
Comment. Math. Helv. 92 (2017), 621–640
DOI 10.4171/CMH/420

Commentarii Mathematici Helvetici
© Swiss Mathematical Society

Twisted patterns in large subsets of ZN

Michael Björklund and Kamil Bulinski

Abstract. Let E � ZN be a set of positive upper Banach density, and let � < GLN .Z/ be a
“sufficiently large” subgroup. We show in this paper that for each positive integerm there exists
a positive integer k with the following property: For every fa1; : : : ; amg � k � ZN , there are

1; : : : ; 
m 2 � and b 2 E such that


i � ai 2 E � b; for all i D 1; : : : ; m:

We use this “twisted” multiple recurrence result to study images of E � b under various
�-invariant maps. For instance, ifN � 3 andQ is an integer quadratic form on ZN of signature
.p; q/ with p; q � 1 and p C q � 3, then our twisted multiple recurrence theorem applied to
the group � D SO.Q/.Z/ shows that

k2Q.F / � Q.E � b/;

for every F � k � ZN with m elements. In the case when E is an aperiodic Bohro set,
we can choose b to be zero and k D 1, and thus Q.ZN / � Q.E/. Our result is derived
from a non-conventional ergodic theorem which should be of independent interest. Important
ingredients in our proofs are the recent breakthroughs by Benoist–Quint and Bourgain–Furman–
Lindenstrauss–Mozes on equidistribution of random walks on automorphism groups of tori.
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1. Introduction

Webegin by recalling the following classical result of Furstenberg andKatznelson [10].
The upper Banach density of a subset E � ZN will be defined in Appendix A.
Theorem 1.1. Suppose that E � ZN has positive upper Banach density. Then, for
every finite set F � ZN , there exists a positive integer k such that

kF � E � b; for some b 2 E: (1.1)

The case N D 1 corresponds to Szemerédi’s celebrated theorem on arithmetic prog-
ressions.
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This is an archetypal result in Arithmetic Ramsey theory. We stress the order of
the quantifiers; the integer k heavily depends on the finite set F . In this paper we
shall prove a “twisted” analogue of Furstenberg–Katznelson’s Theorem, for which
the dependence between the integer k and the set F disappears. To motivate this line
of study, we begin by giving three applications.

1.1. Quadratic forms. A very influential result in Geometric Ramsey theory by
Furstenberg, Katznelson and Weiss [11] asserts that if E � RN is a Borel set with
positive density in the sense that

lim sup
R!1

Leb.E \ B.R//
RN

> 0;

where Leb denotes the Lebesgue measure on RN and B.R/ denotes the Euclidean
ball of radius R around the origin, then there exists Ro > 0 such that

D.E/ D
˚
kx � yk2 W x; y 2 E

	
� ŒRo;1/;

where k � k denotes the Euclidean norm on RN . In other words, all sufficiently large
Euclidean distances are realized within the set E. Recently, Magyar [13] established
the following discrete analogue of this phenomenon.
Theorem 1.2 ([13, Theorem 1]). Fix an integer N � 5 and let

Q.x1; : : : ; xN / D x
2
1 C � � � C x

2
N :

Then, for every subsetE � ZN of positive upper Banach density, there exist positive
integers Ro and k such that

k2Z \ ŒRo;1/ � Q.E �E/:

Our first application consists of an analogue of Magyar’s result for indefinite
quadratic forms. Contrary to Magyar’s result, we focus here not on the values of Q
restricted to a difference set of a set E � ZN of positive upper Banach density,
but rather we study the values of Q restricted to some translate of the set E. We
stress that our techniques do not apply to the quadratic forms in Magyar’s Theorem
as the (real points) of the symmetry group SO.N / is compact. For the notion of an
(aperiodic) Bohr set we refer the reader to Section 3.
Theorem 1.3. Let p; q � 1 and p C q � 3 and E � ZpCq a set of positive upper
Banach density. LetQ be a quadratic form on RpCq of signature .p; q/ with integer
coefficients. Let m be a positive integer. Then there exists a positive integer k with
the property that for every finite subset F � ZpCq with jF j D m, we have

k2Q.F / � Q.E � b/; for some b 2 E:

If E is an aperiodic Bohr set, then k can be chosen to be 1. In particular, if E is an
aperiodic Bohro-set, thenQ.E/ D Q.ZpCq/.
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1.2. Characteristic polynomials and their Galois groups. Our second example
concerns characteristic polynomials of integer square matrices with zero trace. Let
Matd .Z/ denote the additive group of integer matrices, and define the subgroup
ƒd < Matd .Z/ by

ƒd D
˚
a 2 Matd .Z/ W tr.a/ D 0

	
:

Given a matrix a 2 ƒd , we write C.a/ D det.tI � a/ 2 ZŒt � to denote
its characteristic polynomial. We note that the map C W ƒd ! ZŒt � satisfies
C.
a
�1/ D C.a/ for all a 2 ƒd and 
 2 GLd .Z/.

The following theorem is an extension of a very recent result by the first author
and A. Fish in the paper [4], to which the current paper owes the initial ideas.
Theorem 1.4. Let d � 2 and E � ƒd a set of positive upper Banach density. Letm
be a positive integer. Then there exists a positive integer k with the property that for
every finite subset F � ƒd with jF j D m, we have

C.kF / � C.E � b/; for some b 2 E:

If E is an aperiodic Bohr set, then k can be chosen to be 1. In particular, if E is an
aperiodic Bohro-set, then C.E/ D C.ƒd /.
Remark 1.5. During the finalization of this paper, the authors were informed by
A. Fish that he had independently proved the last assertion inTheorem1.4 (concerning
aperiodic Bohro sets); see [7].

