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Generalized ˇ-transformations
and the entropy of unimodal maps
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Abstract. Generalized ˇ-transformations are the class of piecewise continuous interval maps
given by taking the ˇ-transformation x 7! ˇx .mod 1/, where ˇ > 1, and replacing some of
the branches with branches of constant negative slope. If the orbit of 1 is finite, then the map
is Markov, and we call ˇ (which must be an algebraic number) a generalized Parry number.
We show that the Galois conjugates of such ˇ have modulus less than 2, and the modulus is
bounded away from 2 apart from the exceptional case of conjugates lying on the real line. We
give a characterization of the closure of all these Galois conjugates, and show that this set is path
connected. Our approach is based on an analysis of Solomyak for the case of ˇ-transformations.
One motivation for this work is that the entropy of a post-critically finite (PCF) unimodal map
is the logarithm of a generalized Parry number. Thus, our results give a mild restriction on the
set of entropies that can be attained by PCF unimodal maps.
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1. Introduction

For a continuous post-critically finite (PCF) interval map, the exponential of the
topological entropy, denoted exp h, is a Perron number. Thurston showed that all
Perron numbers can be obtained this way [23]. However, for PCF multimodal maps
with restricted degree, the situation changes dramatically: the dynamics impose
complicated restrictions on which Perron numbers can be attained as exp h. We want
to describe these numbers by understanding the restrictions on the Galois conjugates
of exp h.

This problem was raised in Thurston’s final paper [23], which includes a figure of
the set of complex numbers which are Galois conjugates of exph for PCF unimodal
maps. We denote this set by �T . An ongoing problem raised by Thurston’s final
paper is to understand the structure of �T . So far, progress has been made by
Calegari, Koch and Walker on understanding the region of �T which lies inside the
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unit disk [5], and Tiozzo [24] has shown that the set �T is path connected. There
has been no further progress on understanding the region of �T which lies outside
the unit disk.

In this paper, we study an analogous problem for a class of interval maps called
generalized ˇ-transformations, and use this to gain at least some information about
the outer boundary of �T .

Our approach is based on the formalism of generalized ˇ-transformations, as
introduced by Góra [10]. The generalized ˇ-transformations are the class of
piecewise continuous interval maps given by replacing some of the branches of
a ˇ-transformation with branches of constant slope �ˇ. We call a generalized
ˇ-transformation post-critically finite (PCF) if the point 1 has a finite orbit, to unify
terminology with the case of continuous multimodal maps. We let� denote the set of
Galois conjugates of all ˇ such that there exists a PCF generalized ˇ-transformation.

The class of generalized ˇ-transformations contains all ˇ-transformations, and
many continuous interval maps. Of particular interest is the case where ˇ 2 .1; 2/,
the first branch is increasing, and the second branch is decreasing. This gives a class
of continuous unimodal maps among which the entropy of every PCF unimodal map
is represented (i.e. every PCF unimodal map is semi-conjugate to a PCF map in this
class with the same entropy). In particular, we can conclude that �T � �, see §6
for more details.

We show that � lies inside a disk of radius 2. Since exp h and the degree
of a (continuous) generalized ˇ-transformation can be arbitrarily large, this result
contrasts sharply with the result that any Perron number can be achieved as the
entropy of a general PCF multimodal map.

Although it is trivial that �T lies inside a disk of radius 2, since unimodal maps
satisfy exph � 2, our results can be improved by excluding the exceptional case of
real-valued Galois conjugates. Experimental investigation of Beaucoup, Borwein,
Boyd and Pinner [2] suggests that a sharp bound should be less than 1:6. We show
rigorously that all non-real-valued Galois conjugates have modulus bounded away
from 2, at least establishing the principle that �T n R lies in a disk of radius less
than 2.

Our techniques are inspired by an analysis of Solomyak [20]. For “PCF”
ˇ-transformations, i.e. those for which the point 1 has a finite orbit, in which case
we call ˇ a Parry number, Solomyak showed that all Galois conjugates are bounded
in modulus by the golden mean, and that this bound is sharp, improving on a bound
of 2 obtained by Parry [16]. Furthermore, Solomyak established a Structure theorem
which gives a rather explicit characterization of the largest Galois conjugate in each
direction (i.e. with a prescribed argument). Our approach is based on extending these
results as far as possible to the setting of PCF generalized ˇ-transformations. In
particular, we have a version of the Solomyak Structure theorem for generalized
ˇ-transformations. This result provides an analytic tool for studying the largest
modulus of points in �, and thus for bounding above the largest modulus of points
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in �T . Showing that this theory applies in the context of �T is one of the main
points of this article, as no techniques were previously available for attacking this
problem.

The main idea of the argument is to characterize those elements of�with jzj > 1
as the inverse of a zero of an analytic function in the class

F D
˚
T .w/ D 1C

1X
jD1

ajw
j
W aj 2 Œ�1; 1�

	
:

This correspondence is obtained from the expression for the generalized ˇ-expansion
of 1, and makes the problem tractable to further analysis. We also show that if � is a
zero of a function in F , then ��1 2 �. We use this to show that� is path connected.

In §2, we introduce generalized ˇ-transformations. In §3, we introduce
generalized Parry numbers and generalized Parry polynomials, and obtain our basic
bound on the size of�. In §4, we establish a description of the outer boundary of�
and establish slightly improved bounds on�nR. In §5, we study�. In §6, we apply
our results to unimodal maps.

2. Generalized ˇ-transformations

The ˇ-transformations are the class of piecewise continuous interval maps x ! ˇx

.mod 1/, where ˇ > 1. The class of generalized ˇ-transformations, introduced by
Góra [10], are obtained from the ˇ-transformations by flipping some of the branches
so the slope is�ˇ, and extending themap to a piecewise continuousmap of the closed
interval Œ0; 1�. It is clear what it means to flip a full branch of the map. If we flip the
rightmost branch, which is the only branch that is not full, we mean that this “flipped
branch” of the map decreases from 1 to 1 � fˇg, where fˇg is the fractional part
of ˇ. The precise definition is given below. We record the configuration of positive
and negative slopes by a vector E of 1’s and �1’s. The 1’s correspond to increasing
branches, and the �1’s correspond to decreasing branches. There is a large literature
on using classes of interval maps to give expansions of real numbers [6,7,17,18,22].
Generalized ˇ-transformations were introduced in this context. Connections with
the theory of tilings are given in [9].

