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On regular CAT(0) cube complexes and the simplicity
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Abstract.We provide a necessary and sufficient condition on a finite flag simplicial complex L
for which there exists a unique CAT(0) cube complex whose vertex links are all isomorphic toL.
We then find new examples of such CAT(0) cube complexes and prove that their automorphism
groups are virtually simple. The latter uses a result, which we prove in the appendix, about the
simplicity of certain subgroups of the automorphism group of a rank-one CAT(0) cube complex.
This result generalizes previous results by Tits [20] and by Haglund and Paulin [15].
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1. Introduction

Over the past years CAT(0) cube complexes have played a major role in geometric
group theory and have provided many examples of interesting group actions on
CAT(0) spaces. In the search for highly symmetric CAT(0) cube complexes — just
as for their 1-dimensional analogues, trees — it is natural to consider the sub-class
of regular CAT(0) cube complexes, i.e. cube complexes with the same link at each
vertex.

More precisely, recall that a CAT(0) cube complex is a 1-connected cube complex
whose vertex links are flag simplicial complexes (see [12]). LetL be a fixed finite flag
simplicial complex (throughout the paper we assume that all simplicial complexes
are finite and flag). An L-cube-complex is a cube complex whose vertex links are all
isomorphic toL. For every finite flag simplicial complexL, the Davis complexD.L/
of the right-angled Coxeter group WL associated to L is an example of a CAT(0)
L-cube-complex (see Subsection 2.4 for more details).

A crucial difference between general CAT(0) L-cube-complexes and their
1-dimensional analogues — regular trees — is that they are not necessarily unique.
This naturally raises the question of determining for a given finite flag simplicial
�Supported by The ETH Zürich Fellowship Program.
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complexLwhether or not there is a unique CAT(0)L-cube-complex1. This question
can also be viewed as the cube complex analogue of a similar question for polygonal
complexes that appeared in the survey paper of Farb, Hruska and Thomas [9]. Regular
polygonal complexes have been studied in various works, proving uniqueness for
certain links on the one hand, as in [3, 10, 14, 17, 19, 21] but also finding links for
which there is a continuum of non-isomorphic complexes on the other, as in [1,13,17].

CAT(0) L-cube-complexes are known to be unique for some links L, including:
� Any collection of isolated vertices i.e. the link of a regular tree.
� The simplex �d for all d 2 N i.e. the link of the cube complex consisting of one
.d C 1/-dimensional cube.

� The cycle graph Cn for n � 4 i.e. the link of a regular square tiling of the
Euclidean/hyperbolic plane.

� The complete bipartite graph Kn;m i.e. the link of a product of two regular trees
(see [21]).

� Any trivalent, 3-arc-transitive graph (see [19]).
� The odd graphs On (see [17]).
In fact, the question of uniqueness for CAT(0) L-square-complexes (and other
polygonal complexes) — i.e. when L is a graph — was answered in a previous
paper by the author (see [17]). Moreover, a fuller characterization of the graph
condition given there together with more examples of such graphs can be found in
the work of Giudici, Li, Seress and Thomas [10].

In this paper we show that the following combinatorial condition onL is necessary
and sufficient for uniqueness of CAT(0) L-cube-complexes.
Definition 1.1. Asimplicial complexL is superstar-transitive if for any two simplices
�; � 0 and any isomorphism �W stL.�/ ! stL.� 0/, sending � to � 0, there exists an
automorphism ˆWL! L such that ˆjstL.�/ D �.

The main theorem is thus the following.
Theorem 1.2 (Uniqueness of CAT(0) L-cube-complexes). Let L be a finite flag
simplicial complex. The associated Davis complex D.L/ is the unique CAT(0)
L-cube-complex if and only if L is superstar-transitive.

Except for the above examples, we provide in Subsection 5.1.1 a new family of
examples of superstar-transitive flag simplicial complexes of arbitrary dimension,
the Kneser complexes Kdn . The Kneser complexes Kdn generalize the first and last
examples in the list above which correspond respectively to d D 1 and d D 2. The
corresponding unique CAT(0) Kdn -cube-complexes are not Gromov hyperbolic for
d � 3 (see Remark 5.7) and not products.

1Note that, as for trees, without the CAT(0) assumption one can build many L-cube-complexes for
example by taking quotients of Davis complexD.L/ by torsion free subgroups of the associated Coxeter
groupWL.
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As in the case of regular trees, one might expect that these unique CAT(0)
L-cube-complexes exhibit rich automorphism group actions. For instance, we prove
that one can extend any automorphism of a hyperplane to an automorphism of the
whole complex. In fact in Theorem 4.2 we show that the following stronger property
holds for any collection of pairwise transverse hyperplanes in a unique CAT(0)
L-cube-complex.

Definition 1.3. Let X be a CAT(0) cube complex. A set of pairwise transverse
hyperplanes Oh1; : : : ; Ohd satisfies the hyperplane automorphism extension property
(HAEP) if for all Of 2 Aut.Oh1 [ � � � [ Ohd / there exists an automorphism f 2 AutX
such that f stabilizes the set Oh1 [ � � � [ Ohd and f j Oh1[���[Ohd D

Of .

We then use it to show that certain unique CAT(0) L-cube-complexes have a
virtually simple automorphism group. Note that this generalizes the well-known
virtual simplicity of the automorphism group of a regular tree proved by Tits [20]
and provides new examples of locally compact totally disconnected simple groups.
Also note that this is not true in general. For instance, the automorphism group
of the unique CAT(0) C5-square-complex is discrete and thus contains the Coxeter
groupWC5 as a finite index subgroup, which in turn virtually maps onto a free group.

The outline of the paper is as follows:
In Section 2 we set the ground for the proof of the main theorem: we define the

superstar-transitivity conditions; we introduce an inductive method on the vertices
of a CAT(0) cube complex; and recall the definition of the Davis complexes for
right-angled Coxeter groups.

In Section 3 we prove the main theorem.
In Section 4 we prove that the hyperplane automorphism extension property

(HAEP) holds for the unique CAT(0) L-cube-complexes.
In Section 5 we show how the HAEP can be used to prove that certain

automorphism groups are virtually simple. We then give some examples of unique
CAT(0) L-cube-complexes which have a virtually simple automorphism group.