Given a 2 ƒd , we denote by Qa the field generated by the eigenvalues of a, or
equivalently, the splitting field of the polynomial C.a/. We note that

Qka D Qa and Q
a
�1 D Qa; for all k 2 Q� and 
 2 GLd .Z/:

Given P 2 ZŒt �, we let G .P / denote the Galois group (over Q) of the splitting
field of P . Thus G .C.a// is the Galois group of the field extension Qa=Q. Since
each C.a/ is a monic polynomial of degree d , we see that each G .C.a// is a
subgroup of the symmetric group Sd . Let Gd denote the set of all possible subgroups
G .C.a// < Sd as a ranges over ƒd . From the relations above, we see that

G .C.ka// D G .C.a// and G .C.
a
�1// D G .C.a//;

for all k 2 N� and 
 2 GLd .Z/:

Let F � ZN be a finite set such that G .F / D Gd . Upon applying the map G

to the sets C.kF / and C.E � b/ in Theorem 1.4, we have established the following
corollary. We stress that this result also follows from Furstenberg–Katznelson’s
Theorem mentioned in the beginning of the introduction.
Corollary 1.6. Let d � 2 and suppose thatE � ƒd is a set of positive upper Banach
density. Then there exists b 2 E such that Gd � G .C.E�b//, i.e. all possible Galois
groups can be found in some translate of E.
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This result should be compared with Gallagher’s Theorem [12] which asserts that
“most” irreduciblemonic polynomials with integer coefficients haveGalois groupSd .

1.3. Determinants of symmetric matrices. Our final example involves determi-
nants of symmetric integer matrices. We let Symd D fa 2 Matd .Z/ j a D atg

denote the set of all symmetric d � d integer matrices.

Theorem 1.7. Let d � 2 and E � Symd a set of positive upper Banach density.
Let m be a positive integer. Then there exists a positive integer k with the property
that for every finite subset F � Symd with jF j D m, we have

kd det.F / � det.E � b/; for some b 2 E:

If E is an aperiodic Bohr set, then k can be chosen to be 1. In particular, if E is an
aperiodic Bohro-set, then det.E/ D Z.

In particular, let Eo � Z be an aperiodic Bohro-set, and define

E D
˚�
x z
z y

�
W x; y; z 2 Eo

	
� Sym2 :

Then E is a Bohro-set in Sym2 Š Z3 to which Theorem 1.7 can applied to yield the
following corollary.

Corollary 1.8. Suppose that Eo � Z is an aperiodic Bohro-set. Then,˚
xy � z2 W x; y; z 2 Eo

	
D Z:

1.4. Invariant patterns in sets of positive upper Banach density. We now turn to
generalizing the three examples above. The main idea is that the functions presented
in those examples (the quadratic forms, the characteristic polynomial map and the
determinant map) are all invariant under certain linear actions. More specifically,
the quadratic form Q in Theorem 1.3 is preserved by SO.Q/.Z/; the characteristic
polynomial map C and the Galois group map G on ƒd are both preserved by the
conjugation action of SLd .Z/ onƒd ; while the determinant map is preserved by the
action of SLd .Z/ on Symd given by 
 � a D 
a
 t . One of the main goals of this
paper is to establish the following general result, to which the examples above apply
(this will be verified in Appendix B).

Definition 1.9. A subgroup � � GLN .R/ is said to be strongly irreducible if for
every finite index subgroup � 0 � � , the standard representation of � 0 on RN is
irreducible. We say that a Zariski connected real algebraic group G has no compact
factors if every Zariski-continuous group homomorphism � W G ! GLr.R/ with
bounded image is trivial (cf. Section 2 in [2]). To avoid confusion when necessary
(in Appendix B), the usual Lie group theoretic compact factors will be referred to as
the compact Lie group factors.
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Theorem 1.10. Let � < GLN .Z/ be a non-trivial finitely generated strongly
irreducible subgroup whose Zariski closure in GLN .R/ is a Zariski connected
semisimple group with no compact factors. Let Y be a set and suppose that
‰ W ZN ! Y is a �-invariant function. For every E � ZN of positive upper
Banach density and m � 1, there exists a positive integer k with the property that
whenever F � ZN is a finite set of cardinality m, then

‰.kF / � ‰.E � b/; for some b 2 E:

Moreover, if E � ZN is an aperiodic Bohr-set, then k can be chosen to be 1. In
particular, if E is an aperiodic Bohro-set, then ‰.E/ D ‰.ZN /.

The following result is an immediate consequence of Theorem 1.10, and
generalizes the main result in [4].
Corollary 1.11. Let � and ‰ be as in Theorem 1.10 and suppose that E � ZN has
positive upper Banach density. Then there exists a positive integer k such that

‰.kZN / � ‰.E �E/:

1.5. Twistedmultiple recurrence. Theorem 1.10 is derived from a “twisted”multi-
ple recurrence result for ergodic ZN -actions which we shall now state. Let .X; �/ be
a Borel probability measure space, i.e. X is a Borel subset of a compact and second
countable space X , and � is a probability measure on the restriction of the Borel
� -algebra on X to X . Suppose that ZN acts on X by Borel measurable bijections,
which preserve �. In this case we refer to .X; �/ as a ZN -space. We say that .X; �/
is ergodic if whenever B � X is a Borel set which is invariant under ZN , then B is
either a �-null set or a �-conull set.