The .1;�1/ case. A case of particular interest in this study is the sign configuration
E D .1;�1/, in which case the map is a continuous unimodal map. For ease of
exposition, we define the map rigorously in this case first. We let ˇ 2 .1; 2�, and we
let I0 D Œ0; 1=ˇ� and I1 D .1=ˇ; 1�, so that the sets I0; I1 denote the partition of Œ0; 1�
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into the two intervals of monotonicity. In this case, the generalized ˇ-transformation
has the formula

f .x/ D

(
ˇx if x 2 I0;
2 � ˇx if x 2 I1:

For j � 1, we let

d.x; j / D

(
0 if f j�1x 2 I0;
2 if f j�1x 2 I1:

The symbols d.x; j / are the digits used in the generalized ˇ-expansion of x. For
j � 1, we let

e.x; j / D

(
1 if f j�1x 2 I0;
�1 if f j�1x 2 I1:

We define the “cumulative sign” by s.x; 1/ D 1,

s.x; j C 1/ D e.x; j /s.x; j / D

jY
lD1

e.x; l/;

and we let s.j / WD s.1; j /. The generalized ˇ-expansion of x is the expression

x D
s.x; 1/d.x; 1/

ˇ
C
s.x; 2/d.x; 2/

ˇ2
C � � � C

s.x; j /d.x; j /

ˇj
C � � �

By [10, Corollary 2], this expression is valid for every x 2 Œ0; 1�.

All generalized ˇ-transformations. Let m 2 N and ˇ 2 .m;mC 1�. For such ˇ,
a generalized ˇ-transformation has mC 1 branches. We let

E D .E.0/; E.1/; : : : ; E.m// 2 f1;�1gmC1

be the vector which describes the configuration of slopes of the map (where an entry 1
corresponds to positive slope, and an entry �1 corresponds to negative slope). We
partition I into mC 1 intervals

I0 D

�
0;
1

ˇ

�
; I1 D

�
1

ˇ
;
2

ˇ

�
; : : : ; Im D

�
m

ˇ
; 1

�
;

and we define the .ˇ;E/-transformation f D fˇ;E by the formula

f .x/ D

(
ˇx � k if x 2 Ik and E.k/ D 1;
�ˇx C k C 1 if x 2 Ik and E.k/ D �1:

Note that the intervals Ij are defined to include their right end-points, and f is
defined on the whole interval Œ0; 1�. In the case that all entries of E are 1, then f
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is an extension of the classical ˇ-transformation x ! ˇx .mod 1/ to a piecewise
continuous map of the closed interval Œ0; 1�.

For j � 1, we let

d.x; j / D

(
k if f j�1x 2 Ik and E.k/ D 1;
k C 1 if f j�1x 2 Ik and E.k/ D �1:

For j � 1, we let e.x; j / D E.k/ if f j�1x 2 Ik :We define the “cumulative sign”
by s.x; 1/ D 1,

s.x; j C 1/ D e.x; j /s.x; j / D

jY
lD1

e.x; l/:

Again, Góra shows that for every x 2 Œ0; 1�,

x D
s.x; 1/d.x; 1/

ˇ
C
s.x; 2/d.x; 2/

ˇ2
C � � � C

s.x; j /d.x; j /

ˇj
C � � � (2.1)

We refer to this expression as the .ˇ;E/-expansion for x. For the .ˇ;E/-expansion
of 1, we write d.j / WD d.1; j / and s.j / WD s.1; j /.

We sometimes write .ˇ;E/-expansions using sequence notation

..s.x; 1/; d.x; 1//; .s.x; 2/; d.x; 2//; .s.x; 3/; d.x; 3//; : : :/:

The set-up above includes the classic ˇ-expansion simply by setting all entries in E
to be 1. In this case, s.x; j / D 1 for all x and j , and (2.1) reduces to the standard
ˇ-expansion of Rényi and Parry.

2.1. Finite versus infinite .ˇ;E/-expansions. It is possible in the definition of the
.ˇ;E/-expansion that there exists n so that d.x; j / D 0 for all j > n, and thus the
.ˇ;E/-expansion of x is finite. This can only happen if E.0/ D 1, so 0 is a fixed
point, and f nx D 0. Since the set of preimages of 0 is a subset of the left end-points
of the intervals Ij , we must have f n�1x 2 f1=ˇ; 2=ˇ; : : : ; Œˇ�=ˇg.

We explain how to derive an infinite .ˇ;E/-expansion from a finite .ˇ;E/-
expansion. We start with the case that x D 1 has a finite .ˇ;E/-expansion. The
finite .ˇ;E/-expansion of 1 is thus

1 D
s.1/d.1/

ˇ
C
s.2/d.2/

ˇ2
C � � � C

s.n/d.n/

ˇn
; (2.2)

where d.n/ ¤ 0. Let d 0.j / D d.j / for j 2 f1; : : : ; n � 1g, and

d 0.n/ D

(
d.n/ � 1 if s.n/ D 1;
d.n/C 1 if s.n/ D �1;

noting that 0 � d 0.n/ � d.1/. This is because 1 � d.n/, and d.n/ � d.1/. It is
easily checked that the only way we can have d.n/ D d.1/ is if ˇ 2 N, and f .1/ D 0.
In this case, since s.1/ D 1, d 0.n/ D d 0.1/ D d.1/ � 1.
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We have

1 D
s.1/d 0.1/

ˇ
C
s.2/d 0.2/

ˇ2
C � � � C

s.n/d 0.n/

ˇn
C

1

ˇn
; (2.3)

and thus for any m � 0,

1

ˇmn
D

nX
jD1

s.j /d 0.j /

ˇjCmn
C

1

ˇ.mC1/n
: (2.4)

Note that by (2.3) and (2.4), we have

1 D
s.1/d 0.1/

ˇ
C � � � C

s.n/d 0.n/

ˇn
C
s.1/d 0.1/

ˇnC1
C � � � C

s.n/d 0.n/

ˇ2n
C

1

ˇ2n
:

Continuing this way, using (2.4), we obtain that for any m � 1,

1 D

m�1X
jD0

nX
kD1

s.k/d 0.k/

ˇkCjn
C

1

ˇmn
;

and it follows that 1 D
P1
jD1 s.j /d

0.j /=ˇj . This expression is the infinite .ˇ;E/-
expansion of 1. Note that if 1 has a finite .ˇ;E/-expansion, then the corresponding
infinite .ˇ;E/-expansion is periodic.

Now suppose that x has a finite .ˇ;E/-expansion. Then

x D
s.x; 1/d.x; 1/

ˇ
C
s.x; 2/d.x; 2/

ˇ2
C � � � C

s.x; k/d.x; k/

ˇk

D
s.x; 1/d.x; 1/

ˇ
C
s.x; 2/d.x; 2/

ˇ2
C � � � C

s.x; k/d 0.x; k/

ˇk
C

1

ˇk
;

where we define d 0.x; k/ D d.x; k/�1 if s.x; k/ D 1, and d 0.x; k/ D d.x; k/C1 if
s.x; k/ D �1. Thus, the infinite .ˇ;E/-expansion of x is given by the sequence vw,
where

v D ..s.x; 1/; d.x; 1//; : : : ; .s.x; k � 1/; d.x; k � 1//; .s.x; k/; d 0.x; k///;

and w is the (infinite) .ˇ;E/-expansion of 1.

