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A compactness theorem for Fueter sections

Thomas Walpuski

Abstract. We prove that a sequence of Fueter sections of a bundle of compact hyperkähler
manifolds X over a 3-manifold M with bounded energy converges (after passing to a
subsequence) outside a 1-dimensional closed rectifiable subset S � M . The non-compactness
along S has two sources: (1) Bubbling-off of holomorphic spheres in the fibres of X transverse
to a subset � � S , whose tangent directions satisfy strong rigidity properties. (2) The formation
of non-removable singularities in a set of H1-measure zero. Our analysis is based on the ideas
and techniques that Lin developed for harmonic maps [19]. These methods also apply to Fueter
sections on 4-dimensional manifolds; we discuss the corresponding compactness theorem in an
appendix. We hope that the work in this paper will provide a first step towards extending the
hyperkähler Floer theory developed by Hohloch, Noetzel, and Salamon [15] and Salamon [22]
to general target spaces. Moreover, we expect that this work will find applications in gauge
theory in higher dimensions.
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1. Introduction

Let M be an orientable Riemannian 3-manifold, let X
�
�! M be a bundle of hyper-

kähler manifolds together with a fixed isometric identification I W STM ! H.X/ of
the unit tangent bundle in M and the bundle of hyperkähler spheres1 of the fibres
of X, and fix a connection on X.
Definition 1.1. A section u 2 �.X/ is called a Fueter section if

Fu WD

3X
iD1

I.vi /rviu D 0 2 �.u
�VX/ (1.2)

for some local orthonormal frame .v1; v2; v3/.2 Here ru 2 �1.M; u�VX/ is the

1Given a hyperkähler manifold .X; g; I1; I2; I3/, for each � D .�1; �2; �3/ 2 S
2 � R3, I� WDP3

iD1 �iIi is a complex structure. The set H.X/ WD fI� W � 2 S2g is called the hyperkähler sphere
ofX .

2Of course, F does not depend on the choice of .v1; v2; v3/.



752 T. Walpuski CMH

covariant derivative of u, a 1-form taking values in the pull-back of the vertical
tangent bundle VX WD ker .d� W TX! TM/. The operator F is called the Fueter
operator.

The Fueter operator is a non-linear generalisation of the Dirac operator, see [23]
and [13, Section 3].
Remark 1.3. A construction similar to (1.2) also exists in dimension four. Since it
is more involved, we relegate its discussion to Appendix B.
Example 1.4. Choose a spin structure s on M . If X D =S , I is the Clifford
multiplication and r denotes the induced spin connection, then the Fueter operator
is simply the Dirac operator associated with s.
Example 1.5. Let .X; g; I1; I2; I3/ be a hyperkähler manifold and .v1; v2; v3/ a
orthonormal frame ofM . A map uW M ! X satisfying

Fu D

3X
iD1

Iidu.vi / D 0 (1.6)

is called a Fueter map. In a local trivialisation the Fueter equation for sections of X,
takes the form (1.6) up to allowing for the Ii to depend on x 2 M and admitting a
lower order perturbation (coming from the connection 1-form).

One of the main motivations for studying Fueter sections is the work of [15], who
introduced a functional whose critical points are precisely the solution of (1.6) and
developed the corresponding Floer theory in the case when the target X is compact
and flat, and the frame on M is divergence free and regular,3 see also [22]. The
requirement that X be flat is very severe and one would like to remove it. It has
been conjectured that the putative hyperkähler Floer theory should be very rich and
interesting, especially in the case when X is a K3 surface.

A further source of motivation is gauge theory on G2- and Spin.7/-manifolds.
Here, Fueter sections of bundles of moduli spaces of ASD instantons naturally
appear in relation with codimension four bubbling phenomena for G2- and Spin.7/-
instantons; see Donaldson–Segal [10] and the author [24,25] for further details.
Remark 1.7. Sonja Hohloch brought to the author’s attention a cryptic remark in
[16, Section 1.5 Question 3], which indicates that their invariants of 3D Calabi–Yau
categories with stability structure can be interpreted as “quaternionic Gromov–Witten
invariants” of certain hyperkähler manifold M, which means as a count of Fueter
maps from some 4-manifold to M.

A major issue when dealing with Fueter sections is the potential failure of
compactness. This is demonstrated by the following example due to Hohloch,
Noetzel, and Salamon.

3Every 3-manifold admits a divergence free frame by Gromov’s h-principle [22, Theorem A.1]. A
frame is regular if there are no non-constant Fueter mapsM ! H with respect to this frame; this is a
generic condition.
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Example 1.8. Consider a K3 surface X with a hyperkähler structure such that
.X; I1/ admits a non-trivial holomorphic sphere zW S2 ! X and takeM D SU.2/,
the unit-sphere in the quaternions H, with a left-invariant frame .v1; v2; v2/ which
at id 2 SU.2/ it is given by .i; j; k/. Let N�W S2 ! S2 denote complex conjugation
on S2 D P1. Let � W S3 ! S2 denote the Hopf fibration whose fibres are the orbits
of v1. It is easy to check that u D z ı N� ı � W S3 ! X satisfies

@v1u D 0 and @v2u � I@v3u D 0;

and thus u is a Fueter map. For � > 0 define a conformal map s�W S2 ! S2

by s�.x/ D �x for x 2 R2 � S2 and s�.1/ D 1. Now, the family of Fueter
maps u� WD z ı s� ı � blows up along the Hopf circle ��1.1/ as � # 0 and
converges to the constant map on the complement of the Hopf circle. Also, note that
E .u�/ D

R
S3
jru�j

2 is independent of �.
The following is the main result of this article.

Theorem 1.9. Suppose X is compact. Let .ui / be a sequence of solutions of the
(perturbed) Fueter equation

Fui D p ı ui (1.10)

with p 2 �.X; VX/4 and

E .ui / WD

Z
M

jrui j
2
� cE (1.11)

for some constant cE > 0. Then (after passing to a subsequence) the following holds:
� There exists a closed subset S with H1.S/ < 1 and a Fueter section u 2
�.M n S;X/ such that ui jMnS converges to u in C1loc .

