H; (X;2),
where o + 8 denotes addition in the representation ring.

The main result in this section is a first indication that Z(V)§ is indeed the
analogue of the vth motivic complex in the category of real analytic G-manifolds.

Theorem 3.9. Let X be an oriented real analytic G-manifold. Then, for a finite
dimensional G-representation V one has natural isomorphisms

H" (Xeq, Z(V)2|x) = HET"V(X;2),

between the hypercohomology of X with coefficients in Z(V)&|x and the
G -equivariant cohomology of X with Z coefficients, in the direction of V.

Proof. In Theorem 3.11 below we show that Z(V)gp computes Bredon cohomology
in the direction of V, i.e. that the hypercohomology of the complex Z(V)tgpl x is
naturaly isomorphic to the Bredon cohomology groups of X in the direction of
the representation V', with the appropriate index shift. The theorem follows as a
consequence of Theorem 3.11 and the following lemma. O

Lemma 3.10. Let V be a finite dimensional G-representation. The slicing maps
s 1 G-Man™(U, SV) — G-Top(U, do(S")) described in Proposition 2.4 induce a
quasi-isomorphism Sx : Z(V)glx — Z(V)tgﬁ,(,for all X € G-Man,,.

Proof. Let xo € X. Consider a neighbourhood basis {U, },en of the orbit G - xq
such that U, =~ G XGy, D, where each D, is a Gy,-equivariantly contractible
analytic open set, as described in Appendix A.1. The homotopy invariance
property in Proposition 3.7 applied to the cohomology presheaves of Z(V)g| x and

Z(V)tgp| y in these neighbourhoods shows that their stalks (J(’ * (Z(V)‘é’| X)) Goxo and
(7 *(Z(V)t(gp| ) G.x, Ar€ given, respectively, by the homology of the complexes

Z2(SY, 00) (4% x G/Gy,) and  Z§(SY, 00) (&% x G/Gy,),
shifted by v; see Example 3.3. It is easy to check the commutativity of the diagram

%G/ Gx

S
J2 (A* x G/Gy,, SV)C G-Top(&* x G/ Gy, do(SV))

| |

A
42 (&%, SV)Cxo = G5 Top(&*, 4o(SY)),

where the vertical maps are given by intersection with &* x eGy, x SV C A* x
G/Gyxy x S Y on the left and by the usual adjunction on the right. The result now
follows from Theorem 2.9 and Remark 2.10. 0
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The key ingredient to prove Theorem 3.9 is the following.
Theorem 3.11. Let V be an orthogonal representation of G with dimV = v and
let X be an oriented analytic manifold. Then there is a natural isomorphism

" (Xeg Z(V)Sy) = HE(X3 ),

First, we need to introduce basic terminology.

Definition 3.12. Let X be an analytic manifold and U = {U, }se; € Cov(X), and
let & be an arbitrary abelian presheaf on G-Man,,. Denote by P x (resp., a P x) the
associated presheaf (resp., sheaf) on X .

(a) The Cech nerve of U is a simplicial G-space over X denoted N(‘L(). - X.
It is obtained from the successive fibered product of f : U — X, where U :=
[{yez Us. In other words,

N(?l)kizz []XXT-H Xxf[]iz I_I L%w

geln+l

(k+1)-times

where U denotes Uy, N --- N Uy, . The realization of N(U). is a G-space [N(U)a|,
which is G-homotoy equivalent to X if / is countable [23].

(b) The nerve of U is the simplicial set N(U)e defined by
Ny = {(00,...,00) € " | Usy N---N Uy, # D).
Hence we can write N(Wx = [senu), Us-
(c) Let rx : N(U)x — X be the projection and denote ‘é}} 1= Tty (Px).
This gives the usual cosimplicial presheaf éﬂ(?) on X, with associated Cech

complex of presheaves ‘éf& (P).

(d) Given a complex of abelian presheaves P* on G-Man,, the naturality of the
Cech construction gives a double complex € Y (#¥) and we have

D(X, €5 (PN = [ [ P4Ws,).
FpeN(W p

The Cech hypercohomology H* (U; P*) of the cover U with coefficients in the
complex of presheaves P* is defined as the cohomology of the complex of abelian
groups Tot(I" (X, é;‘u (£)))-

(e) The cover U is called an equivariant good cover if all intersections Uy, N
-+ N Uy, are equivariantly analytically diffeomorphic to a G-manifold of the form
G xg D where H is a subgroup of G and D is the intersection of an open disc in an
orthogonal representation of H with an H -invariant “corner” of the type R”, x R"™".
The existence of such covers for an analytic G-manifold is given in [7, Cor. A.7] and
the same arguments apply to manifolds-with-corner.
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Notation 3.13. Given a double complex (C,d,§), with d : C?4 — CP4+! and
§ : CP4 — CPT1L4  there are two natural spectral sequences converging to the
total cohomology H*(C). We refer to the spectral sequence whose E;-term is H¢
and E,-term is H® H? as the first sequence. By the second sequence we mean the
spectral sequence with £; = H% and E, = H? H®.

The following “steps” to prove Theorem 3.11 have an interest of their own. The
first one is the topological counterpart of [21, Thm. 22.1]. Its motivic version is more
subtle and plays a fundamental role in the development of motivic cohomology.

Proposition 3.14. Let P be a homotopy invariant abelian presheaf on G-Many,.
Then the associated sheaf a is homotopy invariant.

Proof. See Appendix A.3. O

A consequence of this result is the next step.

Theorem 3.15. Let P* be a complex of abelian presheaves on G-Man,, with
homotopy-invariant cohomology presheaves. Then the presheaves

X > H (Xeg; aPy)
are homotopy-invariant.
Proof. See Appendix A.3. O

We now come to the final step.

Proposition 3.16. Let U be an equivariant good cover of X and let P* be a
complex with homotopy invariant cohomology presheaves on G-Many,. Then the
Cech hypercohomology ]ﬁl'(‘u; P*) of the cover with coefficients on the complex of
presheaves P*, computes the hypercohomology H*® (X ; a.?";() of Xeq with coefficients
in the complex of sheaves aﬁ’l}.

Proof. See Appendix A.3. O
Using the steps above we can prove the desired result.

