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Cutting out arithmetic Teichmüller curves
in genus two via Theta functions

André Kappes� and Martin Möller�

Abstract.We compute the class of arithmetic genus two Teichmüller curves in the Picard group
of pseudo-Hilbert modular surfaces, distinguished according to their torsion order and spin
invariant. As an application, we compute the number of genus two square-tiled surfaces with
these invariants.

The main technical tool is the computation of divisor classes of Hilbert Jacobi forms on the
universal abelian surface over the pseudo-Hilbert modular surface.
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1. Introduction

The aim of this paper is to contribute to the classification of arithmetic Teichmüller
curves and the computation of their basic invariants. The extension of the bundle of
Jacobi forms to the universal family of abelian surfaces over pseudo-Hilbert modular
surfaces and the computation of its class will be our main technical tool.

ArithmeticTeichmüller curves. Square-tiled surfaces are covers of the square torus,
ramified over at most one point. Affinely deforming the squares into parallelograms
yields a curve in the moduli space of curves, called arithmetic Teichmüller curve.
Non-arithmetic Teichmüller curves, which are generated by flat surfaces that do not
arise via branched coverings of the torus, have been classified in genus two ([14,15]),
and in higher genus there is a growing number of partial results. For Teichmüller
curves generated by square-tiled surfaces, the classification problem is solved only
for genus two surfaces with a single ramification point ([6] for prime degree coverings
and [14] in general). They are classified by two invariants, the number of squares
and the spin.

�The authors are partially supported by the ERC-StG 257137.



258 A. Kappes and M. Möller CMH

Genus two, two ramification points. Genus two square-tiled covers with two ram-
ification points come with three obvious invariants. One is the spin invariant, the
number of integral Weierstraß points. The other two are the torsion order of the two
branch points in aminimal intermediate torus covering and the degree of this covering
(see Section 2). It is conjectured (and well-supported by computer experiments of
Delecroix and Lelièvre) that these are the only invariants, i.e. that the set Td;M;"
of genus two degree d covers of the torus with torsion order M and spin " is
irreducible. For one ramification point, both [6] and [14] solved the irreducibility
question combinatorially by exhibiting prototypes for the flat surfaces and connecting
any two of the same invariants by a change of direction. This approach might work
for two ramification points as well, but the combinatorial complexity is challenging.

This paper does not contain any picture of a flat surface. Instead we propose
to tackle the classification problem by first computing the class of Td;M;" in the
(rational) Picard group of a pseudo-Hilbert modular surface and in the second step
to argue that this class is not too divisible and that potential summands cannot be
Teichmüller curves.

Counting square-tiled surfaces. In this paper, we complete the first step in this
program for odd d . As a result, we can solve the following counting problem. For
M D 1 this has been conjectured by Zmiaikou [22, p. 67].
Theorem 1.1. The number td;M;" of reduced square-tiled surfaces of genus two, two
ramification points, odd degree d , torsion order M and spin invariant " is given as
follows.
� IfM > 1 is odd, then, with �d as defined in (3.1),

td;M;"D3 D
1

24
.d � 1/�d

�M

M
; td;M;"D1 D

1

8
.d � 1/�d

�M

M
:

� IfM is even, then there is no spin invariant and

td;M D
1

6
.d � 1/�d

�M

M
:

� IfM D 1, then

td;MD1;"D3 D
1

24
.d�3/.d�5/

1

d
�d and td;MD1;"D1 D

1

8
.d�1/.d�3/

1

d
�d :

Remark 1.2. In principle, the same program can be carried out for even d , but it
requires performing similar computations as we present them for covering surfaces
with an extra level of two (see Section 9.4). The conjectural values for the counting
problem are as follows. ForM > 1 and d even we have

td;M;"D0 D
1

24
.d � 1/�d

�M

M
; td;M;"D2 D

1

8
.d � 1/�d

�M

M
;
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and forM D 1 and d is even the values are

td;MD1;"D0 D
1

24
.d � 2/�d and td;MD1;"D2 D

1

8
.d � 2/.d � 4/

1

d
�d :

The sum of contributions of the two spin structures appeared in [9, Theorem 3]
and in [4], see Proposition 9.9 for the conversion of the two methods of counting.

Classes in the Picard group. The above counting result is a consequence of the
following statement that gives the class of the (union of) Teichmüller curves Td;M;"
generated by the square-tiled surfaces of degree d , with torsion order M and spin "
on the compactified pseudo-Hilbert modular surface Xd2 , whose open part Xı

d2

parametrizes abelian surfaces with multiplication by a pseudo-quadratic order. See
Section 3 for the definition of Xd2 and the Hodge bundles �i .
Theorem 1.3. Let d be odd. The class of Td;M;" in PicQ.Xd2/ is given as follows.
� IfM > 1 is odd, then

ŒTd;M;"D3� D
1
2
d
�M

M
�
.1 � 1

d
/�1 C .2 �

2
d
/�2

�
;

ŒTd;M;"D1� D
3
2
d
�M

M
�
.1 � 1

d
/�1 C .2 �

2
d
/�2

�
:

(1.1)

� IfM is even then

ŒTd;M� D 2d
�M

M
�
.1 � 1

d
/�1 C .2 �

2
d
/�2

�
: (1.2)

� IfM D 1, then

ŒTd;MD1;"D3� D
1
d

�
1
2
.d � 3/.d � 5//�1 C .d � 3/.d � 5/�2

�
C Jd ;

ŒTd;MD1;"D1� D
3
d

�
.1
2
.d � 1/.d � 3//�1 C .d � 1/.d � 3/�2

�
� Jd

(1.3)

for some Jd in the orthogonal complement of h�1; �2i.
The undetermined class Jd enters here since we use the computation of the

locus of genus two square-tiled covers with a double ramification point from [1],
see Section 8.2. It was already conjectured in loc. cit. and should follow from the
methods given here that Jd D 0. Due to the orthogonality statement, the class Jd
does not affect any of the counting results.
Remark 1.4. The conjectural classes for the case d even are given as follows.
� IfM > 1 is odd, then

ŒTd;M;"D0� D
1
2
d
�M

M
�
.1 � 1

d
/�1 C .2 �

2
d
/�2

�
;

ŒTd;M;"D2� D
3
2
d
�M

M
�
.1 � 1

d
/�1 C .2 �

2
d
/�2

�
:

(1.4)
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� IfM is even then

ŒTd;M� D 2d
�M

M
�
.1 � 1

d
/�1 C .2 �

2
d
/�2

�
: (1.5)

� IfM D 1, then

ŒTd;MD1;"D0� D
�
1
2
.d � 2/�1 C .d � 2/�2

�
;

ŒTd;MD1;"D2� D
3
d

�
1
2
.d � 2/.d � 4/�1 C .d � 2/.d � 4/�2

�
:

(1.6)

Strategy of the proof. Instead of locating a Teichmüller curve inside Xd2 , we
locate the branch points of the covering map from the flat surface to the torus inside
the universal family Aı

d2 of abelian surfaces over the open subset Xı
d2 . The points

that we want to single out lie on image of the flat surface in its Jacobian (i.e. on
the theta divisor), they are branch points (i.e. the derivative of the theta function
vanishes in some direction), and they have the property that their image in a certain
intermediate elliptic curve is M -torsion. Theorem 8.3 expresses that the image of
this intersection of three divisorial conditions in Xd2 is the Teichmüller curve. The
basic idea to use theta functions builds on that in [18], but there one could work
entirely in the two-dimensional base, while most of the difficulties here come from
performing the triple intersection in the four-dimensional total space. Of course, for
intersection theory calculations, we need to work on a reasonable (normal, at most
quotient singularities) compactification Ad2 of Aı

d2 . We recall the background on
toroidal compactifications and construct Ad2 in Section 5. The family Ad2 comes
with some obvious divisors (boundary components, Hodge bundle, zero sections),
whose intersection product is readily computed. The goal is hence to express the
ingredients of the triple intersection in these terms.

Jacobi forms for pseudo-Hilbert modular surfaces. Hilbert Jacobi forms are
functions on the universal covering H2 � C2 of Aı

d2 whose transformation law
combines the elliptic behavior on C2 and the modular behavior on H2 in the usual
way as for elliptic Jacobi forms. The precise definitions are given in Section 6.3.
The basic example of a Jacobi form is the theta function, both in the elliptic and in
the pseudo-Hilbert modular case. We would like to express the divisor class of a
Jacobi form on Ad2 in terms of the natural divisors mentioned above. We stress that,
however, this question is not even well-defined. Only after making some artificial
choice at the boundary (our choice is (6.8) in Section 6.3) we can determine the class
of a Jacobi form in Theorem 6.1.

At the end of the day, we are only interested in the class of a divisor (the
Teichmüller curve) generically lying in Xı

d2 . Consequently, we have to determine
and subtract in Section 9.2 the spurious boundary components, thereby compensating
the arbitrariness in the boundary extension of Jacobi forms.
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Finally, in the case of M D 1, the analogous statement of Theorem 8.3 is
Theorem 8.4, and there two other spurious summands occur. One contribution is
from the reducible locus in Xd2 , whose class we determine in Section 7. The other
contribution stems from square-tiled surfaces with only one branch point. The classes
of the corresponding Teichmüller curves have been determined in [1].

Notation. The notation around pseudo-Hilbert modular surfaces is summarized in
Section 10.

Acknowledgements. We thank the referee for helpful comments and suggestions.

2. Origamis, square-tiled surfaces and their spin structure

Let�Mg be the moduli space of flat surfaces .X; !/ and for any partition � of 2g�2,
let �Mg.�/ be the stratum, where the divisor of ! has type �. In this paper .X; !/
will always be an arithmetic Veech surface of genus g > 1. This is equivalent to
requiring the existence of an origami map, a covering p W X ! E to an elliptic
curve E such that p is branched over only one point and ! D p�!E . The map p
is unique only up to isogeny and translation on E. The latter can be dispensed
with by translating the unique branch point to the origin. We call p reduced, if it
does not factor over an origami map p0 W X ! E 0 that has strictly smaller degree.
Equivalently, p is reduced, if and only if the lattice of generated by relative periods

Per.!/ D
˚Z



! j 
 2 H1.X;Z.!/;Z/
	
� C

is equal to Per.!E / D f
R


!E W 
 2 H1.E;Z/g, whereZ.!/ � X is the set of zeros

of !.
If E is the particular elliptic curve with j.E/ D 1728, then X is called square-

tiled surface. In this case, Per.!/ � Z˚ iZ.
A covering q W X ! E 0 to an elliptic curve E 0 is called minimal or optimal, if it

does not factor over an isogeny of degree > 1. A covering is minimal, if and only if
the induced map q� on the first absolute homology is surjective.

From now on we restrict to the case of genus two surfaces. Let E 0Œ2� D
fP0; P1; P2; P3g denote the set of 2-torsion points of E 0, where P0 D 0, and let
� 2 Aut.X; !/ denote the hyperelliptic involution. Let WX denote the divisor of
Weierstraß points on X .

Proposition 2.1. For any arithmetic Veech surface of genus 2, there is a reduced
origami map p W X ! E and a decomposition p D � ı q into a minimal covering
q W X ! E 0 of degree d and an isogeny � W E 0 ! E of degree M � 1.
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The map q, and a fortiori p, is uniquely determined by the requirement that

q�WX D

(
2.P1 C P2 C P3/; if d � 0 mod 2;
3P0 C P1 C P2 C P3; if d � 1 mod 2:

We call the origami map p with a factorization and location of branch points as in
this proposition normalized. We use this term also for the minimal covering q, if � is
clear from the context.

Proof. By [8, Proposition 2.2], there is a uniquely determined minimal, normalized
covering q W X ! E 0. Moreover, this covering satisfies

Œ�1� ı q D q ı �

and since the ramification points of q are not fixed by � , their images P , Q satisfy
Œ�1�Q D P . Let � W E 0 ! E be an isogeny with �.P / D �.Q/ D Œ�1��.P /, or
equivalently �.Œ2�P / D 0. Such an isogeny exists since .X; !/ is a Veech surface,
and hence P �Q is of finite order. The minimal such is given by the quotient map
E 0 ! E 0=T , where T is the subgroup generated by Œ2�P .

It is possible that M D 1. In this case, the branching divisor is non-reduced,
i.e. P D Q 2 E 0Œ2�. The integers d and M are uniquely determined by the Veech
surface. We call d D d.X; !/ the degree and M D M.X; !/ the torsion order
of .X; !/.

2.1. Spin structure. Let .X; !/ 2 �M2 be an arithmetic Veech surface with re-
duced, normalized covering p W X ! E. A Weierstraß point eP is called integral,
if p.eP / is equal to the branch point of p. The number of integral Weierstraß points
is an invariant of the SL2.R/-orbit of .X; !/, called the spin invariant ".X; !/.
Depending on the parity of d and M, we determine when it distinguishes orbits.

Let p W X ! E factorize as p D � ı q with a minimal, normalized covering q
and an isogeny � of degreeM � 1. Let P 2 E 0 denote one of the branch points of q.
Then �.P / 2 EŒ2�. We determine ".X; !/ in terms of the location of �.P /.
Proposition 2.2. If M� 1 mod 2, then for d � 1 mod 2

".X; !/ D

(
3; if �.P / D 0;
1; if �.P / ¤ 0;

while for d � 0 mod 2, then

".X; !/ D

(
0; if �.P / D 0;
2; if �.P / ¤ 0:

If M� 0 mod 2, then
".X; !/ D 0 :
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Proof. If M� 1 mod 2, then the induced map �Œ2� on the 2-torsion points is an
isomorphism and the previous proposition implies the claim.

If on the other hand,M� 0 mod 2, thenP is a 2M -torsion point since �.P /2EŒ2�,
and it is, more precisely, a primitive 2M -torsion point: Indeed, its torsion order is
at least M , since p is reduced and if the torsion order were exactly M , then the
composition of q and an isogeny of degree M=2 would also map the two branch
points of p to the same point, contrary to p being reduced. Moreover, the fiber of �
over �.P / does not contain a 2-torsion point of E 0, since if there was such a point,
then we had M.P � Pi / D 0 in the cyclic subgroup of order 2M generated by P
and the parity ofM impliesMP D 0, contradicting the preceding statement. Thus
in this case ".X; !/ D 0, as claimed.

Note that the preceding discussion applies both to arithmetic Veech surfaces in
�M2.1; 1/ and to arithmetic Veech surfaces in�M2.2/. In the second caseM D 1
of course.

Next we consider the case that X is a reducible genus two surface but with
compact Jacobian, i.e. X D E1 [ E2 is the union of two elliptic curves joined at
a node S . In this case an origami map p W X ! E is simply defined to be a map
that is non-constant on both factors, or equivalently ! D p�! is non-zero on both
components. This implies that E1 and E2 (and E) are isogenous. If di D deg.pjEi

/

then obviously d D deg.p/ D d1C d2. We call Weierstraß divisorWX onX the set
of fixed points different from S of the elliptic involutions on E1 and E2 with respect
to the zero S . Obviously jWX j D 6 as in the smooth case. This notion is justified
since one easily checks that for any family of flat surfaces .Xt ; !t / degenerating
to .X; !/, the Weierstraß divisorWXt

converges toWX . Again we let ".X; !/ be the
number of integral Weierstraß points, i.e. the number of points in WX with image
equal to p.S/.

