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Ergodic components of partially hyperbolic systems
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Abstract. This paper gives a complete classification of the possible ergodic decompositions
for certain open families of volume-preserving partially hyperbolic diffeomorphisms. These
families include systems with compact center leaves and perturbations of Anosov flows under
conditions on the dimensions of the invariant subbundles. The paper further shows that the
non-open accessibility classes form a C 1 lamination and gives results about the accessibility
classes of non-volume-preserving systems.
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1. Introduction

Invariant measures are important objects in the study of dynamical systems. Often,
these measures are ergodic, allowing a single orbit to express the global behaviour of
the system. However, this is not always the case. For instance, a Hamiltonian system
always possesses a smooth invariant measure, but a generic smooth Hamiltonian
yields level sets on which the dynamics are not ergodic [30]. Any invariant measure
may be expressed as a linear combination of ergodic measures and while such a
decomposition always exists, it is not, in general, tractable to find it. For partially
hyperbolic systems, there is a natural candidate for the ergodic decomposition given
by the accessibility classes of the system. This paper analyzes certain families of
partially hyperbolic systems, characterizing the possible accessibility classes and
showing that these coincide with the ergodic components of any smooth invariant
measure.

By the classical work of Hopf, the geodesic flow on a surface of negative curvature
is ergodic [26]. Further, by the work Anosov and Sinai, the flow is stably ergodic
meaning that all nearby flows are also ergodic [1, 2]. Based on these techniques,
Grayson, Pugh, and Shub showed that the time-one map of this geodesic flow is also
stably ergodic as a diffeomorphism [21]. To prove this, they observed two important
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properties. The first property is partial hyperbolicity. A diffeomorphism f is
partially hyperbolic if there is an invariant splitting of the tangent bundle of the phase
spaceM into three subbundles

TM D Eu ˚Ec ˚Es

such that vectors in the unstable bundle Eu are expanded by the derivative Tf ,
vectors in the stable bundle Es are contracted, and these dominate any expansion
and contraction of vectors in the center bundle Ec . (Appendix A gives a precise
definition.) The second property is accessibility. For a point x 2M , the accessibility
class AC.x/ is the set of all points that can be reached from x by a concatenation of
paths, each tangent to eitherEs orEu. A system is called accessible if its phase space
consists of a single accessibility class. For the geodesic flow, the phase space M
is the unit tangent bundle of the surface, Ec is the direction of the flow, and Es
and Eu are given by the horocycles. Grayson, Pugh, and Shub demonstrated that
any diffeomorphism near the time-one map of the flow is both partially hyperbolic
and accessible and used this to prove its ergodicity. This breakthrough was followed
by a number of papers demonstrating stable ergodicity for specific cases of partially
hyperbolic systems (see the surveys [40, 46]) and lead Pugh and Shub to formulate
the following conjecture [37].

Conjecture 1. Ergodicity holds on an open and dense set of volume-preserving
partially hyperbolic diffeomorphisms.

They further split this into two subconjectures.

Conjecture 2. Accessibility implies ergodicity.

Conjecture 3. Accessibility holds on an open and dense set of partially hyperbolic
diffeomorphisms (volume-preserving or not).

The Pugh–Shub conjectures have been established in a number of settings. In
particular, they are truewhen the center bundleEc is one-dimensional [41]. However,
there are a number of partially hyperbolic systems which arise naturally and which
are not ergodic, leading to the following questions.

Question. Is it possible to give an exact description of the set of non-ergodic partially
hyperbolic diffeomorphisms?

Question. For a non-ergodic partially hyperbolic diffeomorphism, do the ergodic
components coincide with the accessibility classes of the system?

This paper answers these questions in the affirmative under certain assumptions
on the system. We first give one example as motivation before introducing more
general results. Consider on the 3-torus T3 D R3=Z3 a diffeomorphism f

defined by
f .x; y; z/ D .2x C y; x C y; z/:
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The eigenvalues are � < 1 < ��1 and f is therefore partially hyperbolic. Arguably,
this is the simplest partially hyperbolic example one can find. It preserves Lebesgue
measure but is not ergodic. Further, there are several ways to construct nearby
diffeomorphisms which are also non-ergodic. With a bit of thought, the following
methods come to mind.

(1) Rotate f slightly along the center direction, yielding a diffeomorphism

.x; y; z/ 7! .2x C y; x C y; z C �/

for some small rational � 2 R=Z.
(2) Compose f with a map of the form .x; y; z/ 7! . .x; y; z/; z/ for some

 W T3 ! T2.
(3) Perturb f on a subset of the form T2 �X where X ¨ S1.
(4) Conjugate f with a diffeomorphism close to the identity.

The results of this paper imply that any non-ergodic diffeomorphism in a
neighbourhood of f can be constructed by applying these four steps in this order.

Throughout the study of stably ergodic dynamical systems, regularity of the
invariant foliations has played a prominent role. One of Anosov’s early key
contributions was a proof that holonomies along the stable and unstable foliations are
absolutely continuous. This allowed him to show that all Anosov systems are stably
ergodic. Grayson, Pugh, and Shub adapted this proof in the setting of the perturbation
of the time-one map of an Anosov flow to show that the stable holonomy inside of
a center-stable leaf is C 1 regular. Determining the exact conditions which imply
C 1 regularity lead to the notion of “center bunching” [37, 38]. Roughly speaking, a
partially hyperbolic system is center bunched if the derivative in the center direction
is sufficiently close to conformal. Further, a qualified case of the second Pugh–Shub
conjecture holds: any accessible, center bunched system is ergodic [12].

In the case of one-dimensional center, every partially hyperbolic system is center
bunched. Further, F. Rodriguez Hertz, J. Rodriguez Hertz, and R. Ures showed
that each accessibility class is either an open subset of the manifold or an immersed
codimension one submanifold tangent to Eu ˚ Es [41]. The submanifolds in the
second case form a lamination and are calledus-leaves. While each leaf isC 1 regular,
it was not previously known if the coordinate charts defining the lamination could
taken as C 1. In this paper, we establish this regularity, showing that the us-leaves
indeed form a C 1 lamination (see (2.9) below). This then allows us in certain
settings to apply Fubini’s theorem to the disintegration of the volume into measures
on leaves of the lamination and consequently to show that the ergodic components
have supports coinciding with the accessibility classes.

The proof of C 1 regularity of the lamination relies on the C 1 regularity of
the stable and unstable holonomies inside cs and cu-leaves. In the special case
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thatEu andEs are everywhere jointly integrable, these two holonomies commute and
together give a well-defined us-holonomy between center leaves. In the case where
the us-lamination is defined only on a proper closed subset of the phase space, the
holonomies do not commute and so establishing regularity of the lamination is more
involved. The basic idea is to define what the derivative of a us-holonomy “should
be” at all points and then useWhitney’s extension theorem to show that the holonomy
defined for points in the lamination extends to a C 1 function in a neighbourhood of
these points. For leaves in the us-lamination which are accumulated on by other
leaves, the u and s-holonomies inside the cu and cs-foliations provide the candidate
derivatives. For isolated us-leaves which accumulate on non-isolated us-leaves,
these holonomies cannot be used and a more subtle approach is taken. Section 12
treats all of these issues of regularity in detail.

2. Statement of results

We again refer the reader to the appendix for a list of definitions.
Suppose A and B are automorphisms of a compact nilmanifold N such that A is

hyperbolic and AB D BA. Then, A and B define a diffeomorphism

fAB WMB !MB ; .v; t/ 7! .Av; t/

on the manifold
MB D N � R=.v; t/ � .Bv; t � 1/:

Call fAB an AB-prototype.
Note that every AB-prototype is an example of a volume-preserving, partially

hyperbolic, non-ergodic system. Further, just like the linear example on T3 given
above, every AB-prototype may be perturbed to produce nearby diffeomorphisms
which are also non-ergodic.

To consider such perturbations, we use the notion of leaf conjugacy as introduced
in [25]. Two partially hyperbolic diffeomorphisms f and g are leaf conjugate if there
are invariant foliations W c

f
and W c

g tangent to Ec
f
and Ecg and a homeomorphism h

such that for every leaf in L in W c
f
, h.L/ is a leaf of W c

g and h.f .L// D g.h.L//.
We now define a family of diffeomorphisms which will be the focus of the paper.

A partially hyperbolic system f W M ! M is an AB-system if it preserves an
orientation of the center bundle Ec and is leaf conjugate to an AB-prototype.

In order to consider skew-products over infranilmanifolds and systems which do
not preserve an orientation of Ec , we also consider the following generalization.
A diffeomorphism f0 is an infra-AB-system if an iterate of f0 lifts to an AB-system
on a finite cover. To the best of the author’s knowledge, this family of partially
hyperbolic diffeomorphisms includes every currently known example of a non-
ergodic system with one-dimensional center. Further, there are manifolds on which
every conservative partially hyperbolic diffeomorphism is an AB-system.
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Question 2.1. Suppose f is a conservative, non-ergodic, partially hyperbolic C 2
diffeomorphism with one-dimensional center. Is f necessarily an infra-AB-system?

Skew products with trivial bundles correspond to AB-systems where B is the
identity map. The suspensions of Anosov diffeomorphisms correspond to the case
A D B . These are not the only cases, however. For instance, one could take
hyperbolic automorphisms A;B W T3 ! T3 defined by the commuting matrices0@3 2 1

2 2 1

1 1 1

1A and

0@2 1 1

1 2 0

1 0 1

1A :
Throughout this paper, the letters A and B will always refer to the maps associated
to the AB-system under study, andN andMB will be the manifolds in the definition.
In general, if f WM !M is an AB-system,M need only be homeomorphic toMB ,
not diffeomorphic [14, 15].

We show that every conservative AB-system belongs to one of three cases, each
with distinct dynamical and ergodic properties.
Theorem 2.2. Suppose f W M ! M is a C 2 AB-system which preserves a smooth
volume form. Then, one of the following occurs.
(1) f is accessible and stably ergodic.

(2) Eu andEs are jointly integrable andf is topologically conjugate toMB !MB ;

.v; t/ 7! .Av; t C �/ for some � . Further, f is (non-stably) ergodic if and only
if � defines an irrational rotation.

(3) There are n � 1, a C 1 surjection p W M ! S1, and a non-empty open set
U ¨ S1 such that

� for every connected component I of U , p�1.I / is an f n-invariant subset
homeomorphic to N � I and the restriction of f n to this subset is accessible
and ergodic, and

� for every t 2 S1 n U , p�1.t/ is an f n-invariant submanifold tangent to
(Eu ˚Es) and homeomorphic to N .

Note that the first case can be thought of as a degenerate form of the third case with
U D S1. Similarly, the second case with rational rotation corresponds to U D ¿.

To give the ergodic decomposition of these systems, we decompose the measure
and show that each of the resulting measures is ergodic. Suppose � is a smooth
measure on a manifold M and p W M ! S1 is continuous and surjective such that
p�� D m where m is Lebesgue measure on S1 D R=Z. The Rokhlin disintegration
theorem [45] implies that � can be written as

� D

Z
t2S1

�t dm.t/
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where each �t is contained in p�1.t/. Moreover, this disintegration is essentially
unique; if measures f�tgt2S1 give another disintegration of �, then �t D �t for
m-a.e. t 2 S1. For an open interval I � S1 define

�I WD
1

m.I /

Z
I

�t dm.t/:

Note that �I is the normalized restriction of � to p�1.I /. Then an open subset
U � S1 yields a decomposition

� D
X
I

m.I/�I C

Z
t2S1nU

�t dm.t/ (2.1)

where
P
I denotes summation over all of the connected components I of U .

Theorem 2.3. If f WM !M is a C 2 AB-system and � is a smooth, invariant, non-
ergodicmeasure with�.M/ D 1, then there are n � 1, aC 1 surjectionp WM ! S1,
and an open set U ¨ S1 such that p�� D m and (2.1) is the ergodic decomposition
of .f n; �/.

If f is in case (3) of (2.2), then the n, p, and U can be taken to be the same
in both theorems. If f is in case (2) and non-ergodic, then � is rational, and the
map p can be defined by composing the topological conjugacy fromM toMB with
a projection fromMB to S1.

As f preserves � and p�� D m, it follows that p.f .x// D p.x/ C q

for some rational q 2 S1 and all x with p.x/ … U . Because of this, one
can derive the ergodic decomposition of .f; �/ from (2.3). Each component is
either of the form 1

n

Pn
jD1 �tCjq or 1

n

Pn
jD1 �Ik;j where if Ik D .a; b/ then

Ik;j D .aC jq; b C jq/: In (2.3), the ergodic components of .f n; �/ are mixing
and, in fact, have the Kolmogorov property [12]. The ergodic components of f are
mixing if and only if (2.3) holds with n D 1.

Using the perturbation techniques of [41], for any AB-prototype fAB , rational
number � D k

n
, and open subset U ¨ S1 which satisfies U C � D U , one can

construct an example of a volume-preserving AB-system which satisfies (2.3) with
the same n and U . In this sense, the classification given by (2.2) and (2.3) may be
thought of as complete. Versions of these theorems for infra-AB-systems are given
in Section 14.

Accessibility also has applications beyond the conservative setting. For instance,
Brin showed that accessibility and a non-wandering condition imply that the system
is (topologically) transitive [8]. Therefore, we state a version of (2.2) which assumes
only this non-wandering condition. For a homeomorphism f W M ! M , a
wandering domain is a non-empty open subset U such that U \ f n.U / is empty for
all n � 1. Let NW.f / be the non-wandering set, the set of all points x 2 M which
do not lie in a wandering domain.
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Theorem 2.4. Suppose f W M ! M is an AB-system such that NW.f / D M .
Then, one of the following occurs.

(1) f is accessible and transitive.

(2) Eu andEs are jointly integrable andf is topologically conjugate toMB !MB ;

.v; t/ 7! .Av; t C �/ for some � . Further, f is transitive if and only if � defines
an irrational rotation.

(3) There are n � 1, a continuous surjection p W M ! S1, and a non-empty open
set U ¨ S1 such that

� for every connected component I of U , p�1.I / is an f n-invariant subset
homeomorphic to N � I , and

� for every t 2 S1 n U , p�1.t/ is an f n-invariant submanifold tangent to
Eu ˚Es and homeomorphic to N .

The restriction of f n to a subset p�1.t/ or p�1.I / is transitive.

The non-wandering assumption is used in only a few places in the proof
and so certain results may be stated without this assumption. For a partially
hyperbolic diffeomorphism with one-dimensional center, a (us-leaf) is a complete
C 1 submanifold tangent to Eu ˚Es .

Theorem 2.5. Every non-accessible AB-system has a compact us-leaf.

Theorem 2.6. Suppose f W M ! M is a non-accessible AB-system with at least
one compact periodic us-leaf. Then, there are n � 1, a continuous surjection
p WM ! S1 and an open subset U � S1 with the following properties.

For t 2 S1 n U , p�1.t/ is an f n-invariant compact us-leaf. Moreover, every
f -periodic compact us-leaf is of this form.

