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Mean curvature in manifolds with Ricci curvature
bounded from below

Jaigyoung Choe� and Ailana Fraser��

Abstract. Let M be a compact Riemannian manifold of nonnegative Ricci curvature and † a
compact embedded 2-sided minimal hypersurface inM . It is proved that there is a dichotomy:
If † does not separateM then † is totally geodesic andM n† is isometric to the Riemannian
product † � .a; b/, and if † separates M then the map i� W �1.†/ ! �1.M/ induced by
inclusion is surjective. This surjectivity is also proved for a compact 2-sided hypersurface with
mean curvature H � .n � 1/

p
k in a manifold of Ricci curvature RicM � �.n � 1/k, k > 0,

and for a free boundary minimal hypersurface in an n-dimensional manifold of nonnegative
Ricci curvature with nonempty strictly convex boundary. As an application it is shown that a
compact .n � 1/-dimensional manifold N with the number of generators of �1.N / < n � 1

cannot be minimally embedded in the flat torus T n.
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1. Introduction

Euclid’s fifth postulate implies that there exist two nonintersecting lines on a plane.
But the same is not true on a sphere, a non-Euclidean plane. Hadamard [11]
generalized this to prove that every geodesic must meet every closed geodesic on
a surface of positive curvature. Note that a k-dimensional minimal submanifold of
a Riemannian manifold M is a critical point of the k-dimensional area functional.
Replacing the geodesic with theminimal submanifold, Frankel [6] further generalized
Hadamard’s theorem: Let †1 and †2 be immersed minimal hypersurfaces in a
complete connected Riemannian manifold M of positive Ricci curvature. If †1 is
compact, then †1 and †2 must intersect. It should be remarked that a manifold of
nonnegative Ricci curvature like S2 � S1 has many disjoint minimal spheres.

Using the connectivity of the inverse image of †1 under the projection map
in the universal cover of M , Frankel also proved that the natural homomorphism
�J. C. was supported in part by NRF 2011-0030044, SRC-GAIA.
��A. F. was supported in part by NSERC.
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of fundamental groups: �1.†1/ ! �1.M/ is surjective. This means that the
minimality of †1 imposes restrictions on �1.†1/. This reminds us of a similar
restriction on�1.M/, as proved byMyers [18], that ifM has positive Ricci curvature,
then �1.M/ is finite.

These two theorems of Frankel have the dual versions in the negatively curved
case as follows: If M is a complete Riemannian manifold of nonpositive sectional
curvature, then every compact immersedminimal submanifold†must have an infinite
fundamental group and moreover, if † is totally geodesic, then �1.†/ ! �1.M/

is 1-1 [13].
It was Lawson [15] who first realized the topological implication of Frankel’s

theorem; he found that Frankel’s proof of the surjectivity works also for each
component of M n † if M is a compact connected orientable Riemannian
manifold of positive Ricci curvature and † is a compact embedded orientable
minimal hypersurface. He then showed that �1. NDj ; †/ D 0, j D 1; 2, where
M n † D D1 [D2. This implies that † has as many 1-dimensional holes (loops)
as Dj does. Hence, when dim M D 3, D1 and D2 are handlebodies and if M is
diffeomorphic to S3 [12], † is unknotted.

Recently Petersen and Wilhelm [21] gave a new proof of Frankel’s generalized
Hadamard theorem. They also showed that if M has nonnegative Ricci curvature
and has two nonintersecting minimal hypersurfaces, then these are totally geodesic
and a rigidity phenomenon occurs. Whereas Frankel and Lawson used the second
variation formula for arc length, Petersen and Wilhelm utilized the superhamonicity
of the distance function from a minimal hypersurface. It should be mentioned that
Cheeger and Gromoll had used the superharmonicity of the distance function arising
from a minimizing geodesic [3]. See also [5, 25].

In this paper we show that there is a dichotomy for a compact Riemannian
manifold of nonnegative Ricci curvature (Theorem 2.5): A compact embedded
2-sided minimal hypersurface † does not separate M or separates M into two
nonempty componentsD1 andD2, and consequently,† is totally geodesic andM is
isometric to a mapping torus or the map i� W �1.†/! �1. NDj /; j D 1; 2; induced by
inclusion is surjective. As a resultM cannot have more 1-dimensional holes than †
unless M is diffeomorphic to † � S1. The first part of Theorem 2.5 reminds us of
the Cheeger–Gromoll splitting theorem [3]; their line is dual to our nonseparating
minimal hypersurface. We note that G. Galloway proved in [9] a theorem similar to
Theorem 2.5 and to Petersen–Wilhelm’s theorem [21]. Also, L. Rodriguez obtained
some theorems which are relevant to Theorem 2.5 in [1] and [10].