There are no integral Weierstraß points on a component Ei iff di is odd. If di is
even, there is three or one Weierstraß point, depending on whether pjEi

factorizes
through multiplication by two or not. The latter can happen only if di is divisible by
four. For d � 1 mod 2 consequently

".X; !/ 2 f1; 3g;

since precisely one of the di is odd. If d is even, then both di might be odd, resulting
in no integral Weierstraß points. If both di are even and one of the maps pi factors
through multiplication by two, then p factors through a two-isogeny. Consequently,
if p is a reduced origami map and d � 0 mod 2, then

".X; !/ 2 f0; 2g:

where ".X; !/ D 0 corresponds to both di odd.
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3. Pseudo-Hilbert modular surfaces

In this section we introduce the surfaces containing the Teichmüller curves we are
interested in. These are moduli spaces for Abelian surfaces with multiplication by
pseudo-quadratic orders that we call pseudo-Hilbert modular surfaces Xd2 . They
admit a finite cover, which is a product of two modular curves. Consequently,
many line bundles on Xd2 arise from line bundles on the modular curves and we
summarize the main properties. Next, we introduce the Teichmüller curves on Xd2

and fix notation for all the divisors on Xd2 that we need. See also [1,5] or [16] for
basic properties of pseudo-Hilbert modular surfaces.

3.1. Modular curves andmodular forms. We let �.d/ � SL2.Z/ be the principal
congruence group of level d 2 N and X.d/ı D H=�.d/ be the (open) modular
curve. Its smooth compactification is denoted by X.d/. If d � 3, the curve X.d/
has �1;d D Œ�.1/W�.d/�

2d
cusps Rd;j and genus g.X.d// D 1 C d�6

24d
jSL2.Z=dZ/j,

see e.g. [17, Chapter 4] for background on congruence groups.
We record that X.d/! X.1/ is a covering of degree

�d WD jSL2.Z=dZ/j D Œ�.1/ W �.d/� D d3
Y
pjd

.1 � p�2/ (3.1)

if we consider these curves as quotient stacks. (In terms of coarse moduli spaces,
if we let �.d/ denote the image of �.d/ in �.1/ D PSL2.Z/, the covering is of
degree Œ�.1/ W �.d/�, which is half the degree above for d � 3.)

The Hodge bundle on X.d/ is � D $�.!E.d/=X.d//, where $ W E.d/! X.d/

is the (compactified) universal family (see Section 5). We also write �X.d/ if we
want to emphasized the level. Global sections of �˝k

X.d/
are modular forms of

weight k for �.d/. Moreover, �˝2
X.d/

D KX.d/.Rd /, where Rd is the divisor of
cusps and KX.d/ is the canonical bundle (see e.g. [10, A1.3.17]).

The discriminant f� is a modular form of weight 12 for �.1/. It is non-zero
on X.d/ı and vanishes to the order d at each cusp Rd;j (j D 1; : : : ; �1;d ) of X.d/.
Thus

12�X.d/ D d �Rd : (3.2)

The principal congruence group of level d is conjugate to another congruence
group

�.d/d D diag.d; 1/ � �.d/ � diag.d�1; 1/:

Consequently, the action of �.d/d and �.d/ on H are equivariant with respect to
the multiplication map by d on H and there is an isomorphism

X.d/ı D H=�.d/ Š H=�.d/d DW X.d/
ı
d :
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This conjugation by diag.d; 1/, omnipresent in this paper, is denoted subscript d
throughout. The reason for this conjugation becomes visible in the next section where
we define pseudo-Hilbert modular groups as subgroups of �.1/2

d
. This definition

will turn out to be natural, since the principal polarization of the lattice can be written
easily in these coordinates, see (4.4).1

3.2. Pseudo-Hilbert modular surfaces. Let d 2 N and D D d2. Following the
conventions for Hilbert modular surfaces, we let K D Q˚Q, whose subring

od2 D fx D .x0; x00/ 2 Z˚ Z W x0 � x00 mod dg � K

will be called a pseudo-quadratic order of discriminant D. Let o_
d2 D

1
.d;�d/

od2 be
the inverse different. The pseudo-Hilbert modular group

�d2 D SL.od2 ˚ o_
d2/

is the group of od2-linearmaps of determinant one of themodule od2˚o_
d2 considered

as column vectors with left multiplication or, equivalently, of o_
d2 ˚ od2 considered

as row vectors with multiplication from the right. We will use the latter viewpoint
throughout. The pseudo-Hilbert modular surface is the quotient2

Xı
d2 D H2=�d2 :

It is the moduli space parameterizing abelian surfaces with multiplication by the
pseudo-quadratic order of discriminant d2 as we will see in Section 4. The pseudo-
Hilbert modular group can be squeezed in between two self-products of modular
groups

�.d/2d � �d2 � �.1/2d :

The total inclusion is normal, and thus the leftmost inclusion defines a normal
subgroup with quotient group SL2.Z=dZ/. The other inclusion is not normal, also
of degree jSL2.Z=dZ/j, since the total inclusion has quotient group SL2.Z=dZ/2.
The pseudo-Hilbert modular surface admits a useful Galois covering given by

� W .X.d/ıd /
2
! Xı

d2

and a (non-Galois) quotient map given by

ˇ W Xı
d2 ! .X.1/ıd /

2:

The factor group �.1/2
d
=�.d/2

d
, and thus a fortiori �d2=�.d/2d , acts on the smooth

compactification X.d/2
d
of .X.d/ı

d
/2. In the sequel we work with the (normal, but

not smooth) compactified pseudo-Hilbert modular surface

Xd2 D X.d/2d = .�d2=�.d/2d / :

1Alternatively, one can work with SL2.od2/ acting on H � .�H/.
2Topologically, but not as a quotient stack, see Section 3.3.
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In fact, Xd2 is the Baily–Borel compactification of Xı
d2 . The quotient maps � and ˇ

extend to quotient maps

� W X.d/2d ! Xd2 and ˇ W Xd2 ! X.1/2d :

We now list the divisors on Xd2 that will be important in the sequel.

Boundary divisors. Let H D H [ P1Q be the upper half plane with cusps. The
image of .H nH/ �H is a curve R.1/;ı � Xd2 and the image of H � .H nH/ is
a curve R.2/;ı � Xd2 . Their closures are denoted by R.i/. The curves R.i/;ı are
irreducible and isomorphic to H=�1.d/˙ [1, Proposition 2.4].3

The Hodge bundles. The next important divisor classes on Xd2 are the Hodge
bundles

�i D .pri ı ˇ/��X.1/:

Here and throughout we use pri to denote product projections on spaces like X.1/2
or X.d/2, without reflecting the domain of the map in the notation. We let
�
.i/

�
D pr�i �X.d/ be the pullback of the Hodge bundle to the product. By definition

���i D �
.i/

�
.

In the sameway, we defineR.i/
�
D pr�i Rd as the pullback of the boundary divisors

to X.d/2
d
. They consist of �1;d irreducible components R.i/

�;j
, j D 1; : : : ; �1;d .

Pulling back (3.2) to the product X.d/2
d
and then taking its � -push forward we

obtain the important relation

R.i/ D
12

d
�i (3.3)

in PicQ.Xd2/.

The product locus. We denote by P ı
d2 the product locus, the locus of abelian

surfaces that split as a polarized surface. We will determine the class of this locus
in Section 7. The complement Xı

d2 n P
ı

d2 consists of principally polarized abelian
surfaces that are Jacobians of genus two curves.

TheTeichmüller curves. The projection of an SL2.R/-orbit of a square-tiled surface
.X; !/ is a Teichmüller curve C in M2. If q W X ! E is a minimal torus covering of
degreed , then the kernel of Jac.q/ W Jac.X/! E is a connected abelian subvariety of
exponent d (cf. (4.3)) by [2, Lemma 12.3.1, Corollary 12.1.5 and Proposition 12.1.9].
Consequently, by Proposition 4.1 below, a square-tiled surface that factorizes through
such a map q defines a point in Xd2 and the corresponding Teichmüller curve C is a
curve in Xd2 .

3There are different indexing conventions for the boundary divisors in [1] and in [5]. As mnemonic
for our convention, keep in mind thatR.i/ and �i are pulled back via pri .
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We let WD (D D d2) be the union of Teichmüller curves generated by reduced
square-tiled surfaces of degree d where ! has a double zero. By the results in the
preceding section,WD decomposes into spin componentsW "

D . The topology ofWD
is completely determined by the work of [1,14], and [19]. In particular the spin
components are irreducible.

We let Td;M be the union of Teichmüller curves generated by reduced square-tiled
surfaces of degree d such that! has two simple zeros and .X; !/ has torsion orderM.
By the preceding section, Td;M decomposes into its spin components Td;M;".

3.3. On quotient stacks. Since we suppose d � 3 throughout, the stack discussion
on X.1/ in the beginning of this section was inessential. The group �d2 however
contains for all d an element of finite order that acts trivially on H2, namely �I
embedded diagonally. We want the main object of our studies, the pseudo-Hilbert
modular surface Xd2 to be a variety, rather than a stack with global non-trivial
isotropy group of order two. For this purpose we consider Xd2 as the quotient stack
H2=P�d2 . As a set, Xı

d2 D H2=�d2 , as introduced above, but the morphism �

is of degree jPSL2.Z=dZ/j D �d=2 throughout this paper. In particular, it is also
possible to define the Hodge bundles “from above” without invoking the orbifold
bundles on X.1/ by the relation �i D 2

�d
���

.i/

�
. The equation (3.3) holds with this

convention (and with the reduced scheme structure on R.i/).
The reason for this discussion is that the diagonally embedded �I does no longer

act trivially when considering the universal family, see (4.6) in the next section. So
there is no choice but to let the universal familyAı

d2 and its compactification be really
the quotient stack by the groupe�d2 . In particular, the mape� is of degree�dd2. This
has the irritating consequence that the map of the universal family �ı W Aı

d2 ! Xı
d2

is the composition of the forgetful map H2 � C2=e�d2 ! H2=�d2 composed with
a (pointwise identity) map H2=�d2 ! Xd2 of degree 1

2
. This factor has to be taken

into account in push-forwards, see Section 8.

4. Abelian surfaces with multiplication by pseudo-quadratic orders
and modular embeddings

Here, we sketch how Xı
d2 parametrizes abelian surfaces with multiplication by od2

and describe the universal family

�ı W Aı
d2 D H2

�C2=e�d2 ! Xı
d2 (4.1)

where e�d2 D SL.od2 ˚ o_
d2/Ë.o_

d2 ˚ od2/ � SL2.K/ËK2: (4.2)

One should be aware that Aı
d2 ! Xı

d2 is the universal family only when considered
as a quotient stack. The fibers of the underlying variety are Kummer surfaces,
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and in particular singular. Nevertheless, the open family and its compactification,
introduced in Section 5, are both quotients of smooth varieties by finite groups and
thus smooth when considered as stacks.

Itwill be convenient to compare this family to the universal family of all principally
polarized abelian surfaces via a map e W H2 � C2 ! H2 � C2 that is equivariant
with respect to a group inclusion e‰ W e�d2 ! Sp.4;Z/Ë Z4. Such a pair .e ;e‰/ is
sometimes called modular embedding and it will be used in the next section to pull
back theta functions.

Recall that the exponent e.Y / of an abelian subvariety Y of dimension r in a
principally polarized abelian variety .A;‚/ is defined as

e.Y / D dr ; if ‚jY has type .d1; : : : ; dr/, (4.3)

see [2, Section 1.2 and 12.1].
Proposition 4.1. The pseudo-Hilbert modular surface surface Xı

d2 is the moduli
space of all pairs .A; �/, where A is a principally polarized abelian surface and
� W od2 ! End.A/ is a choice of multiplication by od2 .

Equivalently, Xı
d2 is the moduli space of all pairs consisting of a principally

polarized abelian surface A together with a projection q W A ! E to an elliptic
curve E such that ker.q/ is a connected abelian subvariety of exponent d .

For the convenience of the reader and to fix notations, we provide a sketch of the
proof the first statement, following [1, Theorem 2.2]. The second statement follows
from [2, Proposition 12.1.1 and Proposition 12.1.9] after unwinding the definitions.

We want to provide o_
d2 ˚ od2 with a polarization. For this purpose we define

the “Galois conjugation” on od2 by .x0; x00/� D .x00; x0/. With the usual definition
of trace the pairing ˝

.x1; y1/; .x2; y2/
˛
D Tr.x1y2 � x2y1/: (4.4)

on o_
d2 ˚ od2 is unimodular, alternating and Z-valued, hence a polarization.

Moreover, we let
p
D D .d;�d/ 2 K. Then, a symplectic basis of o_

d2 ˚ od2

is

a1 D
�

1p
D
��2 ; 0

�
; a2 D

�
�

1p
D
��1 ; 0

�
; b1 D .0; �1/; b2 D .0; �2/;

where �1; �2 is an arbitrary oriented basis of od2 , i.e. with
ˇ̌̌�
�0

1
�0

2

�00
1
�00

2

�ˇ̌̌
D d . For

z D .z1; z2/ 2 H2, define the embedding

o_
d2 ˚ od2 ! C2; .x; y/ 7!

�
x0z1Cy

0

x00z2Cy
00

�
:

The image is a lattice in C2 spanned by the columns of

…z D

�
1
d
�002z1 �

1
d
�001z1 �01 �02

�
1
d
�02z2

1
d
�01z2 �001 �002

�
D .z� � AT ; B/
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where z� D
�
z1 0
0 z2

�
and where B D

�
�0

1
�0

2

�00
1
�00

2

�
and A D B�1. We will work

throughout with the choice

B D
�
1 0
1 d

�
; hence A D

�
1 0

�
1
d
1
d

�
:

The quotientAd2;z D C2=…zZ4 is a principally polarized abelian surface (ppas),
polarized by the hermitian form with matrix Im .z�/�1 and the columns of…z are a
symplectic basis for the pairing with matrix

�
0 I2

�I2 0

�
. The associated point in H2

is Z D A � z� � AT , with the convention that Z 2 H2 corresponds to the ppas with
lattice spanned by the columns of .Z; I2/. It admits multiplication by od2 via the
diagonal action on the embedding o_

d2 ˚ od2 ! C2. This justifies the claims made
in Section 3.2.

Since both eigenspaces of multiplication by K are defined over Q, the abelian
surface is isogenous to a product of elliptic curves with an isogeny of degree d2. We
give an explicit basis of the sublattice corresponding to the product decomposition.
It is generated by the columns of

…z �

�
BT 0

0 d � A

�
D

�
z1 0 d 0

0 z2 0 d

�
:

For an R-basis .w1; w2/ of C, define the elliptic curve Ew1;w2
D C=.w1ZCw2Z/.

Then the isogeny between abelian varieties

Ez1;d �Ez2;d �! Ad2;z

is induced by the identity on the universal cover. The coordinate projections
pi WC2!C, i D 1; 2 induce the dual isogeny

Ad2;z �! Ez1=d;1 �Ez2=d;1

which after composition with the isomorphism covered by C2 ! C2, z 7! d � z

becomes multiplication by d on Ez1;d �Ez2;d .
This completes the sketch of the proof of Proposition 4.1.

Modular embeddings. The universal family is now easily obtained by pullback of
the universal family of principally polarized abelian surfaces over H2 via a modular
embedding. For ˛ D .˛1; ˛2/ 2 C2, set ˛� D

�
˛1 0
0 ˛2

�
.