In the appendix we use the Rank Rigidity theorem of Caprace and Sageev [8]
and results of Hamenstädt [16] to generalize previous results by Tits [20] and by
Haglund and Paulin [15] about the simplicity of the subgroup of the automorphism
group of a CAT(0) cube complex generated by all halfspace fixators. Haglund and
Paulin used their result to prove simplicity of the automorphism group of various
hyperbolic spaces with walls including the class of “even polyhedral complexes”,
which include certain hyperbolic buildings and .k; L/-complexes. Our generalization
will be applied to prove the virtual simplicity of the automorphism groups of Kneser
complexes (see Corollary 5.6) which can be non-hyperbolic by Remark 5.7. A similar
result was proved by Caprace in [5] for the type-preserving automorphism groups of
right-angled buildings.



36 N. Lazarovich CMH

Acknowledgements. The author would like to thank Pierre-Emmanuel Caprace for
carefully reading the manuscript and for providing useful and insightful comments.
His main suggestions provide a complete analysis of the other cases in Theorem 5.10,
which unfortunately were not included in the final version of this manuscript. The
author would also like to thank his advisor, Michah Sageev, for his never-ending
encouragement and helpful advice, Frédéric Haglund for some helpful conversations
and exchange of ideas, and to the referee for carefully reading the manuscript and
making helpful suggestions. The author sincerely appreciates and acknowledges the
support received by the ETH Zurich Postdoctoral Fellowship Program and the Marie
Curie Actions for People COFUND Program.

2. Preliminaries

2.1. Superstar-transitivity and basic definitions. Let X be a CAT(0) cube com-
plex, and let L be a finite flag simplicial complex. Recall the following definitions.
� For a vertex x 2 X .0/, the link of x in X , Lk.x;X/, is the simplicial complex
whose vertices are the edges incident to x and whose simplices are the collections
of edges which span cubes in X .

� For L0 � L, the open star stL.L0/ of L0 in L is the union of all open simplices
of L whose closure intersects that of L0. In particular, the star of a simplex is the
union of the stars of its vertices.2

� Let e be the directed edge in X which connects x to y, and let � and � be the
vertices corresponding to e in Lk.x;X/ and Lk.y;X/ respectively. The transfer
map along e 2 X .1/ is the isomorphism �eW stLk.x;X/.�/ ! stLk.y;X/.�/ which
sends a simplex incident to � in Lk.x;X/ to the simplex which represent the same
cube in Lk.y;X/.

Definition 2.1. For k 2 N [ f0g, the simplicial complex L is said to be st.�k/-
transitive if for any pair of (not necessarily distinct) k-simplices �; � 0 of L and
any isomorphism �W st.�/ ! st.� 0/ there exists an automorphism ˆ of L such that
ˆjst.�/ D �.

Note thatL is superstar-transitive if and only if it is st.�k/-transitive for all k � 0.

2.2. CAT(0) cube complexes terminology. For the definition of CAT(0) cube
complexes we refer to Bridson–Haefliger [4]. We recall that CAT(0) cube complexes
naturally carry a combinatorial structure coming from the construction of hyperplanes
and halfspaces. For the definition and more details see [18].

The hyperplanes of a CAT(0) cube complex X have a natural CAT(0) cube
complex structure, and their vertices can be naturally identified with midpoints of

2We follow Ballmann and Brin [1] in our choice of notation.
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edges (or simply mid-edges) of X . Following the notation in [18], we denote by Oh
the bounding hyperplane of the halfspace h, and by h� its complementary halfspace.

We will say that two points inX are adjacent (or neighbors) if they are contained
in an edge of X . Since we will use this terminology also for mid-edges and vertices,
we stress that the mid-edge and an endpoint of an edge are adjacent. We say that
a hyperplane separates two points if every path between them in X intersects the
hyperplane. Again, we stress that this includes the degenerate case that one of the
points belongs to the hyperplane. Similarly, a hyperplane separates two sets if it does
so pointwise. A hyperplane is adjacent to a vertex if they cannot be separated by
another hyperplane. Or equivalently, if it has a point which is adjacent to the vertex.

2.3. Induction on the vertices of a CAT(0) cube complex. In this subsection we
describe the properties of a certain enumeration of the vertices of X .
Definition 2.2. LetX be a CAT(0) cube complex. Let fxngn<0 be a (possibly empty)
set of mid-edges in X . An enumeration fxngn�0 of the vertices of X is admissible
with respect to the mid-edges fxngn<0 if the following hold for all n � 0.
(1) The elements xm withm < nwhich are adjacent to xn are contained in one cube.
(2) For every i < n such that there are cubes containing xn and xi that share a

face C , there exists a neighbor xm of xn with m < n that is contained in a cube
that contains C .

Lemma 2.3. Let X be a CAT(0) cube complex, and let fxngn<0 be the set of the
vertices of a (possibly empty) transverse collection of hyperplanes Oh1 : : : ; Ohd viewed
as mid-edges in X . Let x0 be a vertex which is adjacent to all Oh1; : : : ; Ohd , and
let fxngn�0 be an enumeration of the vertices of X with non-decreasing distance
from x0 with respect to the shortest path metric d on the 1-skeleton of X . Then,
fxngn�0 is admissible with respect to fxngn<0.

Proof. Let n � 0. In order to prove Property (1) of admissibility, it is enough
to prove that the corresponding hyperplanes that separate xn from its preceding
neighbors pairwise intersect. Let xm and xm0 be two neighbors of xn withm;m0 < n.
Let Oh; Oh0 be the two hyperplanes that separate xn from xm; xm0 respectively. By the
assumption that d.xn; x0/ is non-decreasing it follows that the hyperplane Oh (resp. Oh0)
either separates xn from x0, or m < 0 (resp. m0 < 0) in which case xm (resp. xm0) is
a mid-edge in the hyperplane Oh (resp. Oh0) which belongs to fOh1; : : : ; Ohd g. If they both
belong to fOh1; : : : ; Ohd g then they intersect by assumption. If both separate xn from x0,
then they intersect since they are also adjacent to xn. Without loss of generality we
are left with the case that Oh 2 fOh1; : : : ; Ohd g and Oh0 separates xn from x0. Since Oh is
adjacent to both x0 and xn, and Oh0 is adjacent to xn and separates x0 and xn it follows
that Oh0 and Oh intersect, otherwise they separate each other from either x0 or xn.