For every connected component I of U , p�1.I / is f n-invariant, homeomorphic
to N � I and, letting g denote the restriction of f n to p�1.I /, one of three cases
occurs:

(1) g is accessible,

(2) there is an open set V � p�1.I / such that

g.V / � V;
[
k2Z

gk.V / D p�1.I /;
\
k2Z

gk.V / D ¿;

and the boundary of V is a compact us-leaf, or

(3) there are no compact us-leaves in p�1.I /, uncountably many non-compact
us-leaves in p�1.I /, and � ¤ 1 such that g is semiconjugate to

N � R! N � R; .v; t/ 7! .Av; �t/:
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It is relatively easy to construct examples in the first two cases above. Section 16
gives an example of the third case. It is based on the discovery by Rodriguez
Hertz, Rodriguez Hertz, and Ures of a non-dynamically coherent system on the
3-torus [44]. Theorem (2.6) corresponds to a rational rotation on an f -invariant
circle. The following two theorems correspond to irrational rotation.
Theorem 2.7. Suppose f WM !M is a non-accessible AB-system with no periodic
compact us-leaves. Then, there is a continuous surjection p W M ! S1 and a
C 1 diffeomorphism r W S1 ! S1 such that
� NW.f / D p�1.NW.r//,
� if t 2 NW.r/ then p�1.t/ is a compact us-leaf and f .p�1.t// D p�1.r.t//, and
� if I is a connected component of S1 nNW.r/, then f .p�1.I // D p�1.r.I //. In
particular, p�1.I / �M is a wandering domain.

Theorem 2.8. Suppose f WM !M is a non-accessible AB-system with no periodic
compact us-leaves. Then, f is semiconjugate to

MB !MB ; .v; t/ 7! .Av; t C �/

for � defining an irrational rotation.
One can construct C 1 examples of AB-systems satisfying the conditions of (2.7)

and with NW.f / ¤M . For instance, if r is a Denjoy diffeomorphism of the circle,
simply consider a direct product A � r where A is Anosov.

The diffeomorphism f in (2.4)–(2.8) need only be C 1 in general. If f is a
C 2 diffeomorphism, then the surjection p W M ! S1 may be taken as C 1. This is a
consequence of the following regularity result, proven in Section 12.
Theorem 2.9. For a non-accessible partially hyperbolic C 2 diffeomorphism with
one-dimensional center, the us-leaves form a C 1 lamination.

The existence of a C 0 lamination was shown in [41].

The next sections discuss how this work relates to other results in partially
hyperbolic theory, first for three-dimensional systems in Section 3 and for higher
dimensions in Section 4. Section 5 gives an outline of the proof and of the organization
of the rest of the paper. The appendix gives precise definitions for many of the terms
used in these next few sections.

3. Dimension three

The study of partially hyperbolic systems has had its greatest success in dimension
three, where dimEu D dimEc D dimEs D 1. Still, in this simplest of cases, a
number of important questions remain open. Rodiguez Hertz, Rodriguez Hertz, and
Ures posed the following conjecture specifically regarding ergodicity.
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Conjecture 3.1. If a conservative partially hyperbolic diffeomorphism in dimension
three is not ergodic, then there is a periodic 2-torus tangent to Eu ˚Es .

They also showed that the existence of such a torus would have strong dynamical
consequences. We state this theorem as follows.
Theorem 3.2 ([43]). If a partially hyperbolic diffeomorphism on a three dimensional
manifold M has a periodic 2-torus tangent to Eu ˚ Es , then M has solvable
fundamental group.

In fact, the theorem may be stated in a much stronger form. See [43] for details.
Work on classifying partially hyperbolic systems has seen some success in recent

years, at least for 3-manifolds with “small” fundamental group. This was made
possible by the breakthrough results of Brin, Burago, and Ivanov to rule out partially
hyperbolic diffeomorphisms on the 3-sphere and prove dynamical coherence on the
3-torus [7, 9]. Building on this work, the author and R. Potrie gave a classification
up to leaf conjugacy of all partially hyperbolic systems on 3-manifolds with solvable
fundamental group. Using the terminology of the current paper, the conservative
version of this classification can be stated as follows.
Theorem 3.3 ([23]). A conservative partially hyperbolic diffeomorphism on a
3-manifold with solvable fundamental group is (up to finite iterates and finite covers)
either
(a) an AB-system,
(b) a skew-product with a non-trivial fiber bundle, or
(c) a system leaf conjugate to an Anosov diffeomorphism.

Further, the ergodic properties of each of these three cases have been examined in
detail. Case (a) is the subject of the current paper. Case (b) was studied in [42], where
it was first shown that there are manifolds on which all partially hyperbolic systems
are accessible and ergodic. Case (c) was studied in [24], which showed that if such a
system is not ergodic then it is topologically conjugate to an Anosov diffeomorphism
(not just leaf conjugate). It is an open question if such a non-ergodic system can
occur. All of these results can be synthesized into the following statement, similar in
form to (2.2).
Theorem 3.4. Suppose M is a 3-manifold with solvable fundamental group and
f W M ! M is a C 2 conservative partially hyperbolic system. Then, (up to finite
iterates and finite covers) one of the following occurs.
(1) f is accessible and stably ergodic.
(2) Eu and Es are jointly integrable and f is topologically conjugate either to a

linear hyperbolic automorphism of T3 or to

MB !MB ; .v; t/ 7! .Av; t C �/

where A;B W T2 ! T2 define an AB-prototype and � 2 S1.
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(3) There are n � 1, a C 1 surjection p W M ! S1, and a non-empty open set
U ¨ S1 such that

� for every connected component I of U , p�1.I / is an f n-invariant subset
homeomorphic to T2 � I and the restriction of f n to this subset is accessible
and ergodic,

� for every t 2 S1 nU , p�1.t/ is an f n-invariant 2-torus tangent to Eu˚Es .

If (3.1) is true, then this theorem encapsulates every possible ergodic decompo-
sition for a 3-dimensional partially hyperbolic system.

Question 3.5. Is the condition“with solvable fundamental group”necessary in (3.4)?

4. Higher dimensions

We next consider the case of skew products in higher dimension. In related work,
K. Burns and A. Wilkinson studied stable ergodicity of rotation extensions and of
more general group extensions over Anosov diffeomorphisms [11], and M. Field,
I. Melbourne, V. Niţică, and A. Török have analyzed group extensions over Axiom A
systems, proving results on transitivity, ergodicity, and rates of mixing [16, 17, 31].

In this paper, we use the following definition taken from [20]. Let � W M ! X

define a fiber bundle on a compact manifoldM over a topological manifold X . If a
partially hyperbolic diffeomorphismf WM !M is such that the center directionEc

f

is tangent to the fibers of the bundle and there is a homeomorphism A W X ! X

satisfying �f D A� , then f is a partially hyperbolic skew product. We call A
the base map of the skew product. While f must be C 1, � in general will only be
continuous.

This definition has the benefit that it is open: any C 1-small perturbation of a
partially hyperbolic skew product is again a partially hyperbolic skew product. This
can be proven using the results in [25] and the fact that the base map is expansive.
The base map also has the property that it is topologically Anosov [3]. As with
smooth Anosov systems, it is an open question if all topologically Anosov systems
are algebraic in nature.

Question 4.1. If A is a base map of a partially hyperbolic skew product, then is A
topologically conjugate to a hyperbolic infranilmanifold automorphism?

We now consider the case where dimEc D 1 in order to relate skew products to
the AB-systems studied in this paper. The following is easily proved.

Proposition 4.2. Suppose f is a partially hyperbolic skew product where the base
map is a hyperbolic nilmanifold automorphism and Ec is one-dimensional and has
an orientation preserved by f . Then, f is an AB-system if and only if the fiber bundle
defining the skew product is trivial.
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If we are interested in the ergodic properties of the system, we can further relate
accessibility to triviality of the fiber bundle.
Theorem 4.3. Suppose f is a partially hyperbolic skew product where the base map
is a hyperbolic nilmanifold automorphism andEc is one-dimensional and orientable.
If f is not accessible, then the fiber bundle defining the skew product is trivial.
Corollary 4.4. Suppose f is a conservative C 2 partially hyperbolic skew product
where the base map is a hyperbolic nilmanifold automorphism and Ec is one-
dimensional and has an orientation preserved by f . Then, f satisfies one of the
three cases of (2.2) and if f is not ergodic, its ergodic decomposition is given by (2.3).

Theorem (4.3) is proved in Section 13. A similar statement, (14.5), still
holds when “nilmanifold” is replaced by “infranilmanifold” and the condition on
orientability is dropped.

Every partially hyperbolic skew product has compact center leaves and an open
question, attributed in [40] to C. C. Pugh, asks if some form of converse statement
holds.
Question 4.5. Is every partially hyperbolic diffeomorphism with compact center
leaves finitely covered by a partially hyperbolic skew product?

This question was studied independently by D. Bohnet, P. Carrasco, and A. Go-
golev who gave positive answers under certain assumptions [5, 6, 13,20]. In relation
to the systems studied in the current paper, the following results are relevant.
Theorem 4.6 ([20]). If f is a partially hyperbolic diffeomorphism with compact
center leaves, and dimEc D 1, dimEu � 2, and dimEs � 2, then f is finitely
covered by a skew product.
Corollary 4.7. Suppose f WM !M is a partially hyperbolic diffeomorphism with
compact center leaves, dimEc D 1, and dimM D 4. If f is not accessible, then f
is an infra-AB-system.

A compact foliation is uniformly compact if there is a uniform bound on the
volume of the leaves.
Theorem 4.8 ([6]). If f is a partially hyperbolic diffeomorphism with uniformly
compact center leaves and dimEu D 1, then f is finitely covered by a partially
hyperbolic skew product where the base map is a hyperbolic toral automorphism.
Corollary 4.9. Suppose f is a partially hyperbolic diffeomorphism with uniformly
compact center leaves and dimEu D dimEc D 1. If f is not accessible, then f is
an infra-AB-system.

In the conservative setting, we may then invoke the results of the current paper to
describe the ergodic properties of these systems.
Question 4.10. If f is a non-accessible partially hyperbolic diffeomorphism with
compact one-dimensional center leaves, then is f an infra-AB-system?
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Positive answers to both (4.1) and (4.5) would give a positive answer to (4.10).

In his study of hyperbolic flows, Anosov established a dichotomy, now known
as the “Anosov alternative” which states that every transitive Anosov flow is either
topologically mixing or the suspension of an Anosov diffeomorphism with constant
roof function [1, 17]. Ergodic variants of the Anosov alternative have also been
studied and the following holds.
Theorem 4.11 ([10, 33]). For an Anosov flow �t W M ! M , the following are
equivalent:
� the time-one map �1 is not accessible,
� the strong stable and unstable foliations are jointly integrable,
and both imply the flow is topologically conjugate to the suspension of an Anosov
diffeomorphism.
Corollary 4.12. Suppose every Anosov diffeomorphism is topologically conjugate to
an infranilmanifold automorphism. Then, every non-accessible time-one map of an
Anosov flow is an infra-AB-system.

Thus, if the conjecture about Anosov diffeomorphisms is true, then the results
given in Section 14 will classify the ergodic properties of diffeomorphisms which are
perturbations of time-one maps of Anosov flows. This conjecture is true when the
Anosov diffeomorphism has a one dimensional stable or unstable bundle [32].
Corollary 4.13. Suppose f is the time-one map of an Anosov flow with dimEu

f
D 1.

If f is not accessible, then it is an AB-system.

5. Outline

Most of the remaining sections focus on proving the results listed in Section 2 and
we present here an outline of the main ideas.

A partially hyperbolic system has global product structure if it is dynamically
coherent and, after lifting the foliations to the universal cover QM , the following hold
for all x; y 2 QM :
(1) W u.x/ and W cs.y/ intersect exactly once,
(2) W s.x/ and W cu.y/ intersect exactly once,
(3) if x 2 W cs.y/, then W c.x/ and W s.y/ intersect exactly once, and
(4) if x 2 W cu.y/, then W c.x/ and W u.y/ intersect exactly once.
Theorem 5.1. Every AB-system has global product structure.
This proof of this theorem is left to Section 15. That section also proves the following.
Theorem 5.2. AB-systems form a C 1-open subset of the space of diffeomorphisms.
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Now assume f is a non-accessible AB-system. There is a lamination consisting
of us-leaves [41], and this lamination lifts to the universal cover. Global product
structure implies that for a center leaf L on the cover, every leaf of the lifted
us-lamination intersects L exactly once. Each deck transformation maps the
lamination to itself and this leads to an action of the fundamental group on a closed
subset of L as depicted in Figure 1.

x

α(x)

W s(α(x))

W u(gα(x))

gα(x) L

α(L)

Figure 1. After lifting to the universal cover, an AB-system has a center leaf L invariant under
the lifted dynamics f . Each deck transformation ˛ then defines a function g˛ W L! L where
g˛.x/ is the unique point for whichW s.˛.x// intersectsW u.g˛.x//. These functions together
with f define a solvable action on a closed subset of L and this action is semiconjugate to an
affine action on R.

In Section 6, we consider an order-preserving action of a nilpotent group G on a
closed subset � � R. We also assume there is f acting on � such that f Gf �1 D G.
Then, f and G generate a solvable group. Solvable groups acting on the line were
studied by Plante [35]. By adapting his results, we prove (6.5) which (omitting
some details for now) states that either Fix.G/ is non-empty or, up to a common
semiconjugacy from � to R, each g 2 G gives a translation x 7! x C �.g/ and f
gives a scaling x 7! �x.

Instead of applying this result immediately to AB-systems, Section 7 introduces
the notion of an “AI-system” which can be thought of as the lift of an AB-system
to a covering space homeomorphic to N � R where, as always, N is a nilmanifold.
Using (6.5), Section 7 gives a classification result, (7.1), for the accessibility classes
of AI-systems. Section 8 applies the results for AI-systems to give results about
AB-systems and gives a proof of (2.5). The higher dimensional dynamics of
the AB-system depend on the one-dimensional dynamics on an invariant circle.
Sections 9 and 10 consider the cases of rational and irrational rotation respectively
and prove Theorems (2.6)–(2.8).
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Section 11 gives the proofs of (2.2), (2.3), and (2.4) based on the other results.
In order to establish the ergodic decomposition, the lamination of us-leaves must
be C 1. By (2.9), this holds if the diffeomorphism is C 2. The proof requires a highly
technical application of Whitney’s extension theorem and is given in Section 12. The
specific version of this regularity result for AB-systems can be stated as follows.
Proposition 5.3. Let f WM !M be aC 2 AB-system. Then, there is aC 1 surjection
p W M ! S1 and U � S1 such that the compact us-leaves of f are exactly the
sets p�1.t/ for t 2 S1 n U .

If S is a center leaf which intersects each compact us-leaf exactly once, then p
may be defined so that its restriction to S is a C 1-diffeomorphism.

If � is a probability measure given by a C 1 volume form on M , then p may be
chosen so that p�� is Lebesgue measure on S1 D R=Z.

Section 13 proves (4.3) concerning the triviality of non-accessible skew products.
Infra-AB-systems are treated in Section 14.

6. Actions on subsets of the line

Notation. To avoid excessive parentheses, if f and g are composable functions, we
simply write fg for the composition. In this section, � is a measure on the real line
and �Œx; y/ denotes the measure of the half-open interval Œx; y/.

Let HomeoC.R/ denote the group of orientation-preserving homeomorphisms of
the line. If � is a non-empty closed subset of R, let HomeoC.�/ denote the group of
all homeomorphisms of � which are restrictions of elements of HomeoC.R/. That
is, g is in HomeoC.�/ if it is a homeomorphism of � and g.x/ < g.y/ for x < y.

We now adapt results of Plante to this setting.
Proposition 6.1. Suppose � is a non-empty closed subset of R and G is a subgroup
of HomeoC.�/ with non-exponential growth. Then, there is a measure � on R such
that
� supp� � � ,
� �.X/ D �.g.X// for all g 2 G and Borel sets X � R, and
� if X � R is compact, then �.X/ <1.

Proof. In the case � D R, this is a restatement of (1.3) in [35]. One can check that
the techniques in [35] and [34] extend immediately to the case � ¤ R.