We note that one can always associate to any ZN -space a unitary representa-
tion �X of ZN on the Hilbert space L2.X; �/ via�

�X .a/f
�
.x/ D f ..�a/ � x/; for a 2 ZN and f 2 L2.X; �/:

Given a character � on ZN , we write

L2.X; �/� D
˚
f 2 L2.X; �/ W �X .a/f D �.a/f

	
� L2.X; �/:

We say that � is a rational character if there exists a positive integer m such that
�.ma/ D 1 for all a 2 ZN . The set of all rational � for which L2.X; �/� is
non-zero is called the rational spectrum of the ZN -space .X; �/. Since the constant
function 1 is fixed by �X , we note that the rational spectrum always contains the
trivial character 1. If there are no other elements in the rational spectrum, we say
that the rational spectrum is trivial.
Theorem 1.12. Let .X; �/ be an ergodic ZN -space and suppose that B is a Borel
set in X . Let � be as in Theorem 1.10. For every " > 0 and integer m � 1, there
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exists a positive integer k with the property that whenever a1; : : : ; am are elements
in kZN , then then there are 
1; : : : ; 
m 2 � such that

�
� m\
jD1

�

jaj

�
� B
�
� �.B/m � ":

If the rational spectrum of the ZN -space .X; �/ is trivial, then k can be chosen to
be 1.

In Appendix A we outline how the following result can be deduced from
Theorem 1.12. For the connection between trivial rational spectrum and aperiodic
Bohr sets we refer the reader to Section 3.

Corollary 1.13. Let E � ZN be a set of positive upper Banach density and m � 1.
Let � be as in Theorem 1.10. For every " > 0, there exists a positive integer k
with the property that whenever a1; : : : ; am are elements in kZN , then there are

1; : : : ; 
m 2 � such that

d�
� m\
jD1

�
E � 
jaj

��
� d�.E/m � ":

If E is an aperiodic Bohr set, then k can be chosen to be 1.

1.6. Proof of Theorem 1.10 usingCorollary 1.13. Let Y be a set and‰ W ZN ! Y

be a �-invariant function. LetE � ZN be a set of positive upper Banach density and
" > 0 and let m be a positive integer. By Corollary 1.13 we can now find a positive
integer k with the property that for all a1; : : : ; am 2 kZN , there are 
1; : : : ; 
m 2 �
such that

d�
�
E \

m\
jD1

�
E � 
jaj

��
� d�.E/mC1 � ";

If " < d�.E/mC1, then the left hand side is positive, and we can find b 2 E such
that

b C 
jaj 2 E; for every j D 1; : : : ; m:

In particular, ‰.aj / D ‰.
jaj / 2 ‰.E � b/ for each j . Since a1; : : : ; am 2 kZN

are arbitrary, this finishes the first part of the proof. Finally, by the second part of
Corollary 1.13, if E � ZN is an aperiodic Bohro-set, then the integer k above can
be chosen to be 1.

1.7. A non-conventional mean ergodic theorem. The proof of Theorem 1.12 will
use as a black box some recent deep results by Benoist and Quint from the papers [1]
and [3]. The following definition will be useful.



Vol. 92 (2017) Twisted patterns in large subsets of ZN 627

Definition 1.14 (BQ-pair). Let � < GLN .Z/ be a non-trivial finitely generated
irreducible subgroup and let � be a finitely supported probability measure on �
whose support generates � as a semigroup. We say that .�; �/ is a BQ-pair if
the Zariski closure of � is a Zariski-connected semisimple algebraic group with no
compact factors.

Let .H ; �/ be a unitaryZN -representation on a separable Hilbert spaceH . Given
a character � on ZN , we define

H� D
˚
v 2 H W �.a/v D �.a/v; for all a 2 ZN

	
:

The rational spectrum of .H ; �/ is defined as the set of all rational characters on ZN

for which H� is non-zero. We say that the rational spectrum is trivial if it is either
empty or only consists of the character 1. Finally, we denote by Hrat the linear
span of H�, as � ranges over the rational spectrum, and we write HG for the linear
subspace of �.G/-invariant vectors in H .

Suppose that � is a probability measure on � . We define

��j .
/ D
X

�.
1/ � � ��.
j /; for j � 1;

where the sum is taken over all j -tuples .
1; : : : ; 
j / such that 
1 � � � 
j D 
 .

Our main technical result in this paper can now be stated as follows.
Theorem 1.15. Let .�; �/ be a BQ-pair and let .H ; �/ be a unitary ZN -represent-
ation. For every a 2 ZN and v 2 H , the limit

Qav WD lim
n

1

n

nX
jD1

�X

2�

��j .
/�.
a/v
�
;

exists in the norm topology on H . Furthermore, for every " > 0 and v 2 H , there
exists a positive integer k with the property that whenever a 2 kZN , then

Qav � Pratv



 < ";
where Prat denotes the orthogonal projection onto Hrat. If the rational spectrum
of .H ; �/ is trivial, thenQa coincides with the orthogonal projection onto the space
of �-invariant vectors, for all a 2 ZN n f0g.