� There exist a constant "0 > 0 and an upper semi-continuous function ‚W S !
Œ"0;1/ such that the sequence of measures �i WD jrui j2 H3 converges weakly
to � D jruj2 H3 C‚H1bS .

� S decomposes as
S D � [ sing.u/

with

� WD supp.‚H1
bS/

and sing.u/ WD
�
x 2M W lim sup

r#0

1

r

Z
Br .x/

jruj2 > 0

�
:

� is H1-rectifiable, and H1.sing.u// D 0.

4This sort of deformation of (1.2) is important for applications; e.g. Hohloch, Noetzel, and Salamon
perturb (1.2) using a Hamiltonian function to achieve transversality.
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� For each smooth point5 x 2 � , there exists a non-trivial holomorphic sphere
zx W S

2 ! .Xx WD �
�1.x/;�I.v//with v a unit tangent vector in Tx� . Moreover,

‚.x/ � E .zx/ WD

Z
S2
jdzxj2:

� If X is a bundle of simple hyperkähler manifolds with b2 � 6, then there is a
subbundle d � PTM , depending only on sup‚, whose fibres are finite sets such
that Tx� 2 d for all smooth points x 2 � .

Remark 1.12. The analysis of (1.2) is similar to Lin’s work on the compactness
problem for harmonic maps [19]. We follow his strategy quite closely; however,
there are a number of simplifications in our case, many of the arguments have to be
approached from a different angle and our result is stronger.
Remark 1.13. In the situation of Example 1.5 if X is flat and .v1; v2; v3/ is regular,
then the uniform energy bound (1.11) is automatically satisfied; see [22, Lemma 3.2
and Remark 3.5].
Remark 1.14. If I is parallel (which is very rarely the case, but holds, e.g. in
the situation of Example 1.5 if M D T 3 equipped with a flat metric and the vi
are parallel), then there are topological energy bounds; see Remark 2.10. In
this case Fueter sections are stationary harmonic sections and one can derive
most of Theorem 1.9 from [19]; cf. [18, Section 4] and [8], who study
triholomorphic/quaternionic maps between hyperkähler manifolds. More recently,
very important progress in the study of triholomorphic maps was made by [4].
Remark 1.15. In the situation of Example 1.5 if X is flat, then S D ;; see [15,
Section 3] and Remark 3.5. This does not immediately follow from Theorem 1.9;
however, since �2.T n/ D 0, flat hyperkähler manifolds admit no non-trivial
holomorphic spheres and we can rule out bubbling a priori, i.e. � D ;. See also
Remark 3.5.
Remark 1.16. By Bogomolov’s decomposition theorem (after passing to a finite
cover) any hyperkähler manifold is a product a flat torus and simple hyperkähler
manifolds. Hohloch, Noetzel, and Salamon’s compactness result says that nothing
interesting happens in the torus-factors. Thus the assumption of X being a bundle
of simple hyperkähler manifolds is not restrictive. The requirement b2 � 6 is an
artefact of a result of Amerik and Verbitsky that we use in Section 8.

As stated, Theorem 1.9 is very likely far from optimal. Here are some conjectural
improvements:
� We believe that the limiting section u 2 �.M nS;X/ extends toM n sing.u/ and,
moreover, that sing.u/ is finite (possibly countable and closed).

5We call a pointx 2 � smooth if the tangent spaceTx� exists andx … sing.u/. Since� is rectifiable,
Tx� exists almost everywhere.
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� We believe that � enjoys much better regularity than just being H1-rectifiable.
It seems reasonable to expect that � is a graph (possibly with countably many
vertices) embedded in M and ‚ is constant along the edges of �; moreover, we
expect that the vertices .�;‚/ are balanced.

Remark 1.17. In the situation of Remark 1.14, Bethuel’s removable singularities
theorem for stationary harmonic maps [5, Theorem I.4] shows that u extends to
M n sing.u/ and a result of [1] affirms the conjecture in the third bullet.

The holomorphic sphere zx can be replaced by a bubble-tree, cf. [20], such that
the energy of the entire bubble tree equals ‚.x/. In an earlier version of this article
it was conjectured that there can be no energy stuck on the necks; in particular,
‚.x/ is the sum of energies of holomorphic spheres in .Xx;�I.v//. Shortly after
the first version of this article was posted on the arXiv, [4] proved the analogue of
this conjecture for triholomorphic maps, and after a brief discussion with the author,
in an updated version also the author’s earlier conjecture. We refer the reader to
[4, Section 7] for details.

It is an interesting and important question to ask: what happens for a generic
choice of I W STM ! H.X/ and perturbation p? One would hope (perhaps too
optimistically) that generically the situation is much better and possibly good enough
to count solutions of (1.10) and thus define the Euler characteristic of the conjectural
hyperkähler Floer theory.

Assumptions and conventions. Throughout the rest of the article we assume the
hypotheses of Theorem 1.9. We use c to denote a generic constant. We write
x . y for x � cy and f�; : : : ; �g denotes a generic (multi-)linear expression which is
bounded by c. We fix a constant 0 < r0 � 1; in particular, r0 is much smaller than
the injectivity radius ofM and we take all radii to be at most r0.