Lemma 4.2. The embeddinge W H2
�C2

! H2 �C2; .z; u/ 7!
�
Az�AT ; Au

�
is equivariant with respect toe‰ W e�d2 ! Sp.4;Z/Ë Z4;

.M; r/ 7! S � .M �; r/ � S�1 D

��
Aa�B Ab�AT

BT c�B BT e�AT

�
;
�
r1B; r2A

T
��

whereM � D
�
a� b�

c� e�

�
, r D .r1; r2/ and S D .diag.A;BT /; 0/ 2 Sp.4;Q/Ë Q4.
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Note that the induced map Xı
d2 ! A2 does not depend on the choice of the

matrix B . If B 0 is another basis, A0 D B 0�1, and .e 0;e‰0/ is the embedding
associated with B 0, thene 0 D g ı e and e‰0 D g � e‰ � g�1;
where g D diag.A0B;B 0TAT / 2 Sp.4;Z/ .

The proof of Lemma 4.2 is a straightforward calculation, once one fixes the
precise definition of the group actions on source and target. We define the semidirect
products Sp.2g;R/Ë R2g by the rule

.M1; r1/ � .M2; r2/ WD .M1M2; r1M2 C r2/:

This semidirect product acts on the product Hg �Cg by

.Z; v/ 7!
�
M.Z/;

�
.CZ CE/T

��1�
v C .Z; Ig/r

T
��

(4.5)

whereM D
�
A B
C E

�
and r 2 Z2g , andM.Z/ D .AZCB/.CZCE/�1. The action

is compatible with the projection on the first factor and standard action of Sp.2g;R/
on Hg .

Next, we explicitly write out the action of e�d2 on H2 � C2, or more generally
of SL2.R/2 Ë R4 on H2 � C2, which is implicitly already given by (4.5) and the
modular embedding. Then .M; r/ 2 SL2.R/2 Ë R4 acts via

.z; u/ 7!
�
M.z/; .c�z� C e�/�1

�
uC .z�; I2/r

T
��

(4.6)

whereM D
�
a b
c e

�
, r D .r1; r2/, and rT D .r 01; r 001 ; r 02; r 002 /T and where

M.z/ D .az C b/.cz C e/�1 D

�
a0z1 C b

0

c0z1 C e0
;
a00z2 C b

00

c00z2 C e00

�
:

5. Compactifying the universal family over Xd2

Wewill compute the classes of the curves Td;M;" as the image of a locus cut out in the
universal family of abelian surfaces over the pseudo-Hilbert modular surface. Over
the open pseudo-Hilbert modular surface, this family is described as the quotient (see
Section 4)

�ı W Aı
d2 D H2

�C2=e�d2 ! Xı
d2 :

To perform intersection calculations, we need to work on a compact space and the
aim of this section is to describe explicitly such a compactification of Aı

d2 . Our
strategy is as follows. The universal family over the modular curve has a simple
compactification, by adding an “m-gon” of rational curves at every cusp, the simplest
instance of a toroidal compactification. In order to reduce from Aı

d2 to such a
situation, we have to pass from Xı

d2 to a finite cover where this surface is a product,
as explained in the previous section, and then to pass fiberwise to an isogenous abelian
variety.
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The aim of this section is to exhibit a compactification of Aı
d2 by describing the

action of the 2-step covering group on the product of two compactified universal
elliptic curves. We thus present a compactification of Aı

d2 as a quotient of a
smooth compact variety by a finite group action. Along with this, we introduce
local coordinates at the boundary that will be used to define bundle extensions in the
next section.

For this purpose we note that e�d2 has a normal subgroup that is equal to a
product e�.d/2

d
, wheree�.d/d D diag.d; 1/ � .�.d/Ë dZ2/ � diag.d�1; 1/:

The quotient H2 �C2=e�.d/2
d
is a product family

$ı �$ı W .E.d/ıd /
2
! .X.d/ıd /

2;

in fact of two copies on a universal family of elliptic curves.
As a general guide to the notation in the sequel, groups � act on H or H2, while

groups with a tilde are semidirect products acting on H �C or .H �C/2.
Theorem5.1. There exists a proper, smooth 4-dimensional stackAd2 containingAı

d2

as a Zariski open subset such that
(a) The canonical projection �ı extends to a flat, proper morphism

� W Ad2 ! Xd2 :

(b) The map e�ı W .E.d/ı
d
/2 ! Aı

d2 induced by the inclusion .e�.d/d /2 � e�d2

extends to a finite morphism of degree �dd2e� W .E.d/d /2 ! Ad2

over � W .X.d/d /2 ! Xd2 .
(c) The scheme underlying the stack Ad2 has at most quotient singularities.

The following diagram gives an overview of the spaces and maps involved.

.E.d/d /
2

$�$

��

e� // Ad2

�

��
.X.d/d /

2
�

// Xd2

(5.1)

In order to prove this theorem, we employ the usual toroidal compactification
of a family of elliptic curves. For ` 2 N we define the twisted level subgroup
�.`/d D diag.d; 1/ � �.`/ � diag.d�1; 1/. We lete�.`/d D diag.d; 1/ � .�.`/Ë `Z2/ � diag.d�1; 1/:
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The quotient X.d/ı
d
D H=�.d/d is the moduli space of d -polarized elliptic curves

with a level d -structure and

$ı W E.d/ıd D H �C=e�.d/d ! X.d/ıd (5.2)

is the universal family over it if d � 3. (Here and everywhere in the sequel we do not
discuss the supplementary stack issues arising when d D 2.) In particular, E.d/ı

d

and X.d/ı
d
is smooth.

The following statement is the point of departure for the compactification. It is
well known (see e.g. [7, Section I.2]), but we give its proof below since we need the
coordinates introduced there later on.
Proposition 5.2. There exists a compactification of E.d/ı

d
to a smooth, projective

surface E.d/d with the following properties.
(a) The projection$ı has an extension to a flat, proper morphism

$ W E.d/d ! X.d/d :

(b) The boundary @E.d/d consists of d � �1;d rational curvesDC;k , where C is a
cusp of �.d/d and k 2 Z=dZ. We have

DCi ;k :DCj ;l D

˚
�2; i D j; k D l;

1; i D j; k D l ˙ 1;

0; else:

(c) There is an action of e�.1/d=e�.d/d Š SL2.Z=.d//Ë.Z=.d//2 on E.d/d
extending the action on E.d/ı

d
.

Proof of Theorem 5.1. Thanks to the last item, we can define quotients of E.d/2
d
by

all subgroups of
�e�.1/d=e�.d/d �2. Therefore, setting

Ad2 D .E.d/d /
2 = .e�d2=e�.d/2d /

immediately yields the claims of Theorem 5.1.

We also obtain a description of the boundary of the compactification Ad2 . As
for Xd2 there are boundary components where the first resp. the second elliptic
curve degenerates. While for each of them there is a d -gon over every cusp in the
E.d/d �E.d/d , there are only two boundary componentsD.i/ for i 2 f1; 2g onAd2 .

More precisely, let S be the set of equivalence classes of cusps of �.d/d . For
C 2 S , k D 0; : : : ; d � 1, we define the following divisors

D
.1/

C;k
D DC;k �E.d/d ; D

.2/

C;k
D E.d/d �DC;k

in E.d/d � E.d/d . Then the boundary components are as follows, as we show in
Section 5.2.
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Corollary 5.3. The boundary of Ad2 consists of the two irreducible components of
codimension one

D.i/
De�.D.i/

C;k
/; i D 1; 2

where C 2 S , k 2 Z=dZ are arbitrary.

5.1. Toroidal compactification of families of elliptic curves. Here, we describe
the compactification of the universal family E.d/d of elliptic curves, and thereby
prove Proposition 5.2.

Let T D .C�/2 with coordinates � and q. For each integer k we define an
inclusion T ! T�k

Š C2, given by

.�; q/ 7! .�k; qk/ D .�q
�k; ��1qkC1/: (5.3)

Inside each T�k
we define the open set T�kC1

D fqk ¤ 0g D D.qk/ and we consider
this as an open subset of T�kC1

via

T�kC1
! T�kC1

; .�k; qk/ 7! .�kC1; qkC1/ D .q
�1
k ; �kq

2
k/ :

Gluing T�k
to T�kC1

along the open set T�kC1
gives an infinite chain of rational lines

DkC1.
The lineDk is covered by two affine charts. It is given by

V.�k�1/ � T�k�1
and V.qk/ � T�k

;

which are glued along D.qk�1/ $ D.�k/ by qk�1 D ��1
k

. As �k�1 D q�2
k�1

qk ,
this is indeed well-defined, and moreover Dk has self-intersection �2. (In fact, we
described a partial toroidal compactification of T , using the collection � D f�kgk2Z

of rational polyhedral cones in R2 defined by

�k D R�0 � .k; 1/CR�0 � .k C 1; 1/; k 2 Z;

but we will not need this viewpoint. See [7] for details.)

We now compactify E.d/ı
d
by adding suitable d -gons over the cusps of �.d/d .

We can carry this out for one cusp at a time, and in fact, it suffices to describe a
compactification for the cusps1, since �.d/d is normal in �.1/d , which has only
one cusp.

Compactification over1. We carry out the standard construction of a toroidal com-
pactification.

The stabilizer P D P1.d/d of a small neighborhood in E.d/ı
d
of the preimage

of the cusp 1 will have a normal subgroup P n D P n1.d/d such that the quotient
map by P n is given by a suitable coordinate-wise exponential map and such that the
image is isomorphic to T . On the partial compactification of T defined above the
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factor group P q D P=P n acts, e.g. on the boundary curves by a shift of indices.
For each of the cusps these quotients are glued to the family over the open curve to
obtain a compact space. In the sequel we need the precise form of the coordinates, in
particular (5.4) and (5.5). In the sequel, it will be convenient to represent elements
of the semidirect product Sp2g.R/Ë R2g in matrix form via

.M; r/ 7!

�
1 r

0 M

�
:

More precisely, let N D fIm z � 1g be a neighborhood of 1 2 H not fixed by
any element outside the stabilizer of 1 in �.d/d . The preimage P1.d/d of the
stabilizer of N in e�.d/d is equal to

P D P1.d/d D f

0@1 Z dZ
0 1 d2Z
0 0 1

1Ag:
It contains the normal subgroup

P n D P n1.d/d D f

0@1 0 dZ
0 1 d2Z
0 0 1

1Ag:
that acts on the$ -preimage ofN , which is isomorphic toN �C. The quotient map
N �C ! N �C=P n is given by

.z; u/ 7! .�1; q1/; with �1 D e. 1
d
u/, q1 D e. 1

d2 z/; (5.4)

(where e.�/ D exp.2�i �/) and identifies N � C=P n with an open set X1 in T . We
compactify T as above and take X1;† to be the interior of the closure of X1. The
boundary

@X1;† D X1 nX1;†

is an infinite chain of rational curvesD1;k .
The group P acts on X1 through the factor group P q D P=P n and the

compactification is compatible with this action. In fact, the bigger group P1.1/d ,
the preimage of the stabilizer of N in e�.1/d , acts on T , and thus on X1;†, as the
following lemma shows. Its proof is a straight-forward calculation. Let �d D e.1=d/.
Lemma 5.4. For b 2 Z, si 2 Z and " 2 f˙1g, let

eg Deg.s1; s2; "; b/ D
0@1 1

d
s1 s2

0 " bd

0 0 "

1A 2 P1.1/d D f
0@1 1

d
Z Z

0 ˙1 dZ
0 0 ˙1

1Ag:
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Then
(a) eg acts on the coordinates .�; q/ D .�1; q1/ by

� 7! �" � q"s1 � �
"s2
d
;

q 7! q � �"bd :
(5.5)

(b) eg acts on the coordinates .�k; qk/ D .�1;k; q1;k/ by

�k 7!

(
�k�s1 � �

s2�bk

d
; " D 1;

q�s1�k�1 � �
bk�s2
d

; " D �1;

qk 7!

(
qk�s1 � �

.kC1/b�s2
d

; " D 1;

��s1�k�1 � �
s2�.kC1/b

d
; " D �1:

(c) eg acts on set of rational curvesD1;k (k 2 Z) by

D1;k 7! D1;".kCs1/:

In particular, the action of P1.1/d on fD1;kg is transitive.
The action of P q on X1;† is properly discontinuous and free. Let Y1;† D

X1;†=P
q be the quotient. The action of P q identifiesD1;k withD1;kCdr , r 2 Z,

whence the boundary of the quotient Y1;† consists of a d -gon of rational curves,
which we also denote byD1;k (k 2 Z=dZ).

Compactification over an arbitrary cusp. Let S be a system of representatives of
the cusps of �.d/d . For C 2 S , choose an element

MC D

�
˛C ˇC


C ıC

�
2 �.1/d such that �.d/dMC .1/ D C :

The neighborhood NC D MC .N / of C in H is not fixed by an element outside the
stabilizer of C . We define PC D PC .d/d as the preimage of the stabilizer of NC
in e�.d/d . We let P nC � PC be the normalizer in e�.d/d of the stabilizer of NC .
As above, P nC is a normal subgroup of PC and we define P qC D PC=P

n
C . The

coordinates on the quotient NC �C=P nC are

�C D e..�
C z C ˛C /�1 ud /; qC D e.M
�1
C
z

d2 / : (5.6)

As before, the image of NC �C is an open set XC in the torus T D SpecCŒ�˙C ; q
˙
C �

and, using the same torus embedding as above, we compactify it by takingXC;† to be
the interior of the closure of XC in T†. Again let YC;† D XC;†=P qC be the quotient.
Let YC be the image of XC in YC;†. Then the map iC W YC ! E.d/ı

d
that sends an

orbit of PC to its e�.d/d -orbit is an embedding.
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The space E.d/d is now obtained by taking the disjoint union

E.d/ıd P[
P[
C2S

YC;†

and dividing out the equivalence relation generated by identifying x 2 E.d/ı
d
with

y 2 YC if iC .y/ D x. This completes the proof of Proposition 5.2.

5.2. Description of the boundaries of Ad2 . In this section, we analyze the action
of the quotient group Hd2 D e�d2=.e�.d/d /2 on the set of boundary components
of E.d/2

d
, showing the claims of Corollary 5.3. Secondly, we determine local

coordinates of a neighborhood of D.i/ by showing that the isotropy group of a
generic point is trivial.

Recall the group isomorphisms

red.i/ W Hd2 ! SL2.Z=dZ/Ë.Z=dZ/2; i D 1; 2

induced by

red.i/ W e�d2 ! SL2.Z=dZ/Ë.Z=dZ/2;

.A; s/ 7! diag.d�1; 1/ � .A.i/; s.i// � diag.d; 1/:

where � denotes the reduction modulo d .
Lemma 5.5. The group Hd2 acts transitively on fD.i/

C;k
j C 2 S; k 2 Z=dZg for

each i D 1; 2. The stabilizer ofD.i/
1;0 is given by

red.i/.StabH
d2
.D

.i/
1;0// D fŒ

�
˙1 �
0 ˙1

�
; .0;�/�g � SL2.Z=dZ/Ë.Z=dZ/2

and is of order 2d2. Moreover the pointwise stabilizer

StabH
d2
.D

.i/
1;0/

is trivial.

Proof. By symmetry, we may focus on i D 1. The group �d2 acts transitively on
the set fC � X.d/d j C 2 Sg, so it suffices to show that e�d2 \ .P1.1/d �e�.1/d /
acts transitively on fD.1/

1;k
j k 2 Z=dg. We have�

I;
��
1
d
;� 1

d

�
; 0
��
2 e�d2 \

�
P1.1/d �e�.1/d �;

which mapsD.1/

1;k
toD.1/

1;kC1
.