Proof of Theorem 3.11. The proof follows the steps in [28] where a closely related
complex is used to represent ordinary equivariant cohomology.
Consider the invariant h* defined on pairs of G-spaces by

h" (X, 4) = H TV (X, A; 2)

It satisfies the usual axioms for a generalized equivariant cohomology theory: long
exact sequence for pairs, G-homotopy invariance and excision. We will construct a
suitable filtration on X and follow the arguments in [23] to obtain a spectral sequence
converging to h*(X). To obtain the desired filtration we replace X by the realization
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of the Cech nerve N(‘L{)., for an equivariant good U of X (see Definition 3.12), and
consider its skeletal filtration

Sko [N(U)a| C Sky [N(U)a| C -+ C Sky N(WU)a| C -+ C [N(W)a],

where

[T & <N = ] ] & x Nk
(1>[k] k<n
k,<n

Sk, IN(U).| = coeq

In this case, [23, Prop. 5.1] yields a spectral sequence converging to h* (IN(U)s|) =
h*(X) with E; term

EP? =579 (Skp IN(U)al, Skp—1 IN(U)a|)
> hPT (A2 x N(U) . 47 x N(U)% U 942 x N(U) )
= hq(N(u)P’ N(u)‘;) = hq(’('(u)’;d) = HCI?/+p_v(]_[66N(U)’},“' Us: L)

=[] HE "7V (G/Js: 2).
FENUWHE
where the superscripts d and nd represent the degenerate and non-degenerate parts
of the corresponding simplicial object and we use the hypothesis that U is good to
write Uy = G xj, D, with D being Js-equivariantly contractible.
The E; term is computed as in [23] by considering the cochain complex associated
to the simplicial space N(U)o and b:

K2 :=1h7(N(U),) = Hgﬂ_v(]_[&emwp Us;Z) = [ ] Hg P70 (GJs: L)
GeEN(W) p

Its differential is defined as Y ;(—1)'h?(d;), where d; denotes the ith face map
of N(U)e. There is an obvious map EY*? — KJ, which by [23, Prop. 5.1] is
compatible with the differentials and induces an isomorphism E5*? >~ HP?(K}).

Now, by Proposition 3.16 the Cech hypercohomology H*®(U; Z(V)ETX) computes
H*(X; Z(V)E’TX). The first spectral sequence gives

EPIU 2V = [ H(T(Us,: 20)6hy))
geN(U)p

[T s (z0ny) (Us,)

~ [ HEP 7V (G/Js:2) = KP.
FEN(U)
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where we have used the homotopy invariance of #4(Z (V)té’p| x)» Proposition 2.9 and

Spanier—Whitehead duality:

HU(ZV)Ey)(Us) = X2V )G/ Ts) = HE (ST 7G5 )
= Hy_y1o(G/Jo,) = HE T (G J5).

It is important to note that, under this sequence of natural isomorphisms, the map
HI(Z (V)g’TX) (Us) — HUZ (V)tGOTX) (Uz) induced by an inclusion Uy < Uy is just
the map induced on cohomology by the corresponding map of orbits G/J; — G/ J.
We conclude that the map Ef? — K] yields a map of spectral sequences
EPY — "EP that induces an isomorphism of the E,-terms. 0

Corollary 3.17. Let V, W be real G-representations of dimensions v and w. Then
the complexes Z.(V @ W)& and &°Z (SYV A SW)[—(v + w)] are quasi-isomorphic.

Proof. Given the pointed G-spaces S” and S% one can define the abelian sheaf
Z3=(SV A SW) on G-Top exactly as in (3.3):

Zg>(SY x S")(U)
Im {(Zg=(SV x 00) @ Zg=({oo} x SW))(U) — Z& (SV x SW)(U)}
(3.4)
Note that, even though the quotient SV x S /SV v SW = SV®W exists in G-Top,
this is not the same as abelian sheaf represented by SV®W . But the equivariant
Dold-Thom theorem proved in [18] implies that the projection SV x SW — SV&W
induces a quasi-isomorphism &°Zg*(SV A SV) — a°Zge(SVOW),
To conclude the proof one uses the fact that the map A°Z2(SV A SW) —
A°75=(SY A SW), induced by slicing is a quasi-isomorphism by Lemma 3.10. [

Ur—

Remark 3.18. Given a subgroup H < G, one has a forgetful functor ¢ : G-Man,, —
H -Man,, that determines a morphism of sites ¢°? : H-Man,, — G-Man,, inducing
a morphism of topoi ¢ = (¢*, ¢«) : H-Man, — G-Man,,. It is easy to see that the
left adjoint ¢* : G-Man,, — H-Man_; sends Z(V)& to Z(Resz (V))§. In particular,
if X € G-Man,,, one obtains the natural change of group functor

" Hg " N(X L) — H V(X1 D),

where V denotes Resg(V). In the case where H = {e} is the trivial subgroup, this
gives the forgetful map into singular cohomology

¢* HETU(XL) — HY (X Z).
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3.3. The case of Gal(C/R). Now we specialize to the Galois group & :=
Gal(C / ]R) and explore its conjugation action on complex points of real varieties.

Let £,1 =~ R denote, respectively, the alternating and trivial one-dimensional
representations of &.  Any orthogonal representation of & is isomorphic to
R™4 :=1""9 @ &9, for some n > g > 0, and we denote by "¢ € &-Man™"
its one-point compactification. From now on, we use the motivic notation

Hg(X:2):= HE" " (X: 2). (3.5)

Note that S! C C endowed with the complex conjugation action is isomorphic
to S -1 (with oo mapped to 1) and the inclusion S ! € C* is an equivariant homotopy
equivalence. This can be used to find a convenient expression of the smash product
S§PP .= §L1 A ... A ST in the appropriate derived category of sheaves.

Definition 3.19. Define Z(p),, := &*Z% (A\?C*)[-p].
Lemma 3.20. The complex Z.(p)e is quasi-isomorphic to
Z(RPPYE = AZL(SPP)[-p].
Proof. As in the proof of Corollary 3.17 we note that slicing induces a map
A ZL(N\PCY) — A ZF=>(N\PC>)

which by Lemma 3.10 is a quasi-isomorphism. Since (S#*,00) is a strong
deformation retract of /\?(C*, 1), the result follows. O

3.4. A basic example. We use the complex Z(p),, to directly compute the cohom-
ology groups HZ'?(x;Z), where * = {pt}. For brevity, given a pointed object
(X, x,) in &-Man!" we denote

Jo(X x -~ x X)®

ZP(X) = Ztar)(/\pX)(*) - Zle J()(X N {xo} NI X)G

(3.6)

It is clear that the assignment (X, x,) + Z?(X) is functorial on (X, x,).