Proposition 6.2. Let � , G, and � be as in (6.1) and suppose Fix.G/ is empty. Then
there is a non-zero homomorphism � W G ! R such that for all x 2 R

�.g/ D

8̂<̂
:
�Œx; g.x// if x < g.x/;
0 if x D g.x/;
��Œg.x/; x/ if g.x/ < x:
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Proof. Choose any x 2 R and define � as above. One can then show that � is a
non-zero homomorphism and independent of the choice of x. See (5.3) of [34] for
details.

Proposition 6.3. Let � ,G, �, � be as in (6.2) and suppose f 2 HomeoC.R/ is such
that F W G ! G defined by F.g/.x/ D fgf �1.x/ is a group automorphism. Then,
there is � > 0 such that �.F.g// D ��.g/ for all g 2 G.

Moreover, if � ¤ 1, then f�� D �� and any homeomorphism of R which
commutes with f has a fixed point.

Proof. The first half of the statement follows as an adaptation of §4 of [35]. Further,
if � ¤ 1, then f�� D �� by (4.2) of [35]. To prove the final claim, we first show
that if � ¤ 1 then f has a fixed point. Consider x 2 � . As Fix.G/ is empty by
assumption, there is g 2 G such that x < g.x/. Then,

�Œx;C1/ � �Œx; gk.x// D k �.g/

for all k � 1. This shows that �Œx;C1/ D1 for any x 2 R.
Assume, without loss of generality, that � < 1 and x < f .x/ for some x 2 R.

Then,

�Œx; sup
k�0

f k.x// D

1X
kD0

�k�Œx; f .x// <1

and therefore, x0 WD supk�0 f k.x/ <1 is a fixed point for f . If h 2 HomeoC.R/
commutes with f then for all k 2 Z

�Œx0; h
k.x0// D �Œf .x0/; f h

k.x0// D ��Œx0; h
k.x0//

which is possible only if �Œx0; hk.x0// D 0. Then �Œx0; supk2Z hk.x0// D 0 and so
sup hk.x0/ <1 is a fixed point for h.

We now consider the case where G is a fundamental group of a nilmanifold.
Proposition 6.4. Let G be a torsion-free, finitely-generated, nilpotent group and
suppose � 2 Aut.G/ is such that �.g/ ¤ g for all non-trivial g 2 G. If H is a
�-invariant subgroup, then �.gH/ ¤ gH for all non-trivial cosets gH ¤ H .

Proof. First, we show that the function  W G ! G defined by  .g/ D g�1�.g/

is a bijection. If G is abelian, then G is isomorphic to Zd for some d and  is
an invertible linear map, and hence bijective. Suppose now that G is non-abelian
and let Z be its group-theoretic center. Pick some element g0 2 G. As G=Z is of
smaller nilpotency class, by induction there is g 2 G such that  .gZ/ D g0Z or
equivalently .g/z0 D g0 for some z0 2 Z. As jZ is an automorphism ofZ, there
is z 2 Z such that  .gz/ D  .g/ .z/ D  .g/z0 D g0: As g0 was arbitrary, this
shows  is onto.
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To prove injectivity, suppose  .g/ D  .g0/. By induction, g0 D gz for some
z 2 Z. Then,

 .g/ D  .g0/ D  .g/ .z/ )  .z/ D 1 ) z D 1 ) g0 D g:

If H is a �-invariant subgroup, then  .H/ D H and the bijectivity of  implies
that  .gH/ ¤ H for any non-trivial coset.

The results of J. Franks and A. Manning [18, 19, 29] show that for any Anosov
diffeomorphism on a nilmanifold, the resulting automorphism on the fundamental
group satisfies the hypotheses of (6.4).
Lemma 6.5. Suppose � � R, G < HomeoC.�/, and f 2 HomeoC.R/ are such
that

� � is closed and non-empty,
� G is finitely generated and nilpotent,
� F W G ! G defined by F.g/.x/ D fgf �1.x/
is a group automorphism with no non-trivial fixed points, and

� Fix.G/ is empty.
Then, there are

� a closed non-empty subset �0 � � ,
� a continuous surjection P W R! R,
� a non-zero homeomorphism � W G ! R, and
� 0 < � ¤ 1

such that for x; y 2 R and g 2 G
� x � y implies P.x/ � P.y/,
� Pg.x/ D P.x/C �.g/,
� Pf .x/ D �P.x/,
� �0 D fx 2 � W g.x/ D x for all g 2 ker �g, and
� for each t 2 R, P�1.t/ is either a point z 2 �0 or an interval Œa; b� with
a; b 2 �0.

Moreover, any homeomorphism which commutes with f has a fixed point in P�1.0/.

Proof. The conditions onG imply that it has non-exponential growth [22]. Therefore,
we are in the setting of the previous propositions. In particular, there are �, � , and �
as above.

First, suppose that the image �.G/ is a cyclic subgroup of R in order to
derive a contradiction. In this case, the condition �F D �� in (6.3) implies that
��.G/ D �.G/ and therefore � D 1. Then, F maps a coset of ker � to itself. As
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HomeoC.�/ is torsion free, so is G, and by (6.4), F has a non-trivial fixed point,
in contradiction to the hypotheses of the lemma being proved. Therefore, �.G/ is
non-cyclic.

Consequently, �.G/ is a dense subgroup of R. Further � ¤ 1, as otherwise, one
could derive a contradiction exactly as above. By (6.3), f has at least one fixed point,
say x0 2 R. Define a function P W R! R by

P.x/ D

8̂<̂
:
�Œx0; x/ if x > x0;
0 if x D x0;
��Œx; x0/ if x < x0:

By definition, P is (non-strictly) increasing. The density of �.G/ implies that P.R/
is dense. Then, as amonotonic function without jumps,P is continuous and therefore
surjective. For each t 2 R, the pre-imageP�1.t/ is either a point or a closed interval,
In either case, one can verify that g.P�1.t// D P�1.t/ for all g 2 ker � and therefore
the boundary of P�1.t/ is in �0. The other properties of P listed in the lemma are
easily verified.

The statement for homeomorphisms commuting with f follows by adapting the
proof of (6.3).

7. AI-systems

We now consider partially hyperbolic systems on non-compact manifolds. Sup-
pose M is compact and f W M ! M is partially hyperbolic. Then, any lift of f
to a covering space of M is also considered to be partially hyperbolic. Also, any
restriction of a partially hyperbolic diffeomorphism to an open invariant subset is still
considered to be partially hyperbolic.

Let A be a hyperbolic automorphism of the compact nilmanifold N and I � R
an open interval. The AI-prototype is defined as

fAI W N � I ! N � I; .v; t/! .Av; t/:

A partially hyperbolic diffeomorphism f on a (non-compact) manifold OM is an
AI-system if it has global product structure, preserves the orientation of its center
direction, and is leaf conjugate to an AI-prototype.
Theorem 7.1. Suppose f W OM ! OM is an AI-system with no invariant compact
us-leaves. Then, either
(1) f is accessible,
(2) there is an open set V � OM such that

f .V / � V;
[
k2Z

f k.V / D OM;
\
k2Z

f k.V / D ¿;

and the boundary of V is a compact us-leaf, or
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(3) there are no compact us-leaves in OM , uncountably many non-compact us-leaves
in OM and there is � ¤ 1 such that f is semiconjugate to

N � R! N � R; .v; t/ 7! .Av; �t/:

Notation. For a point x on a manifold supporting a partially hyperbolic system,
letW s.x/ be the stable manifold through x, andW u.x/ the unstable manifold. Then
AC.x/, the accessibility class of x, is the smallest set containing x which satisfies

W s.y/ [W u.y/ � AC.x/

for all y 2 AC.x/. For an arbitrary subset X of the manifold, define

W s.X/ D
[
x2X

W s.x/; W u.X/ D
[
x2X

W u.x/; and AC.X/ D
[
x2X

AC.x/:

Note that AC.X/ may or may not be a single accessibility class.
Proposition 7.2 ([41]). Suppose f is a partially hyperbolic system with one-dimen-
sional center on a (not necessarily compact) manifoldM . For x 2M , the following
are equivalent:

� AC.x/ is not open.
� AC.x/ has empty interior.
� AC.x/ is a complete C 1 codimension one submanifold.

If L is a curve through x tangent to the center direction, then the following are also
equivalent to the above:

� AC.x/ \ L is not open in L.
� AC.x/ \ L has empty interior in L.

If f is non-accessible, the set of non-open accessibility classes form a lamination.
Assumption 7.3. For the remainder of the section, assume f W OM ! OM is a
non-accessible AI-system.

All of the analysis of this section will be on the universal cover. Let QM and QN be
the universal covers ofM and N . Then, f and the leaf conjugacy h lift to functions
f W QM ! QM , and h W QM ! QN � I still denoted by the same letters. Every lifted
center leaf of the lifted f is of the form h�1.v � I / for some v 2 QN . In general,
the choice of the lifts of f and h are not unique. They may be chosen, however,
so that hf h�1.v � I / D Av � I where A W QN ! QN is a hyperbolic Lie group
automorphism. As A fixes the identity element of the Lie group, there is a center
leaf mapped to itself by f . Let L denote this leaf. As L is homeomorphic to R,
assume there is an ordering on the points of L and define open intervals .a; b/ � L
for a; b 2 L and suprema supX for subsets X � L exactly as for R.

Define a closed subset

ƒ D ft 2 L W AC.t/ is not openg:
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Lemma 7.4. ƒ is non-empty.

Proof. As QM is connected, if all accessibility classes were open, f would be
accessible (both on QM and OM ). Therefore, there is at least one non-open accessibility
class. By global product structure, this class intersects L.

Lemma 7.5. If t 2 ƒ, then AC.t/ D W sW u.t/ D W uW s.t/:

This is an adaptation to the case of global product structure of local arguments
used in the proof of (7.2).

s

u
s

u

t

xv

yv

zv

tv

L

h−1(v × I )

Figure 2. A “bracket” of points defined by global product structure. The proof of (7.5) shows
that if t 2 ƒ, then tv D t .

Proof. Each center leaf in QM is of the form h�1.v � I / for some v 2 QN . By global
product structure, for each v 2 QN , there exist unique points xv; yv; zv; tv 2 QM such
that

xv 2 W
s.t/; yv 2 W

u.xv/ \ h
�1.v � I /; zv 2 W

s.yv/; tv 2 W
u.zv/ \ L:

See Figure 2. These points depend continuously on v. As QN is connected, the set

ftv W v 2 QN g � L \ AC.t/

is connected and, by (7.2), has empty interior as a subset of L. Therefore, it consists
of the single point t . This shows that both W sW u.t/ and W uW s.t/ intersect each
center leaf h�1.v � I / in the same unique point yv and so the two sets are identical.
This set is both s-saturated and u-saturated and so contains AC.t/.

By global product structure, for any x 2 QM , there is a unique point R.x/ 2 L
such that W u.x/ intersects W s.R.x//. This defines a retraction, R W QM ! L. By
the previous lemma, if t 2 ƒ, then R�1.t/ D AC.t/.

Let ˛ W QM ! QM be a deck transformation of the covering QM ! OM . Then,
as depicted in Figure 1, ˛ defines a map g˛ 2 HomeoC.ƒ/ given by the restriction
of R ı ˛ to ƒ. Define

G D fg˛ W ˛ 2 �1. QM/g:
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Lemma 7.6. G is a finitely generated, nilpotent subgroup of HomeoC.ƒ/.

Proof. For ˛ 2 �1. OM/ and t 2 ƒ, g˛.t/ is given by the unique intersection of
˛.AC.t// and L. Then,

AC.g˛.gˇ .t/// D ˛.AC.gˇ .t/// D ˛ˇ.AC.t// D AC.g˛ˇ .t//

shows that �1. OM/ ! HomeoC.ƒ/; ˛ 7! g˛ is a group homomorphism. As OM is
homotopy equivalent to the nilmanifoldN , its fundamental group is finitely generated
and nilpotent.

It is necessary to define G with elements in HomeoC.ƒ/ as, in general, the same
construction on L will define a subset of HomeoC.L/ but not a subgroup.
Lemma 7.7. For a point t 2 ƒ, AC.t/ � QM projects to a compact us-leaf in OM if
and only if t 2 Fix.G/.

Proof. Consider t 2 ƒ and let OX � OM be the image of AC.t/ by the covering
QM ! OM . First, suppose t 2 Fix.G/. By global product structure, there is a unique
map � W QN ! AC.t/ such that h�.v/ 2 v � I for every v 2 QN . For any deck
transformation ˛ 2 �1. OM/,

˛.AC.t// D AC.g˛.t// D AC.t/

which implies that ˛� D �˛N where ˛N is the corresponding deck transformation
for the covering QN ! N . It follows that � quotients to a homeomorphism from the
compact nilmanifold N to OX and therefore OX is compact.

To prove the converse, suppose OX is compact. From the definition of anAI-system,
one can see that every center leaf on OM is properly embedded. Therefore, OX intersects
each center leaf in a compact set. If QX is the pre-image of OX by covering QM ! OM ,
then QX intersects each center leaf on QM in a compact set. In particular, QX \ L is
compact. Note that QX \L is exactly equal to the orbit Gt D fg.t/ W g 2 Gg. Define
s D supGt . Then, s 2 Gt by compactness and g.Gt/ D Gt implies g.s/ D s for
each g 2 G. This shows that fsg D Gs D Gt and therefore t D s 2 Fix.G/.

Lemma 7.8. Suppose J � L is an open interval such that @J � Fix.f / \ Fix.G/.
Let X be the image of AC.J / by the covering QM ! OM . Then, f jX is an AI-system.

This lemma is the justification for assuming there are no invariant, compact leaves
in (7.1). If such leaves exist, the AI-system can be decomposed into smaller systems.

Proof. Assume the subinterval J in the hypothesis is of the form J D .a; b/ with
a; b 2 L. Unbounded subintervals of the form .a;C1/ and .�1; b/ are handled
similarly.

For every center leaf h�1.v � I /, let av; bv 2 I be such that v � av 2 h.AC.a//
and v � bv 2 h.AC.b//. The set QX D

S
v2 QN h

�1.v � .av; bv// is s-saturated,
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u-saturated, and contains J . Therefore, AC.J / � QX . By global product structure,
one can show that QX � AC.J /, so the two sets are equal. By its construction QX
is simply connected, and invariant under deck transformations. Therefore, it is the
universal cover for X . Global product structure is inherited from QM . For instance,
for x; y 2 AC.J /, there is a unique point z 2 QM such that z 2 W s.x/ \W cu.y/.
Since, W s.x/ � QX , z is in QX .

Compose h with a homeomorphism which maps each v � .av; bv/ to v � .0; 1/
by rescaling the second coordinate. This results in a leaf conjugacy between f
on QX and A � id on QN � .0; 1/ which quotients down to a leaf conjugacy from X

to N � .0; 1/.

We now show that if theAI-system has no fixed compactus-leaves, then it satisfies
either case (2) or case (3) of (7.1) depending onwhether it has any (non-fixed) compact
us-leaves.
Lemma 7.9. If Fix.G/ is non-empty and Fix.f /\ Fix.G/ is empty, then f satisfies
case (2) of (7.1).

Proof. We first show that f restricted to L is fixed-point free. Suppose, instead, that
f .t/ D t 2 L. By assumption t … Fix.G/, so let J be the connected component
of L n Fix.G/ containing t . As Fix.G/ is f -invariant, f .J / D J and each s 2 @J
is then an element of Fix.f / \ Fix.G/, a contradiction.