2. Mononicity formula

The foundation of the analysis of (1.2) is the monotonicity formula which asserts that
the renormalised energy

1

r

Z
Br .x/

jruj2:

is almost monotone in r > 0:
Proposition 2.1. If u 2 �.M;X/ satisfies (1.10), then for all x 2 M and 0 < s <

r � r0

ecr

r

Z
Br .x/

jruj2 �
ecs

s

Z
Bs.x/

jruj2 �

Z
Br .x/nBs.r/

1

�
jrruj

2
� c.r2 � s2/:

Here � WD d.x; �/.
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It is instructive to first prove the following which contains the essence of
Proposition 2.1.
Proposition 2.2. If uW R3 ! X is a Fueter map with vi D @

@xi
, then for all x 2 M

and 0 < s < r

1

r

Z
Br .x/

jduj2 �
1

s

Z
Bs.x/

jduj2 D 2
Z
Br .x/nBs.r/

1

�
j@ruj

2: (2.3)

Proof. The derivative of

f .�/ WD
1

�

Z
B�.x/

jduj2

is
f 0.�/ D �

1

�2

Z
B�.x/

jduj2 C
1

�

Z
@B�.x/

jduj2:

By a direct computation

jduj2 vol D jFuj2 vol � 2
3X
iD1

dxi ^ u�!i ; (2.4)

see [15, Lemma 2.2]. Here !i D g.Ii � ; �/ denotes the Kähler form on X associated
with Ii . Hence,

�

Z
B�.x/

jduj2 D 2
Z
B�.x/

3X
iD1

dxi ^ u�!i D 2
Z
B�.x/

3X
iD1

d.xiu�!i /

D 2�

Z
@B�.x/

u�!@r

(2.5)

with @r D
P3
iD1

xi

jxj
@

@xi
denoting the radial vector field. On @B�.x/, we can take

the local orthonormal frame .v1; v2; v3/ to be of the form .@r ; @1; @2/ with .@1; @2/
a local positive orthonormal frame for @B�.x/. Now, twice the integrand in the last
term is

2hI.@r/@1u; @2ui D 2hI1@1u; I2@2ui

D jI1@1uC I2@2uj
2
� jI1@1uj

2
� jI2@2uj

2

D 2j@ruj
2
� jduj2:

(2.6)

Putting everything together yields

f 0.�/ D 2��1
Z
@Br

j@ruj
2:

Upon integration this yields (2.3).
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Proof of Proposition 2.1. The map I yields a section of ��TM ˝ ƒ2VX which,
using the connection on X, can be viewed as a 3-formƒ 2 �3.X/. For sections of X
the identity (2.4) is replaced by

jruj2 vol D jFuj2 vol � 2u�ƒ: (2.7)

If we define f .�/ as before, then using (2.7) its derivative can be written as

f 0.�/ D ���2
Z
B�.x/

jp ı uj2 C 2��2
Z
B�.x/

u�ƒC ��1
Z
@B�.x/

jruj2:

Let @r denote the radial vector field emanating from x and set � WD i.v/ƒ with
v WD ��.r@r/. We can write ƒ as

ƒ D d�C e

where e is the sum of a form of type .1; 2/ and a form of type .2; 1/ satisfying

jej D O.ır/ with ı WD jrI j C jFXj C jRj: (2.8)

Hereweuse the bi-degree decomposition of��.X/ arising fromTX D ��TM˚VX,
r WD d.x; �.�//, FX is the curvature of the connection on X andR is the Riemannian
curvature ofM . Hence,

2

Z
B�.x/

u�ƒ D 2

Z
@B�.x/

u��CO.�2/f .�/CO
�
�4
�

D 2�

Z
@B�.x/

i.@r/u
�ƒCO.�2/f .�/CO

�
�4
�
:

(2.9)

Arguing as before,

2

Z
@B�.x/

i.@r/u
�ƒ D

Z
@B�.x/

jI@rrru � p ı uj2 C jrruj
2
� jruj2:

Putting everything together one obtains

f 0.�/ �
1

�

Z
B�.x/

jrruj
2
� cf .�/ � c�:

Since we can assume that ecr0 � 2 and using ec� � 1, we have

@�.e
c�f .�// �

1

�

Z
B�.x/

jrruj
2
� 2c�

This integrates to prove the assertion.
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Remark 2.10. If ƒ is closed (which is rarely the case), then

E .u/ D

Z
M

jruj2 D

Z
M

jFuj2 � 2 hŒM �; Œu�ƒ�i :

Since the first term on the right-hand side only depends on the homotopy class of u,
this yields a priori energy bounds for Fueter sections.
Corollary 2.11. In the situation of Proposition 2.1,

1

s

Z
Bs.x/

jruj2 .
1

r

Z
Br .x/

jruj2 C r2

and if Bs.y/ � Br=2.x/, then

1

s

Z
Bs.y/

jruj2 .
1

r

Z
Br .x/

jruj2 C r2:

3. "–regularity

The following is the key result for proving Theorem 1.9. It allows to obtain local
L1-bounds on ru provided the renormalised energy is not too large.
Proposition 3.1. There is a constant "0 > 0 such that if u 2 �.M;X/ satisfies (1.10)
and

" WD
1

r

Z
Br .x/

jruj2 � "0;

then
sup

y2Br=4.x/

jruj2.y/ . r�2"C 1: (3.2)

Remark 3.3. Given (3.2), higher derivative bounds over slightly smaller balls can
be obtained using interior elliptic estimates.

Proposition 3.1 follows from the following differential inequality and Corol-
lary 2.11 using the Heinz trick; see Appendix A.
Proposition 3.4. If u 2 �.M;X/ satisfies (1.10), then

�jruj2 . jruj4 C 1:

Proof. This is proved in [15, Lemma 3.3 and Remark 3.4]. We recall the proof which
is a simple direct computation. Denote by Nr the induced connection on u�VX and
define FW �0.M; u�VX/! �0.M; u�VX/ by

F Ou WD
3X
iD1

I.vi / Nrvi Ou
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for some local orthonormal frame .v1; v2; v3/. A simple computation yields

FFu D Nr�ruC frug

where f�g makes the dependence on I etc. implicit. Further

NrFFu D Nr Nr�ruC frug C f Nrrug:

Using

Nrvk
Nrvirviu D

Nrvi
NrvkrviuC fru;ru;rug

D Nrvi
NrvirvkuC fru;ru;rug C f

Nrrug

and Fu D p ı u we derive

Nr
� Nrru D NrFFuC fru;ru;rug C f Nrrug

D fru;ru;rug C f Nrrug CO.1/:

From this it follows that

�jruj2 D 2
˝
Nr
� Nrru;ru

˛
� 2j Nrruj2

� c.jruj4 C jruj C j Nrrujjruj2/ � 2j Nrruj2

. jruj4 C 1:

Remark 3.5. If X DM �X and X is flat, then one can prove that

�jruj2 . jruj3 C 1

and the Heinz trick for subcritical exponents shows that krukL1.M/ is bounded in
terms of the energy E .u/; see Remark A.2 and [15, Appendix B].