To prove Property (2), let C be a face of cubes that contain xi and xn, for i < n.
Let Ok1; : : : ; Okr be the hyperplanes which are adjacent to xn and either intersect C
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or separate xn and C . Let OkrC1; : : : ; Oks be the hyperplanes which are adjacent to xn,
separate xn and xi and are not in fOk1; : : : ; Okrg. Since xi and C are contained in
a cube, the hyperplanes Ok1; : : : ; Oks are pairwise transverse. Let us denote by D a
cube that contains xn and intersects all of Ok1; : : : ; Oks . By definition D contains C .
Therefore it suffices to show that there exists a neighbor xm 2 D of xn with m < n.
If there exists 1 � t � s such that Okt separates xn and x0, then the unique vertex
neighbor xm which is separated by Okt from xn has the desired property. Now, assume
that all of Ok1; : : : ; Oks do not separate xn and x0. In particular d.xi ; x0/ > d.xn; x0/

and therefore xi is a mid-edge (and i < 0). Let Oh 2 fOh1; : : : ; Ohd g be the hyperplane
that contains xi . Since x0 is adjacent to Oh it follows that xn and Oh are adjacent,
because any hyperplane that separates xn from Oh must also separates xn from x0.
The mid-edge xm 2 Oh which is adjacent to xn has the desired property.

Remark 2.4. Let fxngn�0 be an admissible enumeration of the vertices of X with
respect to the mid-edges fxngn<0, and let X�n be the subcomplex of all cubes that
contain an element of fxigi�n. By admissibility we see that for all n � 0, the cubes
that contain xn and intersect X�n�1 belong to X�n�1. Moreover, Lk.xn; X�n�1/ D
st.�/ where � is the simplex corresponding to the smallest cube that contains all the
preceding neighbors of xn.

2.4. Right-angled Coxeter groups and their Davis complex. We recall the con-
struction of the Davis cube complex for the right-angled Coxeter group associated
to L.

We first associate to L the right-angled Coxeter groupWL given by the following
presentation:

WL D
˝
� 2 L.0/ j 8� 2 L.0/; �2 D 1 and 8� � �; Œ�; �� D 1

˛
where � � � if the vertices � and � are adjacent in L (note that L is not the Coxeter
diagram for WL).

TheDavis complexD.L/ associated toL is the cube complex obtained by adding
cubes to the Cayley graph3 of WL whenever a 1-skeleton of a cube appears.
Remark 2.5. The complex D.L/ is a CAT(0) L-cube-complex [12, pp.131–132],
and the identification of Lk.x;D.L// with L comes canonically from the labeling
of the edges of the Cayley graph with the generators L.0/. With respect to this
identification, the transfer maps along edges ofD.L/ are the identity maps.
Remark 2.6. Any automorphismˆ of L defines an automorphism of the groupWL.
This automorphism extends to an automorphism F1;ˆ of D.L/ which fixes the
vertex which correspond to 1 2 WL and induces the map ˆ on the link of every
vertex (considered via the canonical identification with L). By conjugating this

3We assume that in the Cayley graph the bigons corresponding to the involution relation �2 for
� 2 L.0/ are identified to one edge.
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automorphism with an element of x 2 WL one can obtain an automorphism Fx;ˆ
which fixes the vertex that corresponds to x and induces the automorphism ˆ on the
links ofD.L/.
Remark 2.7. The hyperplane in D.L/ transverse to an edge e labeled � 2 L.0/ is
isomorphic to D.Lk.�; L//. This isomorphism is given by the WLk.�;L/-equivariant
embedding WLk.�;L/ ,! h�i nWL. We note that all the edges which are transverse to
a hyperplane have the same label in L.0/. Thus the label of a hyperplane inD.L/ is
well-defined.

3. Uniqueness of L-cube-complexes

In this section we prove Theorem 1.2. We begin by introducing the notion of
admissible maps.
Definition 3.1. Let fxngn�0 be an admissible enumeration of the vertices of a CAT(0)
cube complexX with respect to a set of mid-edges fxngn<0. Let Y be another CAT(0)
cube complex. For �1 � n � 1, let X�n be the subcomplex of X consisting of all
the closed cubes that contain an element of fxigi�n. An n-admissible map betweenX
and Y is a combinatorial mapFnWX�n ! Y which is a local isomorphism at each xi ,
i � n. That is, the map Fn induces an isomorphism Lk.xi ; X/! Lk.Fn.xi /; Y /.

We will prove the following useful extension lemma.
Lemma 3.2. LetL be a superstar-transitive simplicial complex. LetX; Y be CAT(0)
L-cube complexes, let fxngn�0 be an admissible enumeration of the vertices of X
with respect to a set of mid-edges fxngn<0. Let 0 � n < 1 and let Fn�1 be an
.n�1/-admissible map betweenX and Y . Then there exists an isomorphism of cube
complexes F1WX ! Y extending Fn�1.

Proof. We first show that one can extend Fn�1 to an n-admissible map Fn. If xn
does not have neighbors4 in X�n�1 then by Property (2), Fn�1 is not defined on any
of the faces of cubes that contain xn. Thus, one can extend Fn�1 by mapping xn to
an arbitrary vertex F.xn/ 2 Y and the cubes around xn by an arbitrary isomorphism
.Fn/xn WLk.xn; X/! Lk.F.xn/; Y /.

Now, assume that xn has neighbors in X�n�1. In order to define Fn on the cubes
that contain xn, we need to find an isomorphism .Fn/xn WLk.x;X/! Lk.F.x/; Y /
that agrees with Fn�1 on the cubes that intersect X�n�1. By Remark 2.4, we see
that .Fn/xn is already defined on a subcomplex of Lk.xn; X/ of the form st.�/,
where � is the simplex corresponding to the smallest cube that contains all the
neighborsxmwithm < n ofxn. Themap .Fn�1/xn defines an isomorphic embedding
of st.�/ into Lk.F.xn/; X/. By superstar-transitivity this can be extended to an
isomorphism Lk.xn; X�n/ D Lk.xn; X/! Lk.F.xn/; Y /.

4In fact, this case can only happen if n D 0 and the set of midedges is empty.
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Using the above extension procedure inductively one can extend Fn�1 to an
1-admissible map F1WX ! Y . By admissibility, F1 is a local isomorphism.
Since X and Y are connected and simply connected, F1 is an isomorphism.

We are now ready to prove Theorem 1.2.

Proof. We begin by proving that if L is superstar-transitive then there is a unique
CAT(0) L-cube-complex. Let X and Y be two CAT(0) L-cube-complexes.
Let fxngn�0 be an enumeration of X .0/ as in Lemma 2.3. Starting from an empty
.�1/-admissible map F�1 and applying Lemma 3.2, we obtain an isomorphism
F WX ! Y between the two cube complexes. This completes the proof of the first
implication.

We shall now prove that if L is not superstar-transitive for all k then there exist
more than one CAT(0) L-cube-complexes. Assume that k is the minimal non-
negative integer such that L is not st.�k/-transitive.