Concerning the stabilizer group ofD.1/
1;0, we have

red.i/
�
StabH

d2
.D

.1/

1;k
/
�
D red.i/

�e�d2 \
�
StabP1.1/d .D1;k/ �e�.1/d ��:

Using this observation and Lemma 5.4, one can easily determine the stabilizer and
the pointwise stabilizer.
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Local coordinates at the boundaries. We describe local coordinates in the neigh-
borhood of a point x 2 D.i/ (i D 1; 2). These will be used to extend the line bundles
in the next section.

For i D 1; 2 and k 2 Z, we introduce, following (5.3) and (5.4), the notations

�i D e. 1
d
ui /; qi D e. 1

d2 zi /; (5.7)

�i;k D �iq
k
i ; qi;k D �

�1
i qkC1i : (5.8)

It will be helpful to keep in mind the relations

�i D �
kC1
i;k

qki;k; qi D �i;kqi;k : (5.9)

Note also that we work throughout over the cusps1, but we suppress this from the
notation.

Lemma 5.6. Let x 2 D.i/ be a generic point and letex be a lift of x inD1;k�H�C
in case i D 1, respectively in H �C �D1;k in case i D 2. Then

.�1;k; q1;k; z2; u2/; i D 1;

.z1; u1; �2;k; q2;k/; i D 2

are local coordinates at x, in the sense that there exists an open neighborhood eU
of ex such that the canonical projection U ! Ad2 is a homeomorphism.

In particular, the generic point ofD.i/ is smooth.

Proof. By symmetry, we may restrict to the case i D 1. Since the action is properly
discontinuous, it suffices to show that a generic ex is not fixed by any element
g 2 e�d2 n .P 01.d/d � f1g/. Let us write g D .M; r/, M D

�
a b
c e

�
, r D .r1; r2/

and suppose that it fixesex. As x is generic, z2 is not a fixed point of M 00 and thus
M 00 D ˙I . For the same reason, u2 is not a half-integral lattice point 1

2d
ez2ZC 1

2
Z,

and thus u2 7! a00.u2Cz2r
00
1Cr

00
2 // does not fix a neighborhood of u2 unless a00 D 1,

r 001 D r
00
2 D 0. SinceM 0 fixes a point in X1;†, it is of the form

M 0 D

0@1 r 01 r 02
0 " b0

0 0 "

1A :

The congruence condition together with a00 D 1 forces " D 1. Since b00 D 0 and
r 002 D 0, we have b0 2 d2Z and r 02 2 dZ. Moreover, M 0 has to fix the component
Dk � X1;†, which according to Lemma 5.4 entails r 01 D 0. Altogether, this shows
M 2 P 01.d/d � f1g.

Alternatively, one can argue that .q1;k; �1;k; z2; u2/ provide local coordinates
aboutD.1/

1;0 onE.d/d , and that the pointwise stabilizer StabHd2
.D

.1/
1;0/ is trivial.



278 A. Kappes and M. Möller CMH

6. Divisors and line bundles on Ad2

On the universal family over an (open) pseudo-Hilbert modular surface there is a
natural collection of line bundles, the common generalization of the pullback of
Hilbert modular forms and classical elliptic Jacobi forms. These are the called
Hilbert Jacobi-forms. Theta functions will be the main instances of sections of these
line bundles. Our aim is to express the classes of these line bundles in the rational
Picard group PicQ.Ad2/ in terms of line bundles that are good for intersection theory
calculations: the Hodge bundles, the boundary divisors and the pullbacksN .i/ of the
zero sections.

The main result of this section is the following. The notation will be explained in
the rest of this section.

Theorem 6.1. Let f be a Hilbert–Jacobi form of weight � 2 .1
2
Z/2, indexm 2 1

2
od2

and a multiplier of order ` for the groupe�d2 . Then the class of div.f / in PicQ.Ad2/

is
.�1 C

2m0

d
/���1 C .�2 C

2m00

d
/���2 C

2m0

d
N .1/

C
2m00

d
N .2/ : (6.1)

Note that it is almost meaningless to speak of the class of a line bundle defined
by giving explicit automorphy factors on the open family. If J�;m is one extension
to the compactification, any twist J�;m.nD

.i// for any integral n and a boundary
component D.i/ will also be an extension. The theorem becomes meaningful only
together with the description of the behavior at the boundary (in terms of Laurent
series in local coordinates) given in (6.8). For practical purposes, any other boundary
conditions would work as well: we have to correct by the vanishing order at the
boundary and the difference is independent of any choices, see Theorem 9.2 for our
application.

6.1. Divisors in the Picard group of the universal family: The boundary and
torsion sections. In this section we list some important divisor classes in the
compactified universal family PicQ.Ad2/ over the pseudo-Hilbert modular surface.
The classes of a Hilbert modular forms can be expressed in these bundles. For later
use we also define the divisors corresponding to zero sections and compare it to the
divisor of torsion sections.

Recall from Section 3.2 the definition of the Hodge bundles �i D .pri ıˇ/��X.1/,
where ˇ W Xd2 ! X.1/2

d
is the projection and � is the Hodge class onX.1/d . There,

we also defined the boundary curves R.i/, that obey the relation R.i/ D 12
d
�i :

In Corollary 5.3 we gave a description of the boundary with two componentsD.i/,
mapping surjectively to R.i/ respectively for i D 1; 2. The discussion in Section 3.3
implies that ��R.i/ D D.i/. In particular, we have the relation

D.i/
D ��R.i/ D

12

d
���i : (6.2)
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For i D 1; 2 letN .i/

�
be the pullback of the zero sectionNX.d/ of the compactified

universal familyE.d/d of elliptic curves via the i -th projection toE.d/2d . We denote
by

N .i/
De�.N .i/

�
/ (6.3)

the image of these zero sections in Ad2 . Note that N .i/ D
1
�d
e��.N .i/

�
/.

With the same letter and the additional subscript `-torwe denote the corresponding
divisors of the multi-section of primitive `-torsion points on the family over X.d/,
over X.d/2 and over Xd2 respectively. Their classes are related as follows.
Proposition 6.2. In CH1.Ad2/, we have for ` > 1

N
.i/

`-tor D
�`

`
.N .i/

C ���i /:

Proof. All the quantities involved are pull backs from the universal family E.1/ (we
calculate in PicQ of a quotient stack) over X.1/ and we prove the relation there. The
rational Picard group of an elliptic fibration is generated by the zero section N , the
class F of a fiber and the components of the singular fibers, with the relation that the
sum of all the components are equal to a smooth fiber. Since all the singular fibers
are irreducible here we can disregard the singular fibers.

Consequently, we writeN`-tor D aN CbF . Intersecting with another fiber shows
that a D �`

`
. IntersectingwithN shows that b D �aN 2 D a deg.�/ [11, Eq. (12.6)].

Since the fiber classes are pulled back from X.1/, where any two points are linearly
equivalent, we may write bF D �`

`
N$��, where N$ W E.1/! X.1/ is the map of the

universal family.

6.2. Elliptic Jacobi forms. In this section we recall the classical theory of elliptic
Jacobi forms fore�.1/ (see e.g. [3]), specify a bundle they are sections of and use this
to determine the class of the divisor where the Jacobi form vanishes. Our method
follows [12], but we redo this case as preparation for the case of Hilbert Jacobi forms
in the next section, to include non-integral weight and index as well as non-cusp
forms, and clarify the imprecise statement in [12, Proposition 2.4].

We start with the standard definition (see e.g. also [3]) and recall the notations in
more detail in the pseudo-Hilbert modular case below.
Definition 6.3. An elliptic Jacobi form of weight � 2 1

2
Z and indexm 2 1

2d
Z for the

group e�.d/d D �.d/d Ë.Z˚ dZ/ and the multiplier � is a holomorphic function
f W H �C ! C such that

(i) f
ˇ̌
�;m

�
M; r

�
.z; u/ D �.M; r/f .z; u/ for all .M; r/ 2 e�.d/d .

(ii) For each cuspC withMC , qC and �C as defined in Section 5.1, f has a Fourier
development

f .z; u/ � j�;m.M
�1
C ; z; u/�1 D

X
0�s2Z

X
t2Z

cC;s;t q
s
C �

t
C

for some cC;s;t 2 C, which vanish unless 4sm � t2 � 0.
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The divisor divf of a Jacobi form is well-defined as a subset of E.d/ı
d
, since the

exponential factors in the transformation rule (see (6.4)) do not change the vanishing
order of the function. However, divf does not define a class in Pic.E.d/d /, since
the boundary contribution is not well-defined. Later (compare Theorem 9.2) we are
interested in the class of the topological closure divf in Pic.E.d/d /. This class
however is not determined by the parameters (weight, index, multiplier) of the Jacobi
form, as one can easily see already for modular forms. We will talk about divisor
classes once we introduced the bundle of Jacobi forms.

Note that condition (ii) is for historical reasons only. It holds for themost important
examples (theta functions introduced below, and also Fourier–Jacobi coefficients of
Siegel modular forms) and guarantees the finite-dimensionality of the space of Jacobi
forms for fixed parameters. However, many other (cone) conditions would do as well
and fixing the bundle J�;m.E.d/d / is independent of this choice.

The slash operator for z�.d/d . In order to define the slash operator we let

j�;m.
; z; u/ D .cz C e/
��
� e
�
�m

c.uC r1z C r2/
2

cz C e

�
� e.m.r21z C 2r1u//;

where 
 D
��
a b
c e

�
; .r1; r2/

�
2 e�.d/d . For � integral, the function j�;m is an

automorphy factor for 
 2 e�.1/ called classical automorphy factor, i.e.

j�;m.
1
2; z; u/ D j�;m.
1; 
2.z; u// � j�;m.
2; z; u/:

and we define
f
ˇ̌
�;m

�


�
.z; u/ WD f .
.z; u// � j�;m.
; z; u/: (6.4)

In this case � W e�.d/d ! C� is just an abelian character. For general �, the
map � is a multiplier, i.e. a map so that j�;m.�/��1.�/ is an automorphy factor for a
fixed choice of the determination of .cz C e/�� . In any case, � is supposed to be
finite, i.e. �M D 1 for someM 2 N.

Let d � 3, ` be integers. Recall that

e�.`/d D �.`/d Ë. `
d

Z˚ `Z/ D diag.d; 1/ � �.`/Ë `Z2 � diag.d�1; 1/:

Lemma 6.4. For � 2 Z, m 2 Z, the function j�;md=`2 is an automorphy factor for
the twisted group e�.`/d .
Proof. Consider the map ' W H �C ! H �C, .z; u/ 7! .dz; `u/. It is equivariant
with respect to the map ˆ W �.`/Ë Z2 ! �.`/d Ë. `

d
Z˚ `Z/ given by��

a b
c e

�
; .r1; r2/

�
7!

� �
a bd
c=d e

�
;
�
`
d
r1; `r2

��
:
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Since by pullback

j�;m ı .ˆ � '/
�1.
; z; u/ D

�
cd z

d
C e

���e�m�d2

`2 r
2
1
z
d
C 2d

`
r1
u
`

��
� e
�
�m

cd
�
u
`
C

d
`
r1
z
d
C

1
`
r2
�2

cd z
d
C e

�
D j�;md=`2.
; z; u/ ;

the classical automorphy factor j restricted to �.`/Ë Z2 with m 2 Z and � 2 Z is
transformed into an automorphy factor for �.`/d Ë. `

d
Z˚ Z/.

A bundle of elliptic Jacobi forms. It is well known that an automorphy factor
like j�;m��1 for a group like e�.d/d defines a line bundle J

�
�;m.E.d/

ı
d
/ on

H � C=e�.d/d D E.d/ıd . We specify an extension of J
�
�;m.E.d/

ı
d
/ to E.d/d . For

simplicity, let us first assume that j�;m is already an automorphy factor. We consider
the line bundle induced on the open set XC introduced in Section 5.1; in fact, it
suffices to work over the cusp1 and carry the arguments over to any other cusp C
using the elements MC . As the slash operator is trivial on P n1.d/d , so is the line
bundle induced by j�;m on X1. We extend it to a line bundle on X1;† by declaring
on T�k

the Laurent series

q�mk
2

k �
�m.kC1/2

k

X
i;j�0

ci;j q
i
k�
j

k

to be holomorphic. Since by Lemma 5.4, fk D q�mk
2

k
�
�m.kC1/2

k
is mapped to

fk
ˇ̌
�;m

�eg� D fk�s1 � ˛ for some d -th root of unity ˛ by the elementeg.s1; s2; "; b/ 2
P1.1/d , it follows that this extension descends to a well-defined line bundle on Y1;†.
Performing this extension over all cusps, we obtain a well-defined line bundle
J�;m.E.d/d / on E.d/d that restricts to J�;m.E.d/

ı
d
/ on the open family.

In the presence of a non-trivial multiplier �, the line bundle induced on X1
may not be trivial. Still it is a local system, which means that the sections in
two trivializations are transformed into each other by multiplication by a non-
zero constant. This entails that we can use the same definition as above for the
extension. Note also that the arguments show in fact that the extension J

�
�;m.E.d/d /

is a e�.d/d=e�.1/d -equivariant bundle (as long as the automorphy factor j�;m��1 is
well defined on e�.1/d ).

In order to make the connection with Jacobi forms, we rewrite the Fourier
expansion of a Jacobi form f at the cusp1 using

�1 D �
kC1
k

qkk ; q1 D �kqk;

and obtain

f .z; u/ D
X

s;t2Z;s�0;
4sm�t2�0

cs;t q
s
1�

t
1 D

X
s;t2Z;s�0;
4sm�t2�0

cs;t q
sCkt
k

�
sC.kC1/t

k
:
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It is easy to check that the smallest qk-exponent appearing is

min
˚
s C kt j s; t 2 Z; 4sm � t2 � 0; s � 0

	
� �mk2;

and that a similar statement holds for the smallest �k-exponent. Thus, f is a
holomorphic section of the bundle extension J�;m.E.d/d /.

With this choice of extension, the class of div.f / is well-defined and has been
calculated in [12, Proposition 2.4]. The result is not needed in the sequel, but we will
follow his method in the next subsections very closely to prove Theorem 6.1.