4. Convergence away from the blow-up locus

Proposition 4.1. There exists a subsequence .ui /i2I �.ui /i2N0 and a subset S�M ,
called the blow-up locus, with the following properties:
� S is closed and H1.S/ <1.

� The sequence
�
ui jMnS

�
i2I

converges to a section u 2 �.M n S;X/ in C1loc .

� If there is a subset S 0 � M such that a subsequence
�
ui jMnS 0

�
i2I 0�I

converges
in C1loc , then S 0 � S .
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Proof. We proceed in four steps.

Step 1. Construction of S .

With "0 as in Proposition 3.1, for r 2 .0; r0� and i 2 N0, define

Si;r WD

�
x 2M W

ecr

r

Z
Br .x/

jrui j
2
C cr2 �

"0

2

�
:

Note that, by Proposition 2.1, Si;s � Si;r whenever s � r .
Since the Si;r are compact, for each r , we can pick Jr � N0 such that the

subsequence .Si;r/i2Jr converges to a closed subset Sr in the Hausdorff metric. By a
diagonal sequence argument, we can find J � N0 such that

�
Si;2�kr0

�
i2J

converges
to a closed subset S2�kr0 for each k 2 N0. Set

S WD
\
k2N0

S2�kr0 :

By construction S is closed.

Step 2. H1.S/ <1.

Given 0 < ı � r0, cover S by a collection of balls fB4rj .xj / W j D 1; : : : ; mg

with xj 2 S , rj � ı and B2rj .xj / pairwise disjoint. Pick k � 1 such that
2�kr0 < minfrj g. For i � 1, we can find x0j 2 Si;2�kr0 with d.x

0
j ; xj / < ı. Then

the balls B5rj .x0j / still cover S while the smaller balls Brj .x0j / are pairwise disjoint.
By definition of Si;r ,

mX
jD1

rj �
2ecr0

"0

mX
jD1

Z
Brj .x

0
j
/

jrui j
2
C cr2j �

2ecr0

"0

Z
M

jrui j
2
C cr0

mX
jD1

rj :

Since we can assume that cr0 � 1=2 and ecr0 � 2, it follows that
mX
jD1

rj �
8cE

"0
:

Since this bound is uniform in ı 2 .0; r0�, the assertion follows.

Step 3. Selection of .ui /i2I and construction of u 2 �.M n S;X/.

If x 2M nS , then there exists r 2 .0; r0� such that for all i 2 J sufficiently large

1

r

Z
Br .x/

jrui j
2
� "0:

By Proposition 3.1, for all i 2 J , jrui j is uniformly bounded on Br=4.x/. It follows
using standard elliptic techniques and Arzelà–Ascoli that we can chose J � I such
that the subsequence of .ui /i2I converges in C1loc onM n S .
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Step 4. M n S is the maximal open subset on which a subsequence .ui /i2I 0�I can
converge in C1loc .

Suppose .ui /i2I 0�I converges in C 1 in a neighbourhood of x 2M . Then jrui j
is uniformly bounded in this neighbourhood. Hence, there is a slightly smaller
neighbourhood of x 2 M which is contained inM n Si;r for each sufficiently small
r > 0 and each i 2 I 0. Since limi2I 0 Si;r D Sr � S , it follows that x 2M n S .

5. Decomposition of the blow-up locus

We assume that we have already passed to a subsequence so that the convergence
statement in Proposition 4.1 holds. Consider the sequence of measures .�i / defined
by

�i WD jrui j
2 H3:

HereH3 is the 3-dimensional Hausdorffmeasure onM , which is simply the standard
measure onM . By (1.11) the sequence of Radon measures .�i / is of bounded mass;
hence, it converges weakly to a Radon measure �. By Fatou’s lemma we can write

� D jruj2 H3
C �

for some non-negative Radon measure �.
Definition 5.1. We call � the defect measure and

� WD supp �

the bubbling locus.6 We call

sing.u/ WD
�
x 2M W ‚�u.x/ WD lim sup

r#0

1

r

Z
Br .x/

jruj2 > 0

�
the singular set of u.

If we denote by‚��.x/ the upper density of � at the point x 2M , then it follows
from Proposition 3.1 that S D fx 2 M W ‚��.x/ > 0g � � [ sing.u/. The reverse
inclusion also holds; hence, we have the following.
Proposition 5.2. The blow-up locus S decomposes as

S D � [ sing.u/:

This means that there are two sources of non-compactness: one involving a loss
of energy and another one without any loss of energy.

6The justification for this terminology will be provided in Section 7.
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6. Regularity of the bubbling locus

As a first step towards understanding the non-compactness phenomenon involving
energy loss, we show that the set � at which this phenomenon occurs is relatively
tame.

Proposition 6.1. � is H1-rectifiable and � can be written as

� D ‚H1
b�

with ‚W M ! Œ0;1/ upper semi-continuous. Moreover, H1.sing.u// D 0.

The interested reader can find a detailed discussion of the concept of rectifiablity
in DeLellis’ lecture notes [9]. For our purposes it shall suffice to recall the definition.