If k D 0, let �; � 2 L.0/ and let�W st.�/! st.�/ be an isomorphism such that there
is no automorphism of L extending �. Let X be the following cube complex. Let h�
(resp. h� ) be a halfspace in D.L/ defined by a hyperplane labeled by � (resp. �).
By Remark 2.7, the hyperplane Oh� (resp. Oh� ) can be identified with D.Lk.�; L//
(resp. D.Lk.�; L//) and thus the map � defines an isomorphism F� W Oh� ! Oh� by
Remark 2.5. Form the spaceX D h� tF� h� , see Figure 1. The spaceX is a CAT(0)
L-cube-complex.

To see that X © D.L/ note that in D.L/ for each hyperplane Oh of D.L/
there is a reflection fixing this hyperplane and exchanging h and h�, while in X
the distinguished hyperplane Oh� D Oh� does not satisfy this property since such a
reflection would imply that the induced maps on the links extend the transfer maps �
to an isomorphism of the links - contradicting the assumption on �.

If k � 1, let �W st.�/ ! st.� 0/ be an isomorphism between the stars of the
k-simplices �; � 0 � L that cannot be extended to an automorphism of L. Let
� D Œ�0; : : : ; �k� and let Q� D Œ�1; : : : ; �k� be one of its codimension-1 faces.
By the minimality of k, the complex L is st.�k�1/-transitive, and therefore
there exists an automorphism Q̂ of L extending .�jst.Q�//�1 (which, in particular,
sends � 0 to � ). Hence, by post-composition with Q̂ , we may assume that � D � 0,
i.e. �W st.�/! st.�/, and moreover �jst.Q�/ D idst.Q�/. We denote by �i WD �jst.�i /,
which by our assumption is the identity map for all i > 0.

Let h0; : : : ; hk be a collection of halfspace inD.L/ whose bounding hyperplanes
are pairwise transverse and labeled by �0; : : : ; �k respectively. Let† D h0\� � �\hk
be the sector they define. Each �i defines an automorphism Fi of Ohi . These
automorphisms coincide on Ohi \ Ohj thus define an automorphism F of the boundary
of this sector, i.e.

@† D

k[
iD1

�
Ohi \

�\
j¤i

hj

��
:
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Cut and paste using F�

L D
�1

�3

�2

�D�

D.L/ D

h�

h�

Oh� D Oh�

�3

�2�1
�

�3

�1 �2

�

X D

�3

�2�1
�

�3

�1�2

�

Figure 1. An example of the complexX for a non-st.�0/-transitive link L. Let L be the 3-edge
path graph. Let � and � be the same vertex, shown in the figure, and let �W st.�/ ! st.�/ be
the non-extendible isomorphism which exchanges �1 and �2. Since � D �, the hyperplanes Oh�
and Oh� may be chosen the same, and are isomorphic to the real line (thought of as the Davis
complex, D.Lk.�; L//, of the infinite dihedral group generated by the reflections �1 and �2).
The induced map F� W Oh� ! Oh� is the reflection around some vertex of Oh� . The space X in the
figure is obtained by gluing the halfspaces h� and h� using F� .
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Let X be the space obtained by gluing † to D.L/ n †ı along † with respect to F .
The space X is a CAT(0) L-cube-complex.

Assume for contradiction that X Š D.L/. Consider the k C 1 commuting
reflections, r0; : : : ; rk , with respect to the hyperplanes Oh0; : : : ; Ohk . Let C be a cube
that intersects

T
i
Ohi and corresponds to � . Let C be identified with Œ0; 1�kC1

such that v0 WD .0; : : : ; 0/ is the vertex in the sector †, and its adjacent vertices
.1; 0; : : : ; 0/ ; : : : ; .0; : : : ; 0; 1/ correspond to the vertices �0; : : : ; �k in the link of v0.

The reflections ri determine automorphisms ri;vWLk .v;X/! Lk .ri .v/ ; X/ for
i D 0; : : : ; k and v 2 f0; 1gf0;:::;kg. These reflections have the following properties:

(1) The maps ri;v fix � (after identifying each link with L using the natural
identification).

(2) The restriction ri;vjst.�i / D �ei;v where ei;v is the edge connecting v and ri .v/
and �ei;v is the transfer map along ei;v . Note also that by the construction
all the transfer maps �ei;v are the identity maps except for �e0;v0 D �0 (and
�e0;r0.v0/ D �

�1
0 ).

(3) For all i; j 2 f0; : : : ; kg ; i ¤ j and v 2 f0; 1gf0;:::;kg

rj;ri .v/ ı ri;v D ri;rj .v/ ı rj;v:

Let us denote Œn� WD f1; : : : ; ng for all n 2 N. Let v 7! Qv denote the embedding

f0; 1gŒk� ,! f0g � f0; 1gŒk� � f0; 1gf0g[Œk� ;

and let Rv WD r0;Qv for v 2 f0; 1gŒk�.
For an injective map � W Œm� ! Œk� and v 2 f0; 1gŒk� we define the

automorphism ˆv� of L by induction on m in the following way:
� If m D 1, ˆv� D R�1r�.m/v ıRv .

� If m > 1, ˆv� D ˆ
r�.m�1/r�.m/v

�jŒm�1�
ıˆv

�jŒm�1�

Consider the automorphismdefined bym D k,� D idŒk�, v0 D .0; : : : ; 0/ 2 f0; 1gŒk�

ˆ WD ˆ
v0
id :

We complete the proof by contradicting the assumption that � is not extendible,
using the following claim.

Claim. The restriction ˆjst.�/ is �.

Proof. After expanding ˆ using the inductive definition we get

ˆ D R�1v
2k�1
ı � � � ıR�1v1 ıRv0
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where fvig2
k�1
iD0 D f0; 1gŒk� (in fact, the sequence fvig2

k�1
iD0 form a Hamiltonian

cycle of the 1-skeleton of the cube Œ0; 1�Œk�). Thus, using the second property of the
maps ri;v and the construction of X , we get

ˆjst.�0/ D R
�1
v
2k�1
jst.�0/ı� � �ıR

�1
v1
jst.�0/ıRv0 jst.�0/ D idst.�0/ ı � � �ı idst.�0/ ı�0 D �0:

Weare left to prove thatˆjst.�i / D �i D idst.�i / for all i 2 Œk�. We do so by proving
by induction on m that for all injective maps � W Œm� ! Œk�, for all v 2 f0; 1gŒk� and
for all i 2 � .Œm�/ we haveˆv� jst.�i / D idst.�i /. In particular, we getˆjst.�i / D idst.�i /
for all i 2 Œk�.