The surjectivity of i� W �1.†/! �1. NDj / is obtained in more general settings as
follows. LetM n be a Riemannian manifold of Ricci curvature RicM � �.n � 1/k,
k > 0 and let† be a compact 2-sided hypersurface that bounds a connected region�
in M . If � is mean convex with H.†/ � .n � 1/

p
k, then † is connected and

i� W �1.†/! �1. N�/ is surjective. Thus if n D 3 then � is a handlebody.
We also consider the case when the compact Riemannian manifold M n of

nonnegative Ricci curvature has nonempty boundary @M which is strictly convex
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with respect to the inward unit normal. Fraser and Li [7] showed that any two
properly embedded orientableminimal hypersurfaces inM meeting @M orthogonally
must intersect. They also showed that if † is a properly embedded orientable
minimal hypersurface in M meeting @M orthogonally, then † divides M into
two connected components D1 and D2. Generalizing [7], we show that the maps
i� W �1.†/ ! �1. NM/ and i� W �1.†/ ! �1. NDj /, j D 1; 2, are surjective. When
n D 3 it is shown that both components ofM n† are handlebodies and† is unknotted.
We also prove some corresponding results in the case where RicM � �.n � 1/k,
k > 0.

Finally, from our dichotomy (Theorem 2.5) we derive nonexistence of some
minimal embeddings. Let N be an .n � 1/-dimensional compact manifold with
the number of generators of �1.N / D k that is minimally embedded in the flat
n-torus T n. Then we must have k � n � 1. If k D n � 1, then N � T n�1, and
if k > n � 1, then T n n N has two components D1;D2 such that the number of
generators of �1.Dj / is bigger than n � 1, j D 1; 2. This is a higher dimensional
generalization of Meeks’ theorem [16] that a compact surface of genus 2 cannot be
minimally immersed in T 3.

The authors thank the referee for helpful comments and suggesting [8, Theo-
rem 2.1].

2. Surjectivity

It is well known that the second variation of arc length involves negative the integral
of the sectional curvature. It is for this reason that the Ricci curvature affects both
the mean curvature of the level surfaces of the distance function and the Laplacian of
the distance function. The following lemma verifies this influence.

Lemma 2.1. Assume that M n is a complete Riemannian manifold of nonnegative
Ricci curvature. Let D be a domain in M and N � @D a hypersurface with mean
curvatureHN � c with respect to the inward unit normal � toN , i.e.HN D h EHN ; �i.
Suppose that the distance function d from N is well defined in D. Then at a point
q 2 D such that d is smooth in a neighborhood of q,

(a) locally near q, the level surface of d through q has mean curvature � c with
respect to the unit normal away fromN (in fact, that mean curvature is monotone
nondecreasing in d along a minimizing geodesic from a fixed point p 2 N to q);

(b) �Md � �c.

Proof. Let S be a smooth level surface of d through a point q 2 D. Let 
 � D

be the geodesic up to q that realizes the distance from N and is parametrized by arc
length. Then 
 hits S and N orthogonally at q and at a point p 2 N . Choose any
unit vector v tangent to N at p and parallel translate it along 
 to q, obtaining a unit
parallel vector field V along 
 which is normal to 
 and tangent to S at q. Consider
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the lengths of the curves obtained by moving 
 in the direction of V . Then the second
variation formula and the assumption that S is a level surface of d give us

L00V D IIS .V; V / � IIN .V; V / �
Z



K.V; 
 0/ � 0;

where II denotes the second fundamental form defined by II.u; v/ D hruv; �i with
respect to the inward unit normal � away from N , and K.V; 
 0/ is the sectional
curvature on the span of V and 
 0. We can compute the same for orthonormal vectors
v1; : : : ; vn�1 spanning the tangent space toN at p and sum up the above inequalities
for the corresponding orthonormal parallel vector fields V1; : : : ; Vn�1, to get

HS .q/ �HN .p/ �

Z



Ric.
 0; 
 0/ � 0;

which proves (a) because
R


Ric.
 0; 
 0/ is monotone nondecreasing in d . Let

E1; : : : ; En�1 be orthonormal vector fields on S in a neighborhood of q. Extend
them to orthonormal vector fields NE1; : : : ; NEn�1; NEn on M in a neighborhood of q
such that NEn D 
 0. Then at q

�Md D

nX
iD1

�
NEi NEi .d/ �

�
r NEi
NEi
�
d
�
D �HS .q/ � �HN .p/ � �c:

This proves (b).