Definition 6.2. A subset � � M is called Hk-rectifiable if there exists a countable
collection f�ig of k-dimensional Lipschitz submanifolds such that

Hk
�
� n

[
i
�i

�
D 0:

A measure � on M is called Hk-rectifiable if there exist a non-negative Borel
measurable function ‚ and a Hk-rectifiable set � such that for any Borel set A

�.A/ D

Z
A\�

‚Hk :

Since � is H1-rectifiable, at H1-a.e. point x 2 � , it has a well-defined tangent
space Tx� and � has a tangent measure, i.e. the limit

Tx� WD lim
"!0

1

"
.exp ı s"/��

exists and
Tx� D ‚.x/H1

bTx�:

Here s".x/ WD "x.
To prove Proposition 6.1 we will make use of the following deep theorem, whose

proof is carefully explained in [9].

Theorem 6.3 (D. Preiss [21]). If � is a locally finite measure onM and m 2 N0 is
such that for �-a.e. x 2M the density

‚m� .x/ WD lim
r#0

�.Br.x//

rm
:

exists and is finite, then � is Hm-rectifiable.
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Proof of Proposition 6.1. The proof has five steps.

Step 1. With the same constant as in Proposition 2.1 and for all x 2M and 0 < s � r

ecss�1�.Bs.x// � e
crr�1�.Br.x//C cr

2:

This is not quite a trivial consequence of Proposition 2.1 because .�i / onlyweakly
converges to �; hence, we only know that �. NBr.x// � lim supi!1 �i . NBr.x// and
lim infi!1 �i .Br.x// � �.Br.x//.

For x 2M set

Rx WD fr 2 .0; r0� W �.@Br.x// > 0g:

If r … Rx , then it follows from Proposition 2.1 that

ecss�1�.Bs.x// � e
crr�1�.Br.x//C cr

2:

The general case follows by an approximation argument. Note that Rx is at most
countable. Thus, given r 2 Rx , we can find a sequence .ri / such that s < ri < r ,
ri … Rx , and r WD limi!1 ri . By dominated convergence

�.Br.x// D lim
i!1

�.Bri .x//:

Step 2. The limit
‚.x/ WD lim

r#0
r�1�.Br.x//

exists for all x 2 M . The function ‚W M ! Œ0;1/ is upper semi-continuous, it
vanishes outside S , is bounded and ‚.x/ � "0 for all x 2 S .

The existence of the limit is a direct consequence of Step 1.
To see that ‚ is upper semi-continuous, let .xi / be a sequence of points in M

converging to a limit point x D limi!1 xi . Let r … Rx and " > 0. For i � 1

‚.xi / � e
crr�1�.Br.xi //C cr

2
� ecrr�1�.BrC".x//C cr

2:

Therefore, lim supi!1‚.xi / � ecrr�1�.Br.x//C cr2. Taking the limit as r ! 0

shows that ‚ is upper semi-continuous.
The last part is clear.

Step 3. ‚�u vanishes H1-a.e. inM , i.e. H1.sing.u// D 0.

Given " > 0, set

E" WD fx 2M W ‚
�
u.x/ > "g:
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Given ı > 0, choose fx1; : : : ; xmg � E" and fr1; : : : ; rmg � .0; ı� such that the balls
B2rj .xj / cover E", but the balls Brj .xj / are pairwise disjoint. Moreover, we can
arrange that

1

rj

Z
Brj .xj /

jruj2 > ":

Since u is smooth onM n S , we must have E" � S . Hence,
mX
jD1

rj �
1

"

mX
jD1

Z
Brj .xj /

jruj2 �
1

"

Z
Nı.S/

jruj2

where Nı.S/ D fx 2M W d.x; S/ < ıg. The right-hand side goes to zero as ı goes
to zero. Thus H1.E"/ D 0 for all " > 0. This concludes the proof.

Step 4. � is H1-rectifiable.

By Step 2 for any x 2M n sing.u/ the density

‚�.x/ D lim
r#0

�.Br.x//

r

exists and agrees with ‚.x/. In general ‚�� �‚<1, which implies that ��H1

(see, e.g. [17, Proposition 2.2.2]). By Step 3, H1.sing.u// D 0 and, hence,
�.sing.u// D 0. Applying Theorem 6.3 yields the assertion.

Step 5. We prove the proposition.

We have already proved the assertion about sing.u/. Since � is H1-rectifiable
and � D supp.�/, it follows that � is H1-rectifiable and � can be written as

� D Q‚H1
b�

for some Q‚. By Step 3, ‚�.x/ D Q‚.x/ for H1-a.e. x 2 � .

7. Bubbling analysis

Wewill now show that the “lost energy” goes into the formation of bubbles transverse
to � . To state the main result recall that an orientation on Nx� induces a canonical
complex structure and an orientation ofNx� is canonically determined by the choice
of a unit tangent vector v 2 Tx� � TxM sinceM is oriented.
Proposition 7.1. If x 2 � is smooth, i.e. Tx� exists and x … sing.u/, then there
exists a .�I.v//-holomorphic sphere zx W Nx� [ f1g ! X WD Xx with

E .zx/ WD

Z
S2
jdzxj2 � ‚.x/: (7.2)

Here we have picked some unit vector v 2 Tx� .
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Remark 7.3. It is immaterial whether we choose v or its opposite �v since this
results in changing the complex structures on both Nx� and X . In particular, the
above cannot be used to fix an orientation of �; however, the existence of zx does
restrict the possible tangent directions, see Section 8.

Remark 7.4. The reason that (7.2) may be strict is that we only extract one bubble of
what is an entire bubbling-tree, cf. [20] for the general notion of a bubbling tree, and
[4, Section 7] for a discussion on how to extract a bubbling tree in the our situation.