As described in Remark 2.8, one associates to 7' € J (A, X x -+ x X)® amap

fr Al = Jo(X x --- x X)®, which induces a continuous map
fr: Al > ZP7(X) (3.7)
for the quotient topology on Z?(X). Note that if [T'] denotes the class of T in

I (A, X x - x X)®

lyw V4 —
SN X)) = S e AT X gl X )

then fr depends only on [T']. Furthermore, the simplicial boundary map

dy: A'ZZ (AP X)(x) — ZE (AP X)(x) = ZP(X) (3.8)
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is defined by d,[T] = fr(1) — fr(0), when one identifies &! with the unit
interval [0, 1]. Denote the image of d; by B”(X) C Z”(X). In the particular
case where (X, x,) = (C*, 1) one has a short exact sequence

0 — B?(C*) — Z?(C*) L HPP(x:2) — 0, (3.9)
since Z(p)f)Jrl = 0.
Proposition 3.21. There is a canonical isomorphism
p:HEP (% 2) — 7% @z - ®z L%,

Proof. Denote an element in the p-fold cartesian product C*? := C* x---x C* by
z=(z1,...,2p) and let §, € Jo(C*?) denote the O-current represented by z.
We start recalling a standard exact sequence of topological groups

0 — & * do(C*P) — Jo(C*?)® 5 go(R*P) @ Z/2 — 0, (3.10)

where & * do(C*?) denotes the closed subgroup generated by Galois sums of the
form §, + 8z € do(C*?). This sequence appears as the top row of the diagram below,
which summarizes the arguments that follow.

S * o(C*P)C Jo(C*P)S ” Jo(R*P)® Z/2
é1
kerp::::::::::Bp((CX) 033
Al T ZP((CX) ZP(RX) ® 72

ZP(2°) @ 7.2

pr(* Z)¢ ————————— =% - — - ——————— 7> Rz - Qg L*
(3.1
In this diagram:
(1) The vertical arrows ¢ and ¢, are the natural quotient homomorphisms (3.6).

(2) The homomorphism 4 is induced by u : R* — Z*, u:x +— 5

xl
(3) The vertical arrow u is induced by the universal homomorphism Z{Z*?} =
do(Z*P) — Z* ®z---®z Z*, and all vertical arrows are continuous surjections.
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(4) Itis clear that 7= descends to the quotients inducing 7, and we define

PI=UOUxOT. (3.12)

(5) The diagonal sequences are short exact sequences, by definition.

It is easy to see that an element B € Jo(C*?)® can be uniquely written as
B=A+R"+ R ,where A=) ,n(6x + 8,2), RT = >, mby,and R~ =
>, r,8y./,wherez’1 € C*? —R*P |y, € (R<g)?, forall j,and x' € R*? — (R)”
for all 1.

A diagram chase shows that p(f8) = (Z] r.,){—l, ...,—1},where {—1,...,—1}
is the generator of Z* ®z --- ®z Z. Tt follows that

B=A+ R" + R ckerp ifand only if deg R~ := Zr] is even. (3.13)
J

Ifzisin C*? —R*?, assume without loss of generality that the first coordinate z1 is
in C*—R*, and consider the map g, : &' — C* defined by g, (¢) =t z1 +(1—1).
Let [T,] € 42 (4!, C*?) denote the current associated to the graph of

g, te A — (gzl(t),zz,...,zp) e C*”,
as in Example 2.3(i). It follows that T2 := [[] + 0[] € 42 (&', C*7)S,
where 0 is the action on currents induced by complex conjugation, and that

di(T™) = 8, + 85— 85 — 851, (3.14)

where 2’ = (1,z2,...,2p).

Now, for a € R* define h, : A' — R* by hy(t) = ta + (1 — t)lg—l. Given
a=(ai,....ap) € R*? define h, : &' - R*P by 1 > (ha,(1),....ha,(t)), and
let [W,] € J2 (&', R*?) denote its graph. It is clear that

fin

a a
di[Wa] = 84 — 8.y, Where ju(a) = (ﬁ o ﬁ) (3.15)

Given 8 = A + RT 4+ R~ as above, define Wg = 'y + Wg+ + Wg—, where
Ca = 3, mal8], Wre = 32, m[Wa], and Wg- = 3, r,[Wys]. Tt follows
from (3.14) and (3.15) that one has

di(Wg) = di(Wa) + di(Wr+) + d1(Wg-)
= (A-A)+ R =R)+ (R =Y _r))d,

J

= -+ R~ (X r)8e,

J



Vol. 92 (2017) Cycle map for the motivic cohomology of real varieties 449

where A’, R" are sums of elements of the form &, ¢ ») Where ¢ = 1, for some

.....

k=1,...,p,and £, = (-1,...,-1) € R*?. In other words, the class of
in ZP(C*) can be written as
=), +dr(Wp). (3.16)

J

Now, let y : Al — C* denote an analytic parametrization of the upper half of the
unit circle centered at the origin in C*, oriented from 1 to —1. Define y,, : Al > Cx?

by yp(t) = (y(t),—1,...,—1) and let [T,] € J2 (4!, C*P) denote its graph. It
follows that © , := [[',] + 0[] lies in 42 (4!, C*?)S and that
d1(©p) = 28¢, —28(1,-1,...,—1)- (3.17)
Hence, the class of &g, in Z7(C*) satisfies
d1(©p) =28, (3.18)
since §(1,—1,...,.—1) = 0 € ZP(R™).

By (3.13),if B € Ker(p,) then Z‘] r; = 2k, for some integer k, and using (3.16)
and (3.18) one concludes that 8 = (3_, r,)d¢, + d1(Wp) = di (k®p + W,g) . This
shows that

kerp C B?(CX). (3.19)

Now, by definition, if 8 € BP(C*) one can find T € J2 (&', C*?)S satisfying
B = fr(1) — fr(0). The resulting fr : A — ZP(C*) is continuous and hence
p o fr is a constant map, since A! is connected. See (3.7) and (3.11). It follows
that p(B) = p(fr(1) — f7(0)) = po fr(1) —po fr(0) = {1,..., 1}, and hence
B € ker(p). This shows that B?(C*) C ker(p), which together with (3.19) proves

the proposition. O

Remark 3.22. Lete € Hér’l(*; Z) denote the generator, i.e. p(¢) = {—1}. Using the
description of the cup product in (5.3), one sees that e? := eU---Ue € HY? (x; Z)
is the generator, i.e. p(¢?) = {—1,...,—1}. This gives a proof of the well-known
fact that the graded ring @ p>o Hj'? (*; Z) is isomorphic to Z[e] = Z[x]/(2x).

