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Abstract. We prove that a very general hypersurface of bidegree .2; n/ in P 2 � P 2 for n
bigger than or equal to 2 is not stably rational, using Voisin’s method of integral Chow-theoretic
decompositions of the diagonal and their preservation under mild degenerations. At the same
time, we also analyse possible ways to degenerate Prym curves, and the way how various loci
inside the moduli space of stable Prym curves are nested. No deformation theory of stacks or
sheaves of Azumaya algebras like in recent work of Hassett–Kresch–Tschinkel is used, rather
we employ a more elementary and explicit approach via Koszul complexes, which is enough to
treat this special case.
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1. Introduction, description of the problem, and prerequisites

In this article we work over the complex numbers C throughout. A hypersurface

H2;n � P2.xWyWz/ � P2.uWvWw/

of bidegree .2; n/ is given by an equation

.x; y; z/A.u; v; w/.x; y; z/t D 0

where A.u; v;w/ is a symmetric 3� 3matrix with entries homogeneous of degree n
in u; v;w, hence projection of a very general H2;n to P2u;v;w realizes it as a conic
bundle over P2

.u;v;w/
with discriminant curve �H2;n

D detA.u; v;w/ of degree 3n.
This discriminant curve carries a natural Prym structure, i.e. a two-torsion line
bundle ˛, arising from the determinantal representation of�H2;n

. More precisely, ˛
has a minimal graded free resolution

0 // OP2.�2n/3
A // OP2.�n/3 // ˛ // 0: (1.1)

It is more accurate to think of the pair .�H2;n
; ˛/ of the discriminant curve or

discriminant datum of the conic bundle. Note already at this point that ifH2;n is not
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very general, ˛ need not necessarily be a bundle at all, but might, for example, be
just a symmetric torsion-free sheaf. Then our main result is
Theorem 1.1. For n � 2, the very general hypersurfaceH2;n � P2

.xWyWz/
� P2

.uWvWw/

of bidegree .2; n/ is not stably rational.
We now describe the strategy of the proof and some subtle problems which arise

in its implementation, the resolution of which can be said to be one of the main
contributions of this article (the other one being the usage of a more explicit and
low-tech type of deformation theory based on the Koszul complex, which avoids the
arguments involving root stacks and sheaves of Azumaya algebras in [15] completely;
we will say more about this below). These problems are related to the fact that the
discriminant curves are not the generic plane Prym curves of degree 3n as soon
as n > 2.

In [23] Voisin introduced a very powerful new degeneration technique that
allows one to prove that very general members of certain families of “nearly
rational” (e.g. unirational) varieties are not stably rational; the idea is that stably
rational varieties have an integral Chow-theoretic decomposition of the diagonal
resp., universally trivial Chow group of zero cycles, and this property is preserved
under mild degenerations. The technique was developed further, generalised
substantially and cast in its natural theoretical framework in [13]. This made possible
a wealth of applications, some of them using degenerations in unequal characteristic
such as [22]; without any pretense to completeness we just mention as examples
[12, 15, 17, 18, 20, 22] and [16]. In this last article the authors exhibit a family of
smooth varieties over a connected base some of whose fibers are rational whereas
others are irrational. The existence of an integral Chow-theoretic decomposition
of the diagonal is the only (stably) birational invariant so far that has been used to
distinguish birational types of smoothly deformation-equivalent smooth varieties.

We have taken the formulation of the following result that encapsulates themethod
from [7], but the result is really a simplified version of [23] and [13, Thm. 1.14], and
the reader is referred to the latter source for a proof.
Theorem 1.2. Let B be a smooth variety and o 2 B a (closed) point. Suppose
that f WX //B is a flat projective morphism such that the generic fiber of f is
smooth and that the fiber X WD X0 is integral. Suppose X admits a resolution of
singularities � W zX //X with the following properties:
(1) The torsion subgroup ofH 3. zX;Z/ is nontrivial.
(2) The fiber of � over any scheme-theoretic point � 2 X is a smooth rational variety

over the residue field �.�/.
Then for a very general point b 2 B , the fiber Xb is not stably rational.