2.2. Space of itineraries. There is another way to use f to assign a sequence to a
point: it is sometimes convenient to consider the itinerary of a point relative to the
partition fI0; : : : ; Img, where ˇ 2 .m;mC 1�.

Let †m D
Q1
iD1f0; : : : ; mg. Given x 2 I , its itinerary

It.x/ D .It.x; 1/; It.x; 2/; : : :/
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under f D fˇ;E is the sequence in †m given by

It.x; j / D i if f j�1x 2 Ii :

Using the rules on the digits d.x; i/ and the signs s.x; i/, the .ˇ;E/-expansion
for x can be recovered from It.x/ and vice versa. In particular, we can map the
.ˇ;E/-expansion of 1 to the itinerary of 1 by the formula

It.1; j / D

(
d.j / if s.j C 1/ D s.j /;
d.j / � 1 if s.j C 1/ D �s.j /:

We recall the criteria of Góra for determining the validity of itineraries,
and hence .ˇ;E/-expansions. First we define an order <E on †m. Given
a finite word w.1/ � � �w.j / from the alphabet f0; : : : ; mg, we let signE .w/ WD
E.w.1// � � �E.w.j //.

We define the ordering �E by declaring w <E v if w.1/ < v.1/, or if j is the
first place where w.j / ¤ v.j /, then

w <E v if

(
w.j / < v.j / if signE .w.1/ � � �w.j � 1// D 1;
w.j / > v.j / if signE .w.1/ � � �w.j � 1// D �1:

The order�E also makes sense on the set of finite sequences
Qk
iD1f0; : : : ; mg for any

fixed k � 1. Proposition 5 of Góra [10] says that a sequence w 2 †m is the itinerary
of a point x under fˇ;E if and only if for all j � 0, �jw �E It.1/. We remark that
by taking the closure of the space of all such itineraries in †m, this criteria can be
thought of as determining the symbolic dynamics associated to fˇ;E .

The order �E is an essential ingredient in the theory of one-dimensional maps,
and has its roots in thework of Parry [17]. This is a special case of the characterization
of symbolic dynamics of piecewisemonotonicmaps that is formulatedmore generally
in e.g. [8]. Similar ideas appear in the celebratedwork ofMilnor and Thurston [14] for
continuous multimodal maps, where they assign to each point a sequence �.x/, called
the invariant coordinate of x. For points x that are not pre-images of a critical point,
the sequence �.x/ is exactly determined by the itinerary and sign data .s.x; i//i2N

of x.

2.3. Key identities for generalized ˇ-transformations. First, we establish the fun-
damental relationship between the coefficients d.j /, s.j /, and the “signed orbit” of 1
which we write cj WD s.j C 1/f j .1/. Note that c0 D 1.

Lemma 2.1. For j � 0, the coefficients satisfy the recursion relation

ˇcj � s.j C 1/d.j C 1/ D cjC1: (2.5)
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Proof. First, we rewrite the map f as

f .x/ D e.x; 1/.ˇx � d.x; 1//;

and thus
f j .x/ D e.x; j /. f̌ j�1.x/ � d.x; j //:

In particular, we have f j .1/ D e.1; j /. f̌ j�1.1/ � d.j // for j � 1. Thus, for
j � 0, we have

f̌ j .1/ � d.j C 1/ D e.1; j C 1/f jC1.1/:

Multiplying by s.j C 1/ yields

ˇs.j C 1/f j .1/ � s.j C 1/d.j C 1/ D s.j C 1/e.1; j C 1/f jC1.1/

D s.j C 2/f jC1.1/;

which establishes (2.5).

Now we prove an identity which is key to our analysis, generalizing an identity
which was observed in Solomyak [20] for ˇ-transformations.
Lemma 2.2. For any z with jzj > 1,

1 �

1X
jD1

s.j /d.j /z�j D

�
1 �

ˇ

z

� 1X
jD0

cj z
�j ;

where cj D s.j C 1/f j .1/.

Proof. We assume that jzj > 1 so that the above series converge. Multiplying out
the right hand side, we obtain�

1 �
ˇ

z

� 1X
iD0

ciz
�i
D 1C .c1 � ˇ/z

�1
C � � � C .cjC1 � cjˇ/z

�.jC1/
C � � � :

For all j � 0, we have cjC1 � cjˇ D �s.j C 1/d.j C 1/ by (2.5), which yields the
required inequality.

2.4. Post-critically finite generalizedˇ-transformations. We define a generalized
ˇ-transformation to be post-critically finite (PCF) if the orbit of 1 is finite,
i.e. ff j .1/ j j � 0g takes finitely many values. More generally, we say a
piecewise monotonic map (not necessarily continuous) is post-critically finite if
all maxima, minima and discontinuity points have a finite orbit. For a generalized
ˇ-transformation, all discontinuity points are pre-images of the points 1 or 0, and 0 is
either a fixed point or satisfies f .0/ D 1, so these definitions agree. We choose this
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terminology in order to be consistent with the literature on continuous multimodal
maps, where PCF is the standard term for a map whose topological critical points
have a finite orbit.

By the general theory of piecewise monotonic maps [1,14], if the map is PCF,
then it admits a Markov partition. That is, there is a partition P of the interval into
subintervals such that for all P 2 P , f .P / is the closure of a union of elements
of P . The partition P is obtained by taking subintervals whose endpoints are the
forward orbits of the critical points. Thus, PCF interval maps are the ones that can
be modeled by a shift of finite type, and thus have a well understood orbit structure.
This motivates why we investigate which interval maps are PCF.

3. Generalized Parry numbers and Parry polynomials

We review the definition of a Parry number, and a Parry polynomial from
the ˇ-transformation literature, and extend these concepts to generalized ˇ-
transformations. Parry numbers and the Parry polynomial were both introduced
in his seminal paper on ˇ-expansions [16].

3.1. Parry numbers and Parry polynomials. A number ˇ > 1 is a Parry number
if the ˇ-expansion of 1 is pre-periodic. This occurs if and only if 1 has a finite orbit
under fˇ . We say that a Parry number is a simple Parry number if the ˇ-expansion
of 1 is periodic.