6.3. Hilbert Jacobi forms. In this section, we define Jacobi forms for the pseudo-
Hilbert modular surfaces analogously to the elliptic case by an automorphy factor
and a condition on the Fourier development at the boundary. Then we describe
an extension of the line bundle induced by the automorphy factor on Aı

d2 to the
compactification Ad2 , whose global sections will include all Hilbert Jacobi forms.
Again, we first give the well-known definition and explain notation afterwards.
Definition 6.5. A Hilbert Jacobi form of weight � D .�1; �2/ 2

1
2
Z2 and index

m D .m0; m00/ 2 1
2
od2 for the groupe�d2 and multiplier � is a holomorphic function

f W H2 �C2 ! C such that
(i) f ..M; r/.z; u// �e|�;m..M; r/; z; u/ D �.M; r/ f .z; u/ for all .M; r/ 2 e�d2 .
(ii) f has Fourier developments

f .z; u/ D
X
s02Z

X
t 02Z

cs0;t 0.z2; u2/ q
s0

1 �
t 0

1

D

X
s002Z

X
t 002Z

cs00;t 00.z1; u1/ q
s00

2 �
t 00

2

(6.5)

in the local coordinates

qi D e. zi

d2 /; �i D e.ui

d
/;

where cs0;t 0 , cs00;t 00 are holomorphic functions, which vanish unless

4sm � t2 � 0 and s � 0:

In this definition,

e|�;m.
; z; u/ D e.trK=Q.m.r21z C 2r1u///
2Y
iD1

.c.i/zi C e
.i//��i

� e.�trK=Q.m.cz C e/�1c.uC z�rT1 C rT2 /2// (6.6)

and one checks that for � integral the function .z; u/ 7! e|�;m.
; z; u/ is an
automorphy factor for e�d2 . In the general case, for � not necessarily integral,



Vol. 92 (2017) Cutting out arithmetic Teichmüller curves 283

a multiplier is defined to be a map � W e�d2 ! C� such that for a fixed determination
of e|�;m the producte|�;m��1 is an automorphy factor fore�d2 . We suppose throughout
that �.
/ has finite order for 
 2 e�d2 . We will not need more details, since the
multipliers trivialize after taking tensor powers and so they do not effect a statement
on the rational Picard group as Theorem 6.1.

Note also that e|�;m D j .1/�1;m0
� j
.2/
�2;m00

(6.7)

where j .i/
�i ;m

.i/.
; z; u/ D j�i ;m
.i/.
 .i/; zi ; ui /.

Abundle of Hilbert Jacobi forms. Wedenote byJ
�
�;m.A

ı

d2/ the line bundle defined
by the automorphy factor e|�;m��1 on the open variety Aı

d2 . In order to extend it
to a bundle J

�
�;m.Ad2/ on Ad2 , we proceed as in the elliptic case. We work local

coordinates near a boundary divisor, sayD.1/ and suppose first that � D 1. The local
coordinates are given by Lemma 5.6 by

�1;k; q1;k; z2; u2;

and the line bundle induced by e|�;m is trivial. Again, we declare sections to be
holomorphic if they are of the form

q�m
0k2

1;k �
�m0.kC1/2

1;k
� f (6.8)

for a holomorphic function f D f .�1;k; q1;k; z2; u2/. For a non-trivial multiplier �,
we have to pass to local systems, but this definition still makes sense, since it is
independent of the chosen trivialization of the local system.

Alternatively, we can construct the extension (for � D 1) by using (6.7), which
translates intoe��J�;m.Aıd2/ Š pr�1J�1;m0.E.d/

ı
d /˝ pr�2J�2;m00.E.d/

ı
d /:

and the fact that the latter bundle has an extension, which is in fact Hd2-equivariant
and thus induces a bundle on the quotient. (Note that for m 2 dZ2, it is evene�.1/2

d
=e�.d/2

d
-equivariant, but for general rational index m, j is not an automorphy

factor for e�.1/d .)
From the Fourier development (6.5) and the coordinate transformations (5.9) we

deduce that a Hilbert Jacobi form has near the boundary divisors D.1/

1;k
given by

q1;k D 0 a Fourier development

f .z; u/ D
X
s0;t 0W

4s0m1�t
02�0

cs0;t 0�
s0C.kC1/t 0

1;k
qs
0Ckt 0

1;k
: (6.9)

The same estimate as for elliptic Jacobi forms yields that Hilbert Jacobi forms are
indeed holomorphic sections of J

�
�;m.Ad2/.
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6.4. Theta functions.We recall the definition of the classical (Siegel) theta-functions.
Weuse the convention thatxD.x1; x2/ and 
i are rowvectorswhile and vD.v1; v2/T
is a column vector. Let

�
�

1

2

�
W

�
Hg �Cg

! C

.Z; v/ 7!
X

x2ZgC
1
2

1

e
�
1
2
xZxT C x

�
v C 1

2

T2
��

(6.10)

be the theta function with half-integral characteristic 
 D .
1; 
2/ 2 Z2. The
evaluation of a theta-function at v D 0 is called theta constant. The theta-function
(and the characteristic .
1; 
2/) is called odd if 
1
T2 is odd and even otherwise. Odd
theta constants vanish identically as functions in Z. The theta constants are modular
forms of weight 1=2 for the subgroup �.4; 8/ of Sp.2g;Z/, non-zero if and only if
.
1; 
2/ is even.

For a matrix M D
�
A B
C E

�
2 Sp.2g;Z/ and a vector � D .�1; �2/ 2 Z2g the

theta function transforms (see [2]) as

�
�
.M
/1
.M
/2

�
.M.Z/; .CZ CE/�T v/

D �
�

1

2

�
.Z; v/ � �� .M/ � det.CZ CE/1=2e.1

2
vT .CZ CE/�1Cv/; (6.11)

�
�

1

2

�
.Z; v CZ�T1 C �

T
2 /

D �
�

1

2

�
.Z; v/ � e.
1

2
�T2 �


2

2
�T1 �

1
2
�1Z�

T
1 � v

T�T1 / : (6.12)

Here, �� is a multiplier, which takes values in the 8-th roots of unity, andM acts on
the characteristic by

.M
/1 D E

T
1 � C


T
2 C .CE

T /0;

.M
/2 D �B

T
1 C A


T
2 C .AB

T /0;

where .S/0 D .s11; : : : ; sgg/ denotes the diagonal vector of a matrix S 2 Rg�g .
We are interested in Hilbert theta functions (with half-integral characteristics),

the pullback of the Siegel theta-function for g D 2 to H2 � C2 via the modular
embedding e defined in Section 4. Concretely, these theta functions are given as the
power series

#
� e
1e
2

�
.z; u/ WD  �� 
1


2
.z; u/ D

X
x2Z2C


1

2

e
�
1
2
xAz�AT xT C x

�
AuC 1

2

T2
��

D

X
x2.Z2C


1

2
/A

e
�
1
2
xz�xT C x

�
uC 1

2
B
T2

��
D

X
x2o_

d2
C
e
1

2

e
�
trK=Q

�
1
2

�
x2z C 2x

�
uC 1

2
e
2����

wheree
1 D 
1A 2 o_
d2 , ande
2 D 
2BT 2 od2 . We first analyze the action of �d2

on characteristics.
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Lemma6.6. The set of even theta characteristics decomposes under the action of �d2

into two orbits

E0 D
˚�
.0;0/
.0;0/

�
;
�
.1;0/
.0;1/

�
;
�
.1;0/
.0;0/

�
;
�
.0;0/
.0;1/

�	
E2 D

˚�
.1;1/
.0;0/

�
;
�
.1;1/
.1;1/

�
;
�
.0;0/
.1;1/

�
;
�
.0;1/
.1;0/

�
;
�
.0;1/
.0;0/

�
;
�
.0;0/
.1;0/

�	
for d even and into O3 D

˚�
.0;1/
.1;0/

�	
, and

O1 D
˚�
0;0
0;0

�
;
�
1;0
0;0

�
;
�
0;0
1;0

�
;
�
0;1
0;0

�
;
�
0;0
0;1

�
;
�
1;0
0;1

�
;
�
1;1
0;0

�
;
�
0;0
1;1

�
;
�
1;1
1;1

�	
for d odd.

The labeling of the orbits is consistent with the notation for spin structures for the
reducible locus, as we will see in Section 7. The odd theta characteristics form two
orbits for d odd and one orbit for d even, but we will not need this fact.

Proof. Recall that in g D 2 an even theta characteristic can be written as a
sum of three (out of six) odd theta characteristics, and that this representation
is unique up to passing to the complementary triple (e.g. [21], Section IIIa.6, in
particular p. 3.104). Odd theta characteristics correspond to Weierstraß points and
they have been normalized in Proposition 2.1 globally, i.e. in a way that is invariant
under �d2 . For d odd the alternating sum of the three Weierstrass points in one
fiber is the distinguished even theta characteristic. For d even there are two kinds of
triples: four triples (and their complements) can be formed by picking oneWeierstraß
point out of each pair from Proposition 2.1. Six triples (and their complements) can
be formed by picking both Weierstraß point from such a pair and a third point. These
correspond to the orbits E0 and E2 respectively.

It is easy to show that these orbits do not decompose further by exhibiting
appropriate elements of �d2 and the transformations

e
1 7! A.M e
/1 De
1e� �e
2c� C .BT c�e�B/T0 A;e
2 7! A.M e
/2 D �e
1b� Ce
2a� C .Aa�b�AT /T0 BT ;
whereM D

�
a b
c e

�
2 e�d2 that follow from (6.11) and the definition of the modular

embedding.

Proposition 6.7. The Hilbert theta functions are Hilbert Jacobi forms of weight
.1
2
; 1
2
/ and index .1

2
; 1
2
/ for some subgroup of finite index in e�d2 .

For d odd, one of the Hilbert theta functions is a Hilbert Jacobi form for the full
group e�d2 . With our choice of B and the modular embedding, this is #

�
.0;1/
.1;0/

�
.
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Proof. The group e�d2 acts on # by

#
� e
1e
2

�
.z; u/ D #

� .Me
 /1
.Me
 /2 ��M.z/; �c�z C e���1�uC z�rT1 C rT2 ��

�

2Y
iD1

�
c.i/zi C e

.i/
��1=2

� e
�
1
2
trK=Q

�
r21z C 2r1u

��
� e
�
�
1
2
trK=Q

��
uC z�rT1 C r

T
2

�T
.cz C e/�1c

�
uC z�rT1 C r

T
2

���
� �� .‰.M//�1 � e

�
trK=Q

�e
1

2
r2 �

e
2

2
r1
�� (6.13)

where .M; r/ D
� �

a b
c e

�
; .r1; r2/

�
2 e�d2 . This proves the claim on the weight and the

index. The second statement follows from the previous lemma.

Last, we list the theta characteristics and their images under the transformatione
1 D 
1A, respectivelye
2 D 
2BT . The first row ismultiplied byd for convenience.�

1

2

� �
0;0
0;0

� �
1;0
0;0

� �
0;0
1;0

� �
0;1
0;0

� �
0;0
0;1

�
� de
1e
2

� �
0;0
0;0

� �
d;0
0;0

� �
0;0
1;1

� �
�1;1
0;0

� � 0;0
0;d

��

1

2

� �
1;0
0;1

� �
0;1
1;0

� �
1;1
0;0

� �
0;0
1;1

� �
1;1
1;1

�
� de
1e
2

� �
d;0
0;d

� �
�1;1
1;1

� �
d�1;1
0;0

� � 0;0
1;dC1

� �
d�1;1
1;dC1

�
Table 1. Even theta characteristics under base change

�

1

2

� �
1;0
1;0

� �
1;1
1;0

� �
1;0
1;1

� �
0;1
0;1

� �
1;1
0;1

� �
0;1
1;1

�
� de
1e
2

� �
d;0
1;1

� �
d�1;1
1;1

� �
d;0
1;dC1

� �
�1;1
0;d

� �
d�1;1
0;d

� �
�1;1
1;dC1

�
Table 2. Odd theta characteristics under base change

6.5. The divisor of a Hilbert Jacobi form. In this section, we determine the class
of the bundle of Hilbert Jacobi forms in terms of the pullbacks of the Hodge bundles
���i and the zero sections N .i/, that is we complete the proof of Theorem 6.1.

The plan is to reduce the weight and index of any Hilbert Jacobi form to zero with
the help of the following two functions, whose divisor class we can compute.

Lemma 6.8. The function #.i/
d

�
1
1

�
W H2 �C2 ! C, i D 1; 2, given by

#
.i/

d

�
1
1

�
.z; u/ D

X
x2Z

e
�
1
2

�
x C 1

2

�2 zi

d
C
�
x C 1

2

��
ui C

1
2

��



Vol. 92 (2017) Cutting out arithmetic Teichmüller curves 287

as a pullback of a one-variable theta function, is a Hilbert Jacobi form for e�d2 of
weight � with �j D 1

2
ıij and index .m.1/; m.2// where m.j / D d

2
ıij . Its divisor is

div#.i/
d

�
1
1

�
D N .i/

C
d

8
D.i/:

Proof. One immediately deduces from the theta transformation formula that

#
.i/

d

�
1
1

��
.M; r/.z; u/

�
� j
.i/

1
2
;
d
2

�
.M; r/; z; u

�
D e

�
1
2
r
.i/
2 �

1
2
dr

.i/
1

�
� �
.i/

�
.M/ � #

.i/

d

�
1
1

�
.z; u/;

for .M; r/ 2 e�d2 , where �
.i/

�
.M/ WD �� .diag.d�1; 1/M .i/ diag.d; 1//, and

where �� denotes the multiplier introduced in the 1-dimensional theta transformation
formula (6.12).

For the divisor calculation we may focus on the case i D 1. At the boundary
divisorD.1/, which in the local coordinates .�1;k; q1;k; z2; u2/ of Lemma 5.6 is given
by q1;k D 0, we have the Fourier development

#
.1/

d

�
1
1

�
D

X
x2Z

q
d=2.xC1=2/2

1 �
d.xC1=2/
1 � e

�
1
2

�
x C 1

2

��
D

X
x2Z

q
d=2.xC1=2/2Ckd.xC1=2/

1;k
�
d=2.xC1=2/2C.kC1/d.xC1=2/

1;k
� e
�
1
2

�
x C 1

2

��
:

Thus, the vanishing order of #.1/
d

�
1
1

�
at q1;k D 0 as a function is given by

min
x2Z

d
2

�
x C 1

2

�2
C kd

�
x C 1

2

�
D

d
2

�
min
x2Z

x2 C .1C 2k/x C 1
4
C k

�
D

d
2

�
min
x2Z

�
x C 1

2
C k

�2
�
�
1
2
C k

�2
C

1
4
C k

�
D

d
2

�
min
x2Z

�
x C 1

2
C k

�2
� k2

�
D

d
8
� k2 d

2
:

Using (6.8), we see that the vanishing order as a section of the bundle of Hilbert
Jacobi forms is d

8
. Thus,

C D div#.1/
d

�
1
1

�
�
d
8
D.1/

is a divisor on Ad2 , whose support is disjoint from the boundary.
The divisor of the classical theta function �

�
1
1

�
onEŒd�ı D H�C=.�.d/Ë.dZ/2/

is equal to d2-times the zero-section. This relation persists under passing to the
quotient by the conjugate group e�.d/d via the equivariant isomorphism .z; u/ 7!

. z
d
; u/. Thus

O.E.d/ı
d
/2.div#

.1/

d

�
1
1

�
/ Š O.E.d/ı

d
/2.d

2N
.1/

X.d/2
/:
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Therefore,

deg.e�/C De��e��C
De��O.E.d/ı

d
/2

�
div#.1/

d

�
1
1

��
� deg.e�/d

8
D.1/

D d2e��N .1/

X.d/2
� deg.e�/d

8
D.1/

D d2�dN
.1/
� deg.e�/d

8
D.1/ ;

which together with deg.e�/ D d2�d implies the claim.

Lemma 6.9. The pullback of the one-variable �-function �.i/ W H2�C2 ! C, given
by

�.i/.z; u/ D e
�
zi

24d

� 1Y
nD1

�
1 � e

�
nzi

d

��
;

is a Hilbert Jacobi form for e�d2 of weight .�1; �2/, where �j D 1
2
ıij , and index

.0; 0/ with divisor

div�.i/ D
d

24
D.i/:

Proof. From the well-known one-dimensional transformation formula one deduces

�.i/
ˇ̌
�;0

�
M; r

�
D ��

�
M .i/

�
� �.i/

where the multiplier �� takes values in the 24-th roots of unity. At D.i/

1;k
, the

function �.i/ can be written as

�.i/ D q
d=24
i

1Y
nD1

�
1 � qdni

�
D q

d=24

i;k
�
d=24

i;k

1Y
nD1

�
1 � qdni;k �

dn
i;k

�
:

and the rightmost term does not vanish at qi;k D 0.