1.8. Proof of Theorem 1.12 using Theorem 1.15. Let .X; �/ be an ergodic ZN -
space and let .L2.X; �/; �X / be the associated ZN -representation as in Subsec-
tion 1.5. Since .X; �/ is ergodic, we see that all �X -invariant elements are
(�-essentially) constant functions. Let f D 1B 2 L

2.X; �/ be the indicator function
of a measurable non-null set B � X , and define�

Q.n/
a f

�
.x/ D

1

n

nX
jD1

�X

2�

��j .
/
�
�X .
a/f

�
.x/
�
; for a 2 ZN :
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Let frat D Pratf and fix m 2 N and " > 0. By Theorem 1.15 and the fact that Prat
can be expressed as a conditional expectation (see �7:4 in [6]), we know that:

� There exists a positive integer k such that for all a 2 kZN n f0g, and sufficiently
large n, we have

kQ.n/
a f k1 � 1 and kQ.n/

a f � fratk <
"

m
:

� We have

0 � frat � 1 and
Z
X

frat d� D

Z
X

f d�:

� If the rational spectrum of .X; �/ is trivial, thenQa D Prat andQaf D
R
X
f d�

for all non-zero a 2 ZN . In particular, the integer k above can be chosen to be
one.

Now fix a1; : : : ; am 2 kZn. Hence, for some sufficiently large n, we haveZ
X

Q.n/
a1
f .x/ � � �Q.n/

am
f .x/ d�.x/ �

Z
X

f m�srat f s d� � ";

where s denotes the number of ai ’s equal to zero (note that Q0f D f ). If s > 0

then, since f m�srat 2 Hrat and f s D f , we haveZ
X

f m�srat f s d� D

Z
X

f m�srat f d� D

Z
X

f m�sC1rat d� �

Z
X

f mrat d�:

Hence in either case we haveZ
X

Q.n/
a1
f .x/ � � �Q.n/

am
f .x/ d�.x/ �

Z
X

f mrat d� � "

�

� Z
X

frat d�
�m
� " D

� Z
X

f d�
�m
� ";

where in the second to last step we used Hölder’s inequality. Upon writing out the
definitions of the operators Q.n/

� , and using that f is non-negative, we see that not
all terms in the expansions can be less than the right hand side, and thus, for all
a1; : : : ; am 2 kZN , we can find 
1; : : : ; 
m 2 � such thatZ

X

f ..�
1a1/ � x/ � � � f ..�
mam/ � x/ d�.x/ �
� Z

X

f d�
�m
� ";

which gives Theorem 1.12.
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2. Proof of Theorem 1.15

LetTN denote the set of all homomorphisms fromZN intoS1 D fz 2 C� W jzj D 1g,
and note that GLN .Z/ acts on TN by�


��
�
.a/ D �.
�1a/; for � 2 TN and 
 2 GLN .Z/:

Given � 2 TN and � < GLN .Z/, we define

�� D
˚

 2 � W 
�� D �

	
< �:

We recall that an element � 2 TN is called rational if there exists a positive integerm
such that �.ma/ D 1 for all a 2 ZN .
Lemma 2.1. Suppose that � < GLN .Z/ is infinite1 and strongly irreducible and
� 2 TN . Then the index Œ� W ��� is finite if and only if � is rational.

Proof. Suppose that Œ� W ��� is finite, hence �� is non-trivial as � is infinite. Then
ƒ D ker� < ZN is a non-trivial��-invariant subgroup, and thus V D ƒ˝R < RN

is a non-trivial ��-invariant linear subspace. By strong irreducibility of � , we have
V D RN , and thus ƒ must have finite index in ZN . Let m be the order of ZN =ƒ.
Then we have �m D 1, and thus � is rational.

Suppose that � is rational. Then ƒ D ker� < ZN has finite index, and � acts
on the finite set Im� Š ZN =ƒ, which shows that �� D Stab� ƒ has finite index
in � .

The main technical ingredient in the proof of Theorem 1.15 is the following deep
result by Benoist and Quint; see Théorème 1.3 in [1] and Corollary 1.10b) in [3]. If �
in addition contains an element with a dominant eigenvalue of multiplicity one, then
this result was established earlier by Bourgain, Furman, Lindenstrauss and Mozes;
see Theorem B in [5].
Theorem 2.2. Let .�; �/ be a BQ-pair. For every � 2 TN and a 2 ZN n f0g, we
have

lim
n

1

n

nX
jD1

�X

2�

�.
a/��j .
/
�
D 0;

if Œ� W ��� D1, and

lim
n

1

n

nX
jD1

�X

2�

�.
a/��j .
/
�
D

1

Œ� W ���

X

2��n�

�.
a/;

if Œ� W ��� <1.
1This is satisfied for � coming from a BQ pair: If � is non-trivial and has Zariski connected Zariski

closure, then it must be infinite.
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Remark 2.3. We stress that Theorem 2.2 is not explicated in neither of the papers [1]
or [3]. Under the assumption that .�; �/ is a BQ-pair, Corollary 1.10b) in [3] asserts
that for every � 2 TN , there exists a �-invariant Borel probability measure on ��
on TN , supported on the closure of the �-orbit of �, such that for every continuous
function f W TN ! C, we have

1

n

nX
kD1

�X

2�

f ..
�/�1�/��j .
/
�
D

Z
TN

f d��:

By Théorème 1.3 in [1], �� is either the counting probability measure on a the (finite)
�-orbit of � in TN (in which case the index Œ� W ��� is finite), or it is equal to the
Haar probability measure on TN . We get Theorem 2.2 by letting f .�/ D �.a/ for
a 2 ZN .