It follows from Lemma 2.1 that the distance function from aminimal hypersurface
in a manifold of nonnegative Ricci curvature is superharmonic at points where it is
smooth. In the following lemma we show that the distance function is superharmonic
in the barrier sense at points where it is not smooth, and hence satisfies the maximum
principle ([2], [20, Theorem 66]), that is, it is constant in a neighborhood of every
local minimum.
Lemma 2.2. Let † be a minimal hypersurface in a complete Riemannian mani-
fold M of nonnegative Ricci curvature. Then the distance function d from † is
superharmonic �d � 0 in the barrier sense. That is, given p 2 M , for every " > 0
there exists a smooth support function from above d" defined in a neighborhood of p
such that:

(1) d".p/ D d.p/,

(2) d.x/ � d".x/ in some neighborhood of p,

(3) �d".p/ � ".

Proof. By Lemma 2.1(b) we know that �d � 0 whenever d is smooth. For any
other p 2 M choose a unit speed minimizing geodesic 
 W Œ0; l� ! M between †
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and p, with 
.0/ 2 † and 
.l/ D p. Let � be the unit normal of † near 
.0/ in the
direction toward p, let '.t/ D e�t2=.1�t2/ be a smooth cut-off function, and define

†ı D
˚
expx ı'

�
d†
�

.0/; x

��
�.x/ W x 2 † \ Br

�

.0/

�	
for small ı > 0, r > 0. Since†ı is a small perturbation of†, we have jH†ı j � C.ı/
with C.ı/ ! 0 as ı ! 0. Given " > 0, choose ı D ı."/ sufficiently small so that
C.ı/ � ". We claim that d".�/ WD ı."/ C d.†ı."/; �/ is a smooth support function
from above for d at p. It is clear from the construction that d".p/ D d.p/. If x is
sufficiently close to p, there is an interior point x0 in †ı that realizes the distance
from x to †ı . By the construction of †ı , d.†; x0/ � ı, and we have

d.x/ D d.†; x/ � d.†; x0/C d.x0; x/ � ı C d.†ı ; x/ D d".x/:

If d" is smooth at p, then by Lemma 2.1(b),�d".p/ � C.ı/ � ". It remains to show
smoothness. Suppose d" is not smooth at p. Then we know that either
(1) there are two minimizing geodesics from p to †ı , or
(2) p is a focal point of †ı .
In case (1), there is a minimizing geodesic from p to a point q ¤ 
.ı/ in†ı . But by
construction of †ı , d.†; q/ < ı, and so this implies that

d.†; p/ � d.†; q/C d.q; p/ < ı C d.†ı ; p/ D l;

a contradiction. In case (2), if p is a focal point of†ı , there is a Jacobi field J along

 jŒı;l� with J.ı/ tangent to†ı at 
.ı/, J.l/ D 0, and such that J 0.ı/C S
 0.ı/.J.ı//
is orthogonal to†ı , whereS
 0.ı/ is the linear operator onT
.ı/†ı given by the second
fundamental form of†ı inM , that is, S
 0.ı/X D � .rX
 0.ı//T ,X 2 T
.ı/†ı . The
second variation of length of 
 jŒı;l� in the direction J is zero:

I.J; J / D

Z l

ı

�
jr
 0J j

2
� hR.J; 
 0/
 0; J i

�
dt C hrJJ; 


0
i

ˇ̌̌l
ı

D �

Z l

ı

hJ 00 CR.J; 
 0/
 0; J i dt C
�
hr
 0J; J i C hrJJ; 


0
i
�ˇ̌̌l
ı

D �

Z l

ı

hJ 00 CR.J; 
 0/
 0; J i dt � hJ 0.ı/C S
 0.ı/.J.ı//; J.ı/i

D 0:

Let � be the geodesic in †ı with �.0/ D 
.ı/ and � 0.0/ D J.ı/. For ı small, there
is a unique minimizing geodesic 
s between �.s/ and †. Since '00.0/ < 0, 
.ı/
is the point on †ı that is furthest from †, and the second variation of 
s is strictly
negative,

d2

ds2

ˇ̌̌̌
sD0

L.
s/ < 0:
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Let W be the variation field of the variation 
s of 
 jŒ0;ı�. Then W.ı/ D J.ı/, and
for the vector field V along 
 given by

V.t/ D

(
W.t/ for 0 � t � ı;
J.t/ for ı � t � l ;

the second variation of length of 
 is strictly less than zero. This contradicts the
fact that 
 is a minimizing geodesic from p to †. Therefore, d" is smooth in a
neighborhood of p and is a smooth support function from above for d at p.

With the superharmonicity of the distance function in our hands we are now able
to prove the main theorem.
Definition 2.3. Let† be a compact connected embedded hypersurface in a compact
manifold M . † is said to be separating if M n † has two nonempty connected
components, and nonseparating ifM n† is connected.
Definition 2.4. A handlebody is a 3-manifold with boundary which is homeomorphic
to a closed regular neighborhood of a connected properly embedded 1-dimensional
CW complex in R3. A surface † in a 3-manifold M is called a Heegaard surface
if † separatesM into two handlebodies.
Theorem 2.5. Let M be a compact Riemannian n-manifold of nonnegative Ricci
curvature and † a compact connected embedded 2-sided minimal hypersurface
inM . Then either
(a) † is nonseparating and totally geodesic andM is isometric to a mapping torus

† � Œ0; a�

.x; 0/ � .y; a/ iff �.x/ D y
;

where � W †! † is an isometry, or
(b) † is separating, and if D1;D2 � M are the components of M n †, then for

j D 1; 2 the maps

i� W �1.†/! �1. NDj /; i� W �1.†/! �1.M/;

and i� W �1.Dj /! �1.M/

induced by the inclusion are all surjective.
If n D 3 and † is separating, then † is a Heegaard surface.

Proof. (a) Choose a function that is equal to 0 on † and in a neighborhood of one
side of † and equal to 1 in a neighborhood of the other side of †. Since † is
nonseparating, this function can be extended to a smooth function onM n†, and by
passing to the quotient mod Z we obtain a nonconstant smooth function

f WM ! R=Z D S1:
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Let f� W �1.M/ ! Z be the induced map on the fundamental groups, and for the
universal cover QM ofM , consider the cyclic cover OM D QM=G ofM corresponding
to the subgroup G D ker f� of �1.M/. Since OM has a geodesic line, the result
follows from the splitting theorem [3]. However, we will give an alternate direct
proof, which will be needed for the proof of part (b).

Let†1; †2� OM be two adjacent preimages of† under the projection � W OM!M

such that †1 and †2 bound a connected domain D � OM on which � is 1-1. Here
we adopt the arguments of [21]. If di is the distance function on D to †i , then our
hypotheses on the Ricci curvature ofM and the minimality of†i imply that�di � 0
in the barrier sense, by Lemma 2.2. Hence d1 C d2 is also superharmonic in the
barrier sense. But it has an interior minimum on a minimal geodesic 
 between †1
and †2 and so by the maximum principle it is constant onD. Then it follows that di
is harmonic and smooth on D. Recall the Bochner formula for a smooth function u
on OM :

1

2
�jduj2 D jHessuj2 C hru;r.�u/i C Ric.ru;ru/:

Since jduj D 1 for u D di , the formula yields Hess di D 0 on D. Therefore †i is
totally geodesic and OM is isometric to †i � R1. ThusM is isometric to a mapping
torus

† � Œ0; a�

.x; 0/ � .y; a/ iff �.x/ D y
;

where a is the length of 
 and � W †! † is an isometry.
(b) Let � W QDj ! Dj be the universal cover ofDj , j D 1; 2. Extending � up to

@ QDj , we claim that @ QDj D ��1.†/ is connected. If @ QDj is not connected, let

d0 D inf
˚
d.†0; †00/ W †0 and †00 are distinct components of @ QDj

	
:

As in [15], there exist components †0 and †00 such that there is a geodesic 
 in QDj
from †0 to †00 of length d0. By continuity, there is a neighborhood of 
 in QDj such
that the distance functions d 0 and d 00 to †0 and to †00 in QDj are well defined. By the
same arguments as in (a) we see that d 0 C d 00 is superharmonic. Note that d 0 C d 00
has interior minimum at all points of 
 . As in (a), it follows that a neighborhood of 

is isometric to a product manifold .†0 \ U/ � .0; d0/, where U is a neighborhood
of 
.0/ in †0. Let U be the set of points in †0 that can be connected to †00 by a
geodesic of length d0. By the argument above, U is open and U � U. We claim
that U is also closed. To see this, let pm be a sequence of points in U converging
to p 2 †0, and let 
m be a geodesic in QDj of length d0 from pm to †00. By passing
to a subsequence we can see that there exists a geodesic 
0 of length d0 from p

to †00 such that f
mg converges to 
0. It may happen that 
0 hits @ QDj n †0 at
some point q with dist.p; q/ < d0. But then dist.p; @ QDj n †0/ < d0, which is a
contradiction. Therefore p 2 U and U is closed. Since U is both open and closed,
U D †0. Therefore QDj is isometric to the product manifold†0 � .0; d0/. HenceDj
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is isometric to † � .0; d0/, and so the closure NDj is isometric to † � Œ0; d0� or to a
mapping torus. Either case will lead to a contradiction because @Dj is not connected
in the first case and @Dj is empty in the second. Hence @ QDj is connected, as claimed.

Let ` be a loop in NDj with base point p 2 †. Lift ` to a curve Q̀ in QDj from
p1 2 �

�1.p/ to p2 2 ��1.p/. Since ��1.†/ is connected, there is a curve Ò
in ��1.†/ connecting p1 to p2. Moreover, Ò is homotopic to Q̀ in QDj as QDj is
simply connected. Hence �. Ò/ is a loop in† that is homotopic inDj to `. Therefore
the map i� W �1.†/! �1. NDj / induced by inclusion is surjective.

Let ` be a loop inM . Divide ` into two parts `1; `2 such that `j � Dj . Cover `j
with a curve Q̀j in QDj as above. By the connectedness of ��1.†/ again we have
a curve Òj in ��1.†/ with the same end points as Q̀j and homotopic to Q̀j . Then
�. Ò1/ [ �. Ò2/ is a loop in † that is homotopic to `. Hence i� W �1.†/! �1.M/ is
also surjective.

Since † is 2-sided there exists Ǹj � Dj which is very close to �. Ò1/ [ �. Ò2/.
Hence Ǹj and �. Ò1/ [ �. Ò2/ are homotopic and therefore i� W �1.Dj /! �1.M/ is
surjective.

To prove the final statement, suppose n D 3. The surjectivity of i� W �1.†/ !
�1. NDj / implies �1. NDj ; †/ � 0. Then by [19] we can use the Loop theorem and
Dehn’s lemma to show that ND1 and ND2 are handlebodies. Thus † is a Heegaard
surface.

Corollary 2.6. Let † be a compact connected embedded minimal surface in a
Riemannian three-sphereM of nonnegative Ricci curvature. Then † is unknotted.

Proof. From the Jordan–Brouwer separation theorem it follows that † is separating.
We show that† is unknotted in the sense that if†0 is a standardly embedded surface of
the same genus as† inM , then there exists an orientation preserving diffeomorphism
f W M ! M such that f .†/ D †0. By Theorem 2.5(b), † is a Heegaard surface.
It follows from [24] that there is a PL homeomorphism Qf W M ! M such that
Qf .†/ D †0. Then by results from [14] there exists a smooth map f as claimed.

Remark 2.7. It should be mentioned that Meeks and Rosenberg [17] showed a
noncompact properly embedded minimal surface in S2 �R is unknotted.

The result of Frankel shows that two compactminimal hypersurfaces in amanifold
of positive Ricci curvature must intersect. However, a manifold of nonnegative Ricci
curvature can have many disjoint compact minimal hypersurfaces. Furthermore, in
the case of negative curvature, there can even exist disjoint hypersurfaces that bound
a connected mean convex region; for example, spheres equidistant to two disjoint
planes in hyperbolic space. On the other hand two disjoint horospheres in hyperbolic
space cannot bound a connected mean convex region. This suggests that there can
only exist a connected mean convex region with two disjoint boundary components
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if the mean curvature is less than a critical number involving a lower bound on the
curvature of the ambient manifold.