Without loss of generality, assume t < f .t/ for all t 2 L. Choose some
t0 2 Fix.G/ and define LC D ft 2 L W t > t0g. Then,

f .LC/ � LC;
[
k2Z

f k.LC/ D L; and
\
k2Z

f k.LC/ D ¿:

One can then show that the covering QM ! OM takes AC.LC/ to an open set V � OM
which satisfies the second case of (7.1).

Lemma 7.10. If Fix.G/ is empty, then f satisfies case (3) of (7.1).

Proof. In this case, the hypotheses of (6.5) hold with � D ƒ. Let P W L! R and
� W G ! R be as in (6.5).

If ˛ 2 �1. OM/ is a deck transformation QM ! QM , then h˛h�1 is equal to ˛N � id
on QN � I for some deck transformation ˛N 2 �1.N /. As N is a nilmanifold, any
homomorphism from�1.N / toR defines a unique homomorphism from the nilpotent
Lie group QN to R [28]. This implies that there is a unique Lie group homomorphism
T W QN ! R such that T˛N .v/ D T .v/C �.g˛/ for all v 2 QN and ˛ 2 �1. OM/.

Let R W QM ! L be the retraction defined earlier in this section and let
H W QM ! QN be the composition of the leaf conjugacy h W QM ! QN � I with
projection onto the first coordinate. Define

Q W QM ! R; x 7! PR.x/ � TH.x/:
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We will show that Q quotients to a function OM ! R and use this to construct the
semiconjugacy in the last case of (7.1).

First, consider a point x 2 QM which has a non-open accessibility class. Then,
R.x/ 2 ƒ and, for ˛ 2 �1. OM/,

PR.˛.x// D Pg˛R.x/ D PR.x/C �.g˛/

and
TH˛.x/ D T˛NH.x/ D TH.x/C �.g˛/

which together showQ˛.x/ D Q.x/.
Now, consider a point x 2 QM which has an open accessibility class, and let

J � QM be the connected component of W c.x/ \ AC.x/ which contains x. The
set �0 from (6.5) is a subset of � D ƒ and therefore P is constant on L n ƒ.
Then, PR is constant on J and, by continuity, constant on the closure of J as
well. As H is constant on center leaves, Q D PR � TH is also constant on the
closure of J . Let y be a point on the boundary of J . Then, as AC.y/ is non-
open, Q.x/ D Q.y/ D Q˛.y/ D Q˛.x/. This shows that Q quotients down to a
function OQ W OM ! R. A much simpler argument shows thatH W QM ! QN quotients
down to a function OH W OM ! N .

The properties of F and P in (6.5) imply that TA D �T and therefore THf D
TAH D �TH . AsPRf D PfR D �PR, this shows thatQf D �Q. Then, OH � OQ
is the desired semiconjugacy in (7.1). By (6.5), P.ƒ/ D R and soƒ is uncountable.
Each G-orbit of ƒ corresponds to a distinct us-leaf, and so there are uncountably
many.

This concludes the proof of (7.1). We note one additional fact which will be used
in the next section.
Corollary 7.11. If Fix.G/ is empty, any homeomorphism of L which commutes
with f has a fixed point.

Proof. This follows from the use of (6.5) in the previous proof.

8. AB-systems

Assumption 8.1. In this section, assume f W M ! M is a non-accessible AB-
system.

The AB-prototype fAB has an invariant center leaf which is a circle. By the leaf
conjugacy, f also has an invariant center leaf. Call this leaf S . Note that f lifts to
an AI-system. This is because the AB-prototype fAB lifts to the AI-prototype A� id
on N � R. If h W M ! MB is the leaf conjugacy, then hf h�1 is homotopic to fAB
and therefore also lifts to N � R.
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Let � W QM ! M be the universal covering, and choose a lift Qf W QM ! QM

and QS a connected component of ��1.S/ such that Qf . QS/ D QS . The universal
cover QN � R of the manifold MB has a deck transformation of the form .v; t/ 7!

.Bv; t �1/. Conjugating this by the lifted leaf conjugacy gives a deck transformation
ˇ W QM ! QM and one can assume that ˇ. QS/ D QS . Then, QS plays the role of L in the
previous section. Define ƒ D ft 2 QS W AC.t/ is not openg and G as a subgroup of
HomeoC.ƒ/ as in the previous section.
Lemma 8.2. Fix.G/ is non-empty.

Proof. This follows from (7.11) since ˇ and Qf are commuting diffeomorphisms
when restricted to QS and ˇ is fixed-point free.

Lemma 8.3. For t 2 ƒ, AC.�.t// �M is compact if and only if t 2 Fix.G/.

Proof. If t 2 Fix.G/, then, by (7.7), AC.�.t// is covered by a compact us-leaf of
the AI-system and is therefore compact itself.

Conversely, suppose t 2 ƒ is such that AC.�.t// � M is a compact us-leaf.
Note that as ˇ.Fix.G// D Fix.G/ there are a; b 2 Fix.G/ such that a < t < b

in the ordering on QS . Then, Gt is contained in .a; b/, a bounded subset of QS .
Considering the supremum as in (7.7), one shows that s WD supGt is in Fix.G/.
Consequently, AC.�.t// accumulates on �.s/ which, as AC.�.t// is compact,
implies �.s/ 2 AC.�.t// and so there is a deck transformation ˛ W QM ! QM

such that ˛.s/ 2 AC.t/. This implies there is k 2 Z and g 2 G such that
t D ˇkg.s/ D ˇk.s/ 2 Fix.G/.

In this, and the next two sections, define

K D fx 2 S W AC.x/ �M is compactg:

The last lemma shows that K D �.Fix.G//.
Corollary 8.4. K is closed and non-empty.

This also completes the proof of (2.5).
Corollary 8.5. K \NW.f jS / is non-empty.

Proof. K is non-empty, f -invariant, and closed.

Corollary 8.6. f has a compact periodic us-leaf if and only if f jS has rational
rotation number.

Proof. As a consequence of (8.3), any compact us-leaf X in M intersects S in a
unique point t . If f n.X/ D X then f n.t/ D t and f jS has rational rotation number.
If, conversely, f jS has rational rotation number, its non-wandering set consists of
periodic points, and a compact periodic leaf exists by (8.5).
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The following is also from the last proof.
Corollary 8.7. All compact periodic us-leaves have the same period.
Lemma 8.8. If K D S , then f on M is topologically conjugate to a function
.v; x/ 7! .Av; Qr.x// defined on the manifold

MB D N � R=.Bv; t/ � .v; t C 1/

where Qr W R ! R is a lift of a homeomorphism r W R=Z ! R=Z topologically
conjugate to f jS .

Proof. Let � W QS ! R be any homeomorphism such that �ˇ.t/ D �.t/C 1 for all t .
Define Qr as � Qf ��1. Extend � to all of QM by making it constant on accessibility
classes. As in the proof of (7.10), let H W QM ! QN be the first coordinate of the
lifted leaf conjugacy h W QM ! QN � R. Then, the function H � � W QM ! QN � R
gives a topological conjugacy between Qf on QM and A � Qr .

The fundamental group ofMB is generated by deck transformations of the form
.v; t/ 7! .˛N .v/; t/ or .v; t/ 7! .Bv; t � 1/. Using the fact that Fix.G/ D QS and
the definition of Qr , one can then show that H � � quotients down to a topological
conjugacy defined fromM toMB .

Lemma 8.9. Suppose J � S is an open interval such that @J � Fix.f /\K. Then,
f jAC.J / is an AI-system.

Proof. Let QJ be a lift of J to QS . Then, as f .J / D J , Qf . QJ / D ˇk. QJ / for some
k 2 Z. By replacing the lift Qf by Qf ˇk , assume, without loss of generality that
Qf . QJ / D QJ . As K D �.Fix.G//, @ QJ � Fix. Qf / \ Fix.G/, and so by (7.8), AC. QJ /
projects to X on OM such that the dynamics on X is an AI-system. As QJ is contained
in a fundamental domain of the covering QS ! S , one can show that X is contained
in a fundamental domain of the covering OM ! M . Therefore, the dynamics on
�.AC. QJ // D AC.J / is an AI-system.

We now give a C 0 version of (5.3).
Lemma 8.10. There is a continuous surjection p W M ! S1 such that pjS is a
homeomorphism, pjW c.x/ is a covering for any center leafW c.x/ (x 2M ) and p is
constant on each compact accessibility class.

Proof. Definep onS so thatpjS mapsS toS1with constant speed alongS . Extendp
to AC.K/ [ S by making p constant on accessibility classes. Then, for any center
leafW c.x/, let J be a connected component ofW c.x/ nAC.K/ and define p on J
so that J is mapped at constant speed to S1 and extends continuously to the boundary
@J � AC.K/. Transversality of the center foliation and us-lamination implies thatp
is continuous. The other properties are easily verified.

Compare this short C 0 proof to the C 1 proof in Section 12.
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We now consider the cases of rational and irrational rotation of f jS separately in
the next two sections.

9. Rational rotation

This section proves (2.6).

Assumption 9.1. Assume f is a non-accessible AB-system with at least one periodic
compact us-leaf.

Let S , K, and other objects be defined as in Section 8. By (8.7), all
compact periodic leaves have the same period. Call this period n. Define
Kn D K \ Fix.f n/ � S . By (8.4),Kn is closed. Let p WM ! S1 be the projection
given by (8.10) and define U � S1 as U D S1 n p.Kn/.

Note that if t … U , then p�1.t/ is an f n-invariant compact us-leaf. Moreover,
every such leaf is of this form. This proves the first part of (2.6).

To prove the rest of the theorem, replace f by its iterate f n and assume n D 1.
The new f is still an AB-system, albeit with a different “A” than before. Now
Kn D Fix.f /\K � S . If I is a connected component of U � S1, then p�1.I /\S
is a connected component of S nK1 and (8.9) implies that f restricted to p�1.I / D
AC.�.J // is an AI-system. Since J \ Kn is empty, AC.J / contains no invariant
compact us-leaves. Therefore, the AI-system falls into one of the cases given in (7.1).
As these cases correspond exactly to those given in (2.6), this concludes the proof.

10. Irrational rotation

This section proves (2.7) and (2.8).

Assumption 10.1. Assumef is a non-accessible AB-systemwith no periodic compact
us-leaves.

Let S ,K and other objects be defined as in Section 8. By (8.6), f jS has irrational
rotation number.

Lemma 10.2. NW.f jS / � K.

Proof. For anyC 1 circle diffeomorphism with irrational rotation, the non-wandering
set is minimal. The result then follows from (8.5).

Lemma 10.3. If I is a connected component of S n NW.f jS /, then AC.I / is
a wandering domain. That is, the sets f k.AC.I // D AC.f k.I // are pairwise
disjoint for all k 2 Z.
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Proof. Let J be the closure of I . Note that any compact leaf in AC.J / must be of
the form AC.t/ for some t 2 J . By the properties of circle diffeomorphisms, the
sets f k.J / are pairwise disjoint. By the last lemma, @J � K. If AC.J / intersects
AC.f k.J //, then this intersection has a boundary consisting of compact us-leaves.
Such a compact leaf would intersect S in a point t 2 J \f k.J /, a contradiction.

Lemma 10.4. NW.f / D AC.NW.f jS //:

Proof. The last lemma shows NW.f / � AC.NW.f jS //.
To prove the other inclusion, suppose t 2 NW.f jS /, x 2 AC.t/ and V � M is

a neighbourhood of x. There is a sequence fnkg such that f nk .t/ converges to t . By
taking a further subsequence, assume f nk .x/ converges to some point y 2 AC.t/.
LetD � V be a small unstable plaque containing x. Then f nk .D/ is a sequence of
ever larger unstable plaques, and

W u.y/ �
[
k

f nk .D/:

Unstable leaves of the Anosov diffeomorphism A are dense in N [19]. Therefore, by
the leaf conjugacy, W u.y/ is dense in AC.t/. This shows that some iterate f nk .V /
intersects V .

Now, let p W M ! S1 be as in (8.10). We may assume pjS is a
C 1-diffeomorphism. Define r W S1 ! S1 by rp.t/ D pf .t/ for all t 2 S . Then,
(2.7) can be proved from the above lemmas. As r has irrational rotation number, it is
semiconjugate to a rigid rotation t 7! t C � . Using this and the leaf conjugacy, one
can prove (2.8) using an argument similar to the proof of (8.8).

11. Proving theorems (2.2), (2.3), and (2.4)

This section gives the proofs of several of the theorems stated in Section 2 based on
results proved in other sections.

The proof of (2.4) makes use of a result of Brin regarding transitivity [8]. The
following is an extension of this result to the non-compact case, though the proof is
in essence the same.
Proposition 11.1 (Brin). Suppose f is a partially hyperbolic diffeomorphism of a
(not necessarily compact) manifold M . If V is open and f .V / D V � NW.f /,
then V D AC.V /.

In particular, if f is accessible and NW.f / DM , then f is transitive.

Proof. For � > 0 and y 2M , letW u
� .y/ be the set of all points reachable from y by

a path tangent to Eu of length less than �.
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If x 2 V , then x 2 NW.f / implies there are sequences fxkg and fykg both
converging to x and such that yk D f jk .xk/ for some non-zero jk 2 Z. By
swapping xk with yk if necessary, assume every jk is positive. If jk is bounded,
then x is periodic, so we may freely assume that jk ! C1. As V is open, there
is � > 0 such that W u

� .xk/ � V for all large k. The uniform expansion of Eu
implies there is rk ! 1 such that W u

rk
.yk/ � f

jk .W u
� .xk// � f

jk .V / D V and
therefore the entire unstable manifold W u.x/ lies in the closure of V . This proves
W u.V / D V . Similarly, W s.V / D V and so AC.V / D V .

Proof of (2.4). By (11.1), any accessible f satisfies case (1) of (2.4). Therefore,
assume that f is non-accessible.

For now, assume f has no periodic compact us-leaves, so that (2.7) holds. That
theorem, with the assumption NW.f / D M , implies that NW.r/ D S1 and that
every point inM lies in a compact us-leaf. This shows that (8.8) holds and the r in
that lemma can be taken as the same r in (2.7). As NW.r/ D S1, r is topologically
conjugate to a rigid rotation t 7! t C � and therefore f satisfies case (2) of (2.4).

For the remainder of the proof, assume f has a periodic compact us-leaf, so that
(2.6) holds. Let I be a connected component of U and g W p�1.I / ! p�1.I / be
as in (2.6). The condition NW.f / D M implies NW.g/ D p�1.I /. This is only
possible in the first of the three cases in (2.6), where g is accessible. Then, g is
transitive by (11.1).

If t 2 S1 n U , then f n restricted to p�1.I / is topologically conjugate to a
hyperbolic nilmanifold automorphism and is therefore transitive [19]. Hence, if U is
non-empty, the third case of (2.4) is satisfied.

If U is empty, then every p�1.t/ is an f n-invariant compact us-leaf and (8.8)
holds with r W S1 ! S1 topologically conjugate to a rigid rational rotation t 7! tC� .
This shows that f is in case (2) of (2.4).

To prove ergodicity of the components of the decomposition given in (2.3), we
use results given in [12], [41], and in the classical work of Birkhoff and Hopf. These
results were formulated for systems on compact manifolds, but the proofs are local in
nature, involving short holonomies along stable and unstable manifolds. The results,
therefore, generalize to the non-compact case so long as the measure is still finite.
Proposition 11.2. Let f be a homeomorphism of a (not necessarily compact)
manifold M and let C0.M/ be the space of continuous functions M ! R with
compact support. Suppose � is an invariant measure with �.M/ D 1 and there is an
invariant closed submanifold S such that � is equivalent to Lebesgue measure on S .
(1) For � 2 C0.M/ the limits

�s.x/ D lim
n!1

1

n

nX
kD1

�f k.x/ and �u.x/ D lim
n!1

1

n

nX
kD1

�f �k.x/

exist and are equal �-almost everywhere.
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(2) There is a countable set f�j g1jD1 � C0.M/ (depending only on M ) such that
.f; �/ is ergodic if and only if �sj and �

u
j are constant �-almost everywhere for

every j .