4. A de Rham realization of Z(p),,

Let H*

sing

with coefficients in Z(p) = 2n+/—1)?Z C C. We have a commutative diagram

(X:Z(p)) = HX

sing

(X;Z) ® Z(p) denote the singular cohomology groups

Hy,? (X:Z) ——— H]}

sing

(X;Z(p)® ———— HL(X;Z(p)) (4.1

/| |

H! (X:C)® = H! (X)® “——— H (X)
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where the first row gives the “change of groups functor” described in Remark 3.18
for the subgroup {e} C &, and vertical arrows are change of coefficients functors for
singular cohomology, along with deRham’s theorem. The group Hg,, (X Z( 7)°®
consists of the invariants of the simultaneous action of & on X and Z(p), and
H! (X)® are the invariants induced by the action § + o*6 on differential forms.

Our goal is to describe a direct realization of the map Hy”(X;Z) — H[ (X)®
on the level of complexes of sheaves on manifold X . This description is relevant for
a subsequent study of regulator maps for real varieties.

Given X € 6G-Man,, with dim X = m, it follows from Definition 3.19 and (3.3)
that

Z(p)h(X) =

Je (X x ap~1 (©9P)®

m{@j;l Jw(XXAp_j’(CX X"’X{I}X---X(CX)G 4o

fin fin

(X x a7~1 (C*)p7)}
Let
71 X X AP7 x (C¥)? — X,
731 X x &/7P x (C*)P — (C*)P,
and T2 X X &P/ x (C*)P — X x &P~/
denote the projections. By definition, an element o € Z( p){,',(X ) is represented by

a subanalytic current T € 4! (X x 4777 x (C*)?)S such that, among other

m—+p—j
properties, 712|,, ., is proper. In particular, 7y, is also a proper map.

pt(7)
We now consider the form w, = dZ% ARREWA % € QP({C*}?) which has the
following properties:

(a) 0*wp = wp and 0*w, = @, where o is the action of & on the ambient
manifold.

(b) If T? C C*? is the compact torus T? := S! x --- x S! then @,rr =
(=1)? o
(o If

S e Im{@7_, I3 (X x @277 {C*x- - -x{1}x---xC*}) — I (X x &2~/ (C*)P)}
then S L njw, =0and S L njw, = 0.
It follows that if & = [T'] as above, then
AL, =T L@y € Dmj(X x AP/ x (CX)"’)6

is a well-defined deRham current of dimension m — j, which is invariant under the
Galois group action, and so is

(@) i= (=) PV (o L nlw,) € D7 (X)S. (4.2)



Vol. 92 (2017) Cycle map for the motivic cohomology of real varieties 451

Proposition 4.1. The assignment o € Z(p)‘c’;)(X) — t(a) € ‘D’ (X)® defines a
map of complexes T : Z( p);‘)‘ x —' i)f}e. In the level of hypercohomology, this

map realizes the composition j' o ¢ : ng’p (X:Z) — H;’R(X)6 displayed in (4.1).

Proof. Given T € 42 (X x AP~/ (C*)?)S, by definition one can find an open

fin
subset &7~/ C U C AP7/(R) and a (closed) current T € 42 (X x U, (C*)?)®
such that 7 = T N [X x #”7/]. Hence, using the boundary formula for the
intersection [13, Th. 5.8(9)], we obtain

aT = 3(T N [X x &P~/])
= (DPOT)N[X x AP+ T NI[X x &7 =T N J([X] x [47~/])
p—Jj

= (=D"T 0 ([X] x 9[477/]) = (=)™ DT N ([X] x 15[ 4777 7])

s=0

= (—1)"dp—;(T) = (=)™ (1) d}(T) = (1) dJ(T).

where d,_; is the simplicial differential and d} is the differential in the complex
Z(p)w. See Definition 3.4(b).
Therefore,

de([T]) = (=1)/ 13z ([T]) = (1) T (= 1)/ PV (T L n5 @)
= (=) (=1)/ P (T L i@ ,))
= (=) TN (=) P ()P (0T L i@ )
= (1) (=)D ()P (=) iy ({d(T)} L 75 @))
= (DU () (T)} L w5 )

= ¢(dJ[T)). 0

5. The cycle map from motivic cohomology

5.1. Motivic cohomology. We start with a brief introduction to Voevodsky’s motivic
complexes Z(p)y in the category of smooth varieties over a field F, closely
following [21]. The similarities between these constructions and the approach taken
with analytic currents in the previous sections will become evident.

Definition 5.1. Let X = [[; X; and Y be smooth algebraic varieties over a field F,
with X; irreducible. For each i define Cor(Xj;, Y) as the free abelian group on the
irreducible W C X; x Y that are finite and surjective onto X;. Define Cor(X,Y) :=
®;Cor(X;, Y). The finiteness and surjectivity condition guarantee thatif W C X xY
and V' C Y xZ areirreducible finite correspondences, then W x Z and X xV intersect
properly. One defines VoW as p13+ (W xZ)N(X xV)), where (W xZ)N(X x V)
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is the intersection of algebraic cycles [12], and p13 : X XY x Z — X x Z is the
projection. As shown in [21, Lecture 1], this induces an associative composition
pairing

o:Cor(X,Y) x Cor(Y, Z)— Cor(X, Z).

(a) The additive category Corg of finite correspondences has smooth varieties
over F as objects and Cor(X, Y) as the morphisms from X to Y, with the empty
variety ¢ as the zero object and disjoint union as coproduct. Compare with
Propositions 2.5 and 2.6, and Definition 2.7.

(b) A presheafwith transfers is a (contravariant) additive functor ¥ : Cor(I’f — Ab.
We denote by PST(F') the functor category with presheaves with transfers as objects
and natural transformations as morphisms. This is an abelian category with enough
injectives and projectives; see [21, Lecture 2].