The holomorphic sphere zx is obtained by blowing-up .ui / around the point
x 2 � . We assume a trivialisation of X in a neighbourhood U of x has been fixed;
see Example 1.5. We use the following notation: given any map uW U ! X and a
scale factor � > 0, we define a rescaled map u�W B3r0=�.0/! X by

u� WD u.exp ı s�/ (7.5)

with s�.y/ WD �y. We write .z; w/ to denote points in Tx� � Nx� D TxM and
work with generalised cubes of the form

Qr;s.z0; w0/ WD Br.z0/ � Bs.w0/ � Tx� �Nx� D TxM:

Proof of Proposition 7.1. We proceed in four steps.

Step 1 (Preliminary scale fixing). There exists a null-sequence ."i / � .0; 1/ such
that

jdui I"i j
2 H3 * Tx� D ‚.x/H1

bTx�:

By definition, Tx� is the weak limit of "�1.exp ı s"/�� as " tends to zero. Since
x … sing.u/, we have

lim
"!0

1

"
.exp ı s"/�� D lim

"!0

1

"
.exp ı s"/��:

Thus
Tx� D lim

"!0
lim
i!1

1

"
.exp ı s"/��i D lim

i!1

1

"
.exp ı s"i /

��i

for some null-sequence ."i /. This implies the assertion since

1

"i
.exp ı s"i /

��i D jdui I"i j
2 H3:

Step 2 (Asymptotic translation invariance). After passing to a subsequence, we can
assume that there exists a null-sequence .zi / such that

lim
i!1

sup
s�1

1

s

Z
Qs;1.zi ;0/

j@vui I"i j
2
D 0: (7.6)
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Step 2.1. We have

lim
i!1

Z
Q2;1.0/

j@vui;"i j
2
D 0:

Denote by @� the radial vector field emanating from 4v. By Proposition 2.1, for
for 0 < s � rZ

Br .4v/nBs.4v/

ec"i ���1j@�ui I"i j
2

� ec"i rr�1
Z
Br .4v/

jdui I"i j
2
� ec"i ss�1

Z
Bs.4v/

jdui I"i j
2
C c"2i r

2: (7.7)

As i tends to infinity the first two terms on the right-hand side both converge to‚.x/,
since Tx� D ‚.x/H1bTx� and the last term tends to zero.

SinceQ2;1.0/ � B8.4v/ n B1.4v/, it follows that

lim
i!1

Z
Q2;1.0/

j@�ui;"i j
2
D 0:

This completes the proof, because along Tx� \ B2.0/ the vector fields @� and v are
colinear and j@vui;"i j

2 H3 converges to zero outside Tx� .

Step 2.2. For H1-a.e. z 2 B1.0/ � Tx�

lim
i!1

sup
s�1

1

s

Z
Qs;1.z;0/

j@vui I"i j
2
D 0: (7.8)

Define fi W B2.0/ � Tx� ! Œ0;1/ by

fi .z/ WD

Z
B1.0/�Nx�

j@vui I"i j
2.z; �/

and denote by Mfi W B1.0/ � Tx� ! Œ0;1/ the Hardy–Littlewood maximal
function associated with fi :

Mfi .z/ WD sup
s�1

1

s

Z
Bs.z/�Tx�

fi :

We need to show that the set

A D fz 2 B1.0/ W lim inf
i!1

Mfi .z/ > 0g

is such that H1.A/ D 0. If we set

Ai;ı WD fz 2 B1.0/ WMfi .z/ � ıg;
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then

A D
[
ı>0

[
I2N

1\
iDI

Ai;ı :

By the weak-type L1 estimate for the maximal operator, for each ı > 0

H1.Ai;ı/ .
kfikL1

ı
:

Since kfikL1 ! 0, we have

H1

 
1\
iDI

Ai;ı

!
D 0I

hence, H1.A/ D 0 by monotonote convergence.

Step 2.3. We prove (7.6).

By Step 2.2, for each j 2 N we can find zj 2 B1=j .0/ such that

lim
i!1

sup
s�1

1

s

Z
Qs;1.zj ;0/

j@vui I"i j
2
D 0:

Now apply a diagonal sequence argument.

Step 3 (Bubble detection). There exists a null-sequence .ıi / 2 .0; 1=2/ such that,
for each i � 1,

max
w2 NB1=2.0/

1

ıi

Z
Bıi .zi ;w/

jdui;"i j
2
D "0=8I (7.9)

moreover, if wi 2 NB1=2.0/ denotes a point at which this maximum is already, then
.wi / is a null-sequence.

By Step 1, we have

lim inf
i!1

max
w2 NB1=2.0/

1

ı

Z
Bı.zi ;w/

jdui I"i j
2
D ‚.x/ � "0

for all ı > 0, while for fixed i 2 N and w 2 NB1=2.0/ � Nx�

lim
ı#0

1

ı

Z
Bı.zi ;w/

jdui I"i j
2
D 0:

Hence, we can find a null sequence .ıi / such that

max
w2 NB1=2.0/

1

ıi

Z
Bıi .zi ;w/

jdui;"i j
2
D "0=8:

If (after passing to a subsequence) we can find � > 0 and .wi / 2 NB1=2.0/nB� .0/
such that the maximum in (7.9) is achieved at w D wi , then by Proposition 2.1 the
density of Tx� at .0; w/ would be positive, contradicting Step 1.
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Step 4. We prove Proposition 7.1.

Let .wi / be as in Step 3. Define

Qui WD Qui .�/ WD ui Iıi"i
�
ı�1i .zi ; wi /C �

�
:

By construction

max
w2B.1=2�jwi j/ıi

.0/

Z
B1.0;w/

jd Qui j2 D "0=8

with the maximum achieved at w D 0.
From Proposition 3.1 and Remark 3.3 we obtain C1loc -bounds on Qui which allow

us to pass to a limit uW B1.0/ � Nx� ! X , which solves the Fueter equation. It
follows from Step 2, that

lim
i!1

Z
Q1;1=2ıi .0;0/

j@� Qui j
2
D 0:

Hemce, u is going to be constant in z 2 B1.0/ � Tx�; hence, u is the pullback of
a map zW Nx� ! X . We can choose the orthonormal frame .v1; v2; v3/ on TxM
constant and with v1 D v 2 Tx� and v2; v3 2 Nx� . With respect to this frame the
Fueter operator takes the form

F D I.v1/@v C I.v2/N@

with N@ D @v2 C .�I.v//@v3 . Thus z is .�I.v//-holomorphic.