For a Parry number, the Parry polynomial Pˇ .z/ is a monic polynomial with
integer coefficients which is naturally associated to the infinite ˇ-expansion of 1. We
obtain Pˇ by taking the infinite ˇ-expansion of 1

1 D

1X
jD1

d.j /

ˇj
;

and using the geometric series formula on the right hand side. We multiply through
so all ˇ have a non-negative exponent, and bring all terms to one side. The resulting
expression is the formula Pˇ .ˇ/ D 0. For a simple Parry number with infinite
ˇ-expansion of 1 given by .d.1/; : : : ; d.p//1, we arrive at the expression

Pˇ .z/ D z
p
�

pX
jD1

d.j /zp�j � 1

D zp � d.1/zp�1 � d.2/zp�2 � � � � � d.p � 1/z � 1 � d.p/:

Since Pˇ .ˇ/ D 0, all Galois conjugates of ˇ must also satisfy Pˇ .z/ D 0. The
polynomialPˇ is not necessarily irreducible (i.e. it might have higher degree than the
minimal polynomial for ˇ), so Pˇ may have zeros which are not Galois conjugates
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of ˇ. Such a zero is called a ˇ-conjugate. The distribution of ˇ-conjugates was
studied in [25,26].

3.2. Generalized Parry numbers and Parry polynomials. We define a number
ˇ > 1 to be a generalized Parry number if we can find E so that the orbit of 1
under the .ˇ;E/-transformation is finite. Thus, in the terminology of §2.4, ˇ is a
generalized Parry number iff there exists E so that the .ˇ;E/-transformation is PCF.

Let f D fˇ;E be a PCF generalized ˇ-transformation. Since the orbit of 1 is
periodic or pre-periodic, then so is the sequence given by the infinite .ˇ;E/-expansion
of 1.

Definition 3.1. For a post-critically finite .ˇ;E/-transformation, let us write the
infinite .ˇ;E/-expansion of 1 as vw1, where

v D ..s.1/; d.1//; .s.2/; d.2//; : : : ; .s.k/; d.k///;

w D ..s.k C 1/; d.k C 1//; : : : ; .s.k C p/; d.k C p///:

In the above, w is written with the lowest possible period, and in the periodic case
k D 0, v is the empty word. We define the generalized Parry polynomial to be

Pˇ;E .z/ D z
kCp
�

kCpX
jD1

s.j /d.j /zkCp�j � zk C

kX
jD1

s.j /d.j /zk�j :

The formula simplifies if the .ˇ;E/-expansion of 1 is periodic, in which case

Pˇ;E .z/ D z
p
�

pX
jD1

s.j /d.j /zp�j � 1:

The expression Pˇ;E .ˇ/ D 0 can be derived from applying the geometric series
formula to the .ˇ;E/-expansion of 1, which motivates the definition of Pˇ;E . The
following lemma is based on this relationship.

Lemma 3.2. A number z with jzj > 1 is a zero of Pˇ;E .z/ if and only if

1 �

1X
jD1

s.j /d.j /z�j D 0: (3.1)

Proof. We first assume that the infinite .ˇ;E/-expansion of 1 is periodic. Suppose z
with jzj > 1 satisfies Pˇ;E .z/ D 0. Then

1 � z�p D

pX
jD1

s.j /d.j /z�j ;
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and thus
1 D

˛

1 � z�p
;

where ˛ D
Pp
jD1 s.j /d.j /z

�j . Using the geometric series formula yields

1 D

1X
mD0

˛z�pm D

1X
mD0

pX
jD1

s.j /d.j /z�pm�j D

1X
jD1

s.j /d.j /z�j :

The general case follows the same strategy. Suppose now that the infinite .ˇ;E/-
expansion of 1 is pre-periodic, and z with jzj > 1 satisfies Pˇ;E .z/ D 0. Then

zkCp �

kX
jD1

s.j /d.j /zkCp�j � zk C

kX
jD1

s.j /d.j /zk�j D

kCpX
jDkC1

s.j /d.j /zkCp�j

Let ˛1 D
Pk
jD1 s.j /d.j /z

�j and ˛2 D
PkCp

jDkC1
s.j /d.j /z�j . Then we have

.zkCp � zk/.1 � ˛1/ D ˛2z
kCp;

and thus
1 � ˛1 D

˛2

1 � z�p
:

Using the geometric series formula yields

1 D ˛1 C

1X
mD0

˛2z
�pm
D

kX
jD1

s.j /d.j /z�j C

1X
mD0

kCpX
jDkC1

s.j /d.j /z�pm�j ;

and the right hand side is
P1
jD1 s.j /d.j /z

�j , showing (3.1). The argument can be
reversed to show the opposite implication.

Setting zDˇ, the expression for the .ˇ;E/-expansion of1 shows thatPˇ;E .ˇ/D0,
and it follows that all Galois conjugates of ˇ with jzj > 1 satisfy (3.1).
Remark 3.3. We do not know whether Pˇ;E is irreducible, so there may be z which
satisfyPˇ;E .z/ D 0 but are notGalois conjugates ofˇ. We call such z the generalized
ˇ-conjugates, following terminology of Verger-Gaugry in the ˇ-transformation
case [25,26]. The generalizedˇ-conjugates also satisfy the equation (3.1). It would be
interesting to extend the results of [25,26] to study the distribution of the generalized
ˇ-conjugates.
Remark 3.4. If the .ˇ;E/-expansion of 1 is finite, the polynomial Pˇ;E can be
obtained equivalently by looking directly at this finite .ˇ;E/-expansion; that is, the
expression

1 D
s.1/d.1/

ˇ
C
s.2/d.2/

ˇ2
C � � � C

s.n/d.n/

ˇn
:



788 D. J. Thompson CMH

In this case,

Pˇ;E D z
n
�

nX
jD1

s.j /d.j /zn�j D zn �

nX
jD1

s.j /d 0.j /zn�j � 1:

Remark 3.5. Liao and Steiner studied the class of negativeˇ-transformations in [12].
This is the subclass of generalizedˇ-transformationswhere the sign of all the branches
is set to �1. They call a number ˇ for which the negative ˇ-expansion of 1 is pre-
periodic a Yrrap number, and give examples. It is immediate that every Yrrap number
is a generalized Parry number.