Here we show this, that in fact Frankel’s argument can be extended to the case
of manifolds of negative Ricci curvature provided the Ricci curvature is bounded
from below and the hypersurfaces have mean curvature that is sufficiently large.
We obtain the corresponding result on surjectivity of the natural homomorphism of
fundamental groups for compact 2-sided hypersurfaces with mean curvature above
this critical (sharp) threshold involving the lower bound on the Ricci curvature. In
the 3-dimensional case, such hypersurfaces must bound handlebodies; for example, a
compact connected 2-sided hypersurface with mean curvature jH j � 2 in hyperbolic
3-space bounds a handlebody.
Theorem 2.8. Let M n be a complete Riemannian manifold of Ricci curvature
bounded from below, RicM � �.n � 1/k, k > 0. Let † be a compact hypersurface
that bounds a connected region � in M . Suppose that the mean curvature vector
of † points everywhere into �, andH � .n � 1/

p
k. Then † is connected, and the

map
i� W �1.†/! �1. N�/

induced by the inclusion is surjective. If n D 3 then � is a handlebody.

Proof. We argue by contradiction. Suppose † is not connected. Let †1 and †2
be distinct connected components of †. Then there exists a unit speed geodesic

 W Œ�l=2; l=2�! M with 
.�l=2/ D p 2 †1 and 
.l=2/ D q 2 †2 that realizes
distance from †1 to †2, and meets † orthogonally at the endpoints on the mean
convex side of†. Let e1; : : : ; en�1 be an orthonormal basis for the tangent space to†1
at p, and parallel transport to obtain parallel orthonormal vector fieldsE1; : : : ; En�1
along 
 . Since 
 meets †2 orthogonally, E1.q/; : : : ; En�1.q/ are tangent to †2
at q. Let Vi .t/ D '.t/Ei .t/ with '.t/ D 1

c.l/
cosh.

p
k t/ and c.l/ D cosh.

p
k l=2/.

Note that '00�k' D 0 and '.�l=2/ D '.l=2/ D 1. Consider the sum of the second
variations of length of 
 in the directions Vi :

0 �

n�1X
iD1

L00Vi .0/

D

Z l=2

�l=2

�
.n � 1/.'0/2 � '2 Ric.
 0
 0/

�
dt C

n�1X
iD1

'2hrEiEi ; 

0
i

ˇ̌̌l=2
�l=2

D �

Z l=2

�l=2

�
.n � 1/''00 C '2 Ric.
 0
 0/

�
dt �H†.p/ �H†.q/C .n � 1/''

0

ˇ̌̌l=2
�l=2

� �.n � 1/

Z l=2

�l=2

'.'00 � k'/ dt � 2.n � 1/
p
k C 2.n � 1/

p
k tanh

�p
k l=2

�
D �2.n � 1/

p
k C 2.n � 1/

p
k tanh

�p
k l=2

�
< 0;
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which is a contradiction. Therefore † is connected. Similarly ��1.†/ is connected
in the universal cover Q� of� under the covering map � W Q�! �. It then follows by
arguments as in the proofs of Theorem 2.5(b) that i� W �1.†/! �1. N�/ is surjective,
and if n D 3 then � is a handlebody.

Remark 2.9. The assumption that † bounds a region is not necessary. If M n is
a complete Riemannian manifold with RicM � �.n � 1/k, k > 0, and † is a
compact 2-sided hypersurface in M with jH j � .n � 1/

p
k, then it follows that †

bounds a collection of disjoint connected regions �1; : : : ; �s in M such that the
mean curvature vector EH points everywhere into �i , and each has as boundary @�i
a connected component of †. To see this, first observe that each component †0
of † is separating. If not, we may construct a cyclic cover OM ofM as in the proof
of Theorem 2.5(a). Then Ric OM � �.n � 1/k, and each component of ��1.†0/
divides OM into two infinite pieces. For one of these pieces, �, the mean curvature
vector EH of @� points everywhere into� and satisfies jH j � .n� 1/

p
k. It follows

from [23, Lemma 1] that

Vol.�/ �
1

n � 1
Vol.@�/ <1;