Here condition (1) can be replaced by any other condition that ensures that the
Chow group of zero cycles is not universally trivial forX D X0; the condition means
that the unramified Brauer group of X is nonzero.
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To apply Theorem 1.2 to show that certain very general members of families
of conic bundles are not stably rational, one would like to construct a degeneration
as conic bundles (so X D zX0 should retain a conic bundle structure), and then
one needs a theorem that tells one when a conic bundle X has a desingularization
� W zX //X such that (1) and (2) in Theorem 1.2 are satisfied. Artin and Mumford
[1, Proposition 3], have given such a criterion.

Theorem 1.3. Suppose � WX // S is a conic bundle over a smooth rational
surface S , i.e. there exists a vector bundle E of rank 3 on S , an integer k and
a quadratic form q 2 H 0.S;Sym2E.k// such that X is the zero scheme of q in
the associated projective bundle P .E/ over S , and q is generically nondegenerate.
Suppose moreover that q is of corank 1 everywhere above the curve � � S where
it is not nondegenerate (so the fibers over the discriminant curve are two distinct
lines everywhere), and that � consists of more than one smooth components, and
these components �i meet transversally. Over � we have a natural double cover
z� //�, given by the subset in the Grassmannian of lines in the fibers of P .E/
consisting of lines contained in X . Suppose that z� gives a nontrivial étale double
cover when restricted to any component�i (equivalently, the two-torsion line bundle
˛ determined on � by z� restricts nontrivially to each component �i ).

Then for a desingularization � W zX //X , part (1) of Theorem 1.2 holds for zX .
Moreover,X has only ordinary double point singularities lying in fibers above points
of � where two components meet, hence there is a desingularization � W zX //X of
the type required in (2) of Theorem 1.2 above.

Hence our strategy for proving Theorem 1.1 is clear: we have to find an
appropriate degeneration of the conic bundles given by our hypersurfaces H2;n to
apply Theorem 1.3. Usually, this task is broken up into two steps:

Step 1. Prove that there is a degeneration of Prym curves

.�H2;n;t
; ˛t / // .�; ˛/; t 2 B; t // o 2 B

such that .�; ˛/ is of the type required for application of Theorem 1.3.

Step 2. Prove that there is a family of conic bundlesC // P2�B whose discriminant
data realize the degeneration of Prym curves of Step 1, and such that
Theorem 1.2 is applicable.

In [15] (with a slight generalization in [18]) Hassett, Kresch and Tschinkel give a
solution to Step 2 in the following way.
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Theorem 1.4. Let S a be a smooth projective rational surface, and let P be an
irreducible variety parametrizing pairs .C; ˛/ where

(1) the curves C belong to some linear system of effective divisors on S , are smooth
and irreducible for a generic point in P and reduced nodal in general;

(2) ˛ is a 2-torsion line bundle on C which is nontrivial over each irreducible
component of C .

If then P contains a point p0 D .C0; ˛0/ with C0 a reducible curve with smooth
irreducible components, then the very general conic bundle Cp // S constructed
from a point p D .C; ˛/ in P is not stably rational.

Here Cp is defined up to birational isomorphism by the construction in [1,
Theorem 1].

This, however, does not achieve Step 1 above at all (finding the appropriate
degenerations of discriminant data tends to be the hardest part in many applications),
and moreover, to prove Theorem 1.4, the authors make use of deformation theory
of tame Deligne–Mumford stacks, root stacks and sheaves of Azumaya algebras on
them, which is very technically involved.

What this article accomplishes is the following:
(a) We find appropriate degenerations of Prym curves for Step 1 in for n D 2m even,
and prove Theorem 1.1 for even n in this way. For the case of general nwe use a result
due to Colliot-Thélène and Totaro [22, Lemma 2.4]. The latter possibility and the
method of proof was kindly communicated to us by Zhiyu Tian after the first version
of this article appeared online; the method is also used by Zhi Jiang, Zhiyu Tian, and
Letao Zhang in a forthcoming work. The first version only proved Theorem 1.1 for
even n.

(b) We do not use the results of [15] at all, but rather replace the deformation theory
of stacks and sheaves of Azumaya algebras by a construction involving the Koszul
complex; this is much easier andmore concrete in the particular case we are interested
in. It could also be used to investigate stratifications of the Prym moduli space and
degenerations of Prym curves more systematically in future.

(c) We construct several examples of reducible Prym curves such that Theorem 1.3
is applicable to imply that the associated conic bundles are not stably rational.