Proof of Theorem 6.1. Let f be a Hilbert–Jacobi form of weight � D .�1; �2/ and
index m D .m0; m00/. Let g.i/, i D 1; 2 be the pullback via pri of a modular form
form of weight 24d`�i for �.1/d . The function��

#
.1/

d

�
1
1

��2m0�
#
.2/

d

�
1
1

��2m00
.�.1//�2m

0

.�.2//�2m
00�24`

g.1/g.2/ � f �24d`

has trivial automorphy factor. Hence, it descends to a meromorphic function onAı
d2 ,

and one checks that its extension to Ad2 is also meromorphic. Therefore, we can
obtain an explicit divisor linear equivalent to f by computing the divisors of the
different factors of the product.
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Using the above lemmas, we have

divf �
1

d

�
2m0

�
N .1/

C
d
8
D.1/

�
C 2m00

�
N .2/

C
d
8
D.2/

�
� 2m0 d

24
D.1/

� 2m00 d
24
D.2/

C d�1�
��1 C d�2�

��2

�
D �1�

��1 C �2�
��2 C

2m0

d
N .1/

C
2m00

d
N .2/

C
m0

6
D.1/

C
m00

6
D.2/ :

ApplyingD.i/ D
12
d
���i yields the claim.

7. The reducible locus

Let P ı
d2 � Xı

d2 be the reducible locus, i.e. the locus of points corresponding to
abelian surfaces that are isomorphic to a product of elliptic curves. We show the
following.
Proposition 7.1. The closure Pd2 of the reducible locus has the divisor class

ŒPd2 � D
�
5 � 6

d

�
.�1 C �2/

in CH1.Xd2/. If d � 1 mod 2, its spin components have the divisor classes

ŒPd2;"D3� D
�
1
2
�

3
2d

�
.�1 C �2/;

ŒPd2;"D1� D
�
9
2
�

9
2d

�
.�1 C �2/ :

If d � 0 mod 2, its spin components have the divisor classes

ŒPd2;"D0� D
�
2 � 6

d

�
.�1 C �2/;

ŒPd2;"D2� D 3.�1 C �2/ :

Corollary 7.2. The spin components of the reducible locus have Euler characteristic

�
�
P ı
d2;"D3

�
D �

1
288
.d � 3/�d

d
;

�
�
P ı
d2;"D1

�
D �

1
32
.d � 1/�d

d
;

if d is odd, and

�
�
P ı
d2;"D0

�
D �

1
72
.d � 3/�d

d
;

�
�
P ı
d2;"D2

�
D �

1
48
�d ;

if d > 2 is even.
This fits with the total count �.P ı

d2/ D �
1
144
.5d � 6/�d

d
obtained by several

authors, see e.g. [1, Formula (2.23)].
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Before embarking on the proof, we need several lemmas. Given a theta function
with characteristic, we write

#0
�e
1e
2

�
.z/ D #

�e
1e
2

�
.z; 0/

for the corresponding theta constant. Mumford shows [20, §8] that the reducible
locus is cut out by the product of all even theta constants and this product vanishes
to order one there.

If d � 1 mod 2, we define

#0;"D3 D #0
�
0;1
1;0

�
and #0;"D1 D

Y�

1

2

�
2O1

#0
�

1

2

�
:

These functions are, by the description of the action of �d2 on characteristics in
Section 6.4, modular forms for the full group �d2 of weight .1

2
; 1
2
/, respectively of

weight .9
2
; 9
2
/. If d � 0 mod 2, define

#0;"D0 D
Y�

1

2

�
2E0

#0
�

1

2

�
and #0;"D2 D

Y�

1

2

�
2E2

#0
�

1

2

�
:

Again by the calculations in Section 6.4 these four functions are Hilbert modular
forms of weight .2; 2/ in the first case and .3; 3/ in the second. The zero loci of these
modular forms correspond to the spin components of the reducible locus.
Lemma7.3. In the open partXı

d2 the components of the reducible locus are vanishing
loci of the modular forms

P ı
d2;"D3

D f#0;"D3 D 0g; respectively, P ı
d2;"D1

D f#0;"D1 D 0g

for d odd, and

P ı
d2;"D0

D f#0;"D0 D 0g; respectively, P 0
d2;"D2

D f#0;"D2 D 0g

for d even.

Proof. In the case of a smooth genus two curve, the function # D #
�
0;0
0;0

�
vanishes

at all odd 2-torsion points, since translating # by such a point gives a theta function
with odd characteristic. Consequently, the odd 2-torsion points are the Weierstrass
points. This identification extends to reducible curves.

A 2-torsion point
�

1

2

�
is integral, i.e. has the same image under the origami map

as the node, if and only if its base change
�
de
1e
2

�
has

�
0
0

�
as first column. So the

number of integral Weierstrass points in the vanishing locus of #0
�
�1
�2

�
is the number

of odd theta characteristics that have
�
0
0

�
as first column after adding

�
de�1e�2

�
.

The claim now follows from inspecting Table 2.
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Lemma 7.4. For d � 1 mod 2, we have

Pd2;"D3 D
1
2
.�1 C �2/ �

1
8

�
R.1/ CR.2/

�
;

Pd2;"D1 D
9
2
.�1 C �2/ �

3
8

�
R.1/ CR.2/

�
:

For d � 0 mod 2, we have:

Pd2;"D0 D 2.�1 C �2/ �
1
2

�
R.1/ CR.2/

�
;

Pd2;"D2 D 3.�1 C �2/ :

Proof. Let #0
�

1

2

�
be an even theta constant. Using the Fourier development, we

have

#0
�e
1e
2

�
D e

�
trK=Q

�e
1e
2�� X
s0��s00

q
1=2.s0Cde
 0

1
/2

1 q
1=2.s00Cde
 00

1
/2

2 e
�
tr
�
se
2

d

��
:

By symmetry, we may concentrate on the first boundary, which is locally given by
q1 D 0. The minimal q1-exponent appearing is

min
s02Z

1
2
.s0 C de
 01/2 D (18 ; if de
 01� 1 mod 2;

0; if de
 01� 0 mod 2:

Thus, #0
�

1

2

�
vanishes atR.i/ to the order 1

8
".
/, where for 
 2 1

d
Z, we set ".
/ D 1,

if d
 � 1 mod 2 and ".
/ D 0 else. The claim now follows using Table 1.

Proof of Proposition 7.1 and Corollary 7.2. Proposition 7.1 follows from the pre-
ceding lemmas and formula (3.2). Since the components of the reducible locus are
all Kobayashi geodesics, the Euler characteristic can be computed by integration
against !1. Consequently,

�.P ı
d2;"D1

/ D

Z
P

d2;"D1

�!1 D �
1
2
.9
2
�

9
2d
/

Z
X

d2

!1 ^ !2

D �
1
2
.9
2
�

9
2d
/ �.Xd2/ D � 1

32
.d � 1/�d

d

since �.Xd2/ D 1
72
�d . The calculation for the other spin components and for d

even is the same.

8. Arithmetic Teichmüller curves in �M2

In this section we describe loci in the universal covering of Aı
d2 in terms of theta

functions, their derivatives and the torsion sections with the following properties.
First, they are invariant under the covering group and hence they descend to loci



292 A. Kappes and M. Möller CMH

in Aı
d2 . Second, their images in the pseudo-Hilbert modular surfaces are the

Teichmüller curves we are interested in, or rather a union of these.
For this purpose we take for d odd the unique even Hilbert theta function # D

#
�
0;1
1;0

�
whose characteristic is invariant under �d2 (see Section 6.4), and for d even

we take one of the Hilbert theta function with even characteristic in the orbit E0, say
# D #

�
0;0
0;0

�
. We let

U W H2
�C2

! Aı
d2 (8.1)

be the universal covering map.

8.1. The stratum �M2.1; 1/. We fix a torsion order m 2 N and define eOm.1; 1/,
the lifted origami locus for the stratum �M2.1; 1/. These are points on the theta
divisor, where the derivative of theta in the u2-direction vanishes and whose first
coordinate projects to an m-torsion point. Formally,

eOm.1; 1/ D n.z; u/ 2 H2
�C2

W #.z; u/ D 0;

@#

@u2
.z; u/ D 0; .z; u/ 2 U�1

�
N
.1/
m-tor

�o
: (8.2)

The transformation properties of theta functions imply that the images of the lifted
origami loci are closed (in fact algebraic) subsets of the (open) universal families.

Lemma 8.1. The imagesOım.1; 1/ D U.eOm.1; 1// for anym 2 N are closed subsets
of Aı

d2 .

We are ultimately interested in their closures in the compactified universal family.

Definition 8.2. The origami locus Om.1; 1/ is the closure in Ad2 of Oım.1; 1//.

In this section, we show that the �-push forward of Om.1; 1/ is a union of
arithmetic Teichmüller curves in�M2.1; 1/ plus possibly some spurious parts of the
reducible locus and of arithmetic Teichmüller curves in �M2.2/ if m D 1; 2.

Theorem 8.3. Let m 2 N, m > 1. If m� 0 mod 2, then

��O2m.1; 1/ D 2Td;MDm:

If m� 1 mod 2, then

��O2m.1; 1/ D 2Td;MDm;"D1; ��Om.1; 1/ D 2Td;MDm;"D3; for d odd;
��O2m.1; 1/ D 2Td;MDm;"D2; ��Om.1; 1/ D 2Td;MDm;"D0; for d even:

The case m D 1 is special in that we also hit Teichmüller curves in �M2.2/ and
parts of the reducible locus by ��O1.1; 1/.
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Theorem 8.4. The push-forward of the origami locus decomposes as

��O1.1; 1/ D 2ŒTd;MD1;"D3�C 3ŒWd2;"D3� C ŒPd2;"D3� d odd;
��O2.1; 1/ D 2ŒTd;MD1;"D1�C 3ŒWd2;"D1� C ŒPd2;"D1� d odd;
��O1.1; 1/ D 2ŒTd;MD1;"D0� C ŒPd2;"D0� d even;
��O2.1; 1/ D 2ŒTd;MD1;"D2�C 3ŒWd2;"D2� C ŒPd2;"D2� d even:

We start the proofs with the closedness lemma.

Proof of Lemma 8.1. The vanishing locus of a Hilbert Jacobi form is closed, since
it is a closed subset of H2 � C2 and since the automorphy factor is a product of
non-zero terms. This applies for the full group e�d2 for d odd, and for a subgroup
of finite index in e�d2 that stabilizes the characteristic (see Section 9.4) for d even.
Arguing for this subgroup is sufficient since the image of a closed set under a finite
map is again closed.

The torsion condition is also closed. It remains to treat the derivative of the theta
function. We define �.M; r/ D �� .‰.M; r//e.trK=Q.e
1

2
r2 �

e
2

2
r1/. Restricted

to points .z; u/ where #.z; u/ D 0 (and hence also #..M; r/.z; u// we obtain
for all .M; r/ 2 e�d2 by differentiating the equation defining modularity (see
Proposition 6.7) and using the definition of the action in (4.5) that

@#

@u2
..z; u//

D
@

@u2

�
#..M; r/.z; u//e|

.
1
2
;
1
2
/;.
1
2
;
1
2
/
..M; r/; z; u/ �.M; r/

�
D

@#

@u2

�
.M; r/.z; u/

��
c.2/z2 C e

.2/
��1 e|�1

2
;
1
2

�
;
�
1
2
;
1
2

��.M; r/; z; u��.M; r/
D

@#

@u2

�
.M; r/.z; u/

� e|�1
2
;
3
2

�
;
�
1
2
;
1
2

��.M; r/; z; u��.M; r/ : (8.3)

Consequently, the automorphy factor here is again a product of non-zero terms and
the vanishing locus is well-defined and closed as a subset of Aı

d2 for both parities
of d .

As first step towards the theorems of this section, we show that the origami maps
are normalized in the sense of Proposition 2.1 for the two theta functions we need.
Let pri be the projections associated with the isogeny Ad2;z ! Ez1=d;1 � Ez2=d;1

from Section 4.
Lemma 8.5. For fixed z 2 H2, let ‚z

�

1

2

�
denote the curve in Ad2;z given by

#
�

1

2

�
D 0. The covering

pri W ‚z
�

1

2

�
! E.zi=d;1/
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is normalized, if and only if�

1

2

�
2 E0; if d � 0 mod 2 resp.,

�

1

2

�
D
�
0;1
1;0

�
, if d � 1 mod 2:

Proof. The function # D #
�
0;0
0;0

�
vanishes at all odd 2-torsion points, since

translating # by such a point gives a theta function with odd characteristic. Since
‚z D ‚z

�e
1e
2

�
is a symmetric divisor with respect to Œ�1�, the translates by

z�e
 T1 Ce
 T2 of the odd 2-torsion points are precisely the 6 Weierstraß points on‚z .
The claim now follows by inspecting Table 2.

Proof of Theorems 8.3 and 8.4. A point z 2 Xı
d2 lies in the support of ��Om.1; 1/ if

and only if it has a preimage y 2 Ad2;z such that y 2 ‚z , such that y is a ramification
point of p1 W ‚z ! Ez1=d;1, or alternatively a zero of the first eigendifferential
!1 D �

�
1!E , and such that y is mapped to a m-torsion point in Ez1=d;1.

If y is a ramification point of order 2, then it is a fixed point of the hyperelliptic
involution, so it is a Weierstraß point. Consequently z 2 Wd2 and such a point has a
unique preimage in Om.1; 1/.

Suppose that y is a ramification point of order 1 and that ‚z is a smooth curve.
Then two zeros of!1 are exchanged by the hyperelliptic involution � , and � descends
to the elliptic involution (see Proposition 2.1). Hence the images of the ramification
points differ by a torsion point on Ez1=d;1 and z lies on some Td;M;". The torsion
order of the corresponding minimal covering is m or m=2, depending on m mod 4,
on d and ", as explained in Section 2.1. This implies the set-theoretic assignment of
the various Td;M;" to the push-forwards of the Om.1; 1/. In each of the cases there
are two possible points y for the same z.

If ‚z is a singular curve, then it is reducible, and its components are two elliptic
curvesE1,E2 joined at a node, since��Om.1; 1/ is the closure of a subvariety inXıd2

for any m, and hence the Jacobian of a generic point of its support is compact. On
eachEi (i D 1; 2), the projection p1 is still non-constant (since p1 and the projection
to the kernel ofp1 deform over all ofXı

d2 , otherwise the splitting as product of elliptic
curves would deform to all of Xı

d2), and thus an unramified covering. Consequently,
@#
@u2

never vanishes at a smooth point of‚z , while it does vanish at the singular point
of ‚z (even both partial derivatives of # vanish).

The node y is a 2-torsion point different from the six odd Weierstraß points, i.e. it
is an even 2-torsion point. Consequently, its p1-image is a 2-torsion point and there
is no contribution from the reducible locus, except for m D 1 and m D 2.