For the base case, m D 1, let i D � .1/. Property (3) provides the following
relation

Rri .v/ ı ri;Qv D r0;ri .v/ ı ri;Qv D ri;r0.Qv/ ı r0;Qv D ri;r0.Qv/ ıRv:

When restricted to st .�i / we obtain

Rri .v/jst.�i / D Rri .v/jst.�i / ı ri;Qvjst.�i / D ri;r0.Qv/jst.�i / ıRvjst.�i / D Rvjst.�i /

since ri;Qvjst.�i / D ri;r0.Qv/jst.�i / D idst.�i / by Property (2). Thus,

ˆv� jst.�i / D R
�1
ri .v/
jst.�i / ıRvjst.�i / D idst.�i / :

Now assume m > 1. We divide the proof of the inductive step into 3 cases:
Case 1. If i 2 � .Œm � 1�/, then by the induction hypothesis

ˆv� jst.�i / D ˆ
r�.m�1/r�.m/v

�jŒm�1�
jst.�i / ıˆ

v
�jŒm�1�

jst.�i / D idst.�i / :

Case 2. If i D � .m/ and m > 2,

ˆv� D ˆ
r�.m�1/r�.m/v

�jŒm�1�
ıˆv�jŒm�1�

D

�
ˆ
r�.m�2/r�.m/v

�jŒm�2�
ıˆ

r�.m�1/r�.m/v

�jŒm�2�

�
ı

�
ˆ
r�.m�2/r�.m�1/v

�jŒm�2�
ıˆv�jŒm�2�

�
:

If we denote J WD ˆr�.m�2/r�.m/v
�jŒm�2�

, then

ˆv� D J
�
ˆ
r�.m�1/r�.m/v

�jŒm�2�
ıˆ

r�.m�2/r�.m�1/v

�jŒm�2�

�
ı

�
ˆv�jŒm�2� ıˆ

r�.m�2/r�.m/v

�jŒm�2�

�
J�1:

Let � 0W Œm�! Œk� be the injective map defined by

� 0 .j / D

�
�.j / j � m � 2;

� .m/ j D m � 1;

� .m � 1/ j D m:
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Then,

ˆv� D J
�
ˆ
r�.m�2/r�.m�1/v

� 0jŒm�1�
ˆ
r�.m�2/r�.m/v

� 0jŒm�1�

�
J�1

D J
�
ˆ
r�.m�2/r�.m/v

� 0

�
J�1:

Since now i D � .m/ 2 � 0 .Œm � 1�/, we can deduce from the previous case that

ˆ
r�.m�2/r�.m/v

� 0 jst.�i / D idst.�i /

and since ˆv� and ˆr�.m�2/r�.m/v� 0 are conjugates we get ˆv� jst.�i / D idst.�i /.

Case 3. If i D � .m/ and m D 2,

ˆv� D ˆ
r�.m�1/r�.m/v

�jŒm�1�
ıˆv�jŒm�1�

D

�
R�1r�.m/v ıRr�.m�1/r�.m/v

�
ı

�
R�1r�.m�1/v ıRv

�
D J

��
Rr�.m�1/r�.m/v ıR

�1
r�.m�1/v

�
ı

�
Rv ıR

�1
r�.m/v

��
J�1:

When J D R�1r�.m/v , the proof proceeds similarly to the proof of Case 2 and the
proof for m D 1.

4. Hyperplane automorphism extension property

Recall from the introduction the following.

Definition 4.1. Let X be a CAT(0) cube complex. A set of pairwise transverse
hyperplanes Oh1; : : : ; Ohd satisfies the hyperplane automorphism extension property
(HAEP) if for all Of 2 Aut.Oh1 [ � � � [ Ohd / there exists an automorphism f 2 AutX
such that f stabilizes Oh1 [ � � � [ Ohd and f j Oh1[���[Ohd D

Of .

Theorem 4.2. Let L be a superstar-transitive simplicial complex, and let X be the
unique CAT(0) L-cube-complex. Every transverse set of hyperplanes Oh1; : : : ; Ohd
in X satisfies the HAEP.

Proof. Let Of 2 Aut.Oh1 [ � � � [ Ohd /. Let fxngn<0 be the set of the vertices of the
hyperplanes Oh1 : : : ; Ohd viewed as mid-edges in X . Let fxngn�0 be an admissible
enumeration of the vertices ofX with respect to fxngn<0, as obtained by Lemma 2.3.
The automorphism Of 2 Aut.Oh1 [ � � � [ Ohd / defines a .�1/-admissible map F�1.
Applying Lemma 3.2 to F�1 we get an isomorphism F WX ! Y that extends Of .
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Recall from [15] that for a group G of automorphisms of a CAT(0) cube
complex X we denote by GC the subgroup of G generated by all the elements
that fix some halfspace of X , i.e. GC D hFixG.h/ j h a halfspace of Xi.

Lemma 4.3. Let Oh; Ok be a transverse pair of hyperplanes which satisfies the HAEP,
then each automorphism f of Oh which fixes the halfspace k\ Oh of Oh can be extended
to an automorphism F of X which fixes k.

In particular, if the hyperplane Oh satisfies the HAEP for any transverse
hyperplane Ok then any element of AutC Oh can be extended to an element of AutCX .

Proof. Let Of 2 Aut.Oh [ Ok/ be the automorphism defined by Of j Oh D f , Of jOk D idOk.
By the HAEP, we can extend Of to an automorphism, F 0, of X . Finally, define F to
be the automorphism defined by F jk� D F 0jk� , F jk D idk.

5. Virtual simplicity of automorphism groups

Lemma 5.1. LetG act transitively on a set S , and letH be a subgroup ofG. If S=H
is finite and for some x 2 S , Hx D StabH .x/ has finite index in Gx D StabG.x/,
thenH has finite index in G.

Proof. It follows from the following inequality jG=H j � jS=H j�jGx=Hxj <1.

Proposition 5.2. Let X be a proper finite-dimensional CAT(0) cube complex. Let
G D AutX . Assume the following properties hold:

(1) There exists a hyperplane orbit G Oh such that GC has finitely many orbits in G Oh.

(2) The group AutC Oh has finite index in Aut Oh.

(3) The hyperplane Oh satisfies the HAEP.

(4) For every hyperplane Ok transverse to Oh the pair Oh [ Ok satisfies the HAEP.

Then, GC has finite index in G.