Example 5.2. Let X be a smooth variety over F'.

(a) The presheaf with transfers represented by X is denoted by Z(X). In other
words, Zy(X) : U — Z(X)(U) := Cor(U, X).

(b) We use Gy, to denote the pointed multiplicative algebraic group (Gp, 1)
defined by G,,(R) = R*, where R* is the group of units of the F-algebra R. In the
context of G-analytic spaces, the realization of G, is G, (C) = C* with the analytic
topology and endowed with the action of & given by complex conjugation.

(¢) Given pointed varieties (X1, X1), ..., (Xn, x,) one defines Zy (X1 A---AXp)
in the same fashion as in the analytic case (3.3). In other words,

Z(X1 AN Xp)

n
=Coker{@ Li(X1 X oo x{xj} X - X Xp) = Zu(Xyq x-~-xXn)}.
j=1

In particular, given p > 1, define Zy(A\?X) := Zu(X A -+ A X).

The standard algebraic n-simplex over F is the affine variety
A" = Spec Flxg,...,Xn] /{x0 + -+ xn — 1).

In particular, given any extension K of F the K-valued points A" (K) corresponds
to the hyperplane in K"*! given by the equation xo + --- + x, = 1. The collection
of these algebraic simplices forms the standard cosimplicial variety A®.

Given a presheaf with transfers ¥ define a simplicial presheaf with transfers
AF by Ay F : U — F (U x A™). Denote the corresponding (chain) complex of
presheaves with transfers by A,.F and let A*¥ denote the associated (negatively
graded) complex with A*F = A_, F.
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Definition 5.3. The motivic complex or weight p is the complex of presheaves with
transfers defined as Z(p)y := A*Zy(/\?Gn)[—p]. In particular, given a smooth
algebraic variety U over F and —oo < j < p, one has

Z(p)y(U)

= Zu(\"Gu) (U x A7)

_ Cor(A?~/ x U,Gf)

C Im (@7, Cor(AP~ X U,Gy x +++ x {1} x -+- x Gp) — Cor(AP~/ x U,Gh))’
Compare with Definitions 3.4 and 3.19.

Remark 5.4. It is shown in [21, Cor. 3.3] that, given any smooth variety X over F
the restriction Z( P)fq x of Z(p),, to the (small) Zariski site Xz, of X is indeed a
complex of sheaves in the Zariski topology of X .

Our approach to ordinary equivariant cohomology expressed in Theorem 3.9 was
designed to provide a topological perspective on the following definition.
Definition 5.5 ([21]). Given a smooth variety over the field F, the motivic
cohomology groups H (X, Z(p)) of X are defined as the hypercohomology groups
HE (X, Z(p)) := H" (Xzar: Z(p)y )

5.2. Real varieties and cycle maps. In this section we present the desired cycle
map, utilizing the terminology introduced in Definition 3.4.
Lemma 5.6. The assignment X — (X(C), o) of the analytic space X(C) together

with the complex conjugation involution o : X(C) — X(C) induces a morphism of
sites

T (G-Manw)eq — (Smgr),,,.. (5.1
Given X € Smp, we also denote by
T X(Ceg = Xzar 5.2)

the induced morphism between the corresponding small sites.

Proof. Letu : Smr — &-Man,, denote the functor that sends X to (X(C), o), and
f:X—=>Yt fc:X(C)—Y().

Let X = (J;<; Ui be a Zariski open cover of X, which we denote by {U; — X}.
It is clear that {U(C); — X(C)} is an open cover of X(C) in the analytic topology
by G-invariant open subsets, since each U; is a real open subvariety of X. In other
words, the functor u sends covering families in Smp to covering families in G-Many,.

Given {U; — U} in Cov(Smp) and a morphism f : V — U in Smpg, then
U; xy V = f~1(U;) is a Zariski open subset of V. It follows from [2, Exposé XII,
§1.2] that u(U; xy V) = (Ui xu V)(C) = fT'(U;)(C) = f&'Ui(C)) =
Ui (C) xy(c) V(C) = u(U;) xuw) u(V).

This shows that u induces the desired morphism of sites. See [25, Def. 1.2.2]
and [24, Tag 00X0]. O
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We now present our final result, where the cycle map from motivic cohomology
is realized in the level of complexes.

Theorem 5.7. Given a smooth real variety X, one has map of complexes of Zariski
sheaves cx : Z(p)mix —> Rr«Z(p)w|x(c) induced by w @ X(C)eq = Xzar (5.2)
and natural on X. This map induces natural bigraded ring homomorphisms

cx : Hy (X, Z(e)) — Hy*(X:Z),
Sfrom motivic cohomology to ordinary RO (&)-graded equivariant cohomology.

Proof. Let U € Smg be a smooth real variety and let I' C U x AP x (Gy)? be
a finite correspondence representing an element in Z( p) d{l (U). Tt suffices to assume
that I' is irreducible.

Let I'(C) be the complex analytic subvariety of U(C) x AP~/ (C) x C*?
associated to I'. As explained in Example 2.3(ii)), I'(C) represents an element
[[(C)] € J2(U(C) x AP~I(C),C*?) invariant under the action of the Galois
group G.

The inclusion ¢ : U(C) x 47~/ < U(C) x AP~/ (C) induces a pull-back map

42 (U(C) x A"7P(C), C*P) — 42

fin

(U(C) x &7, C*P),

and we denote Ty := *(I"(C)). Hence T}, lies in S-Man™(U(C) x 427", C*7?)
and represents an element in Z(p); (U(C)).

Furthermore, using the naturality and compatibility of inclusions of faces

An—p—l( An—p

L]

A"PH(C)—— A"P(C)
one shows that the assignment I' — I’y gives a map of complexes

cv : Z(ply(U) — Z(p)5(U(C)) = me(Z(p)s,) (V)

natural on U. Taking an injective resolution 0 — Z( p);r| x — 1™ gives the desired
morphism of complexes.