Question 7.10. What happens near non-smooth points of �?

8. Constraints on tangent directions

By Proposition 7.1, if x … sing.u/ and v 2 STx� , then Xx must admit a non-
trivial .�I.v//-holomorphic sphere zx of area at most ‚.x/. Since ‚ is upper
semi-continuous, it achieves a maximum Amax on � . Thus, the area of zx is bounded
byAmax and the following shows that the possible tangent directions of � are strongly
constrained.

Proposition 8.1. Let X be a simple hyperkähler manifold with b2.X/ � 6. Given
Amax > 0, there exists only finitely many I� 2 H.X/ for which there exists a rational
curve C in .X; I�/ with

area.C / D
˝
ŒC �; !�

˛
� Amax:

Here !� D g.I� �; �/.
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If X is a K3 surface, then this is essentially contained in [7, Proposition 3.1]. Its
proof mainly uses some facts about theK3-lattice .H 2.K3;Z/;[/. The appropriate
replacement of the cup-product for general simple hyperkähler manifold is the
Beauville–Bogomolov–Fujiki (BBF) form qW S2H 2.X;Z/! Z. We refer the reader
to [3,6,11] for details about the BBF form. For our purposes it suffices to recall that:
� q is non-degenerate, i.e. the induced map H 2.X;Q/ ! H 2.X;Q/� is an iso-
morphism. In particular, for each C 2 H2.X;Z/ there exists a unique 
 2
H 2.X;Q/ such that

q.
; �/ D hC; �i 2 H 2.X;Q/�: (8.2)

� q has signature .3; b2.X/ � 3/ with spanfŒ!� � W � 2 S2g forming a maximal
positive definite subspace. We denote the perpendicular maximal negative definite
subspace by N .

Theorem 8.3 (Amerik–Verbitsky). If X is a simple hyperkähler manifold with
b2.M/ � 6, then there exists an positive integer � 2 N such that

q.
; 
/ � ��

for all 
 2 H 2.X;Q/ with (8.2) for some C represented by a I�-holomorphic sphere
for some I� 2 H.X/.

Proof. This follows by observing that 
 is a MBM class in the sense of [2,
Definition 2.14] and then appealing to [2, Theorem 5.3].

Remark 8.4. Theorem 8.3 generalises the fact that any class representing a
holomorphic sphere in K3 has square �2.
Proposition 8.5. There exists a constant c0 > 0 such that if C is represented by a
I�-holomorphic sphere of area A, then 
 as in (8.2) is of the form


 D ˇ C c0A!� (8.6)

with ˇ 2 N and
q.ˇ; ˇ/ � �� � c0A

2:

Proof. It follows from (8.2) that

q.
; !�/ D 0 (8.7)

for all � ? �; hence, 
 D ˇCc0A!� with c0 D 1=q.!� ; !�/, which does not depend
on � 2 S2, and ˇ 2 N . Since q.
; 
/ � �� , we have

q.ˇ; ˇ/ � �� � c0A
2:

Proof of Proposition 8.1. There are only finitely many 
 as in Proposition 8.5 with
A � Amax and 
 determines � 2 S2 uniquely.
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A. The Heinz trick

Throughout we consider a bounded open subset U � Rn endowed with a smooth
metric g which extends smoothly to NU . Implicit constants are allowed to depend on
the geometry of U .
Lemma A.1 (E. Heinz [14]). Fix d > 0 and set

q WD
2

d
C 1:

Suppose f W U ! Œ0;1/ and p; ı 2 f0; 1g are such that the following hold:
(1) We have

�f . f q C f p:

(2) If Bs.y/ � Br=2.x/ � U , then

sd�n
Z
Bs.y/

f . rd�n
Z
Br .x/

f C ır2:

Then there exists a constant "0 > 0 such that for all Br.x/ � U with

" D rd�n
Z
Br .x/

f � "0

we have
sup

y2Br=4.x/

f .y/ . r�d"C ..1 � p/C ı/ r2:

Remark A.2 (Heinz trick in the subcritical case). If n < d ,

" � "0 whenever r �
�
"0R
U
f

� 1
d�n

:

In particular, for all compactK � U , kf kL1.K/ is bounded a priori depending only
on
R
U
f and d.K; @U /.

We use the following standard result; see [12, Theorem 9.20] or [15, Proof of
Theorem B.1].
PropositionA.3. For allBr.x/ � U and every smooth function f W Br.x/! Œ0;1/

f .x/ . r�n
Z
Br .x/

f volC r2k�f kL1 :

Proof of Lemma A.1. Define a function � W Br=2.x/! Œ0;1/ by

�.y/ WD
�r
2
� d.x; y/

�d
f .y/:
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Since � is non-negative and vanishes on the boundary of B r
2
.x/, it achieves its

maximum
M WD max

y2B r
2
.x/
�.y/

in the interior of B r
2
.x/. We will derive a bound for M , from which the assertion

follows at once.
Let y0 be a point with �.y0/ DM , set

F WD f .y0/

and denote by

s0 WD
1

2

�r
2
� d.x; y0/

�
half the distance from y0 to the boundary of B r

2
.x/. Each y 2 Bs0.y0/ has distance

from the boundary of B r
2
.x/ at least s0; hence,

f .y/ � s�d0 �.y/ � s�d0 �.y0/ . F:

Proposition A.3 applied to Bs.y0/ together with (1) and the above bound yields

F . s�n
Z
Bs.y0/

f C s2 .F q C F p/

for all 0 � s � s0. Combined with (2) this becomes

F . s�d"C s2 .F q C F p/C ır2;

which can be rewritten as

sdF . "C sdC2 .F q C F p/C ır2sd : (A.4)

This inequality will yield the desired bound on M . It is useful to make a case
distinction.