Suppose first that d is odd, hence # D #
�
0;1
1;0

�
.z/. If the node is mapped to zero,

then it is an even two-torsion point with the property that after translating by
�
0;1
1;0

�
its

p1-image is zero, i.e. in the eigenform coordinates of the second row of the Table 1
the first column of the point is zero. By inspecting the table we see that there is only
one possibility,

�
0;1
1;0

�
itself. This implies that y D 0 and that z is in the vanishing
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locus of the corresponding theta constant, i.e. #0
�
0;1
1;0

�
.z/ D 0. By Lemma 7.3 this

is the defining equation of Pd2;"D3.
Similarly, precisely the odd theta characteristics inO9 aremapped after translation

by
�
0;1
1;0

�
to a primitive 2-torsion point. By Lemma 7.3 this implies that Pd2;"D3 is

contained in �.O2.1; 1//.
Suppose next that d is even and # D #

�
0;0
0;0

�
.z/. Precisely the odd theta

characteristics in E0 are mapped (after translation by zero and base change) to a
first column equal to zero, while those in E2 are mapped to a primitive 2-torsion
point. Together with Lemma 7.3 this explains the setwise distribution of the reducible
locus among �.O1.1; 1// and �.O2.1; 1//.

It remains to determine the multiplicities of Om.1; 1/ at the components lying
over the curves Td;M;", Wd2;" and Pd2;". We start with Wd2;". Fix q1, an M-torsion
point u1 and shift the remaining coordinates, so that in the new coordinates the
point will be at ez2 D 0 and eu2 D 0. The fiber of the origami locus is cut out bye#.ez2; eu2/ D 0 and @u2

e#.ez2; eu2/ D 0 for some functione# , which is odd as a function
of eu2. This implies that the multiplicity of the fiber is two, hence the multiplicity
of the component is a multiple of two. Now we consider the fiber with .z1; u1/
varying, choosing locally .z2; u2/ so the the first two conditions of the origami locus
are satisfied. Since locally near the critical point three branches of the map p1 come
together, the multiplicity of the component is divisible by three. Taking the factor 1=2
from the quotient stacks into account, this implies that the multiplicity of Wd2;" is
three.4

Near Td;M;" the branching argument for p1 gives multiplicity two. Two preimages
and the stacky factor 1=2 give in total the coefficient two in Theorem 8.4.

Near Pd2;" the fiber is singular near the preimage point z, hence besides @u2
#

also @u1
# vanishes there. This implies multiplicity at least two, hence at least one,

with stacky factor 1=2 taken into account.

8.2. The stratum �M2.2/. We need the following theorem from [1] to subtract
the contribution of the curves W "

d
that appear in Theorem 8.4.

Theorem 8.6. The classes in CH1.Xd2/ of the Teichmüller curves generated by
reduced square-tiled surfaces in �M2.2/ are for d odd given by

ŒW "D3
d2 � D 3

2
.1 � 3

d
/�1 C

9
2
.1 � 3

d
/�2 C Jd

and ŒW "D1
d2 � D 3

2
.1 � 1

d
/�1 C

9
2
.1 � 1

d
/�2 � Jd

for some Jd in the orthogonal complement of h�1; �2i, and

ŒWd2 � D ŒW "D2
d2 � D 3.1 � 2

d
/�1 C 9.1 �

2
d
/�2

4A priori,this argument shows that the multiplicity is at least three. Similarly, the arguments in the
subsequent paragraphs show that the coefficients on the right hand sides are at least what is written
in Theorem 8.4 resp. Theorem 8.3. Since we know the total count by an independent argument, see
Proposition 9.9, the multiplicities cannot be larger.
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for d > 2 even. Consequently, the number w"
d
of reduced square-tiled surfaces in

�M2.2/ with spin " is

w"D3d D
3

16
.d � 3/�d

d
; w"D1d D

3

16
.d � 1/�d

d
;

w"D2d D
3

8
.d � 2/�d

d
;

where the first line corresponds to d odd and the second to d > 2 even.
The counting part of this theorem was proven in [13], the class in CH1.Xd2/ was

first determined in [1].
We sketch how one could prove this theorem, at least without distinguishing the

components, with a similar setup as for the stratum�M2.1; 1/. We define eO.2/, the
lifted origami locus for the stratum �M2.2/ to be

eO.2/ D n.z; u/ 2 H2
�C2

W #.z; u/ D 0;
@#

@u2
.z; u/ D 0;

@2#

@u22
D 0

o
:

The transformation properties of theta functions imply again that Oı.2/ D
U.eO.2// is closed in Aı

d2 . The origami locus O.2/ is defined as the closure in Ad2

ofOı.2/. With similar arguments as above one can show that the push-forward of the
origami locusO2 is supported onW "

d2 . To prove Theorem 8.6 from here it remains to
determine the multiplicity of this push-forward and compute the class of ��O.2/ as
a triple intersection, following the proof for ��.Om.1; 1// given in the next section.
A more detailed analysis along these lines is likely to separate the components and
to show that Jd D 0, as conjectured in [1].

9. Intersection products

We now can complete the proof of Theorem 1.3. For this purpose we prove in
Theorem 9.2 how to subtract from a triple intersection of divisors on Ad2 suitable
boundary components in order to compute the class of the pushforward of the origami
locus Om.1; 1/. As technical steps it remains to actually perform triple intersection
of the geometric divisors appearing on the right hand side of the class computation
in Theorem 6.1 (see Proposition 9.3) and to compute these boundary contribution.

In this section, we restrict to the case d odd. The additional computations
that have to be performed for even d are briefly discussed in Section 9.4. We
continue to denote by # the unique Hilbert theta function with even characteristic
fixed by �d2 . It gives rise to a section of the Hilbert–Jacobi bundle J# D J�;m.e�d2/

with � D m D .1=2; 1=2/, and therefore to a Cartier divisor div# on Ad2 . The
associated Weil divisor Œdiv#� can be written as

Œdiv#� D ‚C B.#/;

where B.#/ is a linear combination of boundary components and ‚ has no support
at the boundary. We view ‚ as element of CH1.Ad2/ .
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Let j‚j denote the support of ‚ and let i W j‚j ! Ad2 be the inclusion. We can
compare the intersection numbers on ‚ and Ad2 since ‚ is a reduced (and in fact
irreducible) subvariety.

The next condition in the definition of the origami locus is the vanishing of the
theta derivative. On‚ this function is a section of the restriction of a bundle onAd2 ,
whose class we already computed. Recall the definition of U from (8.1).

Proposition 9.1. The function @#
@u2

restricted to U�1.j‚j/ descends to a well-defined
global meromorphic section @# of i�J@# , where J@# is the bundle of Hilbert Jacobi
forms J�;m.e�d2/ with � D .12 ;

3
2
/;m D .1

2
; 1
2
/.

Proof. This follows immediately from the calculation in (8.3).

To the Cartier divisor div@# we associate the Weil divisor Œdiv@#�. It is a sum

Œdiv@#� D D‚C B.@#/

where B.@#/ 2 CH1.j‚j/ is a linear combination of boundary components of ‚,
andD‚ has no support on the boundary.

Finally, in the definition of the origami locus, we have to intersect with the torsion
condition. This may also result in components, that lie entirely in the boundary. We
have to subtract this contribution, that is, in CH�.j‚j/, we can write

i�ŒOm.1; 1/� D D‚:i
�.N

.1/
m-tor/ � Bm.N /

where Bm.N / is supported in the boundary of jD‚j since by definition Om.1; 1/
has no support on the boundary.

Theorem 9.2. For d odd, the class of the origami locus in CH�.Ad2/ can be
computed as

ŒOm.1; 1/� D c1.J#/: c1.J@#/:N
.1/
m-tor � B.#/: c1.J@#/:N

.1/
m-tor

�N
.1/
m-tor:i�B.@#/ � i�Bm.N / : (9.1)

Proof. Since ‚ is reduced, the pushforward ofD‚ by i is

i�D‚ D c1.J@#/:‚ � i�B.@#/:

by the projection formula. Thus,

ŒOm.1; 1/�C i�Bm.N / D i�.i
�N

.1/
m-tor:D‚/

D N
.1/
m-tor: c1.J@#/:‚ � N

.1/
m-tor:i�B.@#/ :

Now plug in ‚ D c1.J.#// � B.#/ to obtain the claim.
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9.1. Triple intersections. The divisors of Jacobi forms have been expressed in
term of the zero section divisors N .i/, the pullbacks of Hodge bundles ���i .
The evaluation of intersection products of those divisors and with the boundary
divisors D.i/ is manageable since many triple intersections have �-pushforward
equal to zero.
Proposition 9.3. The �-pushforward of a triple intersection between any of N .i/,
���i , andD.i/ is given by

��.N
.1/:N .2/:���i / D d

2�i ; ��.N
.1/:N .2/:D.i// D d2R.i/;

��..N
.1//2:N .2// D �d2�1; ��.N

.1/:.N .2//2/ D �d2�2;

and is zero for all triples that do not agree with any of the above up to permutation.

Proof. The divisors���i andD.i/ are vertical, i.e. their�-images are divisors, while
theN .i/ are horizontal, i.e.�jNi

is surjective. Consequently, any intersection of three
divisors meeting properly, among which two are vertical, consists of 1-cycles along
which � is of relative dimension � 1, hence their �-pushforward is zero. We may
use linear equivalence in the base to ensure that the proper intersection hypothesis
holds for any of the intersections N .i/:���j :�

��k for i; j; k 2 f1; 2g.
The intersection N .1/:N .2/ is the closure of the projection of˚

.z; u/ 2 H2
�C2

j u 2 diag.z1

d
; z2

d
/Z2 C Z2

	
to Ad2 . In each fiber, this is a group of order d2, the kernel of the projection
to C=. 1

d
z1; 1/Z2 � C=. 1

d
z2; 1/Z2. Thus, ��.N .1/:N .2// D d2��N D d2ŒXd2 �,

where N is the zero section of � W Ad2 ! Xd2 . This gives all the intersection
products with �-pullbacks as stated.

It remains to treat intersections of �-pullbacks with .N .i//2. Since .N .i//2 is
represented by the pullback via pri of a zero-cycle E.d/d , its intersection with any
of the vertical divisors is a cycle on which � is of relative dimension one, hence again
its �-pushforward is zero.

For the remaining two cases stated in the last line of the lemma we start with
$�.N

2
X.d/

/ D ��X.d/, as in the proof of Proposition 6.2. This directly implies that

.$ �$/�
�
.N

.1/

�
/2:N

.2/

�

�
D ��

.1/

�
;

using the commutativity of the diagram

CH�Q
�
E.d/d

�
˝CH�Q

�
E.d/d

�
- CH�Q

�
E.d/2

d

�

CH�Q
�
X.d/d

�
˝CH�Q

�
X.d/d

�$�˝$�

?
- CH�Q

�
X.d/2

d

�.$�$/�

?
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and the fact that N .2/

�
is the pullback of a section the second elliptic fibration. The

same argument gives

.$ �$/�
�
.��N

.1/

�
/2:��N

.2/

�

�
D ��

.1/

�

for any translates by torsion sections � and �. Now

��
�
.N .1//2:N .2/

�
D

1

d2�d
��e����e� �N .1/

�2
:e� �N .2/

�
D

1

d2�d
��.$ �$/�

�X
�2T

X
�2T

�
��N

.1/

X.d/

�2
: ��N

.2/

X.d/

�
D
d2

�d
��
�
� �

.1/

X.d/

�
D �d2�.1/

where T D o_
d2 ˚ od2=.Z2˚ dZ2/ is a torsion subgroup of order d2 and where we

used that for �;�0 2 T we have .��N .1/

X.d/
: �0�N

.1/

X.d/
/ D 0 unless � D �0.

9.2. Boundary contributions. In this section we collect all the boundary contri-
butions that appear in Theorem 9.2. Together with the results from Section 8 this
allows us to conclude the proof of the main Theorem 1.3 for d odd. The proofs of
the boundary statements appear in the next section.

Proposition 9.4. For d odd the boundary contribution of div# in CH1.Ad2/ is

B.#/ D 1
8

�
D.1/

CD.2/
�
:

Proposition 9.5. For d odd the boundary contribution of div@# in CH2.Ad2/ is
equal to

B.@#/ D 1
8

�
D.1/

CD.2/
�
: c1.J#/ : (9.2)

Proposition 9.6. For d odd the push-forward of the boundary contribution Bm.N /
is equal to

��Bm.N / D

(
R.2/; if m D 1;
0; else:

(9.3)
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Proof of Theorem 1.3. There are several cases to be discussed.

Case: M > 1 odd, spin " D 3. In this case 2ŒTd;M;"D3� D Œ��OM .1; 1/� by
Theorem 8.3. The first contribution to this is, according to Proposition 6.2 and
Theorem 9.2, equal to

��
�
c1.J#/: c1.J@#/:N

.1/
M -tor

�
D ��

���
1
2
C

1
d

�
���1 C

�
1
2
C

1
d

�
���2 C

1
d
N .1/

C
1
d
N .2/

�
:
��
1
2
C

1
d

�
���1 C

�
3
2
C

1
d

�
���2 C

1
d
N .1/

C
1
d
N .2/

�
: �M

M

�
N .1/

C �1
��

D d �M

M

��
1C 2

d

�
�1 C

�
2C 1

d

�
�2
�
: (9.4)

Next,

��
�
B.#/: c1.J@#/:N

.1/
M -tor

�
D ��

���
1
2
C

1
d

�
���1 C

�
3
2
C

1
d

�
���2 C

1
d
N .1/

C
1
d
N .2/

�
: �M

M

�
N .1/

C �1
�
: 1
8

�
D.1/

CD.2/
��

D
1
8
d �M

M

�
R.1/ CR.2/

�
D d �M

M

�
3
2d
�1 C

3
2d
�2
�
: (9.5)

By Proposition 9.5 we get

��
�
N
.1/
M -tor:B.@#/

�
D ��

�
N
.1/
m-tor: c1.J#/:18

�
D.1/

CD.2/
��

D d �M

M

�
3
2d
�1 C

3
2d
�2
�
: (9.6)

Since ��.BM .N // D 0 forM > 1 we find altogether

Œ��OM .1; 1/� D d
�M
M

��
1 � 1

d

�
�1 C

�
2 � 2

d

�
�2
�
;

and this completes the first case.

Case: M > 1 odd, spin " D 1. Since in this case 2 ŒTd;M;"D1� D Œ��O2M .1; 1/�

and sinceN .1/
2M -tor D

3�M

M
N .1/ all the contributions are multiplied by three compared

to the previous calculation, and this proves the second case.

Case:M even. Recall that there is no spin distinction in this case. Now2ŒTd;M;"D0�D
Œ��O2M .1; 1/� and forM even the number of primitive 2M -torsion points is 4�M

M
.

Hence all the contributions are 4 times larger than in the corresponding cases forM
odd and spin " D 3, completing the discussion of this case.

It remains to discuss the subcases forM D 1.
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Case: M D 1, spin " D 3. We compute as in (9.4), (9.5) and (9.6), taking into
account that N .1/

1-tor has no �1-contribution (as N .1/
m-tor had it according to Proposi-

tion 6.2),

��
�
c1.J#/: c1.J@#/:N

.1/
1-tor

�
D d

�
�1 C

�
2C 1

d

�
�2
�
;

��
�
c1.J@#/:N

.1/
1-tor:B.#/

�
D d

�
3
2d
�1 C

3
2d
�2
�
;

��
�
N
.1/
1-tor:B.@#/

�
D d

�
3
2d
�1 C

3
2d
�2
�
:

Since ��.i�B1.N // D R.2/ D 12
d
�2 we find

��O1.1; 1/ D .d � 3/�1 C
2
d
.d2 � d � 6/�2:

Subtracting the contributions from the reducible locus (see Proposition 7.1) and from
Wd;"D3 (see Theorem 8.6) according to Theorem 8.4 gives the claim.