To end the proof we first recall that the functor U +— U(C) is compatible with
(fibered) products, as explained in the proof of Lemma 5.6. Now, one can simply
repeat the simplicial arguments used in [21, Construction 3.11] to obtain a product
Z(P)o ®Z(q)e —> Z(p + q) that gives the multiplicative structure in equivariant
cohomology. The same argument is used to give the multiplication in motivic
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cohomology, and this yields a commutative diagram

Z(py ®L(q)yy ——— Z(p + @)y (5.3)

| |

R Z(p)w ® RuZ(q)w — RTLZ(P + @)

The result follows. O

5.3. Example: Number fields and Milnor K -theory. Given anumber field F, let [r
and I'c denote the sets of real and complex embeddings of F, respectively. Since the
complex embeddings come in conjugate pairs, one can think of I'c as a finite G-set
G-isomorphic to Fg x &, where Fg contains one chosen embedding from each pair
of conjugate embeddings in I'c.

Consider the real variety X := Spec(F ®qg R). The space X(C) is isomorphic
to I'r [ [ Tc as &-spaces. Denoting Hy” (F; Z) := Hg”(X(C); Z) one has:

Hy?(F:Z) = HyP (Tr: Z) x Hy? (Te: Z) = HEP (x: 2)"F x Hé’;p(G;Z)Fg
>~ Hy?(x:2)° x Hy"(6;Z)
= Hy”(x:2)° x Hj, (x: 2)", (5.4)

where Tr = {@1...., ¢} and Tt = {n1,...,n;}, and the last isomorphism follows

G
from the general isomorphism HCI;/(X x G/K;Z) = H;esk (V)(X;Z) for RO(G)-

graded ordinary cohomology, along with the fact that ordinary equivariant
cohomology is singular cohomology with the group is trivial. In particular,

Hy'(%:2) = (2™ = (27)°. (5.5)

See Proposition 3.21.

Consider the composition F* x I'g = R* ﬁ> 7, where ev is the evaluation
map ev(x, ¢) = ¢(x) and u(x) = |-;CC_| Taking adjoints one gets a homomorphism

¢: F* = H}(Spec F,Z(1)) — Hy'(F;Z) = (Z*)'® (5.6)

which is precisely the cycle map given in Theorem 5.7 Since @ >0 H]fr’p (F;Z)isa
graded commutative ring this map induces a homomorphism of graded rings

0: T(F*) > @ HE(F: D), (5.7)
p=0

where T'(F*) is the tensor algebra of F*.
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Using the cup product one gets

F*® F* —— Hy' (F12) ® Hy' (F1Z) —— H(F: 2)

(ZX)FR ® (ZX)FR - (Zx ®Z ZX)FR’

where the right vertical equality comes from Proposition 3.21. Now, note that for
1 # x € R* either x or 1 — x is positive and this implies that for ¢ € F* one has
Uop{a ® (1 —a)} = 0. It follows that o descends to a homomorphism

0: KM (F) = @®,>0H} (Spec F.Z(p)) —> @poHE' (F: L), (5.8)
from the Milnor K -theory ring of F to the “diagonal” subring of the ordinary bigraded

equivariant cohomology of F.

Remark 5.8. Bass and Tate have shown that
KY (R)/2KY (R) = Z[e] = @20 HE" (R; 2),

and their isomorphism is realized by the cycle map described above.

A. Points, sheaves and hypercohomology on G -Man,,

A.1. Points on G-Man,,. Denote by G-Man, and G-Man,, respectively, the cate-
gory of presheaves and sheaves of sets on the site G-Man,,, as in Definition 3.4. Fix
a complete G-universe U, which can be an orthogonal representation isomorphic to
a countably infinite direct sum of the regular representation of G.

For each subgroup H < G, each H-subrepresentation V C Resg (U) and
0 <k <v =dimV, consider the collection

CDH(V,k) = {G XH Dl/r(V,k) | re N}

of objects in G-Man,,, where Dy,,(V,k) C V is the intersection of an open disk of
radius 1/r centered around the origin with an H -invariant “corner” isomorphic to
]R’_‘F x RY7¥_ The collection ® g (V, k) induces a functor

pu(V.k)* : G-Man), — Sets; P colgn P(G xg Dy (V. k)).
re

The functor pg (V, k)* preserves finite projective limits and arbitrary inductive limits
of sheaves. It follows that pz (V,k)* admits a right-adjoint p™ (V, k). : Sets —
G-Man; (see [1, IV, Cor. 1.7]) and the pair of adjoint functors defines a morphism
of topoi pg (V, k) : Sets — G-Man), i.e. a point of the topos G-Man, .
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The following fact is easy to verify.

Lemma A.1. The set ® .= {pg(V,k) | H <G, VCU0<k <neN}jformsa
conservative set of points in the topos G-Man, .

In this case, the site is said to have enough points, in other words, the collection
{pu(V,k)*} detects isomorphisms. The existence of a conservative family of points
yields a canonical Godement resolution of abelian sheaves or sheaves of modules
over aring R. A succinct account of the construction can be found in [17, IV-§2] and
the results we need are summarized in the following statement, where we also use
G-Man; to denote the category of abelian sheaves on G-Man,,.

Corollary A.2. There is a canonical functor
G := G5 : G-Man}, —> C*(G-Man)),

where CT(G-Man)) denotes the category of bounded below complex of abelian
sheaves on the site G-Man,,. This comes with a natural augmentation functor
F — G(F) that gives a resolution of ¥ by flabby sheaves. (The canonical Godement
resolution for a site with enough points.)

Remark A.3. Given a complex of abelian sheaves ¥* in G-Man,, we obtain a
double complex by applying the Godement resolution to each sheaf in the complex
and use the same notation G(F *) to denote the total complex associated to this double
complex. The resulting map ¥* — G(F*) is a quasi-isomorphism of complexes
of sheaves and, since G(F*) is a complex of flabby sheaves, one can calculate the
hypercohomology of any X € G-Man,, with values in * as

H" (Xeq: F*) = H"(T'(X, G(F))). (A.1)

A.2. Cech hypercohomology. Given X € G-Man,,, the set of coverings of X forms
a directed set Cov(X) under the partial order given by refinements of coverings.
The rth Cech hypercohomology of X with coefficients in a complex of abelian
presheaves #* on G-Man,, is defined as the colimit

H” (Xeq: P*) := colim H"(U; P*), (A.2)
UeCov(X)

where H” (U; P*) is defined as the cohomology of the complex of abelian groups
Tot(T' (X, €5 x 4)); see Definition 3.12(d).

Proposition A.4. Let P* and X be as above. The natural map
Y H (Xeq: P*) > H (Xeq:aPy)
is an isomorphism.