3.3. Upper bounds on conjugates for PCF .ˇ;E/-transformations. Combining
Lemmas 2.2 and 3.2, we see that anyGalois conjugate of a generalized Parry numberˇ
with jzj > 1 satisfies

1C

1X
jD1

cj z
�j
D

1X
jD0

cj z
�j
D 0; (3.2)

where cj D s.j C 1/f j .1/ 2 Œ�1; 1� and f is a PCF .ˇ;E/-transformation. (The
same is true for the generalized ˇ-conjugates with jzj > 1). Consider the class of
functions

F D

�
T .w/ D 1C

1X
jD1

ajw
j
W aj 2 Œ�1; 1�

�
:

If � is a zero of a function in F , then z D ��1 satisfies

1C

1X
jD1

aj z
�j
D 0:

Thus if z is a Galois conjugate of a generalized Parry number ˇ with jzj > 1, then z�1
is a zero of the function in F with coefficients as in (3.2).
Lemma 3.6. Any zero � of any function in F has modulus at least 1

2
. If any of the aj

satisfy jaj j < 1, then j�j > 1
2
.

Proof. Suppose T .�/ D 1 C
P1
jD1 aj�

j D 0, where aj 2 Œ�1; 1�. We argue by
contradiction. Suppose that j�j < 1

2
. Then jaj�j j D jaj jj�jj < 2�j . Thus

j

1X
jD1

aj�
j
j �

1X
jD1

jaj�
j
j <

1X
jD1

2�j D 1;

which contradicts the fact that if � is a zero of T , then j
P1
jD1 aj�

j j D 1. If
we assume further that at least one of the aj satisfy jaj j < 1, then for every � with
j�j � 1

2
we have j

P1
jD1 aj�

j j < 1, so the same contradiction argument applies.
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Clearly, this bound is sharp by setting all the aj D �1 and letting � D 1
2
.

Theorem 3.7. If ˇ is a generalized Parry number, then all Galois conjugates z of ˇ
satisfy jzj < 2.

Proof. By Lemmas 2.2 and 3.2, if z is a Galois conjugate of ˇ with jzj > 1, then z�1
is a zero of a function in F whose coefficients are given by aj D s.j C 1/f j .1/

for the appropriate .ˇ;E/-transformation f . Thus we can apply Lemma 3.6 to show
that jzj < 2. The inequality is strict because the only way we can have jaj j D 1 for
all j is if 1 is a fixed point of f . This can only happen if ˇ is an integer, and thus
does not have Galois conjugates.

Remark 3.8. For ˇ-transformations, Solomyak showed [20] that if z is a Galois
conjugate of ˇ with jzj > 1, then z�1 is a zero of a function in FŒ0;1�, where

FŒ0;1� D

�
T .w/ D 1C

1X
jD1

ajw
j
W aj 2 Œ0; 1�

�
:

He used this characterization to show that jzj � .
p
5C 1/=2 by exploiting the fact

that jaj � 1
2
j �

1
2
.

4. Conjugates with a prescribed argument and Solomyak’s structure theorem

We investigate the maximum possible modulus of a conjugate with a prescribed
argument. Let

�� D min
˚
j�j W � is a zero of a function in F and the argument of � is �

	
:

A description of the function in F that attains �� is the content of the Solomyak
Structure theorem. Such a function is called �-optimal. This result was originally
established by Solomyak [20] to analyze the zeroes of functions in FŒ0;1�. The
Structure theorem was generalized by Beaucoup, Borwein, Boyd and Pinner [2] to
a class of power series with restricted coefficients that includes F . The following
statement is given in [2].
Theorem 4.1 (Solomyak Structure theorem for F ). Given an argument � 2 .0; �/,
there exists ˛ D ˛� 2 .0; �/ and a function

T�.w/ D 1C

1X
nD1

anw
n

whose coefficients satisfy

an D

(
1 if n� � ˛ 2 .0; �/ .mod 2�/;
�1 if n� � ˛ 2 .��; 0/ .mod 2�/;

such that T� is �-optimal; i.e. T�.��ei�/ D 0.
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The sequence of coefficients fang is determined by the rotation sequence of
slope � and base point ˛ with the possible exception of one coefficient aj , which we
call the anomalous coefficient. In the case of FŒ0;1�, where �-optimal functions have
non-anomalous coefficients belonging to f0; 1g, Solomyak gives explicit examples
of �-optimal functions for which the anomalous coefficient is different from all the
rest. The function T� is unique when �=2� is irrational, and it is conjectured that
when �=2� is rational, �-optimal functions are never unique, see [20].

No convenient characterizations of the anomalous coefficient or the function
� ! ˛� are currently available. Despite these drawbacks, Solomyak put his
structure theorem to impressive use in [20], obtaining results on the continuity and
differentiability of the function � ! �� . In particular, we have the following result
whose proof was given in the FŒ0;1� case in [20, Lemma 4.2], and was observed to
extend almost verbatim to F in [2, Proposition 1].
Theorem 4.2 ([2,20]). The function � ! �� is continuous on .0; �/.

We apply this result in the following theorem.
Theorem 4.3. The quantity �� is bounded uniformly away from 1

2
for � 2 .0; �/.

Thus, supf��1� W � 2 .0; �/g < 2.

Proof. First, we show that �� > 1
2
on .0; �/. Suppose not. Then there exists

� 2 .0; �/, and � D 1
2
ei� , and an 2 Œ�1; 1� so that

1C
X

an�
n
D 0:

Furthermore, by Lemma 3.6, an 2 f1;�1g for all n. In particular, writing

an�
n
D

1

2n
ei�n ;

we have

1C

1X
nD1

1

2n
ei�n D 0:

Thus

1C
1

2
ei�1 D �

1X
nD2

1

2n
ei�n :

Letting z1 D 1C 1
2
ei�1 . we see that jz1 � 1j D 1

2
. Let z2 D �

P1
nD2

1
2n e

i�n . Then
jz2j �

P1
nD2

1
2n D

1
2
. Thus, if z1 D z2, then z1 D 1

2
, and so �1 D � . Thus we have

a1� D �
1
2
. Since a1 2 f1;�1g, it follows that � D 1

2
or � D �1

2
. This contradicts

the hypothesis that � D 1
2
ei� for � 2 .0; �/.

Since the map � ! �� is continuous on .0; �/, all that remains is to analyze
the limit of �� as � ! 0 and � ! � . The argument of [20, Lemma 4.1] shows



Vol. 92 (2017) Generalized ˇ-transformations 791

that lim�!0 �� converges to a value which is a double root of some function in F ,
and likewise for lim�!� �� . Solomyak gives a rigorous argument that the smallest
double root of a function in F is greater than 0:6299 [21, p. 622]. Thus

min
˚
lim
�!�

�� ; lim
�!0

��
	
� 0:6299 >

1

2
:

It follows that supf��1� W � 2 .0; �/g < 2.

Remark 4.4. Note that �0 D �� D
1
2
. This is because � D 1

2
is a zero of the

function in F with an D �1 for all n, and � D �1
2
is a zero of the function in F

with an D .�1/nC1 for all n. Thus the function � ! �� is discontinuous at 0 and � .