Case: M D 1, spin " D 1. Since N .1/
2-tor D 3.N .1/ C �1/ and since in this case

��.B2/ D 0 we get as in (9.4), (9.5) and (9.6), that

��.O2.1; 1// D .3d � 3/�1 C 6.d � 1/�2:

Again, subtracting the contributions from the reducible locus (see Proposition 7.1)
and from Wd;"D1 (see Theorem 8.6) according to Theorem 8.4 gives the claim.

9.3. Intersection with the boundary: proofs. We will deduce Proposition 9.4
from the following result. We compute the vanishing order of the theta function for
general k and general characteristics, and later specialize to the unique theta function
invariant under the whole group e�d2 .

Proposition 9.7. The vanishing order at the boundary divisor D.i/

1;k
of the theta

function #
�e
1e
2

�
considered as a function on the infinite chain of rational lines

(
1
8
�
1
2
k2; if de
 .i/1 � 1 mod 2;

�
1
2
k2; if de
 .i/1 � 0 mod 2:
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Proof. By symmetry, we may focus on the case i D 1 and compute the vanishing
order of #

�e
1e
2

�
as a function at q1;k D 0. In the second line, we use the substitution

s D dx, so that the summation is over all s 2 Z2 with s0��s00 mod d . We let
�i D

1
2
e
 i .

#
�e
1e
2

�
.z; u/

D

X
x2o_

d2

e
�
1
2
trK=Q

��
x C �1

�2
z C 2

�
x C �1

��
uC �2

���
D

X
s02Z

e
�
1
2

�
s0 C d�01

�2 z1

d2 C
�
s0 C d�01

��
u1

d
C

�0
2

d

��
�

X
s00��s0.d/

e
��
1
2

�
s00 C d�001

�2 z2

d2 C
�
s00 C d�001

��
u2

d
C

�00
2

d

���
D e

�
trK=Q

�
�1�2

�� X
s02Z

q
1=2�
�
s0Cd�0

1

�2

1 �
s0Cd�0

1

1 e
�
s0
�0

2

d

�
�

X
s00��s0.d/

q
1=2
�
s00Cd�00

1

�2

2 �
s00Cd�00

1

2 e
�
s00
�00

2

d

�
D e

�
trK=Q

�
�1�2

�� X
s02Z

q
1=2�
�
s0Cd�0

1

�2

Ck
�
s0Cd�0

1

�
1;k

�
1=2�
�
s0Cd�0

1

�2

C.kC1/
�
s0Cd�0

1

�
1;k

� e
�
s0
�0

2

d

� X
s00��s0.d/

q
1=2
�
s00Cd�00

1

�2

2 �
s00Cd�00

1

2 e
�
s00
�00

2

d

�
:

Note that d�01 2
1
2
Z. We let ".d�01/ D 1, if d�01 is half-integral and 0 if it is integral.

In this notation, the smallest q1;k-exponent appearing in the development of #
�e
1e
2

�
is given by

min
˚
1
2

�
s C d�01

�2
C k

�
s C d�01

�
j s 2 Z

	
D

1
2
min
s2Z

h
s2 C 2s

�
d�01 C k

�
C d�01

�
2k C d�01

�i
D

1
2
min
s2Z

h�
s C d�01 C k

�2i
�
1
2
.d�01 C k/

2
C

1
2
d�01

�
2k C d�01

�
D

1
8
"
�
d�01

�
�
1
2
k2 :

This implies the claim, once we have checked that the corresponding coefficient is
indeed non-zero. We may restrict to the chart k D 0. If ".d�01/ D 0, then the
minimum is attained only once for s D �d�01 and the coefficient is a power of
�1;0-power times a non-zero power series in q2 and �2. This coefficient does not
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vanish for generic .�1;0; q2; �2/. If ".d�01/ D 1, then the minimum is attained twice,
for s0 C d�01 D ˙

1
2
. The coefficient is of the form

�
1=8�k2=2�kC1=2

1;k
A1
�
q2; �2

�
C �

1=8�k2=2�k�1=2

1;k
A1
�
q2; �2

�
for non-zero power series A1 and A2. This coefficient does not vanish for generic
.�1;0; q2; �2/ either.

Proof of Proposition 9.4. By Lemma 5.6 and (6.8), we can determine the vanishing
order of a Hilbert Jacobi form nearD.i/ by its Fourier development in the coordinates
.�1;k; q1;k; z2; u2/, resp. .z1; u1; �2;k; q2;k/, and then compare to the definition of
local sections of Hilbert Jacobi forms in (6.8). Using this and plugging in the
characteristic

�e
1e
2

�
invariant under �d2 in the previous proposition yields the claim.

For the proof of Proposition 9.5, let again # denote the unique theta function
invariant under e�d2 . We develop # and @2# with respect to the boundaries. To this
end, we introduce for i 2 Z the functions

�1;Œi� D
X

s0��i.d/

q
1
2

�
s0�

1
2

�2

1 �
s0�

1
2

1 e
�
1
2d

�
s0 C i

��
; (9.7)

�2;Œi� D
X

s00��i.d/

q
1
2

�
s00C

1
2

�2

2 �
s00C

1
2

2 e
�
1
2d

�
s00 C i

��
� e
�
2i�1
4d

�
: (9.8)

With the above notation, we expand # and its derivative near a divisor D.1/

1;k
lying

over the first boundaryD.1/ as

# D q
1
8
�
k2

2
1;k

�
1
8
�
.kC1/2

2
1;k

�
�

�2;Œ�k� C �2;Œ�kC1��1;k CO.q1;k/
�
;

@2# D q
1
8
�
k2

2
1;k

�
1
8
�
.kC1/2

2
1;k

�
�
@u2

�2;Œ�k� C @u2
�2;Œ�kC1��1;k CO.q1;k/

�
;

(9.9)

and near a divisorD.2/

1;k
lying over the second boundaryD.2/

# D q
1
8
�
k2

2
2;k

�
1
8
�
.kC1/2

2
2;k

�
�
�1;Œ�k�1� C �2;k�1;Œ�k� CO.q2;k/

�
;

@2# D q
1
8
�
k2

2
2;k

�
1
8
�
.kC1/2

2
2;k

�
�
�
1C2k
2
�1;Œ�k�1� C

1�2k
2
�2;k�1;Œ�k� CO.q2;k/

�
:

(9.10)

Proof of Proposition 9.5. We have to determine the boundary contribution of @2#
on ‚, which is locally (using the chart k D 0 and Proposition 9.7) given as the
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vanishing locus of # = q1=8
j;0�

1=8
j;0 for j D 1; 2. The factor q1=8

j;0 �
1=8
j;0 gives, for both

boundaries, the contribution claimed in (9.2). So we have to argue that the constant
terms (in qj;0) of the remaining factors of # and @# have no common factors. Since
these terms are linear in �j;0, this holds if and only if

det1 D
ˇ̌̌̌
�2;Œ0� �2;Œ1�

@u2
�2;Œ0� @u2

�2;Œ1�

ˇ̌̌̌
¤ 0 and det2 D

ˇ̌̌̌
�1;Œ0� �1;Œ1�

�
1
2
�1;Œ0�

1
2
�1;Œ1�

ˇ̌̌̌
¤ 0:

Since

�2;Œ0� D e
�
�1
4d

�
q
1
8
2 �

1
2
2 CO

�
q
1
8
.2d�1/2

2

�
and �2;Œ1� D e

�
2dC1
4d

�
q
1
8
.2d�1/2

2 �
1
2
.�2d�1/

2 CO
�
q
1
8
.2dC3/2

2

�
the claim for det1 is easily checked using the beginning of the q2-expansion and for
det2 the claim follows similarly.

Proof of Proposition 9.6. Suppose that .z; u/ 2 H2�C2 projects toN .1/
M-tor under the

universal coveringmapU . This is the case iffu1 D t1
d
z1Ct2 for some t1; t2 2 1

MZ but
there is no way to represent the point with t1; t2 2 1

k
Z for any k strictly dividing M.

Such a point is mapped to .�1; q1/ D .qt11 e.
t2
d
/; q1/:

Near the boundary D.1/ we inspect the expansion (9.9) with this specialization.
Bearing in mind that �2;0 ¤ 0, already to first order in q1;0 the only solution is
q2;0 D 0. Such a component vanishes under ��, as claimed.

Near the boundary D.2/ we inspect the expansion (9.10). With the substitution
r 0 D s0 � 1 we find

�1;Œ�1�
�
q
t1
1 e
�
t2
d

�
; q1

�
D

X
r 0�0.d/

q
1=2.r 0�1=2/2Ct1.�r

0C1=2/
1 e

�
t2
d

�
� r 0 C 1

2

��
.�1/

r0=d

D

X
r 0�0.d/

q
1=2.r 0�1=2/2Ct1.�r

0C1=2/
1 e

�
t2
2d

�
.�1/

r0=d :

For t1 D t2 D 0 this expression is equal to �1;Œ0�.qt11 e.
t2
d
/; q1/, hence det2 vanishes at

.q
t1
1 e.

t2
d
/; q1/. One checks that the next term in the expansion (corresponding to q11;0,

since q1=8
1;0 has been taken out) is non-zero, so that the multiplicity of this contribution

is one, as claimed. Hence this point t1 D t2 D 0 contributes a divisor to B1.N /,
whose �-pushforward equals R.2/.

The substitution works for no other pair .t1; t2/. In fact, one checks that
det1.qt11 e.

t2
d
/; q1/ has non-trivial q1-expansion for any non-zero .t1; t2/. This proves

the claim.
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9.4. Modifications for d even. Let d > 2 be even. In this case none of the even
theta characteristics in E0 is fixed by �d2 . The vanishing locus of the product is a
well-defined subvariety ofAı

d2 , but using this product in the definition of the origami
locus in (8.2) does not quite work since when taking partial derivatives, the product
rule introduces a lot of spurious components.

Consequently, one has to work here with the subgroup � 0
d2 of �d2 fixing

the characteristic
�
0;0
0;0

�
. In fact, the subgroup � 0

d2 D diag..d;�d/; 1/ � � 0 �
diag.. 1

d
;� 1

d
/; 1/ where

� 0 D
˚
A 2 SL2.Z/2 j A0�A00� I mod 2; A0�A00 mod 2d

	
� SL2.o/ :

of index 48 has this property. Again one can compactify the open family H2 �

C2=e� 0
d2 , wheree� 0d2 D �

0

d2 Ë.o_
d2 ˚ od2/ by employing a toroidal compactification

for a normal subgroup; in this case e� 0
d
.2d/ D

�
�.2d/d Ë.Z ˚ dZ/

�2 will do
the job. Unfortunately, the resulting morphism A0

d2 ! Ad2 from this new
compactification A0

d2 is not flat at the boundary; it maps a folded 2-gon to a folded
1-gon by contracting one of the curves. One thus cannot simply pull back the
relations obtained in PicQ.Ad2/. Instead one has to rederive the formula for the
class of a Hilbert–Jacobi form (Theorem 6.1), of the section of primitive `-torsion
points (Proposition 6.2), and compute the vanishing orders of the theta-function and
its derivative (Section 9.2).

9.5. Intersection products andEuler characteristics. Wefirst convert Theorem 1.3
into a statement about Euler characteristics.

Corollary 9.8. The Euler characteristics of the arithmetic Teichmüller curve Td;M;"
are as follows. IfM > 1 is odd, then

�.Td;M;"D3/ D �
1

144
.d � 1/�d

�M

M
;

�.Td;M;"D1/ D �
1

48
.d � 1/�d

�M

M
:

(9.11)

IfM is even, then �.Td;M/ D �16 .d � 1/�d
�M
M . IfM D 1, then

�.Td;M;"D3/ D �
1

144
.d � 3/.d � 5/

�d

d
;

�.Td;M;"D1/ D �
1

48
.d � 1/.d � 3/

�d

d
:

(9.12)

Proof. Pairing with !1 and integration, as in Corollary 7.2.
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Now we complete easily the proof of the counting theorem.

Proof of Theorem 1.1. Since �.H=�.1// D �1=6, the number of square tiled
surfaces is minus six times the Euler characteristic. (This also holds if the curve
is reducible.)

For comparison we include the proof how to deduce the total count (i.e. without
separating the spin components) from two results in the literature.

Proposition 9.9 ([9, Theorem 3], [4]). The number of minimal degree d covers of
an elliptic curve E 0 branched over the divisor P CQ is

1

3
.d � 1/�d ; if P ¤ Q;�1

6
.d � 1/ �

1

24

1

d
.7d � 6/

�
�d ; if P D Q:

(9.13)

Corollary 9.10. The number of square-tiled surfaces in�M2.1; 1/ of degree d and
torsion order M � 2 is given by

1

3
.d � 1/�d

1

2M
�M:

Proof. Each such surface arises as a composition of an isogeny of degree M with
a minimal cover with reduced branching divisor P CQ. There are four choices to
normalize it in such a way that P CQ becomes symmetric; they correspond to the
choice of a square-root of P �Q. After normalization, Œ2�P is of order M. Choose
a basis ofH1.E 0;Z/ in order to make an identification with Z2. Thus theM-torsion
points of E 0 are identified with .Z=MZ/2. Since SL2.Z=MZ/ acts transitively on
points of orderM in .Z=MZ/2, and the stabilizer of one of these is of orderM, there
are �M

1
M points of orderM on E 0. There are 4 choices of a square-root of Œ2�P , but

since P is determined by the covering only up to sign, this gives in total

1

4
�
1

2
� 4 �

1

M
�M �

1

3
.d � 1/�d

square-tiled surfaces of degree d and torsion order M.
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10. Notations

We summarize the notation used for pseudo-Hilbert modular surfaces, the universal
families over these surfaces and their coverings.

K D Q˚Q ;

od2 D
˚
x D .x0; x00/ 2 Z˚ Z W x0 � x00 mod d

	
� K :

Modular groups and pseudo-Hilbert modular groups:

�.`/ D ker.SL2.Z/! SL2.Z=.`// with ` 2 N ;

�1.d/ D
˚
A 2 SL2.Z/ j A�

�
1 0
� 1

�
mod d

	
;

�1.d/˙ D �1.d/ [
�
�1 0
0 �1

�
�1.d/ ;

�.`/d D diag.d; 1/ � �.`/ � diag.d�1; 1/ :

Semidirect products (actions are by right multiplication on row vectors):e�.`/d D diag.d; 1/ �
�
�.`/Ë `Z2

�
� diag.d�1; 1/ ;e�d2 D SL

�
od2 ˚ o_

d2

�
Ë
�
o_
d2 ˚ od2

�
:

Open modular varieties

X.d/ı D H=�.d/ the open modular curve with level-d -structure ;
X.d/ıd D H=�.d/d isomorphic to X.d/ı, uniformizing group conjugated ;
Xı
d2 D H2=�d2 the open pseudo-Hilbert modular surface :

Open universal families:

E.d/ıd D H �C=e�.d/d universal family of elliptic curves over X.d/ıd ;
Aı
d2 D H2

�C2=e�d2 universal family of abelian surfaces over Xı
d2 :

Their compactifications are denoted by the same letter without ı.
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