Proof. Let S D G Oh and letH D GC. The proposition will follow from the previous
lemma once we show that GC

Oh
D StabGC.Oh/ has finite index in G Oh D StabG.Oh/.

By Condition (3), we have that the restriction G Ohj Oh is exactly Aut Oh. Similarly,
by Condition (4) and Lemma 4.3 we deduce that GC

Oh
j Oh is exactly AutC Oh. Thus, by

Condition (2), we get ŒG Oh W G
C

Oh
� D ŒAut Oh W AutC Oh� <1.
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5.1. Examples of virtually simple automorphism groups.

5.1.1. The Kneser complex and the associated Davis complex. We define the
Kneser complex,K.n; S/, to be the simplicial complex whose vertices are all subsets
of size n of a finite set S with at least n elements, and a collection of vertices span a
simplex if they represent pairwise disjoint subsets.

Let n; d 2 N; and let S D f1; : : : ; nd C 1g. The complex L WD Kdn D K.n; S/
is a .d � 1/-dimensional flag simplicial complex. Since jS j ¤ 2n, the Erdős–Ko–
Rado theorem tells us that any automorphism of L is induced from a permutation
of S (see Corollary 7.8.2 in [11]).
Proposition 5.3. The complex L is superstar-transitive.

Proof. Let k be a non-negative integer, let �; � 0 be two k-simplices of L and let
�W st.�/ ! st.� 0/ be an isomorphism. Since L is clearly �k-transitive (i.e. any
isomorphism from one simplex to another can be extended to an automorphism ofL)
we may assume without loss of generality that � D � 0 D Œv0; : : : ; vk� and � fixes � .

The map � induces automorphisms on the links �i WLk.vi ; L/ ! Lk.vi ; L/
for i D 0; : : : ; k. For all 1 � i � k, the link Lk.vi ; L/ is naturally identified with
K.n; S n vi / and thus �i is given by a permutation �i 2 Sym .S n vi /.

If k D 0, let � be the permutation which fixes the set vi and restricts to �i
on S n vi .

If k > 0, the maps �i and �j coincide along Lk.ei;j ; L/ where ei;j is the
edge connecting vi and vj . As before Lk.ei;j ; L/ is naturally identified with
K.n; S n .vi [ vj // and thus �i jSn.vi[vj / D �j jSn.vi[vj /. Hence, the maps �i
define a unique permutation � 2 Sym.S/ whose restriction to S n vi is �i for all
0 � i � k.

In both cases the permutation� defines an automorphismˆ ofLwhose restriction
to st.�/ is �.

Lemma 5.4. If n � 2 then the group AutL is generated by all elements which fix the
star of a vertex in L.

Proof. Since AutL D Sym.S/ and since Sym.S/ is generated by transpositions, it
suffices to show that all transpositions fix a star of a vertex. But this is true since
the transposition exchanging a; b 2 S fixes the star of a vertex which contains a
and b.

Lemma 5.5. The group AutCD.L/ acts transitively on the hyperplanes ofD.L/.

Proof. Recall from Remark 2.6 that for every vertex x 2 D.L/ and for every
ˆ 2 AutL there is an automorphism Fx;ˆ of D.L/ that fixes x and induces the
automorphism ˆ on the links of D.L/. Moreover, if ˆ fixes the star of the vertex �
then Fx;ˆ fixes the carrier of the hyperplane labeled by � adjacent to x, and thus Fx;ˆ
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is in AutCD.L/ (for example, by Remark A.2). Now, since AutL is generated by
all the elements that fix some star, it follows that for all ˆ 2 AutL and vertex
x 2 D.L/, Fx;ˆ is in AutCD.L/. Since AutL acts transitively on the vertices of L,
its image in StabAutC.X/.x/ under the isomorphism ˆ 7! Fx;ˆ acts transitively on
the hyperplanes adjacent to x. This holds for all x 2 D.L/, and any two adjacent
vertices are contained in the carrier of a hyperplane, and therefore AutCD.L/ acts
transitively on hyperplanes.

Corollary 5.6. Let n � 2; d � 1 and let L D K.n; f1; : : : ; nd C 1g/. The group
G D AutD.L/ is virtually simple.

Proof. We begin by showing that GC is simple by verifying the assumptions of
Corollary A.4 and Claim A.8.

For all finite flag simplicial L the right-angled Davis complexes D.L/ is proper,
finite dimensional and cocompact (since the Coxeter group WL acts cocompactly
on D.L/). The complex D.L/ is essential since L is not the star of any of its
vertices. Similarly every sector h \ k in D.L/ contains a hyperplane because the
vertices of L are not contained in the star of any of its edges (thus, in the link
of a vertex in h \ k which is adjacent to both Oh; Ok there is at least one hyperplane
which does not intersect Oh nor Ok). The complex D.L/ is irreducible since L is not a
join of two subcomplexes, because the complement graph (the graph of non-empty
intersections of subsets of size n � 2 in f1; : : : ; nd C 1g) is connected. The groupG
is non-elementary because @D.L/ D ƒG contains more than 2 points (because L
contains an independent set of vertices of size 3) and G acts without a fixed point at
infinity (the Coxeter group acts with inversions along hyperplanes, thus does not fix
a point in @D.L/).

In order to prove the corollary it suffices to show that GC is of finite index in G.
We prove it by induction on d � 0. The base case d D 0, is trivial since the
complexD.L/ is a single vertex, thus G is trivial.

The conditions of Proposition 5.2 hold: Condition (1) by Lemma 5.5,
Condition (2) by the induction hypothesis (the hyperplane are isomorphic to the Davis
complex associated to K .n; f1; : : : ; n .d � 1/C 1g/), and Conditions (3) and (4) by
Theorem 4.2 and Proposition 5.3.

Remark 5.7. We note that for n � 2; d � 3 the Kneser complex Kdn has embedded
full 4-cycles. For example, the vertices corresponding to the subsets f1; : : : ; ng,
fn C 1; : : : ; 2ng, f1; : : : ; n � 1; 2n C 1g, fn C 1; : : : ; 2n � 1; 2n C 2g form an
embedded full 4-cycle. This implies that the corresponding Davis complex is not
hyperbolic, because the Coxeter groupWKdn contains a direct product of two infinite
dihedral groups.
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5.1.2. Superstar-transitive graphs and unique square complexes.
Lemma 5.8. LetL be a finite, connected, flag, simplicial, superstar-transitive graph.
If all the vertices in L have degree � 3, then the subgroup AutC.L/ of Aut.L/
generated by the automorphisms which fix the star of a vertex has at most two vertex
orbits. Moreover, these orbits form a partition of the graph.