Remark4.5. The function� ! �� is investigated numerically in [2], and is plotted as
Figure 2 of [2]. The numerics suggest that �� 2 .0:63; 0:71/ for � 2 .0; �/, and that
lim�!� �� � 0:6491. Thus, we should expect that supf��1� j � 2 .0; �/g < 1:59.
It is an open question to rigorously establish optimal bounds on this quantity.

Remark 4.6. Solomyak studied differentiability properties of the boundary of FŒ0;1�
in some detail using the tools introduced above, giving criterion for when � ! ��
is smooth, and non-smooth. The extension of these results to F is claimed in
[2, Proposition 1], with proof referred to Solomyak.

5. The set�

Recall that� is defined to be the set of all Galois conjugates for all generalized Parry
numbers. Let G denote the set of zeroes of functions in F . We have shown that
fz 2 � j jzj > 1g � fz j z�1 2 G g. In this section, our main result is a partial
converse of this: we will show that fz j z�1 2 G g � fz 2 � j jzj > 1g. To prove
this, first we require a means of identifying when a number is a generalized Parry
number.

5.1. Criteria for ˇ to be a generalized Parry number. Suppose that

..s.1/; a.1//; : : : ; .s.n/; a.n///

is a finite sequence where n � 2, the a.j / are non-negative integers with a.n/ ¤ 0,
the s.j / 2 f1;�1g, and s.1/ D 1. Let the finite sequence .It.1/; : : : ; It.n// be given
by

It.j / D

(
a.j / if s.j C 1/ D s.j /;
a.j / � 1 if s.j C 1/ D �s.j /:

for j 2 f1; : : : ; n � 1g, and It.n/ D a.n/.
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We impose the following hypotheses on the sequence:
(1) It.1/ > a.j / for all j � 2;
(2) there exists a sign configuration E 2 f1;�1gmC1, where m D It.1/, such that

s.j C 1/ D s.j /E.It.j // for each j 2 f1; : : : ; n � 1g;
(3) if a.j / D 0, then s.j C 1/ D s.j /, to ensure that It.j / � 0. Thus, if any of the

a.j / are 0, then E.0/ D 1.
Writing w D .It.1/; : : : ; It.n//, we will find a ˇ such that the itinerary of 1 for fˇ;E
is either w1 or w01.

A complete characterization of which sequences arise as the itinerary of 1 for
some .ˇ;E/-transformation is currently open. A statement for It.1/ � 2 appears as
Theorem 25 of Góra [10], although his hypotheses have been criticized by Steiner
in [22]. We do not pursue the general case here since we are investigating only PCF
transformations.

We define the function

F.x/ D s.1/a.1/C
s.2/a.2/

x
C
s.3/a.3/

x2
C � � � C

s.n/a.n/

xn�1
:

We want to show that F has a fixed point in the interval .It.1/; It.1/ C 1/. To this
end, for j 2 f1; : : : ; n � 1g, let

Rj .x/ D

n�1X
iDj

s.i C 1/a.i C 1/

xi
:

Lemma 5.1. For x 2 ŒIt.1/; It.1/C 1�, and j 2 f1; : : : ; n � 1g, we have
(1) jRj .x/j < 1

xj �1 ;
(2) sign.Rj .x// D s.j C 1/.

Proof. Let N D maxfa.2/; : : : ; a.n/g. Then, since N � It.1/ � 1 � x � 1,

jRj .x/j <

1X
iDj

N

xi
D

1

xj�1
N

x � 1
�

1

xj�1
:

Now take the first k � 1 so that a.j C k/ ¤ 0. If k � 2, then since

a.j C 1/ D � � � D a.j C k � 1/ D 0;

we have s.j C k/ D s.j C 1/. We have

Rj .x/ D
s.j C k/a.j C k/

xjCk�1
CRjCk.x/;

and thus
s.j C k/a.j C k/

xjCk�1
�

1

xjCk�1
< Rj .x/ <

s.j C k/a.j C k/

xjCk�1
C

1

xjCk�1
:

Since a.j C k/ � 1, it follows that sign.Rj .x// D s.j C k/ D s.j C 1/.
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It follows immediately from (2) in Lemma 5.1 that

jRj .x/j D s.j C 1/Rj .x/: (5.1)

Lemma 5.2. There exists ˇ 2 .It.1/; It.1/C 1/ such that

ˇ D s.1/a.1/C
s.2/a.2/

ˇ
C
s.3/a.3/

ˇ2
C � � � C

s.n/a.n/

ˇn�1

Proof. We show that F W ŒIt.1/; It.1/C 1� ! ŒIt.1/; It.1/C 1�. Note that F.x/ D
a.1/CR1.x/. There are two cases. First suppose s.2/ D 1. Then E.It.1// D 1 and
It.1/ D a.1/. Since 0 < R1.x/ < 1, we have

It.1/C 1 D a.1/C 1 > a.1/CR1.x/ > a.1/ D It.1/:

Now suppose s.2/ D �1. Then E.It.1// D �1 and It.1/ D a.1/ � 1. Since
0 > R1.x/ > �1, we have

It.1/C 1 D a.1/ > a.1/CR1.x/ > a.1/ � 1 D It.1/:

Thus, in both cases, the image of F is contained in .It.1/; It.1/C1/. Considering
the map as F W ŒIt.1/; It.1/C 1�! ŒIt.1/; It.1/C 1�, it follows from the Intermediate
Value theorem that F has a fixed point ˇ. Clearly, ˇ … fIt.1/; It.1/C 1g.

From now on, we fix ˇ 2 .It.1/; It.1/ C 1/ provided by Lemma 5.2, and let
f D fˇ;E . Recall that Œ0; 1� is partitioned into intervals I0 D Œ0; 1=ˇ�, I1 D
.1=ˇ; 2=ˇ� ; : : : ; Im D .m=ˇ; 1�, where m D It.1/.

Lemma 5.3. For k 2 f1; : : : ; n � 1g, we have
(i) f k�1.1/ 2 IIt.k/;

(ii) f k�1.1/ D 1
ˇ

�
a.k/C ˇk�1E.It.k//jRk.ˇ/j

�
.