Proof. The proof is essentially the same as in the non-equivariant case; see [5].
Since manifolds are paracompact, one can formulate a suitable notion of equivariant
paracompactness (for coverings in Cov(U)), and the usual arguments apply. 0
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A.3. On complexes of presheaves with homotopy invariant cohomology. The
main purpose of this final section is to provide detailed proofs of the key steps in the
proof of Theorem 3.11, namely, Propositions 3.14 and 3.16, and Theorem 3.15.

We first introduce a family of coverings of the interval / = [0, 1] C R, as follows.
Foreachn €e Nandi = 1,...,n, define J/" := (% —e(n), ’5 + e(n)) N I, where
e(n) = W (or any sufficiently small e(n)). Define " := {J' |i = 1,....n}
and verify that " %! refines ¢” for all n € N. Using Lebesgue’s number lemma,
one sees that the directed family {$” | n € N} forms a cofinal family of coverings
of I.

Given any covering U = {U; | 0 € A} € Cov(X), denote
F"(U) :={Us x J" |0 € A, andi = 1,...,n}, (A.3)
and observe that the collection of coverings of the form ¢” (U) forms a cofinal family
in Cov(X x I). When U := {X}, simply denote §"(X) := " (U).

Lemma A.5. Given a homotopy invariant abelian presheaf # on G-Man, and
X € G-Man,, then for n > 0 the Cech cohomology of the cover $"(X) is given by

v n . P) — 0, >0
H(3"(X): P) = PX xI)=P(X), ¢q=0.

Proof. This follows from a routine calculation. 0

As a consequence, we obtains the following tube lemma.

Corollary A.6. Let aP be the abelian sheaf on G-Many, associated to a separated
homotopy invariant abelian presheaf . Given an element 8§ € aP (X x I) and
xo € X, one can find an open G -invariant neighborhood U of xo and 5 € P (U x I)
such that 1(&) = p(S), where 1 and p are the natural homomorphisms

PU x LsaPU xI)+2—aP (X x I).

Proof. Foreacht € I one can find a G-invariant neighborhood U; x N; of (xg,t) €
X x I, together with s, € #(U; x N;) such that, under the induced maps

P (U, x N)——aP U, x Ny) «2—aP (X x I)

one has 1(s;) = p;(8). One can find n > 0 sufficiently large so that the finite cover ¢"
refines the cover {N;};c; of the interval. Foreachi = 1,...,n find ¢; € I such
that J C Ny, and define U := (");_; Uy,. Finally, denote by 0; € (U x J}") the
restriction of s, to U x J/".

The collection & = (o0;) belongs to C'O(g”(U );P). Note that the Cech

differential C°(g"(U); P) ﬁ) CH(g"(U); P) sends & to §& = (vi;) where
e PUx(IrNIT)).

Yij = 0j|u><<1i”ru;?) - Gi\Ux(Ji"mJ;’
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Now,

1(80) = l(ojIUx(J,”mJ}?)) - l(oi‘UX(szmjj'"))

= p(g)‘Ux(J;’mJ;’) - ’O(g)lUx(Ji"ﬁJ;’) -

Since & is a separated presheaf, i is injective and one concludes that §¢ = 0.
Therefore, & represents aclass 3 in H(4"(U): ) = P (U xI) = P (U), according
to Lemma A.5, with the property that 6|UXJlﬂ = o, foralli = 1,...,n. As a
consequence, one has

1) uxsr =1(0i) = p(8) = Sjyxyr.

for all i. Since §"(U) = {U x J'} is a cover of U x I and a is a sheaf, one
concludes that 1 () = p(8). O

Lemma A.7. Let 8 be a homotopy invariant abelian sheaf on G-Man,. Given
X € G-Many, let 7 : X x I — X denote the projection. Then for all g > 0 one has

quf* (8|X><1) =0.

Proof. Given x € X denote H := G, and let N(x) denote the set of equivariant
open neighborhoods U of x isomorphic to G xy B, where B is H-equivariantly
analytically contractible to a point. In particular, the orbit of x is an equivariant
strong deformation retract of U.

The stalk of R?7, (S\Xxl) at x is given by

RI4 (81 xx1)x = gglNl(I?) Hi(n7'U; 81 1y) = gglNl(r?) HY(U x I; 8ux1)

- q
= [(;(e)}\llgcl) H (U x I; 8|UX1)
where the last isomorphism follows from Proposition A.4.

Given U € N(x) and a € FVI‘I(U x I;8yxr), one can find a locally finite
covering V of U,n € N,and a € H 7(4"(V): 8) that represents a. In other words,
the natural map p : H‘I(g(”('V) 8) —> Hq(U x I;8) sends atoa.

Let W € N(x) be a neighborhood of x that is contained in the intersection of all
(finitely many) elements of 'V containing x, and consider the covering W = {W}
of W. One gets a commutative diagram

HI(g"(V); 8) —2— HI(U x I;8) =~ HI(U x I;8)

l l

Hi(g"(W); 8) — HI(W x I;8)~ HI(W x I:8).
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If ¢ > 0, the group on the lower left corner is zero, by Lemma A.5. Hence, for
an arbitrary x € X the stalk of R7m, (8 X x 1) at x is zero and this concludes the
proof. O

Corollary A.8. If 8 is a homotopy invariant abelian sheaf on G-Many, then for all
n > 0 the presheaf X —— H"(X; 8|x) is homotopy-invariant.

Proof. The E,-term of the Leray spectral sequence associated tothemap w : XxI— X
is given by E? = HP(X;RIny(8xx1)) = HPTI(X x I:8xxs). The
previous lemma shows that E? = 0 if ¢ > 0. Hence H? (X x I; 8xx1) =
HP(X; w48 xxr). Finally, the homotopy invariance of § gives m« 8| xx7 = 8)x. U

Lemma A.9. Let * be an abelian presheaf on G-Man,, and let Hg,* denote its qth
cohomology presheaf. Then the natural map of complexes P* — aP* induces an
isomorphism aH(,jq)* o~ aH;I(,P*.

Proof. This can be directly verified on stalks, using the fact that in the category of

abelian groups homology commutes with filtered colimits. 0
We now have all the ingredients to prove

Proposition 3.14. Let & be a homotopy invariant abelian presheaf on G-Many,.

Then the associated sheaf aP is homotopy invariant.