Proof. If v1; v2; w are adjacent to v then, by st.�1/-transitivity, there exists an
automorphism exchanging v1; v2 and fixing the star of w. Thus all the adjacent
vertices of v are in the same orbit ofAutC.L/. This holds for all v, and by connectivity
we get the desired conclusion.

Lemma 5.9. The group AutCD.L/ has at most two orbits of hyperplanes.

Proof. As in the proof of Lemma 5.5, for all x 2 D.L/, AutCD.L/ has at most two
orbits of hyperplanes whose carrier contains x. Using the fact that any two adjacent
vertices are in the carrier of two transverse hyperplanes we deduce that AutCD.L/
has at most two orbits of hyperplanes inD.L/.

This lemma allows us to deduce, as in the proof of Corollary 5.6 the following.
Theorem 5.10. Let L be a finite, connected, flag, simplicial, superstar-transitive
graph all of whose vertices have degree � 3 and which is not a complete bi-partite
graph. Let X D D.L/ be the unique CAT(0) square complex whose vertex links are
isomorphic to L. Then Aut.X/ is virtually simple.

A. Simplicity of automorphism groups of rank one cube complexes

Let T be a tree, and let Aut.T / be the automorphism group of T . In [20], J. Tits
showed that under certain conditions the subgroup AutC.T / of Aut.T / generated
by the fixators of halfspaces of T is simple. In [15], F. Paulin and F. Haglund
generalized Tits’ result for Gromov hyperbolic cube complexes. In this appendix,
we further generalize these results to rank one CAT(0) cube complexes. A similar
result for (not necessarily locally finite) thick right-angled buildings was established
by P.-E. Caprace in [5].

Let X be a CAT(0) metric space. A rank one isometry is a hyperbolic isometry
g 2 Isom.X/ none of whose axes bounds a flat halfplane (i.e. a subspace which
is isometric to the Euclidean half plane). Any hyperbolic element in a Gromov
hyperbolic cube complex is such since there are no flat halfspaces in a hyperbolic
cube complex. In general, rank one elements in locally compact CAT(0) cube
complexes act on the boundary @X with a north-south dynamics similarly to the
action of hyperbolic elements in hyperbolic spaces. For G � Isom.X/ we denote
byƒ.G/ the limit set ofG in @X , i.e. the set of accumulation points in @X of an orbit
of G. The group G is called elementary if either jƒ.G/j � 2 or G fixes a point at
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infinity. LetX be a proper CAT(0) space, and letG � Isom.X/ be a non-elementary
subgroupwhich contains a rank one element, then the set of pairs of fixed points in @X
of rank one elements is dense in the complement of the diagonal� ofƒ.G/�ƒ.G/
(see [16]).

Let X be a CAT(0) cube complex. Let H be the set of all halfspaces of X ,
and let OH be the set of corresponding hyperplanes. We denote by OWH ! OH the
natural map mapping each halfspace to its bounding hyperplane, and by �WH ! H

the map sending a halfspace to its complementary halfspace. Recall the following
definitions from [8]. We say that X is irreducible if it cannot be expressed as a
(non-trivial) product. We say that X is essential if every halfspace h 2 H contains
points arbitrarily far from Oh. Let G � Aut.X/ a group of automorphisms of X . We
say that X is G-essential if every halfspace of X contains G-orbit points arbitrarily
far from its bounding hyperplane. In [8], Caprace and Sageev proved the following
rank rigidity result.

Theorem (RankRigidity forCAT(0) cube complexes [8]). IfX is a finite-dimensional
irreducible CAT(0) cube complex, and G � Aut.X/ acts essentially on X without
fixed points at infinity, then G contains a rank one isometry.

Definition A.1. Let X and G be as above. We denote by GC the subgroup of G
generated by the fixators of halfspaces of X , i.e.

GC D
˝
g 2 F ixG.h/ j h 2 H .X/

˛
We recall from [15, 20] that the action of G on X satisfies property (P) if for

every nested sequence of halfspaces .hn/n2Z � H , hnC1 � hn, the following map
is an isomorphism:

FixG
�[

n

Ohn

�
!

Y
n

FixG
�
Ohn [ OhnC1

�ˇ̌
hn\h

�
nC1

(A.1)

Where FixG.Ohn [ OhnC1/jhn[h�nC1 is the image of FixG.Ohn [ OhnC1/ in the group
Aut.hn \ h�nC1/ under the restriction map.

Remark A.2. Note that G D Aut.X/ satisfies property (P), and in this case GC is
generated by the fixators of the carriers of hyperplanes.

We prove the following.

Theorem A.3. Let X be a proper finite-dimensional irreducible CAT(0) cube com-
plex, and let G � Aut.X/ be a non-elementary group acting essentially on X with
property (P) and ƒ.G/ D @X . Then for all N C GC either N D GC or N acts
trivially on @X . In particular, if we further assume that G acts faithfully on @X ,
then GC is either simple or trivial.
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By the remark above, we deduce:
Corollary A.4. Let X be a proper finite-dimensional irreducible essential CAT(0)
cube complex with co-compact, non-elementary Aut.X/ action. Then for all
N C AutC.X/ either N D AutC.X/ or N acts trivially on @X . In particular,
if we further assume that Aut.X/ acts faithfully on @X , then AutC.X/ is either
simple or trivial.

We remark that under mild assumptions the action of Aut.X/ on @X is faithful.
For example the following proposition follows from works of Caprace and Monod,
and gives a criterion for having a faithful action of the isometry group of a CAT(0)
space. Recall that a CAT(0) space is geodesically complete (or has extendable
geodesics) if every geodesic segment can be extended to a bi-infinite geodesic.
Proposition A.5 ([6, Proposition 1.5], [7, Lemma 2.18]). Let X be a geodesically
complete proper CAT(0) space with trivial Euclidean de Rahm factor and with a
cocompact isometry group, then Isom.X/ acts faithfully on @X .

In the applications of Theorem A.3 in Section 5 the above proposition is sufficient
for deducing the faithfulness of the action, since all the CAT(0) cube complexes which
we consider there are geodesically complete. However, we will use the criterion for
faithful action on the boundary of a CAT(0) cube complexes stated in Claim A.8
since it is easier to verify. For the proof of this criterion and of Theorem A.3 we will
need the following.
Definition A.6. For h 2 H .X/ let

h1 WD
˚
� 2 @X j r \ h ¤ ;;8geodesic rays r such that r.1/ D �

	
:

It can also be defined as the collection of points in @X that are not accumulation
of h�. And for Oh 2 H .X/ let Oh1 be the set of accumulation points of Oh in @X .