Further, supposef is aC 2 partially hyperbolic diffeomorphismwith one dimensional
center.

(3) If � 2 C0.M/, then �s is constant on stable leaves and �u is constant on
unstable leaves.

(4) If S DM , X s; Xu �M are measurable, and

W s.X s/ D X s; W u.Xu/ D Xu and �.X s4Xu/ D 0;

then there is X �M measurable such that

AC.X/ D X and �.X s4X/ D 0 D �.Xu4X/:

(5) If S DM and f is accessible, then .f; �/ is ergodic.

Proof. Item (1) is a re-statement of the classic Birkhoff Ergodic Theorem.
To prove (2), let f�j g be a countable set whose linear span is dense in C0.M/

with respect to the supremum norm. As any function in C0.S/ may be extended to a
function in C0.M/, the linear span of f�j g is dense in L1.�/. Suppose the bounded
linear operator � 7! �s on L1.�/ takes every element of f�j g to the subspace of
constant functions. By density, every � 2 L1.�/ is mapped to the same subspace.
Therefore .f; �/ is ergodic. The converse statement in (2) follows directly from the
properties of ergodicity.

Proofs of (3)–(5) can be found in both [12] and [41].

Proof of (2.3). As� is a finite, f -invariant measure which is equivalent to Lebesgue,
NW.f / D M by Poincaré recurrence. Let p, n, and U then be given as in (2.4).
By (5.3), assume p�� D m where m is Lebesgue measure on S1. Without loss of
generality, assume n D 1.

For each connected component I of U , the set p�1.I / is an accessibility class
and therefore .f; �I / is ergodic by (11.2) where �I is as in (2.1).

Let f�j g1jD1 be as in (11.2) and for j 2 N and q 2 Q define X sj;q D fx 2
M W �sj .x/ < qg: Define Xuj;q similarly. By items (3) and (4) of (11.2), there is
Xj;q D AC.Xj;q/ equal mod zero to both X sj;q and X

u
j;q . Define a “bad” set Y by

Y D
[
j;q

�
X sj;q4Xj;q [X

u
j;q4Xj;q

�
and note that�.Y / D 0. Equation (2.1) implies that there is a “good” setZ � S1 nU
such thatU[Z has full measure in S1 and�t .Y \p�1.t// D 0 for all t 2 Z where�t
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is given by the decomposition in (2.1). By (5.3), we may further assume that �t is
equivalent to Lebesgue measure on p�1.t/ for all t 2 Z.

As p�1.t/ is an accessibility class, every Xj;q \ p�1.t/ is either empty or all
of p�1.t/. Therefore for t 2 Z, every X sj;q and X

u
j;q either has �t -measure equal to

zero or one, and item (2) of (11.2) implies that .f; �t / is ergodic. Thus, modulo a set
of measures whose combined support has �-measure zero, every measure in (2.1) is
ergodic. This shows that (2.1) is the ergodic decomposition of �.

One might be tempted to prove (2.3) by arguing that for t … U , f restricted
to p�1.t/ is an Anosov diffeomorphism and therefore the invariant measure �t is
ergodic. The problem is that we have only shown that p�1.t/ is a C 1 submanifold
ofM , which is not enough regularity to conclude ergodicity for an Anosov system.
Hence, the above proof.

Proof of (2.2). If f is in case (1) or (3) of (2.4), it is fairly easy to show that f is
also in the corresponding case of (2.2). Therefore, assume f is in case (2) of (2.4).

If � is rational, then .v; t/ 7! .Av; t C �/ is non-transitive and therefore f is not
ergodic.

Suppose � is irrational and f is not ergodic. Then there are j 2 N and q 2 Q
such that the sets X sj;q; X

u
j;q; and Xj;q , defined as in the last proof, have neither

zero measure nor full measure with respect to the f -invariant measure �. Write
X D Xj;q . As X D AC.X/, there is Y � S1 such that X D p�1.Y / and p�� D m
implies that m.Y / is neither zero nor one. The condition p�� D m further implies
that p gives a semiconjugacy from f to a rigid irrational rotation R� .x/ D x C �

on S1. Then, f .X/ D X implies R� .Y / D Y which contradicts the ergodicity
of .R� ; m/.

12. Regularity

This section proves (2.9), showing that the us-lamination of a partially hyperbolic
diffeomorphism isC 1 if the center is one-dimensional and the diffeomorphism isC 2.

We first give a general idea of the method of proof before providing all the
technical details. Letƒ denote the lamination of us-leaves. Suppose L is a compact
segment of a center leaf and C is a tubular neighbourhood of L. If x 2 C \ƒ, then
there is a unique point y 2 L so that x and y are connected by a short path inside a
single us-leaf. This defines a map, the us-holonomy, from C \ƒ to L that we wish
to show isC 1 regular in the sense ofWhitney. Equivalently, we wish to show that this
map extends to a C 1 function from C toL. By local product structure of the splitting
Eu ˚ Ec ˚ Es , the function C \ ƒ ! L may be written either as an unstable
holonomy composed with a stable holonomy or vice versa, and on C \ ƒ these
holonomies commute. That is, with x and y as above, y D hs.hu.x// D hu.hs.x//.
Further, hs and hu are known to be C 1. If other leaves of ƒ accumulate on the
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leaf through x, then hs.hu.xn// D hu.hs.xn// holds for a sequence of points xn on
distinct leaves where the xn converge to x. From this, it follows that the derivatives
commute as well: D.hs ı hu/ D D.hu ı hs/ at x. For such points x, we use this
as the candidate for the derivative of the us-holonomy C \ƒ ! L when applying
Whitney’s extension theorem. If x lies on an isolated leaf of ƒ, then D.hs ı hu/
and D.hu ı hs/ may differ at x and neither can be used as the candidate derivative.
Further, a sequence of isolated leaves of ƒ might accumulate on a non-isolated leaf.
To handle this, we first restrict D.hs ı hu/ to a function defined only for points on
non-isolated leaves, and then take any continuous extension of this restricted function
to all of C \ ƒ. This extended function is then used as the candidate derivative in
Whitney’s extension theorem.

We now give the full proof, starting with a known result on the regularity of the
stable and unstable holonomies.
Proposition 12.1. Suppose f W M ! M is a C 2 dynamically coherent partially
hyperbolic diffeomorphism with one-dimensional center. Then any unstable
holonomy hu inside a cu-leaf is C 1. Moreover, the derivative of hu tends uniformly
to one as the unstable distance between the point x and its image hu.x/ tends to zero.

Proof. That such a holonomy is C 1 is proved in an erratum [39] to the paper [38]. If
y 2 W u.x/ and hu is the holonomy taking x to y, then adapting the argument in §3
of [36] one can show that the norm of the derivative of hu at x is given by

Jxy D

1Y
nD0

kT c
f �n.y/

f k

kT c
f �n.x/

f k

whereT cz f W Ecz ! Ec
f .z/

is the restriction of the derivativeTzf W TzM ! Tf .z/M .
As f is C 2, the derivative Tzf is Lipschitz in z and the center bundle Ec is Hölder
by [25]. Therefore,

logJxy �
1X
nD0

L
�
dist.f �n.x/; f �n.y//

��
�

1X
nD0

L
�
C��n

���dist.x; y/��
for appropriate constants L;C;� > 1 and 0 < � < 1. This shows that Jxy tends
uniformly to one as dist.x; y/ tends to zero.

Proposition 12.2. Suppose f W M ! M is a C 2 dynamically coherent partially
hyperbolic diffeomorphism with one-dimensional center. Suppose L0 � M is a
compact interval inside a center leaf and g W L0 ! R is C 1. Then g extends to a
C 1 function defined on a neighbourhood of L0 which is constant on us-leaves.

Proof. Without loss of generality, assume g is defined so that jg.x/ � g.y/j is the
arc length of the center segment between x and y. Any other C 1 function on L0 can
be constructed by composition with this specific g.
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By local product structure and the compactness of L0, one may construct a
compact set C �M containing L0 with the following properties:

� The interior of C contains the (one-dimensional) interior of L0.
� IfW c.x/ is a center leaf, then every connected component ofW c.x/\C is a
compact interval, called a “center segment.”

� If AC.y/ is a us-leaf, then every connected component of AC.y/ \ C is a
compact set homeomorphic to a closed ball and called a “us-plaque.”

� Each center segment intersects each us-plaque in exactly one point.
� L0 is a center segment.

By a C 1 change of coordinates, assume that C � Rd .
Let† � C be the union of all us-plaques, and†0 � † the union of all us-plaques

which are accumulated on by other us-plaques. If x 2 †0, define

D.x/ D lim
n!1

k�n \ L0 � � \ L0k

k�n \ L � � \ Lk

where L is the center segment through x, � is the us-plaque through x, and �n
are us-plaques converging to � . By (12.1), this limit exists, is independent of the
sequence �n tending to � , and is non-zero. The C 1 regularity of the holonomies also
implies that if �n is another sequence of us-plaques converging to � , then

D.x/ D lim
n!1

k�n \ L0 � �n \ L0k

k�n \ L � �n \ Lk

so long as �n ¤ �n for large n. Further, by (12.1), the ratio D.L1 \ �/=D.L2 \ �/
tends uniformly to one as dist.L1; L2/ tends to zero. As D is continuous when
restricted to each center segment and uniformly continuous on each us-plaque � , it
is therefore continuous on all of †0. Define D.x/ D 1 for all x 2 L0 and note that
this agrees with the above definition on the intersection †0 \ L0. Then, choose a
continuous positive extensionD W † [ L0 ! R.

Also extend g W L0 ! R to a function g W †[L0 ! R by making it constant on
each us-plaque. To further extend g to a C 1 function on all of C , we will define for
each point x 2 †[L0 a candidate derivative dgx W Rd ! R and show thatWhitney’s
extension theorem applies. Choose an orientation for Ec and for each x 2 † [ L0,
let vcx be the unique oriented unit vector in Ecx . Define dgx as the unique linear map
such that dgx.vcx/ D D.x/ and ker dgx D Eux ˚Esx . As bothD.x/ and the splitting
Eux ˚E

c
x ˚E

s
x are continuous in x, the linear map dgx is continuous in x.

Define the function R W C � C ! R by

R.xn; yn/ D
1

kyn � xnk

�
g.yn/ � g.xn/ � dgxn.yn � xn/

�
:
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To apply Whitney’s extension theorem, one needs to show that for any two sequences
fxng

1
nD1 and fyng1nD1 with kxn � ynk converging to zero, the sequence R.xn; yn/

also converges to zero. If this does not hold, there are sequences fxng and fyng so
thatR.xn; yn/ is bounded away from zero. Therefore, without loss of generality, one
may replace these sequences by subsequences and assume xn and yn both converge
to a point q 2 C . We will also restrict to further subsequences as necessary later in
the proof.

We prove the convergence in progressively more general cases.

Case 1. First, assume xn, yn, and q are all on the same center segment L ¤ L0. Let
�n, �n and � be such that

�n \ L D xn; �n \ L D yn; and � \ L D q:

If � … †0, then xn D yn D q for large n. Therefore, assume � 2 †0. Then,

lim
n!1

g.yn/ � g.xn/

kxn � ynk
D lim
n!1

k�n \ L0 � �n \ L0k

k�n \ L � �n \ Lk
D D.q/:

As both the candidate derivative dgx and the center direction vcx are continuous in x,

lim
n!1

1

kyn � xnk
dgxn.yn � xn/ D

�
lim
n!1

dgxn
��

lim
n!1

yn � xn

kyn � xnk

�
D dgq.v

c
q/ D D.q/:

Therefore, limn!1R.xn; yn/ D D.q/ �D.q/ D 0.

Case 2. Now, consider the case where xn and yn are on the same center segment Ln
for each n. Define xcn to be on the same us-plaque as xn and the same center segment
as q. Define ycn similarly. Then,

g.xn/ � g.yn/ D g.x
c
n/ � g.y

c
n/:

By (12.1),

lim
n!1

kyn � xnk

kycn � x
c
nk
D 1:

Thus,
lim
n!1

g.yn/ � g.xn/

kyn � xnk
D lim
n!1

g.ycn/ � g.x
c
n/

kycn � x
c
nk

D D.q/

where the last equality is by the previous case. As before,

lim
n!1

1

kyn � xnk
dgxn.yn � xn/ D dgq.v

c
q/ D D.q/

and therefore limn!1R.xn; yn/ D 0.
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Case 3. Nowconsiderxn and zn as general sequences in† converging to q. Defineyn
as the unique point lying on the same center segment as xn and the same us-plaque
as zn. By taking subsequences, assume

lim
n!1

zn � yn

kzn � ynk

exists. By continuity of the partially hyperbolic splitting, this limit is in Euq ˚ Esq .
Therefore,

lim
n!1

1

kzn � ynk
dgxn.zn � yn/ D

�
lim
n!1

dgxn
��

lim
n!1

zn � yn

kzn � ynk

�
D 0

implying, with g.zn/ D g.yn/, that

lim
n!1

1

kzn � ynk

�
g.zn/ � g.yn/ � dgxn.zn � yn/

�
D 0:

By transversality of the foliations, there is a constant c1 > 0 such that kzn � xnk �
c1kzn � ynk and therefore

lim
n!1

1

kzn � xnk

�
g.zn/ � g.yn/ � dgxn.zn � yn/

�
D 0

as well. Again by transversality, there is c2 > 0 such that kzn � xnk � c2kyn � xnk
and therefore by the previous case

lim
n!1

1

kzn � xnk

�
g.yn/ � g.xn/ � dgxn.yn � xn/

�
D 0:

Added together, these limits show that limn!1R.xn; zn/ D 0.

Case 4. Now consider the case where xn 2 L0 and zn 2 † for all n. Define yn
from xn and zn exactly as in the last case. Then,

R.xn; zn/ D
1

kzn � xnk

�
g.zn/ � g.yn/ � dgxn.zn � yn/

�
C

1

kzn � xnk

�
g.yn/ � g.xn/ � dgxn.yn � xn/

�
and, similar to the previous case, both summands can be shown to converge to zero.
The case xn 2 † and zn 2 L0 is almost identical.

Case 5. If both fxng and fzng are in L0, then limn!1R.xn; zn/ D 0 simply by the
fact that g is C 1 when restricted to L0.



164 A. Hammerlindl CMH

The general case. The final case to consider is where fxng and fzng are general
sequences in X D †[L0. By taking subsequences, one can assume each sequence
lies either entirely in L0 or entirely in† and therefore reduce to a previous case.

We now prove the following restatement of (2.9).

Corollary 12.3. If f W M ! M is a non-accessible, partially hyperbolic C 2
diffeomorphism with one-dimensional center, the non-open accessibility classes form
a C 1 lamination. That is, around any point x 2M there is a neighbourhood V and
functions g W V ! R and  W V ! Rd�1 such that g �  is a C 1 embedding and
if AC.y/ is a us-leaf and � a connected component of AC.y/\V , then � D g�1.t/
for some t 2 R.

Proof. Define a coordinate chart � � W V ! R�Rd�1 such that the kernel of the
derivative d� W TxM ! R at x is equal toEux ˚Esx . By (12.2), after replacing V by
a subset, there is a C 1 function g W V ! R constant on us-plaques and such that g
and � are equal on a center segment through x. Then, the derivative of g �  is
invertible at x and so, after again replacing V by a subset, g �  is the desired C 1
embedding.