Proof. We argue recursively. For k D 1, it is immediate that 1 2 IIt.1/, and we have

1 D
s.1/a.1/

ˇ
C
s.2/a.2/

ˇ2
C � � � C

s.n/a.n/

ˇn

D
a.1/

ˇ
C
1

ˇ
R1.ˇ/;

and since R1.ˇ/ D s.2/jR1.ˇ/j D E.It.1//jR1.ˇ/j, we are done.
Now we show that if k 2 f1; : : : ; n � 1g, and (i) and (ii) hold true for f k�1.1/,

then
f k.1/ D ˇk�1jRk.ˇ/j: (5.2)
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There are two cases:
Case (a). Suppose that s.k C 1/ D s.k/. Then a.k/ D It.k/, and E.It.k// D 1.
Since E.It.k// D 1, for y 2 IIt.k/, f .y/ D ˇy � a.k/, and thus applying f to
f k�1.1/ 2 IIt.k/, it follows from the expression (ii) that f k.1/ D ˇk�1jRk.ˇ/j.
Case (b). Suppose that s.kC1/D�s.k/. Then a.k/�1D It.k/, andE.It.k//D�1.
Since E.It.k// D �1, for y 2 IIt.k/, f .y/ D a.k/ � ˇy. Since f k�1.1/ 2 IIt.k/,
it follows from the expression (ii) that f k.1/ D �E.It.k//ˇk�1jRk.ˇ/j D
ˇk�1jRk.ˇ/j.

Now fix k 2 f1; : : : ; n � 2g, and suppose that (i) and (ii) hold true for f k�1.1/.
It follows from (5.1) and (5.2) that

f k.1/ D ˇk�1jRk.ˇ/j D ˇ
k�1s.k C 1/Rk.ˇ/

D ˇk�1s.k C 1/

�
s.k C 1/a.k C 1/

ˇk
CRkC1.ˇ/

�
D
1

ˇ

�
a.k C 1/C ˇks.k C 1/RkC1.ˇ/

�
D
1

ˇ

�
a.k C 1/C ˇks.k C 1/s.k C 2/jRkC1.ˇ/j

�
:

Since s.kC1/s.kC2/ D s.kC1/2E.It.kC1//, we have established the formula (ii)
for f k.1/.

Now, we show that (ii) implies (i). Again, there are two cases. If s.k C 2/ D
s.k C 1/, then a.k C 1/ D It.k C 1/, and E.It.k C 1// D 1, so

a.k C 1/

ˇ
< f k.1/ D

1

ˇ

�
a.k C 1/C ˇkjRkC1.ˇ/j

�
<
a.k C 1/C 1

ˇ
;

and so f k.1/ 2 IIt.kC1/.
In the case that s.k C 2/ D �s.k C 1/, then a.k C 1/ � 1 D It.k C 1/, and

E.It.k C 1// D �1, so
a.k C 1/ � 1

ˇ
< f k.1/ D

1

ˇ

�
a.k C 1/ � ˇkjRkC1.ˇ/j

�
<
a.k C 1/

ˇ
;

and so f k.1/ 2 IIt.kC1/.
This shows that both (i) and (ii) are true for f k.1/, which completes the proof.

Lemma 5.4. We have f n�1.1/ D a.n/=ˇ. Thus f is PCF, and so ˇ is a generalized
Parry number.

Proof. Since by Lemma 5.3, (i) and (ii) hold for f n�2.1/, the equation (5.2) shows
that f n�1.1/ D ˇn�2jRn�1.ˇ/j D a.n/=ˇ. Since f .a.n/=ˇ/ is either 1 or 0 (noting
that a.n/=ˇ 2 Ia.n/�1, so this depends only on whether E.a.n/ � 1/ is positive or
negative), we have shown that 1 has a finite orbit, and hence f is PCF.
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The previous results allow us to give the following simple criterion for finding
generalized Parry numbers.
Theorem 5.5. Suppose thatM.1/; : : : ;M.n/ are distinct non-zero integers such that
M.1/ � 2, jM.j /jC1 < M.1/ for all j � 2, and jM.j /j ¤ jM.k/j�1 for all j; k.
Then the equation

x DM.1/C
M.2/

x
C
M.3/

x2
C � � � C

M.n/

xn�1
(5.3)

has a solution ˇ > 1 which is a generalized Parry number.

Proof. Let a.j / D jM.j /j � 1 and s.j / D sign.M.j //, and define It.j / as we did
earlier in this section. Our hypotheses imply that It.1/ > a.j / for all j � 2. Since
all the It.j / are distinct, we have freedom to choose a vector E whose entries in the
positions E.It.j // leads to the sequence of signs s.j /. Thus applying Lemma 5.2,
(5.3) has a solution ˇ 2 .It.1/; It.1/C 1/, and so by Lemma 5.4, fˇ;E is PCF, and
thus ˇ is a generalized Parry number.

Remark 5.6. We mention some other classes of numbers that are known to be Parry
numbers, and hence generalized Parry numbers. Schmidt proved that if ˇ is a Pisot
number, then ˇ is Parry [19]. Whether Salem numbers are Parry is a challenging
open problem [4,23], first raised by Schmidt in [19]. Boyd proved that degree 4 Salem
numbers are Parry [3]. Numerical evidence and hueristic arguments by Thurston [23]
and Boyd suggest that most higher degree Salem numbers are not Parry, but it seems
to be very difficult to find even a single rigorous example of this phenomenon.

5.2. Characterization of�. We now prove our main result about �.
Theorem 5.7. The set� isD[fz j jzj > 1 and z�1 2 G g, whereD D fz j jzj � 1g.

Proof. We already know that the closed unit disk D is a subset of �, because D is
contained in the closure of the Galois conjugates of the simple Parry numbers (see
Theorem 2.1 of [20]). Thus, all it remains to show is that if jzj > 1 and z�1 2 G ,
then z 2 �. The argument is a generalization of the second half of the proof of
[20, Theorem 2.1].

Let �Dz�1. Then T .�/D0 for some T .w/D1C
P1
jD1 ajw

j with aj 2 Œ�1; 1�.
We approximate T with a function g.w/ D 1 C

Pn�1
jD1 bjw

j with bj 2 .�1; 1/,
where all bj are rational. By taking n large, and the bj arbitrarily close to the aj ,
we can ensure that g has a zero arbitrarily close to �. Writing each bj in the form
bj DM.j C 1/=M.1/, whereM.n/ 2 Z, we have

g.w/ DM.1/�1
�
M.1/CM.2/w C � � � CM.n/wn�1

�
:

We can make sure that our bj are chosen so that allM.j / are distinct and non-zero,
M.1/ � 2, jM.j /j C 1 < M.1/ for all j , and jM.j /j ¤ jM.k/j � 1 for all j; k.
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Now take a large prime p > M.n/ (to be fixed later). We know by Theorem 5.5 that
the equation

x D pM.1/C
pM.2/

x
C
pM.3/

x2
C � � � C

pM.n/

xn�1

has a solution ˇ > 1 which is a generalized Parry number. Define the polynomial

q.w/ D wn � pM.1/wn�1 � pM.2/wn�2 � � � � � pM.n/;

so that ˇ is a zero of q. The polynomial q is irreducible by Eisenstein’s Criterion, and
hence q is the minimal polynomial for ˇ. Thus all other zeroes of q are conjugates
of ˇ.