Let .H ; �/ be a unitaryZN -representation on a separable Hilbert spaceH . Given
� 2 TN , we recall that we by H� denote the Hilbert sub-spaces

H� D
˚
v 2 H W �.a/v D �.a/v; for all a 2 ZN

	
:

One readily verifies that if �1 and �2 are distinct elements in TN , then H�1 and H�2

are orthogonal subspaces in H . Since H is separable, we conclude that there is a
possibly empty, but at most countable, set � � TN such that H� is a non-trivial
subspace for � 2 �. The set of rational elements in�will be denoted by RN , which
we shall refer to as the rational spectrum of .H ; �/, and we write

Hrat D
M
�2RN

H� � H ;

where the direct sum is taken in the Hilbert space sense. The following lemma
is an immediate consequence of the definitions above and the second assertion in
Theorem 2.2, so we omit the proof.
Lemma 2.4. For every v 2 Hrat and a 2 ZN , we have

lim
n

1

n

nX
jD1

�X

2�

��j .
/�.
a/v
�
D

X
�2RN

� 1

Œ� W ���

X

2��n�

�.
a/
�
v�

where v D
P
v� and v� 2 H�.

The full force of Theorem 2.2 is released in the proof of the following lemma.
Lemma 2.5. For every v 2 H?rat and a 2 ZN n f0g, we have

lim
n

1

n

nX
jD1

�X

2�

��j .
/�.
a/v
�
D 0:
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Proof. Let v 2 H?rat with kvk D 1. By Bochner’s Theorem, there exists a Borel
probability measure � on TN such that

h�.a/v; vi D

Z
TN

�.a/ d�.�/; for all a 2 ZN :

We observe that, by an application of von-Neumann’s mean ergodic theorem to the
unitary ZN -representation .H ; ��/ given by

��.a/v D �.a/
�1�.v/ for a 2 ZN and v 2 H ;

we have that �.f�g/ D 0 for every rational � 2 TN . We note that


1
n

nX
jD1

�X

2�

��j .
/�.
a/v
�


2 D Z

TN

ˇ̌̌1
n

nX
jD1

�X

2�

��j .
/�.
a/
�ˇ̌̌2

d�.�/;

for all n. By Lemma 2.1, we have Œ� W ��� D 1 for every irrational � and
Œ� W ��� < 1 for every rational �. Hence, by Theorem 2.2, we conclude that the
right-hand side above converges toX

�2RN

ˇ̌̌ 1

Œ� W ���

X

2��n�

�.
a/
ˇ̌̌2
�.f�g/ D 0;

since �.f�g/ D 0 for all � 2 RN , which finishes the proof.

Upon combining Lemma 2.4 and Lemma 2.5, we conclude that the limits

Qav D lim
n

1

n

nX
jD1

�X



��j .
/ �.
/v
�

exist for every v 2 H and a 2 ZN n f0g, and

Qav D
X
�2RN

� 1

Œ� W ���

X

2��n�

�.
a/
�
v�;

where Pratv D
P
v� and v� 2 H�. In particular, if RN is trivial, i.e. if RN is

either empty or consists solely of the trivial character 1, then Qa coincides with the
orthogonal projection onto the closed subspace of �.G/-invariant elements in H .

The second assertion of Theorem 1.15 follows from the following lemma. Here,
Prat denotes the orthogonal projection onto Hrat.
Lemma 2.6. For every " > 0 and v 2 H , there exists a positive integer k such that

Qav � Pratv



 < "; for all a 2 kZN n f0g:
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Proof. SinceQa D 0 on H?rat, it suffices to prove the lemma for v 2 Hrat. Pick " > 0
and v 2 Hrat and choose a finite set F � RN such thatX

�…F

kv�k
2 < "2:

Since F is a finite set, we can find at least one positive integer k such that �.ka/ D 1
for all � 2 F and a 2 ZN . We note that this implies that Qkav� D v� for all
a 2 ZN , and thus

Qav � v

 D 

X

�…F

Qav�


 � �X

�…F



v�k2� 12 < ";
since kQavk � kvk for all v 2 H andQaH� � H� for all � 2 RN .

3. Bohr sets and rational spectrum

We say that E � ZN is a Bohr set if there exist a compact and second countable
abelian groupK with Haar probability measuremK , a homomorphism � W ZN ! K

with dense image, and a non-empty open set U � K with mK.U / D mK.U / such
that E D ��1.U /. If K is connected, we say that E is aperiodic, and if U contains
the identity element of K, we say that B is an aperiodic Bohro set. We note that if
B � ZN is any aperiodic Bohro-set, then one can always find another Bohro-set C
such that C � C � B .
Example 3.1. We give here an example of an aperiodic Bohr set inZ. LetK D R=Z
and suppose that # is an irrational number. Then �.a/ D a � # mod 1 is a
homomorphism from Z into K with dense image. Let U � K be an open subset,
e.g. an open interval. Then

B D ��1.U / D
˚
a 2 Z W a � # mod 1 2 U

	
� Z

is an aperiodic Bohr set in Z. More generally, for every integer N , we can form the
homomorphism �N W ZN ! KN defined by