We now proceed to prove (5.3). Recall the definition of an AI-system from
Section 7.

Proposition 12.4. Let f W OM ! OM be a C 2 AI-system and X � OM a compact
us-leaf. Then, there is a neighbourhood V of X , an open subset U � .0; 1/ and
functions p W V ! .0; 1/ and  W V ! X such that p �  is a C 1 diffeomorphism
and the compact us-leaves in V are exactly of the form p�1.t/ for t … U .

Moreover, p restricted to each center segment L � V is a C 1 diffeomorphism.

In this context, a center segment is a connected component of the intersection
of V with a center leaf.

Proof. There is a neighbourhood V of X such that inside V each center segment
intersects each compact us-leaf in a unique point. Therefore, the proofs of the
previous results of this section hold as before with compact us-leaves now filling the
role of us-plaques. This gives the existence of p and  .

As the function D is positive in the proof of (12.2), for x 2 X and unit vector
vc 2 Ecx the derivative dpx of p satisfies dpx.vc/ ¤ 0. By continuity, this property
holds for all x in a neighbourhood of X and so, by replacing V by a subset, the
restriction of p to any center segment L has non-zero derivative along all of L.

As it is a local result, (12.4) also holds for a compact us-leaf in an AB-system
instead of an AI-system. To go from the local to the global requires a technical lemma
which “fills in the gaps” between compact us-leaves.
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Lemma 12.5. Let N be a C 1 manifold, and for 0 < � < 1
2
define

V� D N � .Œ0; �/ [ .1 � �; 1�/ � N � Œ0; 1�:

If there are � > 0 and a C 1 function g W V� ! Œ0; 1� such that
�
@g
@t

ˇ̌
.x;t/

> 0 for all .x; t/ 2 V� , and
� g.x; 0/ D 0 and g.x; 1/ D 1 for all x 2 N

then there are ı > 0 and a C 1 function h W N � Œ0; 1�! Œ0; 1� such that
� h.x; t/ D g.x; t/ for all .x; t/ 2 Vı ,
� .x; t/ 7! .x; h.x; t// is a C 1 diffeomorphism of N � Œ0; 1�, and
� if x 2 N satisfies g.x; t/ D t for all .x; t/ 2 Vı , then h.x; t/ D t for all
t 2 Œ0; 1�.

Proof. Pick ı > 0 small enough that there is a continuous function h0 W N � Œ0; 1�!
Œ0; 1� which for each x 2 N satisfies the following properties:

� t 7! h0.x; t/ is strictly increasing and linear on each of the intervals Œı; 3ı�,
Œ3ı; 1 � 3ı�, and Œ1 � 3ı; 1 � ı�; and

� h0 agrees with g and @h0
@t

agrees with @g
@t

at the points of the form .x; ı/ and
.x; 1 � ı/.

Then, define h by h.x; t/ D g.x; t/ for .x; t/ 2 Vı , h.x; t/ D h0.x; t/ for .x; t/ 2
V2ı n Vı , and h.x; t/ D 1

2ı

R tCı
t�ı

h0.x; s/ds otherwise.

Proposition 12.6. Let f W OM ! OM be a C 2 AI-system, and J a compact interval
inside a center leaf such that its endpoints x0 and x1 lie inside compact us-leaves.
Then there are r W AC.J /! AC.x0/ and p W AC.J /! Œ0; 1� such that r � p is a
C 1 diffeomorphism and every compact us-leaf in AC.J / is of the form p�1.t/ for
some t 2 Œ0; 1�.

Proof. By approximating the center bundleEc by aC 1 vector field v, one may define
a C 1 flow taking points in AC.x0/ to points in AC.x1/. By rescaling v, assume the
flow takes each point in AC.x0/ to a point in AC.x1/ in exactly one unit of time.
This flow then defines a C 1 diffeomorphism between AC.J / and AC.x0/ � Œ0; 1�.
Therefore, we may assume our system is defined on a space of the form N � Œ0; 1�

where N is a manifold C 1-diffeomorphic to AC.x0/ and that r W N � Œ0; 1�! N is
given by projection onto the first coordinate. Further assume that the flow v is tangent
to Ec on the center leaf containing J . Then, when viewed as a subset of N � Œ0; 1�,
J is of the form J D fx0g � Œ0; 1�.

By adapting the arguments in the proofs of (12.2) and (12.4), there is a C 1
function g W N � Œ0; 1� ! Œ0; 1� which is constant on compact us-leaves and such
that g.x0; t / D t for all t 2 Œ0; 1�.
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Let † � N � Œ0; 1� be the union of all compact us-leaves. For a point
z 2 N � Œ0; 1�, let vcz be the oriented unit vector inEcz . Then, due to the construction
of g as in the proof of (12.2), dgz.vcz/ is positive for all z 2 †. As dg is continuous,
there is a C 1 vector field Ov approximating vc such that dgz. Ov.z// is positive for all
z 2 †. By another C 1 change of coordinates, assume v is equal to Ov and therefore
@g
@t

ˇ̌
.x;t/
D dg.x;t/.v.x; t// for all .x; t/ 2 N � Œ0; 1�. By uniform continuity, there

is � > 0 such that dgz.v.z// > 0 for all z at distance at most � from†. Hence, there
are at most a finite number of regions Xi � N � Œ0; 1� such that

� the boundary of Xi is given by two compact us-leaves,
� there are no compact leaves in the interior of Xi , and
�
@g
@t

ˇ̌
.x;t/
� 0 for some .x; t/ 2 Xi .

By (12.5), define aC 1 functionp W N �Œ0; 1�! Œ0; 1�which is equal to g everywhere
outside of [iXi and such that @p

@t

ˇ̌
.x;t/

> 0 for all .x; t/ 2 N � Œ0; 1�.
Since both r and p are submersions, r � p has an invertible derivative at every

point and is therefore a C 1 diffeomorphism.

Corollary 12.7. In the setting of (12.6), if L � OM is a center leaf, then p and r may
be chosen so that p restricted to L \ AC.J / is a C 1 diffeomorphism onto Œ0; 1�.

Proof. Take J � L in the previous proof.

Corollary 12.8. In the setting of (12.6), if � is a probability measure given by a
continuous volume form on AC.J /, then p may be chosen so that p�� is Lebesgue
measure on Œ0; 1�.

Proof. Assume � W N � Œ0; 1�! R is a positive density function such that

�.X/ D

Z
X

� dmN � dm

where mN �m is the product of the Lebesgue measures on N and Œ0; 1�.
If h W Œ0; 1�! Œ0; 1� is defined by h.t/ D �

�
p�1.Œ0; t �/

�
, then

dh

dt
D

Z
N�ftg

� dmN

is continuous and positive, showing that h is a C 1 diffeomorphism. Replacing p
with the composition hp, the result is proved.

Proof of (5.3). As noted in Section 8, every AB-system f W M ! M lifts to an
AI-system Of W OM ! OM . Moreover, if the AB-system has a compact us-leaf, the
covering OM !M has a fundamental domainwhich is bounded between two compact
leavesAC.x/ and ˇ.AC.x//where ˇ is the deck transformation defined in Section 8.
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Then, (12.6) applies where the regionAC.J / is exactly this fundamental domain and
therefore, there is a C 1 surjection p W AC.J / ! Œ0; 1�. Moreover, the candidate
derivative in the application of Whitney’s extension theorem may be chosen so that it
agrees onAC.x/ and ˇ.AC.x//. Then, p quotients down to a C 1 functionM ! S1
as desired.

The other statements in (5.3) follow from the above two corollaries.

13. Skew products

This sections proves (4.3) showing that non-accessible skew products have trivial
fiber bundles.

Proof of (4.3). As the base map A has a fixed point, there is a fiber S such that
f .S/ D S . By replacing f by f 2 if necessary, assume f preserves the orientation
of S . As �2.N / is trivial (see, for instance, [19]), the long exact sequence of
fiber bundles gives a short exact sequence 0� ! Z� ! G� ! H� ! 0

where Z D �1.S/, G D �1.M/, and H D �1.N /. By naturality, f induces
the commutative diagram

0 ����! Z ����! G ����! H ����! 0??yid ??yf�

??yA�

0 ����! Z ����! G ����! H ����! 0:

As can be shown for any circle bundle with oriented fibers, the subgroup Z is
contained in the center of G. In this case, as H D G=Z is nilpotent, G is then also
nilpotent.

Skew products have global product structure. The proof is similar to that given for
AB-systems in Section 15 and we leave the details to the reader. Similar to the case
for AB-systems, we may then consider the universal cover QM of M , a topological
line QS � QM which covers S , and a lift Qf W QM ! QM such that Qf . QS/ D QS . Let
ƒ � QS be the set of all points t 2 QM such that AC.t/ is not open. Then G induces
an action on ƒ.

Let z be a non-trivial element ofZ. Then z may be regarded as a fixed-point free
homeomorphism of QS . By (6.1) and (6.2), there is a homomorphism � W G ! R
such that �.z/ is non-zero. By (6.3), there is � > 0 such that �f�.g/ D � �.g/ for
all g 2 G. Since, f�.z/ D z, this implies that � equals one. By rescaling � , assume
�.Z/ D Z. Then, � W G ! R quotients to a homomorphism O� W H ! R=Z and
O�A� D O� .

As A is hyperbolic, A� has no non-trivial fixed points and, by (6.4), no non-
trivial fixed cosets. As all of the cosets of ker O� are fixed by A�, it follows that
O� D 0. That is, �.G/ D Z. One can then define a map which takes each g 2 G
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to the unique z 2 Z such that �.g/ D �.z/. This shows that the exact sequence
0� ! Z� ! G� ! H� ! 0 splits. Then, G is isomorphic to H � Z and the
bundle is trivial.

In fact, one can find a compact us-leaf directly. Viewing H now as a subgroup
of G equal to the kernel of � , choose a point x 2 QS and define y D supg2H g.x/.
Then, with � as in (6.1), �Œx; y/ D 0 which implies y < C1. In other words, y is
a well-defined point in QS . Since y is in Fix.H/ it projects to a point inM contained
in a compact us-leaf.

14. Infra-AB-systems

We now consider infra-AB-systems as defined in Section 2.
First, recall the definition of an infranilmanifold. Let QN be a simply connected

nilpotent Lie group. A diffeomorphism � W QN ! QN is a (right translation) if there
is v 2 QN such that �.u/ D u � v for all u 2 QN . Let Trans. QN/ be the group of all
translations (which is canonically isomorphic to QN itself). Let Aut. QN/ be the group
of all automorphisms of QN . Then the group of affine diffeomorphisms, Aff. QN/, is the
smallest group containing both Trans. QN/ and Aut. QN/. Equivalently,  2 Aff. QN/ if
and only if there is � 2 Aut. QN/ and v 2 QN such that  .u/ D �.u/ � v for all u 2 QN .

If a subgroup � < Aff. QN/ is such that � \ Trans. QN/ has finite index in � and
N0 WD QN=� is a compact manifold, then N0 is a (compact) infranilmanifold. If
A 2 Aff. QN/ quotients to a function A0 W N0 ! N0 then A0 is also called affine.
Theorem 14.1. Suppose f0 is a conservative C 2 infra-AB-system. Then, either
(1) f0 is accessible and stably ergodic,
(2) Eu andEs are jointly integrable andf0 is topologically conjugate to an algebraic

map, or
(3) there are n � 1, a C 1 surjection p0 from M0 to either S1 or S1=Z2, and a

non-empty open subset U ¨ p0.M0/ with the following properties.
� If t … U then p�10 .t/ is an f n0 -invariant compact us-leaf homeomorphic to
an infranilmanifold. Moreover, every f0-periodic compact us-leaf is of this
form.

� If I is a connected component of U , then p�10 .I / is f n0 -invariant and
homeomorphic to a (possibly twisted) I-bundle over an infranilmanifold.

This theorem is proved at the end of the section and the exact nature of the
“algebraic map” in case (2) is given in the proof. Also, as will be evident from the
proof, ifEc is orientable then p0.M0/ D S1. Otherwise, p0.M0/ D S1=Z2 which is
the 1-dimensional orbifold constructed by quotientingR by both Z and the involution
t 7! �t . This orbifold is homeomorphic to a compact interval. A set p�1.I / will be
twisted (as an I-bundle) if and only if I is homeomorphic to a half-open interval.
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The ergodic decomposition given in (2.3) also generalizes.

Theorem 14.2. Let f0 W M0 ! M0 be a C 2 infra-AB-system and suppose there
is a smooth, f0-invariant, non-ergodic measure � supported on M0. Then, there
are n � 1, a C 1 surjection p0 from M0 to either S1 or S1=Z2, and an open subset
U ¨ p0.M0/ such that

� D
X
I

m.I/ �I C

Z
t…U

�t dm.t/ (14.1)

is the ergodic decomposition for .f n0 ; �/.

Here, the components �I and �t of the decomposition are defined analogously
to (2.1).

Proof. Let � W M0 ! M be the finite covering and f an AB-system such that
�f D f m0 � for some m � 1. Then, � lifts to a measure � on M which (up to
rescaling the measure so that �.M/ D 1) satisfies the hypotheses of (2.3). If �t is
a component of the decomposition (14.1), then its support is a single accessibility
class X0. If X is a connected component of ��1.X0/ �M , then there is an ergodic
component .f n; �t / of .f n; �/ where �t is supported on X and such that ���t (up
to rescaling) is equal to �t . Ergodicity of .f mn0 ; �t / then follows from the ergodicity
of .f n; �t /. Ergodicity of components of the form �I can be proven similarly.

The theorems in Section 2 concerning non-conservative AB-systems may also be
generalized using techniques similar to those in the proof of (14.1) below. In the
interests of brevity, we leave the statements and proofs of these other results to the
reader. The following two known results about functions on infranilmanifolds will
be useful.

Lemma 14.3. If N0 is an infranilmanifold, there is a nilmanifold N finitely
covering N0 such that every homeomorphism of N0 lifts to N .

Proof. This follows from the fact that � \ Trans. QN/ is the unique maximal normal
nilpotent subgroup of �1.M/. A proof of this is given in [4], a paper which also
contains an infamously incorrect result about maps between infranilmanifolds. (See
the discussion in [27].) However, the proof of the above fact about � \ Trans. QN/ is
widely held to be correct.

Lemma 14.4. If a homeomorphism B on a compact infranilmanifold N0 commutes
with a hyperbolic affine diffeomorphism A, then B itself is affine.

Proof. This follows by a combination of the results of Mal’cev and Franks. First,
consider the case where N D N0 is a nilmanifold. Let x be a fixed point of A. Then
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y WD B.x/ is also a fixed point ofA. Using the standard definition of the fundamental
group for based spaces, the diagram

�1.N; x/
B�
����! �1.N; y/??yA�

??yA�

�1.N; x/
B�
����! �1.N; y/

commutes. By [28], there is a unique affine map � W .N; x/ ! .N; y/ such that
�� D B�. (If x ¤ y one shows this by considering two distinct lattices of the
form Qx� Qx�1 and Qy� Qy�1 on the Lie group QN in order to construct a Lie group
homomorphism which quotients down to �.)

As ��A� D A���, the uniqueness given in [28] entails that �A D A� as
functions on N . As N is aspherical, � is homotopic to B . Then, using that A is a
�1-diffeomorphism as defined in [19], it follows that � and B are equal.