a contradiction. Therefore each component of † is separating, and hence † bounds
a collection of disjoint regions �1; : : : ; �s such that EH points everywhere into �i
for i D 1; : : : ; s. Finally, Theorem 2.8 implies that @�i is connected for each i and
hence is a connected component of †.
Remark 2.10. This theorem is sharp in the sense that on a hyperbolic surface, disjoint
circles of curvature 1 cannot bound a convex region, but on a hyperbolic surface with
a cusp there exists a convex annular region with two boundary components (cross
sections of the cusp) that have curvature slightly less than, but arbitrarily close to 1.
One can construct analogous compact examples in higher dimensions in quotients
of hyperbolic space Hn. Two disjoint horospheres with H D n � 1 cannot bound a
connected mean convex region in hyperbolic n-space Hn, but in the half-space model
of Hn there can exist a connected convex region bounded by the two hyperplanes P1,
P2 with @P1 D @P2 � @Hn and making angles �; � � � with @Hn; the boundary
components have mean curvature slightly less than, but arbitrarily close to n � 1
as � ! 0.

3. Convex domain

In this section the Riemannian manifold M n will be assumed to have nonempty
boundary @M . Suppose thatM has nonnegative Ricci curvature and @M is strictly
convex. Recall that Frankel [6] showed that two compact immersed minimal
hypersurfaces in a RiemannianmanifoldM of positive Ricci curvaturemust intersect.
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Fraser and Li [7, Lemma 2.4] extended Frankel’s theorem to two properly embedded
minimal hypersurfaces †1; †2 in M , i.e. @†i � @M , i D 1; 2, meeting @M
orthogonally. They also showed ([7, Corollary 2.10]) that if † is a properly
embedded orientable minimal hypersurface inM meeting @M orthogonally, then †
divides M into two connected components D1 and D2. We show that the maps
i� W �1.†/! �1. NDj /, j D 1; 2, are surjective and that† is unknotted when n D 3.
We also prove some corresponding results in the case where the Ricci curvature is
bounded from below by a negative constant.
Lemma 3.1. Let M be an n-dimensional compact manifold of nonnegative Ricci
curvature with strictly convex boundary @M . Suppose that † is a properly
embedded minimal hypersurface in M meeting @M orthogonally. Then the maps
i� W �1.†/! �1.M/ and i� W �1.†/ ! �1. NDj /, j D 1; 2, are surjective,
whereD1;D2 are the components ofM n†.

Proof. Let QDj be the universal cover ofDj with the projection map � W QDj ! Dj .
Since ��1.†/ is connected, by the same arguments as in the proof of Theorem 2.5(b)
we easily get the surjectivity of i� W �1.†/! �1. NDj /. Applying the same arguments
to � W QM !M , we get the surjectivity of i� W �1.†/! �1.M/ as well.

Theorem 3.2. LetM be a 3-dimensional compact orientable Riemannian manifold
of nonnegative Ricci curvature. Suppose M has nonempty boundary @M which is
strictly convex with respect to the inward unit normal. Then an orientable properly
embedded minimal surface † in M meeting @M orthogonally divides M into two
handlebodies.

Proof. By Lemma 3.1 we have �1. ND1; †/ D �1. ND2; †/ D 0. As in the proof
of Theorem 2.5, using the Loop theorem and Dehn’s lemma, we conclude that D1
andD2 are handlebodies.

Corollary 3.3. Let M be a 3-dimensional compact Riemannian manifold of
nonnegative Ricci curvature with nonempty strictly convex boundary @M . Then
any orientable properly embedded minimal surface † in M orthogonal to @M is
unknotted.

Proof. M is diffeomorphic to the 3-ball B3 by [7, Theorem 2.11]. † dividesM into
two handlebodies by Theorem 3.2. It then follows from [8, Theorem 2.1] that † is
unknotted.

We also have a version in the case of curvature with a negative lower bound.
Theorem 3.4. LetM n be a compact Riemannian manifold with nonempty boundary.
SupposeM has Ricci curvature bounded from below RicM � �.n�1/k, k > 0, and
the boundary @M is strictly convex with respect to the inward unit normal. Let † be
a hypersurface inM that bounds a connected region � inM and makes a constant
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contact angle � � �=2 with @�\@M . Suppose that the mean curvature vector of †
points everywhere into �, andH � .n � 1/

p
k. Then † is connected, and the map

i� W �1.†/! �1. N�/

induced by the inclusion is surjective.