Proof. Let $y denote the subpresheaf of  defined by

Po(X) := colim ker{P(X PU.
() = golim er (200~ [T 2V

and let P := P /Py denote the quotient presheaf. This is the separated presheaf
associated to J°. The following facts are standard:

(i) The quotient map J — & induces an isomorphism a = a P, between their
respective associated sheaves
(ii) The natural map of presheaves P, — aJ is injective.

We next need to show that the presheaf & is homotopy invariant. Given X € G-Man,,,
consider the commutative diagram with exact rows

0 Po(X) —2 P(X) —— P(X) —— 0

(Y bdn |

0—— Po(X x 1) —25 P(X x ) —— Pu(X x [) —— 0.
Since 7 oiy = 1y, it follows that the maps i) are surjective. The equality aij = ijb
then shows that the leftmost i) is injective, as well. It follows from the five-lemma
that the rightmost arrow is an isomorphism and hence J is homotopy invariant.
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Using the isomorphism af == a B, it suffices to assume that & is a separated
homotopy invariant presheaf from now on.
Given a G-invariant open subset U of X one gets a commutative diagram

PU x NLsaPU xI)+L—aP (X x1I)

lol= ZOJ lol

PUY—L aPU) +—— aP(X).

Now, suppose that § € ker{ij : aP (X xI) — afP(X)}. Given a point xg € X it
follows from Corollary A.6 that one can find U as above, along witho € (U x I)
satisfying 1(6) = p(8). Chasing the diagram one obtains

Joig(@) =iy o1(@) =i5(p®) =T0iy(’) =0.

Since P is separated, ; is injective and hence ij(6) = 0. From the homotopy
invariance of J2 one knows that the leftmost vertical arrow is an isomorphism, thus
showing that & = 0. Hence, Sjyx; = p(S§) =1(0) = 0.

It follows that one can find a cover U = {Ux }xex € Cov(X) such that for each
x € X one has 8§y, x; = 0. One concludes that § = 0 since a# is a sheaf.

This shows that i}, the rightmost vertical arrow in the diagram is injective, hence
an isomorphism since the identity = o iy = 1x shows that i is surjective. O

As a direct consequence we get

Theorem 3.15. Let P* be a complex of abelian presheaves on G-Man,, with
homotopy-invariant cohomology presheaves. Then the presheaves

X > H (Xeq; aP )
are homotopy-invariant.

Proof. Let #1 := aH . denote the cohomology sheaf associated to the complex
of sheaves aP*. Using Lemma A.9 one concludes that #? =~ aHg,*, and hence it
follows from Proposition 3.14 that #7 is a homotopy invariant abelian sheaf since,
by hypothesis, H ;1,* is homotopy invariant.
Now, we can use Corollary A.8 to see that for each X € G-Man, the
corresponding map of hypercohomology spectral sequences
n* EVI(X) = H”(X;J(’qu) — EDP¥(X xI):= HP(X x I;J€|4XX1) (A4)
is anisomorphism. Therefore, the projectionz : X xI — X induces an isomorphism
between the abutments of these spectral sequences, thus proving the theorem. O
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Corollary A.10. Ifi : A — U is a strong deformation retract in the category
G-Man,, and P* is a complex of abelian presheaves on G-Man, with homotopy
invariant cohomology presheaves then one has an isomorphism

it H'(Ueq;afl’z,) — H'(Aeq;a?@).

Remark A.11. The key example here are the “neighborhoods” described in A.1,
where we have an inclusion G/H <— G xg D, sending gH to (gH,0), where 0 is
the center of disc containing D.

We conclude with the proof of

Proposition 3.16. Let U be an equivariant good cover of X and let * be a
complex with homotopy invariant cohomology presheaves on G-Many,. Then the
Cech hypercohomology H'(‘U; P*) of the cover with coefficients on the complex of
presheaves P*, computes the hypercohomology H® (X ; af/"}) of X.q with coefficients
in the complex of sheaves a!Pl}.

Proof. Let p : aﬂ’l")} — G(aP™)|x be the Godement quasi-isomorphism described

in Remark A.3. The functoriality of this construction guarantees that if U C X is an
open G-invariant subset then

I'(U.G@@®P*)x) =T (U,GaP")w). (A5)

Standard arguments with flabby sheaves and Cech functors show that if ¥ is a
flabby abelian sheaf on X.q and U € Cov(X), one has an acyclic complex

0—T(X: %) > T(X:€5 ).

It follows that the second spectral sequence of the double complex I' (X, ‘éé’q @) w
Ix”

has the form
"EP (U, G(aPy)) =

and, as a consequence,
H" (U: G(aPy)) = H' (Xeq:a Py ) (A.6)

Now, by naturality, the Godement resolution p : a;Pl")‘( — G(a J’l}) gives maps
of first spectral sequences

'EVH(U P) — EVH (W aPy) — 'ETI (U, G(aPY)).
as explained in Notation 3.13. This composition is a product of terms of the form

HY(T(Us,: #*)) - HI(T(Us,: G(aP))) = H! (Us,:aPpy, ). (A7)

'

where the isomorphism follows from (A.5) and (A.1).
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Using the equivariant isomorphisms Uz, =~ G xp, D", one sees that the
natural projection Uy, — mo(Us,) = G/Hj, is an equivariant (analytic) homotopy
equivalence that induces the vertical maps in the following commutative diagram,
whose horizontal maps are defined in (A.7):

HY(T (s, £%)) ——— H(Us,;aP*)

T T

HY(I'(G/Hs,; P*)) —— HI(G/Hs,;aP*).

Since $* has homotopy invariant cohomology presheaves, the left vertical arrow is
an isomorphism, and Proposition 3.15 shows that the right vertical arrow is also an
isomorphism. Finally, the bottom horizontal arrow is an isomorphism since G/Hy,,
is zero-dimensional and sheaf cohomology coincides with Cech cohomology, as
shown in Proposition A.4. It follows that the top horizontal arrow is an isomorphism,
and by (3.13) one sees that the map 'EV* (U, Py) — "EP (U, G(aPy)) gives
an isomoprhism of ’ £ -terms, showing that the spectral sequences converge to the
same groups. By definition, the former spectral sequence converges to H’(‘u; P*)
and the latter converges to H®(Xeq: a?&), by (A.6). This concludes the proof. [
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