Case 1. F � 1.

In this case a bound onM follows from simple algebraic manipulations. If p D 0
or ı D 1, then (A.4) with s D s0 yields

M D �.y0/ . sd0 F . "C rdC2:

If p D 1 and ı D 0, this bound can be sharpened. (A.4) becomes

sdF �
c"

1 � cs2
:
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If cs20 �
1
2
, then we obtain

M . sd0 F . "I

otherwise, setting s WD .2c/� 12 � s0 yields

F . ";

and thusM . ":

Case 2. F > 1.

From (A.4) we derive

sdF . "C sdC2F q C ır2sd

for all 0 � s � s0. Set t WD t .s/ D sF 1=d . Then the above inequality can be
expressed as

td .1 � ct2/ � c."C ır2/:

For sufficiently small " > 0, the corresponding equation td .1 � ct2/ D c."C ır2/

has d small roots t1; : : : ; td , which are approximately˙.c"C cır2/ 1d , and two large
roots. Since t .0/ D 0 and by continuity, for each s 2 Œ0; s0�, t .s/ must be less than
the smallest positive root; hence, t .s/ . ."C ır2/

1
d for all s 2 Œ0; s0�. This finishes

the proof.

B. Compactness for Fueter maps with four dimensional source manifold

PropositionB.1. LetV be a 4-dimensional Euclidean vector space,H a quaternionic
vector space, I W SƒCV � ! S.ImH/ an isometric identification of the unit length
self-dual forms on V with the unit imaginary quaternions and �W ƒCV � ! so.V /.
The endomorphism ‰ 2 End.Hom.V;H// defined by

‰T WD

3X
iD1

I.!i / ı T ı �.!i /

has eigenvalues 1 and �3. Here we sum over an orthonormal basis .!1; !2; !3/
of ƒCV �. We denote the .�3/-eigenspace by HomI .V;H/.

Let M be an orientable Riemannian 4-manifold, let X
�
�! M be a bundle of

hyperkähler manifolds together with a fixed identification I W SƒCT �M ! H.X/ of
the unit sphere bundle of self-dual forms onM and the bundle of hyperkähler spheres
of the fibres of X and fix a connection on X.
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Definition B.2. A section u 2 �.X/ is called a Fueter section if

Fu WD ru �‰ru D 0 2 �.u�HomI .��TM; VX//: (B.3)

Remark B.4. If M D R � N for some 3-manifold N , X is the pullback of a
bundle Y of hyperkähler manifolds on N , I is obtained from an identification
J W STM Š H.X/ and the connection on X is the pullback of a connection on Y,
then (B.3) can be written as

@tu � Fu D 0

with F denoting the 3-dimensional Fueter operator. This is the form in which the
4-dimensional Fueter operator appears in [15].
Remark B.5. Unlike in the 3-dimensional case,ƒCT �M need not be trivial.7 Thus
the analogue of the setup in Example 1.5 rarely makes sense globally, and one is
almost forced to work with bundles of hyperkähler manifolds.

The analogue of Theorem 1.9 in the 4-dimensional case is the following result.
Theorem B.6. Suppose X is compact. Let .ui / be a sequence of solutions of the
(perturbed) Fueter equation

Fui D p ı ui

with p 2 �.X;HomI .��TM; VX// and

E .ui / WD

Z
M

jrui j
2
� cE

for some constant cE > 0. Then (after passing to a subsequence) the following holds:
� There exists a closed subset S with H2.S/ < 1 and a Fueter section u 2
�.M n S;X/ such that ui jMnS converges to u in C1loc .

� There exist a constant "0 > 0 and an upper semi-continuous function ‚W S !
Œ"0;1/ such that the sequence of measures �i WD jrui j2 H4 converges weakly
to � D jruj2 H4 C‚H2bS .

� S decomposes as
S D � [ sing.u/

with

� WD supp.‚H1
bS/

and sing.u/ WD
�
x 2M W lim sup

r#0

1

r2

Z
Br .x/

jruj2 > 0

�
:

� is H2-rectifiable, and H2.sing.u// D 0.

7ƒCT �M being trivial is equivalent to 3�.M/C 2�.M/ D 0 and w2.M/ D 0.
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� For each smooth point of � there exists a non-trivial holomorphic sphere in
zx W S

2 ! .Xx;�I.�// with � a unit self-dual 2-form on TxM , whose associated
complex structure preserves the splitting TxM D Tx� ˚Nx� . Moreover,

‚.x/ � E .zx/ WD

Z
S2
jdzxj2:

� If X is a bundle of simple hyperkähler manifolds with b2 � 6, then there is a
subbundle i � fI 2 End.TM/W I 2 D �idg, depending only on sup‚, whose
fibres are finite sets such that Tx� is complex with respect to a complex structure
I 2 ix for all smooth points x 2 � .

Sketch of the proof. The proof is analogous to that of Theorem 1.9 with a few minor
modifications:
� The renormalised energy is now

1

r2

Z
Br .x/

jruj2:

� In the proof of the monotonicity formula one now uses the 4-form ƒ 2 �4.X/
obtained from the section of ƒC��TM ˝ ƒ2VX induced by I . Direct
computation shows that (2.7) still holds. Similarly, one can verify the analogue
of (2.6).

� The proof of the "-regularity and convergence outside S carry over mutatis
mutandis.

� In the bubbling analysis, ui I�i will be asymptotically translation invariant in the
direction of Tx� . Fix a unit vector v0 2 Tx� . Since, asymptotically, everything
is invariant in the direction of v0, we arrive back at the situation in Section 7.
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