Proof. Suppose † is not connected. Let †1 and †2 be two distinct connected
components of †. Let d1 and d2 be the distance functions on � from †1 and †2
respectively. Since @M is convex and †i , i D 1; 2, makes a contact angle � �=2
with @�\@M , for any point x in�n†i , di .x/ is realized by a geodesic in� from x
to an interior point y on †i . Then there exists a geodesic 
 in � from some interior
point p 2 †1 to some interior point q 2 †2, that realizes the distance from†1 to†2,
and meets †1 and †2 orthogonally. But as in the proof of Theorem 2.8 the Ricci
curvature lower bound and assumption on the mean curvature of †1 and †2 imply
that 
 is unstable, a contradiction. Therefore † is connected.

Let Q� be the universal cover of � with projection map � W Q� ! �. By the
same argument as above, @ Q� n ��1.@M/ must be connected, and we easily get the
surjectivity of i� W �1.†/! �1. N�/.

Corollary 3.5. Under the assumptions of Theorem 3.4, if n D 3 then � is a
handlebody.

4. Nonexistence

As an application of the surjectivity of i� W �1.†/ ! �1.M/ Frankel showed that
Sn�1 cannot be minimally embedded in Pn. In this section we further utilize the
surjectivity of i� and prove nonexistence of some minimal embeddings in T n.

Meeks [16] proved that a compact surface of genus 2 cannot be minimally
immersed in a flat 3-torus T 3. He used the fact that the Gauss map of a minimal
surface† � T 3 into S2 has degree one. A theorem of a similar nature can be proved
in higher dimension by using the surjectivity of i�.

Theorem 4.1. Let N be a compact orientable .n � 1/-dimensional manifold and
suppose the minimal number of generators of �1.N / is k.

(a) If k < n � 1, N cannot be minimally embedded in the n-dimensional flat
torus T n.

(b) If k D n � 1 and N is minimally embedded in T n, then N is a flat T n�1.

(c) If k > n � 1 and N is minimally embedded in T n, then N is separating and
the number of generators of �1.Dj / must be bigger than n � 1 for j D 1; 2

(D1 [D2 D T n nN ).
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Proof. Let N n�1 be an embedded minimal submanifold in T n with k � n � 1.
Then the map i� W �1.N / ! �1.T

n/ is not surjective. Hence from Theorem 2.5
we conclude that N is nonseparating and totally geodesic in T n. Hence N is a
flat T n�1 and k D n � 1. Therefore N cannot be minimally embedded in T n in
case k < n � 1. If k > n � 1, then N must be separating and (c) follows from the
surjectivity of i� W �1.Dj /! �1.T

n/ in Theorem 2.5(b).

Remark 4.2. In case n D 3, Theorem 4.1(c) gives a new proof of the Meeks theorem
mentioned above for the embedded case.

Let �k � R2 be the union of k loops 
1; : : : ; 
k in R2 with 
i \ 
j D fpg for
every pair 1 � i; j � k and let �n

k
be the "-tubular neighborhood of �k in Rn. �n

k

can be seen as a high-dimensional handlebody in Rn. Note that @�n
k
is diffeomorphic

to #k.Sn�2�S1/, the connected sum of k copies ofSn�2�S1, and that�1.@�nk / has k
generators when n � 4. Since @�nn�1 is not diffeomorphic to T n�1, Theorem 4.1
implies that @�n

k
cannot be minimally embedded in T n for any k D 1; : : : ; n � 1.

Schwarz’s P -surface is a minimal surface of genus 3 in the cubic torus T 3. One
can generalize this surface to higher dimension as follows. T n has a 1-dimensional
skeleton Ln which is homeomorphic to �n. There also exists its dual L0n that is a
parallel translation of Ln. One can foliate T n n .Ln [ L0n/ by a 1-parameter family
of .n� 1/-dimensional hypersurfaces which are diffeomorphic to @�nn and sweeping
out from Ln to L0n. Applying the minimax argument, one could find a minimal
hypersurface † from this family of hypersurfaces [4]. † should be diffeomorphic
to @�nn and �1.†/ should have n generators. Therefore the upper bound n � 1 in
Theorem 4.1 is sharp.

We know that every positively curved S2 has a closed geodesic. And the Clifford
torus

S1
� 1
p
2

�
� S1

� 1
p
2

�
is minimally embedded in S3. Moreover,

S1
� 1
p
3

�
� S1

� 1
p
3

�
� S1

� 1
p
3

�
is minimally embedded in S5; however, its codimension is 2. Then it is natural to
ask the following:
Question. Can one minimally embed T n .n � 3/ in a Riemannian sphere SnC1 of
nonnegative Ricci curvature?
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