Now suppose N0 is an infranilmanifold. By (14.3), there is a nilmanifold N and
a normal finite covering N ! N0 such that both A and B lift to functions N ! N .
By abuse of notation, we still call these functions A and B . As the covering is
finite, there is j � 1 such that Aj 
 D 
Aj for every deck transformation 
 . In
particular, there is a deck transformation 
 W N ! N such that AjB D BAj 
 .
Then,AjkB D B.Aj 
/k D BAjk
k for all k 2 Z, and, taking k � 1 such that 
k is
the identity,Ajk commutes withB and the problem reduces to the previous case.

Proposition 14.5. Suppose f0 is a partially hyperbolic skew product where the base
map is a hyperbolic infranilmanifold automorphism andEc is one-dimensional. If f0
is not accessible, it is an infra-AB-system.

Proof. Lift the fiber bundle projection� WM0 ! N0 to Q� W QM ! QN where QM and QN
are the universal covers. Let G consist of those deck transformations ˛ 2 �1.M0/

which preserve the orientation of the lifted center bundle and for which Q�˛ D 
 Q�

for some 
 2 Trans. QN/. Then, G is a finite index subgroup of �1.M0/ defining a
finite coverM D QM=G and one can show that f0 WM0 !M0 lifts to f WM !M

where the base map A0 W N0 ! N0 lifts to the nilmanifold QN= Q�.G/. If f0 is not
accessible, then f is not accessible. The fiber bundle onM is then trivial by (4.3),
implying that f 2, which preserves the orientation of Ec , is an AB-system.

We now prove (14.1).
Assumption 14.6. For the remainder of the section, assume f WM !M is a non-
accessible conservative C 2 AB-system, � W M ! M0 is a (not-necessarily normal)
finite covering map and that f0 WM0 !M0 and m � 1 are such that �f D f m0 � .

Note this implies that f0 is partially hyperbolic and the splitting on the tangent
bundle TM0 lifts to the splitting for f on TM .

For now, make the following additional assumptions, which will be removed later.
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Assumption 14.7. Assume until the end of the proof of (14.9) that
� Ec onM0 is orientable;
� f0 preserves the orientation of Ec; and
� m D 1, that is, �f D f0� .
By the assumptionm D 1, both f0 and f can be lifted to the same map Qf on the

universal cover QM .
As f is an AB-system defined by nilmanifold automorphisms A;B W N ! N ,

there is a map H W QM ! QN whose fibers are the center leaves of f and where QN
is the universal cover of N and therefore a nilpotent Lie group. Further, A lifts to a
hyperbolic automorphism of QN , which we also denote by A, and the leaf conjugacy
implies thatH Qf D AH .

Define QS D H�1.f0g/where 0 is the identity element of the Lie group. Then QS is
an Qf -invariant center leaf which covers a circle S �M and S further covers a circle
S0 �M0. By (2.2), there is a C 1 surjection p WM ! S1 and a constant � 2 S1 such
that if x 2 M has non-open accessibility class AC.x/ then p is constant on AC.x/
and pf .x/ D p.x/C � . By (5.3), assume p restricted to S is a C 1 diffeomorphism.
Using p and the covering � WM !M0, define a map

q WM0 ! S1; x0 7!
X

y2��1.x0/

p.y/:

It follows that if x0 2M0 has non-open accessibility class AC.x0/ then q is constant
onAC.x0/ and qf0.x0/ D q.x0/C�d where d is degree of the covering. Further, q
restricted to S0 is a C 1 covering from S0 to S1 (though not necessarily of degree d ).
After lifting q to amap Qq W QM ! R, there is a homomorphism q� W �1.M0/! Z such
that Qq
. Qx/ D Qq. Qx/C q�.
/ for every Qx 2 QM and deck transformation 
 2 �1.M0/.

As the deck transformations preserve the lifted center foliation, for each

 2 �1.M0/, there is a unique homeomorphismB
 W QN ! QN such thatH
 D B
H .
Lemma 14.8. B
 2 Aff. QN/ for all 
 2 �1.M0/.

Proof. We may view �1.M/ as a finite index subgroup of �1.M0/. The definition
of an AB-system implies that B
 2 Aff. QN/ for all 
 2 �1.M/.

Now consider the subgroups K3 < K2 < K1 < �1.M0/ defined as follows:

K1 is the kernel of q�;
K2 D K1 \ �1.M/; and
K3 D f˛ 2 K2 W ˛ˇK2 D ˇK2 for all ˇ 2 K1g:

By its definition,K3 is a normal finite index subgroup ofK1. The lift Qf of f0 induces
a homomorphism f� W �1.M0/ ! �1.M0/ given by f�.
/ D Qf 
 Qf �1. There is a
constant c 2 R such that

Qq Qf . Qx/ D Qq. Qx/C c

for all Qx 2 QM with non-open accessibility class. This implies that f�.K1/ D K1.
From this, one can show that f�.K2/ D K2 and therefore f�.K3/ D K3.
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Note that N3 WD QN=fB
 W 
 2 K3g is a nilmanifold (which finitely covers the
original nilmanifold N ), and the hyperbolic Lie group automorphism A W QN ! QN

descends to an Anosov diffeomorphism on N3.
Suppose 
 2 K1. As f� permutes the cosets of K3, there is j � 1 such

that f j� .
/K3 D 
K3. This implies that Aj and B
 descend to commuting
diffeomorphisms onN3. Then, by (14.4), B
 is affine. Thus, we have established the
desired result for all 
 2 K1, and further shown that N1 WD QN=fB
 W 
 2 K1g is an
infranilmanifold (finitely covered by the original nilmanifold N ).

Now suppose 
 2 �1.M0/ is an arbitrary deck transformation. Then

Qq Qf 
 Qf �1
�1. Qx/ D Qq. Qx/

for all Qx 2 QM with non-open accessibility class. This implies that f�.
/K1 D 
K1.
and soA andB
 descend to commuting diffeomorphisms onN1. AsA is hyperbolic,
B
 2 Aff. QN/ by (14.4).

If f is accessible, then clearly f0 is accessible. Therefore to prove (14.1), it is
enough to consider f in cases (2) and (3) of (2.2).

Proposition 14.9. If f is in case (3) of (2.2) and f0 satisfies assumption (14.7),
then f0 is in case (3) of (14.1).

Proof. By replacing f0, f , and Qf by iterates, assume n D 1 in (2.2) and that the
lift Qf was chosen so that Qf . QX/ D QX for every accessibility class QX � QM .

The image of q� is equal to `Z for some ` � 1. Then Qp0 WD 1
`
Qq quotients to

a function p0 W M0 ! S1. As the original p W M ! S1 was C 1, the functions
q, Qq, Qp0, and p are also C 1. Also, p0 is constant on compact us-leaves and its
restriction to S0 is a C 1 covering. If, for some t 2 S1, X0 and Y0 are compact
us-leaves in the pre-image p�10 .t/, then they lift to closed us-leaves QX; QY � QM

such that Qp0. QX/ � Qp0. QY / is an integer. By the definition of Qp0, there is then a deck
transformation taking QX to QY and so X0 D Y0. This shows that every compact
us-leaf inM0 is of the form p�10 .t/ for some t .

If X0 is instead an open accessibility class, then its boundary consists of two
compact us-leaves and from this one can show that p�10 .p0.X0// D X0.

Note that every accessibility class X0 onM0 is the projection of an accessibility
class QX on QM . As Qf fixes accessibility classes, so does f0. Further, usingK1 andN1
as in the proof of the lemma above,X0 is homeomorphic to QX=K1. If QX is non-open,
then QX=K1 is homeomorphic to the infranilmanifold N1. If QX is open, then QX=K1
is an I-bundle overN1 where the fibers of the I-bundle are segments of center leaves.

This shows that f0 satisfies case (3) of (14.1).

We now remove the additional assumptions above and show that this result still
holds.
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Proposition 14.10. If f is in case (3) of (2.2) and f0 does not satisfy
assumption (14.7), then f0 is in case (3) of (14.1).

Proof. In case (3) of (14.1), we are free to replace f0 by an iterate. By replacing f0
by f m0 , one can assume m D 1. That is, �f D f0� . By replacing f0 by f 20 , one
can assume f0 preserves the orientation of any orientable bundle. Thus, the only
condition to test is when Ec is non-orientable.

Any non-orientable bundle on a manifold lifts to an orientable bundle on a double
cover and any bundle-preserving diffeomorphism lifts as well. Therefore, we are free
to consider the following situation. As before, Ec is orientable and f0 preserves the
orientation, but now there is an involution � W M0 ! M0, such that � reverses the
orientation of Ec and � commutes with f0. As a consequence of this commutativity,
� preserves the partially hyperbolic splitting of f0. Choose a continuous function
p1 W M0 ! S1 which satisfies 2p1.x/ D p0.x/ � p0�.x/. As �2 is the identity,
p1�.x/ D �p1.x/ and so p1 descends to a function p2 WM0=� ! S1=Z2.

Since S1 ! S1; x 7! �x has two fixed points, one can show that � fixes exactly
two accessibility classes onM0. LetX0 be one of these two classes, and lift � andX0
to the universal cover to get QX and Q� such that Q�. QX/ D QX . As f and � commute, it
follows from an adaptation of (14.8) that BQ� 2 Aff. QN/. IfX0 is compact, thenX0=�
is homeomorphic to an infranilmanifold. If insteadX0 is open, thenX0 is an I-bundle
over N0 where the fibers are center segments, and � reverses the orientation of these
fibers. Therefore, X0=� is a twisted I-bundle over an infranilmanifold.

This shows that case (3) holds for the quotient off0 toM0=� wherep0 andU � S1
are replaced by p2 and U=Z2 � S1=Z2.

Now consider the situation where f is in case (2) of (2.2). The following
proposition shows that f0 is “algebraic” as stated in case (2) and concludes the proof
of (14.1).
Proposition 14.11. Suppose f0 is an infra-AB-system and Eu ˚ Es is integrable.
Then there is a lift Qf0 of f0 to the universal cover QM and a homeomorphism
h W QM ! QN � R such that

h Qf0h
�1
2 Aff. QN/ � Isom.R/

and
h
h�1 2 Aff. QN/ � Isom.R/

for every deck transformation 
 2 �1.M0/.
Here, Isom.R/ is the group of functions of the form t 7! t C c or t 7! �t C c.

Proof. First consider the case where f0 satisfies assumption (14.7) and recall the
functions H W QM ! QN and Qq W QM ! R defined earlier in this section. By global
product structure and the integrability of Eu ˚ Es , H � Qq is a homeomorphism.
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The results already given in this section then show that h D H � Qq satisfies the
conclusions of the lemma.

If f0 does not satisfy (14.7) and Ec is orientable on M0, then there is m > 1

such that f m0 satisfies (14.7). Let H and Qq be given for f m0 . Define a D C1 if Qf0
preserves the orientation of Ec and a D �1 if Qf0 reverses the orientation. Define
r W QM ! R by r.x/ D

Pm�1
kD0 a

k Qq Qf k0 .x/ and take h D H � r .
If Ec is non-orientable on M0, then f0 lifts to a double cover on which Ec is

orientable. Then, let H and r be defined as in the previous case. Choose a deck
transformation Q� W QM ! QM which reverses the orientation of Ec on QM and define a
function s W QM ! R by s.x/ D r.x/ � r Q�.x/ and take h D H � s.

15. Openness

This section establishes that AB-systems have global product structure and form an
open subset of the space of C 1 diffeomorphisms.
Lemma 15.1. Suppose G is a simply connected nilpotent Lie group. For any
distinct u; v 2 G, there is a unique one-dimensional Lie subgroup Gu;v such that
v�1u 2 Gu;v . (That is, u lies in the coset vGu;v .)

Proof. This follows from the fact that for such groups, the exponential map from the
Lie algebra to the Lie group is surjective [28].

A right-invariant metric on such a group G is a metric d W G � G ! Œ0;1/

such that d.u; v/ D d.u � w; v � w/ for all u; v;w 2 G. For such a metric, we define
a function d1 W G � G ! Œ0;1/ where d1.u; v/ is the length of the path from u

to v which lies in the coset vGu;v given by (15.1). Clearly, d.u; v/ � d1.u; v/

for all u; v 2 G. Further, d1 is continuous and the ratio d1.u; v/=d.u; v/ tends
uniformly to one as d.u; v/ tends to zero. Note that d1 is not a metric on G in
general. (If G D Rd is abelian, however, the coset uG1 is simply the line through u
and v and d D d1.)

If � W G ! G is an automorphism and G1 is a one dimensional subgroup, then
there is � such that d1.�.u/; �.v// D �d1.u; v/ for all u; v 2 G with u 2 vG1. This
follows because both G1 and �.G1/ are Lie groups isomorphic to R and d1 restricts
to a right-invariant metric on either of G1 or �.G1/.
Lemma 15.2. Suppose G is a simply connected nilpotent Lie group, d is a right-
invariant metric, f�kg is a sequence of Lie group automorphisms of G, G1 � G is a
one-dimensional Lie subgroup, u0 2 G, and v0 2 u0G1 with u0 ¤ v0.
(1) If limk!1 d.�k.u0/; �k.v0// D 0, then

lim
k!1

d.�k.u/; �k.v// D 0

for all u 2 G and v 2 uG1.
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(2) If a � 1 and limk!1 akd.�k.u0/; �k.v0// D 0, then

lim
k!1

akd.�k.u/; �k.v// D 0

for all u 2 G and v 2 uG1.
(3) If supk d.�k.u0/; �k.v0// <1, then

sup
k

d1.�k.u0/; �k. Ov// D 1

for some Ov 2 u0G1.

Proof. Let �k be such that d1.�k.u/; �k.v// D �kd1.u; v/ when u 2 vG1. Then in
the first item, the two limits hold if and only if �k ! 0 and so one implies the other.
For the second item, consider ak�k . For the final item, if the first supremum is finite,
thenƒ WD supk �k <1 and one can take Ov 2 v0G1 such that d1. Ov; v0/ D 1=ƒ.

We now show that every AB-system has global product structure.

Proof of (5.1). Let f W QM ! QM be the lift of the AB-system to the universal cover
and h W QM ! QMB the lifted leaf conjugacy to the AB-prototype. The functions f
and h are written without tildes as all the analysis will be on the universal covers.

Measuring distances on the manifold QMB requires care. The metric d QMB on QMB

is defined by lifting a metric from MB . If pk D .uk; sk/, and qk D .vk; tk/ are
sequences in QMB D QN � R, then d QMB .pk; qk/ may not converge to zero, even if
both d QN .uk; vk/ ! 0 on QN and jsk � tkj ! 0 on R. The convergence depends on
the exact nature of the automorphism B . If sk and tk are bounded sequences in R,
however, then one can show in this special case that d QMB .pk; qk/! 0 if and only if
both d QN .uk; vk/! 0 on QN and jsk � tkj ! 0 on R.

There is a deck transformation ˇ W QMB ! QMB defined by ˇ.v; t/ D .Bv; t � 1/
which is an isometry with respect to d QMB . For general fpkg and fqkg, let fnkg
be the unique sequence of integers such that 0 � jsk � nkj < 1 for all k. Then,
ˇnk .pk/ 2 QN � Œ0; 1/ for all k and

d QMB .pk; qk/ D d QMB .ˇ
nk .pk/; ˇ

nk .qk//! 0

if and only if both

d QN .B
nk .uk/; B

nk .vk//! 0 and jsk � tkj ! 0:

In what follows, we write d without a subscript for the metrics on QM , QMB , and QN .
There is no ambiguity as they are all treated as distinct manifolds. If Y is a subset of
one of these three manifolds, then

dist.x; Y / WD inf
y2Y

d.x; y/:
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Also let ds.x; y/ denote distance measured along the corresponding stable foliation:
W s
f
if x; y 2 QM , W s

A if x; y 2 QN , and W s
A�id if x; y 2 QN � R. Similarly for du

and dc .
The leaf conjugacy implies that every cs-leaf of f intersects a cu-leaf in a unique

center leaf. Therefore, establishing global product structure reduces to showing
existence and uniqueness of intersections inside the cs and cu leaves.