�.a1; : : : ; aN / D .�.a1/; : : : ; �.aN //; for .a1; : : : ; aN / 2 ZN :

One can readily check that �N has dense image in KN , and thus

B � � � � � B D ��1N .U � � � � � U/ � ZN

is an aperiodic Bohro-set in ZN .
We can make .K;mK/ into a ZN -space with the ZN -action defined by

a � x D x � �.a/; for x 2 K and a 2 ZN :
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We denote by�K the regular representation ofZN onL2.K;mK/ and given� 2 TN ,
we define

L2.K;mK/� D
˚
f 2 L2.K;mK/ W �K.a/f D �.a/f

	
:

Let bK denote the dual of K. We can view � 2 bK as an element in L2.K;mK/ with
the property that �K.a/� D �.�.a//� for all a 2 ZN . Note that if �1; �2 2 bK satisfy
�1 ı � D �2 ı � , then �1 D �2 since the image of � is dense. In particular, for every
� 2 TN of the form � D � ı � , we have

L2.K;mK/� D C � �:

Since all � are orthogonal to each other inL2.K;mK/, and together spanL2.K;mK/,
we conclude that

L2.K;mK/ D
M
�2bKL2.K;mK/�ı� ;

where the direct sum is taken in the Hilbert space sense. Suppose that � D � ı � is
rational, i.e. assume that there exists a positive integer m such that �m D 1. Then,

�.a/m D �.m�.a// D �.�.ma// D 1; for all a 2 ZN ;

and thus �.k/ D 1 for all k 2 L, where L WD �.mZN / < K, by continuity of �.
One readily shows that L has finite index in K and thus is an open subgroup of K.
In particular, if K is connected, then L D K, and � D 1, which establishes the
following lemma.
Lemma 3.2. Let K be a compact and connected abelian group and suppose that
� W ZN ! K is a homomorphism with dense image. Then the associated ZN -space
.K;mK/ has trivial rational spectrum.
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A. Correspondence principle

We shall now explain how one can deduce Corollary 1.13 from Theorem 1.12. The
arguments in this section are nowadays rather standard, and can be traced back to the
seminal paper [9] by Furstenberg.
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Suppose thatE � ZN . We may viewE as an element in the compact and second
countable space 2ZN of all subsets of ZN equipped with the product topology, on
which ZN acts by homeomorphisms via

a � A D A � a; for A 2 2ZN and a 2 ZN :

Let X denote the closure of ZN � E in 2ZN . Then X is again a compact and second
countable space, and

V D
˚
A 2 X W 0 2 A

	
� X; (A.1)

is a clopen (closed and open) subset ofX . We note thatE D fa 2 ZN W a �E 2 V g.
In other words, E can be realized as the “hitting times” of the set V of the ZN -orbit
of E in X .

More generally, let X be a compact and second space, equipped with an action
of ZN by homeomorphisms. Given a subset U � X and x 2 X , we define

Ux D
˚
a 2 ZN W a � x 2 U

	
� ZN :

For instance, ifK is a compact and connected second countable group, � W ZN ! K

is a homomorphism with dense image and .K;mK/ denotes the associated ZN -space
defined in Section 3, then for any non-empty open subset U � K, we see that

U0 D
˚
a 2 ZN W �.a/ 2 �U

	
D ��1.�U/ � ZN (A.2)

is an aperiodic Bohr set. Since K is connected, the ZN -space .K;mK/ has trivial
rational spectrum by Lemma 3.2.

Let Fn D Œ�n; n�N � ZN and define the upper Banach density of a subset
E � ZN by

d�.E/ D sup
n
lim sup

n

jE \ .Fn C an/j

jFnj
W .an/ is a sequence in ZN

o
:

In particular,

d�.E/ � lim sup
n

jE \ Fnj

jFnj
; for all E � ZN :

Let PZN .X/ denote the (non-empty) convex set of ZN -invariant Borel probability
measures on the compact and second countable space X . The following proposition
can now be deduced from Theorem 1.1 in [9].
Proposition A.1. Suppose that U � X is open and xo 2 X has a dense ZN -orbit
in X . Then,

d�
� \
a2F

�
Uxo � a

��
� �

� \
a2F

a � U
�
;
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for every finite set F � ZN and � 2 PZN .X/. Furthermore, if �.U / D �.U / for all
� 2 PZN , then

d�.Uxo/ D �.U /; for some ergodic � 2 PZN .X/:

A.1. Proof of Corollary 1.13. Suppose that .X; �/ is a compact and second
countableZN -space, and letU � X be a non-empty open set such that �.U / D �.U /
for all � 2 PZN .X/. For instance, we could choose:
� X to be the orbit closure of the set E � ZN and U D V as in (A.1). In this case,
U is a non-empty clopen set, and there exists an ergodic � 2 PZN .X/ such that

d�.E/ D d�.UE / D �.U /:

� K to be a compact, connected and second countable group, � W ZN ! K a
homomorphismwith dense image and .X; �/ D .K;mK/ theZN -space associated
to .K; �/ as in Section 3. In this case, mK is the unique ZN -invariant Borel
probability measure on K. In particular, for any open subset such that mK.U / D
mK.U /, we have d�.��1.U // D mK.U /, and E D ��1.U / is an aperiodic Bohr
set.