Recall from [2] that two hyperplanes Oh; Ok are strongly separated if there is no
hyperplane which intersects both of them.
Proposition A.7 ([8, Proposition 5.1]). Under the same assumptions as in Theo-
rem A.3, for all h 2 H there exists a halfspace k � h such that Oh and Ok are strongly
separated. In particular, the open set h1 is non-empty.

This enables us to study the action on the boundary by studying the action on
halfspaces, as in the following claim.
Claim A.8. Under the same assumptions as in Theorem A.3, assume moreover
that the intersection of any pair of crossing halfspaces h1; h2 contains a halfspace
k � h1 \ h2. Then Aut.X/ acts faithfully on @X .

Proof. Let 1 ¤ g 2 Aut.X/, and let h 2 H .X/ be a halfspace such that gh ¤ h.
Then g and h satisfy one of the following cases:
Case 1. gh � h�. Then g sends the corresponding h1 into h�1 which are non-empty
and disjoint.
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Case 2. gh � h. Let Ol 2 OH .X/ be a hyperplane transversal to Oh, (we may assume
without loss of generality that 8n 2 N gnh ª l, by determining the orientation of l
so that gmh ª l for the minimal m such that gn Oh \ Ol D ;). By our assumption,
let k � l \ h. Then either 8n 2 N, gn Oh � k� or 9n 2 N, gn Oh \ Ok ¤ ;. If 8n,
gn Oh � k� then there exists r such that k � gr�1h\grh�, hence g takes k1 into gk1
(which are disjoint since k1 � grh�1 and gk1 � grh1). If 9n, gn Oh \ Ok ¤ ; then
we may assume that n is minimal. By our assumption there exists k1 � k \ gnh�.
Therefore k1 � gn�1h \ gnh�, and g acts non-trivially on @X as before.

Case 3. g Oh \ Oh ¤ ;. By our assumption let k � h� \ gh, then g sends k1
into gh�1.

For completeness we include the proof of the following.

Lemma A.9 ([15, Lemme 6.4]). Let g 2 Aut.X/, and h 2 H .X/ such that gh � h,
and let F D FixG.[n2Zg

n Oh/, then F D Œg; F �.

Proof. Clearly F � Œg; F �. Now, let f 2 F: we will show that there exist f 0 2 F
such that f D f 0�1g�1f 0g. By Property (P) we can define f 0 by its restrictions to
the sets gnh \ gnC1h�. We do so by induction on n.

For n D 0, define
f 0jh\gh� D idh\gh�

and for n > 0, define
f 0jgnh\gnC1h� D gf

0fg�1:

Similarly define f 0 for n < 0.
The automorphism f 0 is well-defined. Indeed, if x 2 gnh \ gnC1h�, then

fg�1.x/ 2 gn�1h \ gnh�, and therefore f 0.f .g.x// is defined by the induction
hypothesis. Now observe that f 0 has the desired property.

Proposition A.10. Let X be a proper CAT(0) space, and let H � Isom.X/ be
non-elementary. Assume H contains a rank one isometry and acts non-elementary
on X with ƒ.H/ D @X , and let N C H , then either N acts trivially on @X , or
ƒ.N/ D ƒ.H/ D @X and N is non-elementary.

Proof. Assume that N does not act trivially on @X . First we show that the limit
set ƒ.N/ is either ƒ.H/ or empty.

Let � 2 ƒ.N/ and h 2 H . There exists a sequence nk 2 N such that for all
x 2 X , nkx ! � . Apply h 2 H to � . By normality of N , we get a sequence
n0
k
D hnkh

�1 2 N .
h�  hnk :x D n

0
k : .hx/

Therefore h� 2 ƒ.N/; hence ƒ.N/ is H -invariant. By minimality of the action
ofH on ƒ.H/ (see [16]) we get ƒ.N/ D ƒ.H/ or ;.
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To show thatƒ.N/ D ƒ.H/ assume for contradiction thatƒ.N/ D ;. Then the
action of N on X is bounded; hence has a fixed point x0. Since N acts non-trivially
on @X , there exists � 2 @X and n 2 N such that n:� ¤ � . By @X D ƒ.H/, there
exists a sequence hk 2 H such that hk :x0 ! � . By applying nwe get nhk :x0 ! n:� .
On the other hand, by normality, we have nhk D hkn

0
k
(for some n0

k
2 N ). Thus,

nhk :x0 D hkn
0
k
:x0 D hk :x0 ! � . Therefore, we get � D n:� which contradicts our

assumption.
To see that N is non-elementary, we are left to show that N does not fix a point

at infinity. Assume by contradiction that � 2 @X is N -fixed, then by normality g� is
N -fixed for all g 2 H . By minimality we get thatƒ.H/ D @X isN -fixed. HenceN
acts trivially on @X . But we assumed that N acts non-trivially on @X .

Remark. Without assuming @X D ƒ.H/, the same argument shows that for every
normal subgroup N C H either N acts trivially on ƒ.H/ or ƒ.N/ D ƒ.H/.

h

k

g
n
�
1
l

�C��

g
n
l

g
n
C
1
l

Figure A.1. The action of g on X and the halfspaces h; k and l

We shall now prove Theorem A.3.

Proof. Let N C GC and assume N acts non-trivially on @X . In order to prove the
theorem, it suffices to show that FixG.h/ � N for all h 2 H .X/. Let h 2 H .X/.
Apply Proposition A.10 and the Rank Rigidity theorem first on GC C G and then
on N C GC, to obtain that ƒ.N/ D @X , N is non-elementary and contains a rank
one isometry. By Proposition A.7 there exists a halfspace k � h such that Oh and Ok
are strongly separated. The set @2X \ .k1 � k1/ is a non-empty open set in @2X ,
hence, by Theorem 1.1(2) of [16], there exists a rank one isometry g whose two fixed
points .�C; ��/ in @X are in @2X \ .k1 � k1/. By passing to a power of g we may
further assume that there exists l 2 H .X/ such that gl � l. See Figure A.1.
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Let F D FixG.
S
n2Z g

nOl/. By the above we see that
S
n2Z g

nOl � h. Therefore,
by Lemma A.9 we have:

FixG.h/ � F D Œg; F � � N

Remark. In fact, one can assume a weaker version of property (P). For example,
assuming that for every element g 2 G and l 2 H .X/ such that gl � l, the map (A.1)
is an isomorphism for the collection fgnOlgn2Z.
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