The rest of the argument is to show that one of these zeroes is close to z.
Elementary computation shows that q.w�1/ D 0 if and only if g.w/ D 1

wpM.1/
.

Thus letting h.w/ D � 1
pM.1/w

, we have q.w�1/ D 0 if and only if .gC h/.w/ D 0.
We now use Rouché’s theorem. We are free to choose p as large as we like, so we
can ensure that jhj < jgj on a small circle  centered at �. Thus, g C h has the
same number of zeroes as g inside  . By the choice of g, we can ensure that g,
and hence g C h, has a zero w0 inside  . Thus, q has a zero w�10 with w0 in a
neighbourhood of �. We can ensure that w0, which by construction is the inverse
of a Galois conjugate of a simple generalized Parry number, is arbitrarily close to �.
This completes the proof.

5.3. Path-connectedness of �. Given Theorem 5.7, it is now easy to show that �
is path connected. We use the following lemma.
Lemma 5.8. Let z D rei� 2 � with r > 1. Then for all r 0 2 .1; r/, z0 D r 0ei� 2 �.

Proof. By Theorem 5.7, we have � D z�1 2 G , so T .�/ D 0 for some T 2 F . For
any a > 1, the function T .z/ WD T .z=a/ 2 F , and has a� as a zero. Thus a� 2 G ,
and so 1

a
z 2 � for any a > 1.

Thus, we can connect any two points in� using, for example, paths along at most
two radial lines together with a path along the unit circle S1.

6. Unimodal maps as generalized ˇ-transformations

We now use the results of the previous sections to study topological entropy for
PCF continuous unimodal maps. The topological entropy of a continuous map on a
compact metric space is a number that captures the exponential growth rate of distinct
orbits of length n, and is a fundamental invariant of a topological dynamical system.
See Walters for a general definition [27]. The problem of deciding if a number can
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be obtained as the entropy of a map from a given class of systems has a long history
with notable results including [11,13,23].

For piecewise monotonic interval maps, the topological entropy has a simple
formula which was first obtained by Misiurewecz and Szlenk [1,15], and which for
current purposes we take as our definition.

Definition 6.1. Let f be a piecewise monotonic map of the unit interval. The
topological entropy, which we denote htop.f /, or simply h, is defined to be

htop.f / D lim
n!1

1

n
log #

˚
branches of monotonicity for f n

	
:

Note that it is immediate from the definition that the entropy of a unimodal
map is at most log 2. One can prove that if f is a generalized ˇ-transformation, then
htop.f / D logˇ, see e.g. Corollary 4.3.13 of [1]. It is well known that every unimodal
map f is topologically semi-conjugate to a �-uniform expander g; that is, a piecewise
affine continuous interval map whose slope on each interval of monotonicity is
either � or ��. In particular, htop.f / D htop.g/, and if f is PCF, then g is PCF.
This result was first proved in [14], and is given as Theorem 4.6.8 of [1]. Thus,
to study the entropies of PCF unimodal maps, it suffices to study the entropies of
PCF uniform expanders. Unimodal uniform expanders (perhaps after modifying by a
conjugacy) can be thought of as generalized ˇ-transformations. Thus the formalism
of generalized ˇ-transformations can be used to study the entropy of unimodal maps.
In particular, we have the following lemma.

Lemma 6.2. Every PCF unimodal map is conjugate to a PCF generalized
ˇ-transformation.

Proof. It suffices to show that every PCF �-uniform expander g is conjugate to a
PCF generalized ˇ-transformation. First, we use the standard trick of trimming
the domain of g, and rescaling to get a surjective map of the unit interval. Let
ƒ D

T
gi .Œ0; 1�/ D Œa; b�, and consider gjƒ. The critical point c satisfies either

g.c/ D a or g.c/ D b. We also have a; b 2 fg.a/; g.b/; g.c/g. We can conjugate by
the affine transformation �.x/ D 1

b�a
.x � a/ to the map G.x/ D � ı g ı ��1.x/ D

1
b�a

Œg..b � a/x C a/� a�. Clearly an affine transformation will send critical points
to critical points, and a conjugacy sends periodic orbits to periodic orbits, so the new
map G is PCF, surjective, and has domain Œ0; 1�.

To be surjective,G must have at least one full branch. There are four possibilities:

(1) first branch full; sign configuration .1;�1/;

(2) first branch full; sign configuration .�1; 1/;

(3) second branch full; sign configuration .�1; 1/;

(4) second branch full; sign configuration .1;�1/.
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Cases (1) and (2) are generalized ˇ-transformations, with ˇ D �, and the
appropriate sign configuration. For case (3), we conjugate by the transfomation
�.x/ D �x to get the transfomation h.x/ D �G.�x/ defined on Œ�1; 0�. We can
conjugate by a translation to return the domain to Œ0; 1�. The new map is in case (2).
Similarly, a map in case (4) is conjugate to a map in case (1). Thus, G is either a
generalized ˇ-transformation, or conjugate to a generalized ˇ-transformation by an
affine transformation.

Thus, for a PCF unimodal map f , we have htop.f / D logˇ for some generalized
Parry number ˇ 2 Œ1; 2�. So we have

�T WD
˚
z j z is a conjugate of eh.f / for a PCF unimodal map f

	
� �:

The problem of giving a description of�T was raised in Thurston’s final paper [23].
His numerical results showed that apart from a spike along the real axis, this set
appears to lie in a disk much smaller than the disk jzj < 2. Our description of �
allows us to conclude that �T nR indeed lies in a disk of radius strictly less than 2.
As mentioned previously, although numerical results suggest that we should expect a
bound less than 1:59, rigorous sharp bounds are currently out of reach. Nevertheless,
we establish the principle that all non-real Galois conjugates are contained inside a
disk with a smaller radius than the trivial bound 2. We now state this as a theorem.
The proof is an immediate consequence of the discussion above and Theorem 4.3.

Theorem 6.3. There exists � > 0 so that if z is a conjugate of eh.f / for a PCF
unimodal map f and z … R, then jzj < 2 � �.

Many questions remain about the sets� and�T . For example, can one describe
� n �T ? One way in which these sets differ is that, from Thurston’s picture, �T
appears to have “holes” around some roots of unity. This is ruled out for � by the
star-convexity proved in Lemma 5.8. It would be interesting to determine the exact
location and distribution of the holes that appear in �T . The existence of holes
for �T inside the unit disk was established in [5]. Another question is to determine
where, and by how much, the outer boundaries of � and �T differ. Numerical
investigation of these questions could be a good first step towards rigorous results.
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