Let � < GLN .Z/ and a1; : : : ; am 2 ZN . In the first case above, Proposition A.1
guarantees that

d�.E/ D �.V / and d�
� m\
jD1

�
E � 
jaj /

�
� �

� m\
jD1

.
jaj / � V
�
;

for all 
1; : : : ; 
m, and in the second case above, Proposition A.1 asserts that

d�.E/ D mK.U / and d�
� m\
jD1

�
��1.U / � 
jaj /

�
� mK

� m\
jD1

.
jaj / � U
�
;

for all 
1; : : : ; 
m.

Let � be as in Theorem 1.10 and suppose that .X; �/ and U are as in one of the
two examples above. Let " > 0 and let m be a positive integer. By Theorem 1.12,
there exist a positive integer k with the property that whenever a1; : : : ; am 2 kZN ,
then

�
� m\
jD1

.
jaj / � U
�
� �.U /m � "; for some 
1; : : : ; 
m 2 �: (A.3)

Furthermore, if .X; �/ has trivial spectrum, as in the second example above (by
Lemma 3.2), then k can be chosen to be 1.
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Upon combining the bounds above, we conclude that for all a1; : : : ; am 2 kZN ,
we have

d�
� m\
jD1

�
E � 
jaj

��
� d�.E/m � "; for some 
1; : : : ; 
m 2 �:

In the case when .X; �/ D .K;mK/, the integer k can be chosen to be 1.

B. Verifying the conditions for a BQ-pair

We now verify that our examples satisfy the conditions of a BQ-pair. Note that in
each of our examples we have a polynomial group homomorphism � W G ! SLN .R/
for some Zariski closed subgroup G � GLd .R/, which then defines an action of G
on RN given by g � v D �.g/v. For example, in Theorem 1.4 we consider the adjoint
representation Ad W SLd .R//! GL.sld .R//, given by

Ad.g/v D gvg�1 for g 2 SLd .R/ and v 2 sld .R/;

where sld .R/ is the real vector space of real d � d traceless matrices. In other
words, Theorem 1.4 is obtained from Theorem 1.10 by setting � D Ad.SLd .Z//
(and identifying ƒd with Zd

2�1). The following Proposition ensures that such a
representation � preserves certain algebraic conditions in the definition of a BQ-pair.
Proposition B.1. Let � W G ! SLN .R/ be a polynomial homomorphism, where
G � SLd .R/ is a Zariski connected semisimple Lie group with no compact algebraic
factors. Then for � � G Zariski dense, we have that the Zariski closure of �.�/ is a
Zariski connected semisimple Lie group with no compact algebraic factors.

Proof. By Zariski-continuity, �.G/ � �.�/
Z
and in fact it is classical that Œ�.G/ W

�.�/
Z
� is finite (see for example Corollary 4.6.5 [16]). Hence �.G/ being semisimple

implies that �.�/
Z

also is. Again by Zariski continuity of �, we have that �.�/
Z

is Zariski connected. Finally, suppose that � W �.�/
Z
! GLD.R/ is a bounded

algebraic group homomorphism (for someD), then so is � ı � and so �.�.G// is the
trivial subgroup. Thus �.G/ � ker � � �.�/

Z
. But since ker � is Zariski closed we

have that it is equal to �.�/
Z
, so there are no compact factors.

B.1. Algebro-geometric properties. We now turn to determining the Zariski clo-
sures of SLd .Z/ and SO.Q/.Z/ and verifying the required algebro-geometric
properties (In this appendix, Q will always denote a quadratic form as in
Theorem 1.3.). We first note the crucial fact that the groups SLd .Z/ and SO.Q/.Z/
are, respectively, lattices in SLd .R/ and SO.Q/.R/ (See Theorem 5.1.11 and
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Example 5.1.12 in [15]). We also note that, as required by our main theorems, these
lattices are finitely generated (See Theorem 4.7.10 in [15] or Chapter IX in [14]). We
will demonstrate below, via Borel’s density theorem, that these lattices are Zariski
dense. We remark the technicality that we use the following formulation of Borel’s
density theorem (not explicated in [8] as it demands that G is connected), which
follows immediately from a combination of (4.5.1) in [15] and (4.5.2) in [16].

Theorem B.2 (Borel’s density theorem). Let G � SLN .R/ be a Zariski connected
semisimple Lie group (in particular, it has finitely many connected components) with
no compact Lie group factors. Then any lattice in G is Zariski dense.

Lemma B.3. The group SLd .R/ is the Zariski closure of SLd .Z/ and is a Zariski-
connected semisimple Lie group with no compact factors.

Proof. Zariski connectedness follows from the fact that SLd .R/ is connected in the
Euclidean topology. The lack of compact factors follows from the much stronger
classical fact that the only proper non-trivial normal (abstract) subgroup of SLd .R/
is its center (in particular, this also shows semisimplicity). Thus Borel’s density
theorem may be applied.

From now on, we identify SO.Q/.R/ with SO.p; q/.R/, as can be done via a
linear change of coordinates.

Lemma B.4. For p; q � 1 with p C q � 3, the group SO.p; q/.R/ is a Zariski-
connected semisimple Lie group with no compact factors. Moreover, the Zariski
closure of SO.Q/.Z/ is SO.Q/.R/ Š SO.p; q/.R/.