Uniqueness. Suppose x 2 QM and x ¤ y 2 W c
f
.x/ \W s

f
.x/. Then as k !1,

ds.f
k.x/; f k.y//! 0 and dc.f

k.x/; f k.y// ¹ 0

since if both sequences tended to zero, local product structure would imply that x
and y were equal. Define pk D hf k.x/ and qk D hf k.y/. As the leaf conjugacy
is uniformly continuous, d.pk; qk/! 0 and dc.pk; qk/ ¹ 0. If pk D .uk; sk/ and
qk D .vk; tk/, then, as noted above,

d.pk; qk/! 0 ) jsk � tkj ! 0 ) dc.pk; qk/! 0;

a contradiction.

Existence. Suppose x 2 QM lies on a center leaf L0 and L1 � W cs
f
.x/ is a distinct

center leaf. Then h.L0/ D fv0g � R and h.L1/ D fv1g � R for distinct points
v0; v1 2 QN . As L0 and L1 are subsets of the same cs-leaf of f , v0 and v1 lie on the
same stable leaf of A. By (15.1), there is a one-dimensional subgroup QN1 � QN such
that v�10 � v1 2 QN1. By item (2) of (15.2), the coset v0 QN1 is a subset of W s

A.v0/.
If U s

f
is a small neighbourhood of x in W s

f
.x/, then h.U s

f
/ � W s

A.v0/ � R and
the set h.W c

f
.U s
f
// D W c

A�id.h.U
s
f
// is a neighbourhood of h.x/ in W s

A.v0/ � R.
Therefore, if v 2 W s

A.v0/ is sufficiently close to v0, then there is y 2 W s
f
.x/ such

that h.y/ 2 fvg � R.
In particular, let v be such that v 2 v0 QN1 and fix such a point y. See Figure 3.

Let fnkg be such that ˇnkhf k.x/ 2 QN � Œ0; 1/ for all k. Then,

d.f k.x/; f k.y//! 0

) d.ˇnkhf k.x/; ˇnkhf k.y//! 0

) d.BnkAk.v0/; B
nkAk.v//! 0

which by (15.2) implies d.BnkAk.v0/; BnkAk.v1//! 0:

Then, as hf k.L1/ D fAk.v1/g � R,

dist.ˇnkhf k.x/; ˇnkhf k.L1//! 0

) dist.hf k.x/; hf k.L1//! 0

) dist.f k.x/; f k.L1//! 0:
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Thus, for sufficiently large k, W s
f
.f k.x// intersects f k.L1/ showing that W s

f
.x/

intersects L1.

U s
f

L0

L1

x

y
v0 ×R
v ×R

v1 ×R

h(U s
f )

h(x)

h(y)

h

Figure 3. A depiction of points and leaves occuring in the proof of global product structure. In
this figure, the stable direction Es

f
is shown as if it were two-dimensional and U s

f
is drawn as

a small plaque tangent to Es
f
. The entire left side of the figure lies inside a three-dimensional

cs-leaf of f and the right side lies inside a cs-leaf of A � id.

Asequence fxkg is an �-c-pseudoorbit if for eachk 2 Z the pointsf .xk/ andxkC1
lie �-close on the same center leaf. A partially hyperbolic system is plaque expansive
if there is � > 0 such that if fxkg and fykg are �-c-pseudoorbits and d.xk; yk/ < �

for all k 2 Z, then x0 and y0 are on the same local center leaf.
Theorem 15.3. Every AB-system is plaque expansive.

Since plaque expansive systems are open in the C 1 topology [25], this also
proves (5.2).

Proof. Let f W M ! M be an AB-system. Let C > 1 be a constant to be defined
shortly. Since f expands in the unstable direction, there is �0 > 0 such that if points
x; y; x0; y0 2M satisfy

1

C
� du.x; y/ � C; dc.f .x/; x

0/ < �0; and y0 2 W c.f .y// \W u.x0/

then du.x; y/ < .1 � �0/du.x
0; y0/. This result then also holds for points

on the universal cover QM where f for the remainder of the proof denotes the
lift f W QM ! QM .

Let h W QM ! QN � R be the lifted leaf conjugacy. Define sets

X D f.v; w/ 2 QN � QN W v 2 W u
A .w/; d.v; w/ � 1g

and
X1 D f.v; w/ 2 QN � QN W v 2 W

u
A .w/;

1
2
� d1.v; w/ � 1g:

and a function
D W X � Œ�1; 1�! R; .v; w; t/ 7! du.h

�1.v � R/; h�1.w � t //:
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That is, D.v;w; t/ is the distance, measured along an unstable leaf of f , between
the center leaf h�1.v �R/ and the point h�1.w � t /. Such a function is well-defined
and continuous by global product structure.

If ˛ W QN ! QN is a deck transformation for the covering QN ! N , then ˛ � id
is a deck transformation for the covering QMB ! MB and one can verify that
D.˛.v/; ˛.w/; t/ D D.v;w; t/. Using the compactness of N and Œ�1; 1�, there
is C > 1 such that

D.X � Œ�1; 1�/ � Œ0; C � and D.X1 � Œ�1; 1�/ � Œ
1

C
; C �:

This defines the constant C used above.
For some � > 0 let fxkg and fzkg be �-c-pseudoorbits such that d.xk; zk/ < �.

By increasing � and by sliding the points zk along center leaves, assume, without loss
of generality, that there is a point yk for each k such that xk and yk are connected
by a short unstable segment and yk and zk are connected by a short stable segment.
By again increasing �, one can show that fykg is a �-c-pseudoorbit. We may freely
assume that the original � was chosen small enough that dc.f .xk/; xkC1/ < �0 for
all k. We will show that x0 and y0 lie on the same center leaf. An analogous
argument holds for y0 and z0 which will complete the proof.

Suppose x0 and y0 lie on distinct center leaves. Then, using ˇ as in the previous
proof, there are vx ¤ vy 2 QN and fnkg such that ˇnkh.xk/ 2 fBnkAkvxg � .�1; 1/
and ˇnkh.yk/ 2 fBnkAkvyg � .�1; 1/ for all k 2 Z. This implies that

sup
k

d.BnkAkvx; B
nkAkvy/ <1:

Let QN1 � QN be a one-dimensional subgroup such that vy 2 vx QN1. By (15.2), there
is Ov 2 vx QN1 such that

sup
k2Z

d1.B
nkAkvx; B

nkAk Ov/ D 1:

By the global product structure of f , there is a unique sequence f Oykg in QM such
that h. Oyk/ 2 fAk Ovg � R and Oyk 2 W u

f
.xk/. Then, S D supk2Z du.xk; Oyk/ satisfies

1
C
� S � C . Let k 2 Z be such that du.xk; Oyk/ > .1 � �0/S: The definition of �0

implies that du.xkC1; OykC1/ > S; a contradiction.

16. The dynamically-incoherent example

This section gives a construction of the example due to Rodriguez Hertz, Rodriguez
Hertz, and Ures of a partially hyperbolic system on the 3-torus having an invariant
cs-torus [44]. For this specific construction, Eu and Es are jointly integrable and
the tangent foliation has exactly one compact leaf. The system therefore gives an
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example of case (3) of (2.6). This version of the example given here was written
before the version in [44] was made publicly available, and it was not clear at the
time what the accessibility classes of the latter would be.

We use the following to prove the example is partially hyperbolic.
Proposition 16.1. Suppose f is a diffeomorphism of a compact manifold M ,
TM D Es ˚Ec ˚Eu is an invariant splitting, and there is k > 1 such that

kTf kvsxk < kTf
kvcxk < kTf

kvuxk and kTf kvsxk < 1 < kTf
kvuxk

for all x 2 NW.f / and unit vectors v�x 2 E�x (� D s; c; u). Then, f is partially
hyperbolic.

To prove this, note that if the above inequalities hold on NW.f /, they also hold
on a neighbourhood U of NW.f / and any orbit of f has a uniformly bounded
number of points which lie outside of U . The details are left to the reader.

Now, we return to constructing the example onT3. The example has a linear stable
bundle, so we first consider dynamics in dimension two. Define � D 1

2
.1C
p
5/ and

functions

 W R! R; x 7! xC 2
3
sin x and g W R2 ! R2; .x; y/ 7! . .x/; �y C cos x/:

The derivative of g is

Dg D

�
 0.x/ 0

� sin x �

�
:

On the vertical line x D 0, there is an expanding fixed point for g. Through this point
is an invariant one-dimensional unstable manifold associated to the larger eigenvalue
ofDg. One can show that this unstable manifold may be expressed as the graph of a
function u W .��; �/! R. For now, only consider u on Œ0; �/. By an invariant cone
argument, one can show that u0.x/ < 0 for all x 2 .0; �/. Using that  0.x/ < �

when x is close to � and that

j�t � sin xj
j 0.x/j

>
�

j 0.x/j
jt j > jt j;

for t < 0, one can show that limx%� u0.x/ D �1.
Define a foliation W u on Œ0; �/ � R by all graphs of functions of the form

x 7! u.x/C b for b 2 R. This foliation is g-invariant. Reflecting about the y-axis,
extend this to a foliation on .��; �/ � R. By including the vertical lines on the
boundary, extend this foliation to Œ��; �� � R and then, by 2�-periodicity in x, to
all of R2. Call this foliation W u and let Eu be the C 0 line field tangent to it.

Now consider the hyperbolic fixed point of g on the line x D � . Part of the
stable manifold of this point is given by the graph of a function c W .0; �� ! R.
One can show that c0.x/ > 0 for all x 2 .0; �/ and, since  0.0/ > �,
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that limx&0 c0.x/ D C1. From the definition of g, there is a constant C > 1

such that g�1 maps the region Œ�C;C � � Œ0; �� into itself. The stable manifold
given by graph.c/ must therefore be contained in this region, showing that c is a
bounded function and can be continuously extended to all of Œ0; ��. By reflection and
periodicity, further extend c to a continuous function R! R which is differentiable
except at 2�Z and such that g.graph.c// D graph.c/. By considering translates,
x 7! c.x/C b, define a foliationW c on R2 and let Ec be the unique continuous line
field on R2 which is tangent toW c on .R n 2�Z/�R. As u0 < 0 < c0 on .0; �/, Eu
and Ec are transverse.

The matrix �
1 1

1 0

�
has eigenvalues � D 1

2
.1C
p
5/ and���1. Therefore, there is a latticeƒ � Z2 such

that .y; z/ 7! .�y; ���1z/ quotients to an Anosov diffeomorphism on the 2-torus
R2=ƒ. Define f W R3 ! R3 by

f .x; y; z/ D
�
x C 2

3
sin x; �y C cos x; ���1z

�
and a splitting Ec ˚Eu˚Es by Es D @

@z
and where Ec ˚Eu on each xy-plane is

given by the earlier splitting constructed for g. This splitting is f -invariant and there
is a foliation tangent to Eu ˚ Es . DefineM D .R � R2/=.2�Z �ƒ/. Both f and
the splitting descend to M . Here, NW.f / � M consists of two tori, one tangent
to Ec ˚ Es and the other tangent to Eu ˚ Es . Using (16.1), one can verify that f
is partially hyperbolic. It has a foliation tangent to Eu ˚ Es with one compact leaf
and all other leaves are planes.

This is not an example of an AB-system as there is no invariant foliation tangent
to Ec . In the above analysis, the crucial properties needed for the term cos x in the
formula �y C cos x for the second coordinate of g were that cos0 < 0 on .0; �/
and cos0.�/ � 0 D cos0.0/. Therefore, replace �yCcos x by �yC sin x�x in all of
the above analysis. As sin x�x is an odd function, the resulting function c W R! R
is odd and its graph is a C 1 submanifold in R2. Defining f W R3 ! R3 now by

f .x; y; z/ D
�
x C 2

3
sin x; �y C sin x � x; ���1z

�
and quotienting by the lattice in R3 generated by f0g � ƒ and .2�; 2�

��1
; 0/ one

constructs a skew product on T3 having a foliation tangent to Eu ˚Es with exactly
one compact leaf.

A. Definitions

This appendix defines a number of notions in smooth dynamical theory.
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All manifolds considered in this paper are Riemannian manifolds without
boundary. Suppose f is a C 1 diffeomorphism on a compact manifold and there is a
Tf -invariant splitting TM D Eu ˚Ec ˚Es of the tangent bundle and k � 1 such
that kTf kvsk < 1 < kTf kvuk for all unit vectors vs 2 Es and vu 2 Eu. IfEc is the
zero bundle, then f is an Anosov diffeomorphism. IfEu,Ec , andEs are all non-zero
and kTf kvsk < kTf kvck < kTf kvuk for all p 2 M and unit vectors vs 2 Esp ,
vc 2 Ecp , and vu 2 Eup then f is a partially hyperbolic diffeomorphism. The
notion of partially hyperbolicity is also extended to certain non-compact manifolds
in Section 7.

A C 1 flow is an Anosov flow if its time-one map is a partially hyperbolic
diffeomorphism with a center bundle given by the direction of the flow.

A partially hyperbolic diffeomorphism f is dynamically coherent if there are
invariant foliationsW cu andW cs tangent toEc˚Eu andEc˚Es . As a consequence,
there is also an invariant center foliationW c tangent to Ec . Global product structure
is defined in Section 5.

For homeomorphisms f W X ! X and g W Y ! Y , a topological semiconjugacy
is a continuous surjection h W X ! Y such that hf D gh. If h is a homeomorphism,
it is a topological conjugacy.

Partially hyperbolic diffeomorphisms f and g are leaf conjugate if they are
dynamically coherent and there is a homeomorphism h such that for every center
leaf L of f , h.L/ is a center leaf of g and hf .L/ D gh.L/.

A homeomorphism f WM !M is (topologically) transitive if every non-empty
open f -invariant subset ofM is dense inM .

For a homeomorphism f W M ! M , a Borel measure � is invariant if
�.X/ D �.f .X// for every measurable set X � M . The pair .f; �/ is ergodic
if � is f -invariant and either �.X/ D 0 or �.X/ D 1 for every f -invariant
measurable X �M . We often write that f is ergodic or � is ergodic if the
context is clear. For brevity, we sometimes say that a system f with a finite non-
probability measure � is ergodic when, to be precise, we should actually say that
the pair .f; 1

�.M/
�/ is ergodic. A homeomorphism f is conservative if it has

an invariant measure given by a smooth volume form on M . A conservative C 2
diffeomorphism is stably ergodic if it has a neighbourhood U in the C 1 topology of
C 1 diffeomorphisms such that every conservative C 2 diffeomorphism in U is also
ergodic. For a discussion of why the quirky combination of C 1 and C 2 regularity is
necessary, see [46].

If QN is a simply connected nilpotent Lie group and � is a discrete subgroup such
thatN WD QN=� is a compactmanifold, thenN is called a (compact) nilmanifold [28].
If QA W QN ! QN is a Lie group automorphism which descends to A W N ! N , then A
is a nilmanifold automorphism (also called a toral automorphism when N D Td ).
If A is Anosov, it is called hyperbolic. Infranilmanifolds and their automorphisms
are defined in Section 14.
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If f W M ! N is a continuous function and �M W OM ! M and �N W ON ! N

are coveringmaps, then a lift of f is a function Of W OM ! ON such that�N Of D f�M .
Note that if �M and �N are universal covering maps, then at least one such lift exists,
but is not unique in general.
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