Proof. Let G D SO.p; q/.R/ and let Go denote the connected (in the Euclidean
topology) component of SO.p; q/. It follows from Problems 9 and 10 of Section 3 in
Chapter 1 of [17] that ŒG W Go� D 2 and that Go is not Zariski closed. This implies
thatG is the Zariski closure ofGo and thus is Zariski connected. For .p; q/ ¤ .2; 2/
it is well known (see for instance Appendix A in [15]] that Go is simple as a Lie
group and hence has no compact Lie group factors, while for .p; q/ ¤ .2; 2/ we
have that G is a finite index quotient of SL2.R/ � SL2.R/ (see Appendix B in [18])
and thus is semisimple with no compact Lie group factors. In either case, we have
that Go is contained in the kernel of all compact (algebraic) factors of G. Hence,
since SOo.p; q/.R/ is not Zariski closed, there are no non-trivial compact (algebraic)
factors. Moreover, we may apply Borel’s density theorem to obtain that all lattices
(and hence SO.Q/.Z/) are Zariski dense in SO.Q/.R/ Š G.

B.2. Irreducibility. It now remains to check the strong irreducibility of the sub-
groups in our examples. Our first lemma shows that in fact it is enough to check the
irreducibility of its Zariski closure.
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LemmaB.5 (Irreducibility implies strong irreducibility). Suppose that� � GLN .Z/
is a subgroup such that its Zariski closureG D �Z � GLN .R/ is Zariski connected
and irreducible. Then � is a strongly irreducible subgroup of GLN .R/.

Proof. Let V � RN be a non-trivial subspace invariant under a finite index subgroup
�0 � � . Then �0

Z also preserves V and is a finite index Zariski closed subgroup
of G, hence G D �0

Z by Zariski connectedness of G. So G preserves V and so
V D RN , as required.

Lemma B.6. The adjoint action (i.e. action by conjugation) of SLd .R/ on sld .R/ is
irreducible.

Proof. Let W � sld .R/ by a subspace that is invariant under the adjoint action. By
differentiating, we see that Œsld .R/;W � D W , i.e.W is an ideal. But it is well known
that sld .R/ is simple.

For a representation G Õ V and v 2 V , we let RŒG�v denote the smallest
G-invariant subspace containing v.
Lemma B.7. The action of SLd .R/ on Symd given by g:A D gAgt is irreducible.

Proof. Since each non-zero element of Symd is in the G-orbit of some diagonal
matrix, it is enough to show that RŒG�A D Symd for each non-zero diagonal
matrixA. All positive diagonalmatrices (i.e. diagonalmatriceswith positive diagonal
entires) are in the G-orbit of some positive constant multiple of the identity matrix,
but the positive diagonal matrices span the space of all diagonal matrices. Thus it
remains to show that if we fix a non-zero diagonal matrix A D diag.a1; a2; : : : ; ad /,
then the space RŒG�A contains a positive diagonal matrix. Note that theG-orbit ofA
contains

diag.Ka1; K�1=.d�1/a2; : : : ; K�1=.d�1/ad / for all K > 0

and also
diag.a�.1/; : : : ; a�.n// for all � 2 Sn;

which can be seen from the identity�
0 1

�1 0

��
d1 0

0 d2

��
0 �1

1 0

�
D

�
d2 0

0 d1

�
:

Assuming (without loss of generality) that a1 > 0, we see (by taking K large
enough) that theG-orbit ofA contains an element of the formB1 D diag.b1; : : : ; bn/
where b1 > d and jbkj < 1 for k D 2; : : : ; d . The G-orbit of A also contains Br D
.b�.1/; : : : ; b�.n// where � is the transposition .1r/. Thus B1 C � � � C Bd 2 RŒG�A
is a diagonal matrix with positive diagonal entries.
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Lemma B.8. For p; q � 1 with p C q � 3, the action of SO.p; q/ on RpCq is
irreducible.

This will be deduced from the following general observation.
Lemma B.9. Let V and W be vector spaces with dimW > 1 and let H � GL.V /,
K � GL.W / be subgroups acting irreducibly on V and W respectively. Now
suppose thatH�K � G � GL.V ˚W / is a subgroup such that V �f0g and f0g�W
are not G-invariant. Then G acts irreducibly on V ˚W .

Proof. Choose x0 D .v0; w0/ 2 V ˚W nf.0; 0/g and letRŒG�x0 denote the smallest
G-invariant subspace containing x0. There exists x1 D .v1; w1/ 2 RŒG�x0 such that
w1 ¤ 0 (by non-invariance ofV �f0g). Now since dimW > 1 andK acts irreducibly,
there exists k1 2 K such that k1:w1 ¤ w1. Hence

x2 WD x1 � .1; k1/:x1 D .0; w2/ 2 RŒG�x0

withw2 D w1�k1:w1 ¤ 0. Since the action ofK is irreducible, we have f0g�W �
RŒG�x0. But since f0g �W is not G-invariant, there exists .v3; w3/ 2 RŒG�x0 such
that v3 ¤ 0. But .v3; 0/ D .v3; w3/ � .0; w3/ 2 RŒG�x0. So by irreducibility of H
we have that V � f0g � RŒG�x0.

The lemma applies (assuming q � 2) with V D Rp , W D Rq , H D SO.p/,
K D SO.q/ and G D SO.p; q/. The non-invariance of V and W follow from
considering a natural embedding SO.1; 1/ ,! SO.p; q/ and using the fact that
SO.1; 1/ acts irreducibly onR2 (this can be seen by considering hyperbolic rotations).
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