It should be said that in [18, p. 16 bottom], the authors point out, without address-
ing the details, that the case n D 2 of Theorem 1.1 can be obtained as a corollary to
their general theory of deformations of root stacks and sheaves of Azumaya algebras,
but to obtain the statement for any n, it is necessary to resort to the constructions in
the present article, and treat the case n D 2 more explicitly as a starting point, too.

We add a few more words about compactifications of Prym moduli spaces to
make clear why Step 1 above is nontrivial. The moduli space Rg of pairs .C; ˛/
where C is a smooth projective genus g curve and ˛ a two-torsion line bundle
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on C admits a compactification xRg which is compatible with the Deligne–Mumford
compactification of the moduli space of curves of genus g under the forgetful map;
i.e. it extends to a morphism xRg

// xMg . See [3, 4] or [14] for this. Recall that a
curve of arithmetic genus g � 2 is called stable resp., semi-stable if it is a reduced
connected one-dimensional scheme with at most ordinary double points such that
every smooth rational component E meets the other components in � 3 resp., � 2
points. Then xMg contains stable curves and is compact. Every one-parameter family
of smooth curves has a limit in xMg , though one has to first perform a semi-stable
reduction to see this (e.g. a family of plane cubics specializing to a cuspidal curve
has a curve with an elliptic tail as limit, after several blow-ups in the central fiber and
finite covers of the base).

Now by [3], Definition 1, points in xRg parametrize the following objects.
Definition 1.5. A component E of a Deligne–Mumford semi-stable curve C is
called exceptional if it is smooth, rational and meets the other components in exactly
two points. One calls C quasi-stable if every two exceptional components are
disjoint. The stable model st.C / is the stable curve obtained from C by contracting
all exceptional components.

A (semi-stable) Prym curve C of genus g is a triple .C; �; ˇ/ where C is a
quasi-stable curve of genus g, � is a line bundle on C with a sheaf homomorphism
ˇW �˝2 //OC such that
(1) � has total degree 0 on C and degree 1 on every exceptional component;
(2) ˇ is non-zero at the general point of every non-exceptional component.

Equivalently, this means that ˇ vanishes identically on all exceptional compo-
nents Ei of C , and denoting by zC the union of the non-exceptional components

� j zC' O zC .�q
1
1 � q

2
1 � � � � � q

1
r � q

2
r /

where zC \ Ei D fq1i ; q
2
i g. Moreover, � jEi

D OP1.1/, and the map xRg
// xMg is

given by associating st.C / to the triple .C; �; ˇ/.

Jarvis [19] has given an equivalent description of this compactification in terms
of (square) root sheaves of Ost.C/ (certain rank one torsion free coherent sheaves
on st.C /).

We give a name to the types of Prym curves that we allow as our degenerations in
Step 1 above (they are those for which Theorem 1.3 ensures a nonvanishing Brauer
obstruction for the associated conic bundle).
Definition 1.6. We will call a (stable) plane Prym curve .C; ˛/ good if the following
hold:
(1) C is reducible, with smooth irreducible components Ci , i 2 I , and nodal.
(2) The torsion-free symmetric rank 1 root sheaf ˛ on C is in fact a two torsion line

bundle, and restricts to a nontrivial two torsion line bundle on each componentCi .
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Now we can say more precisely what the subtlety of Step 1 above consists in: if
we look at the closure of the locus of smooth plane Prym curves .C; ˛/ such that the
two-torsion line bundle ˛ has a minimal graded free resolution of type 1.1 inside the
respective xRg , then this closure need not contain any good Prym curves at all!

The subsequent sections are organized as follows: in Section 2 we prove
Theorem 1.1 for n D 2 using determinantal degenerations. For this it is necessary to
find a symmetric 3�3matrixwith quadratic forms onP2 as entrieswhose determinant
defines a union of two smooth cubic plane curves intersecting transversally, and such
that the corank of the matrix is precisely 1 in each point of the two curves. It is not
at all clear how to produce such a matrix “by hand” and ad hoc attempts to write one
down fail.

In Section 3 we prove Theorem 1.1 for any even n D 2m then. We do not use
determinantal degenerations, but rather degenerate to certain Prym curves that have
minimal graded free resolutions of a type first studied in [1] where the entries of
the presentation matrix have different degrees and the matrix itself is 2 � 2 instead
of 3 � 3. Using a construction involving a bi-graded Koszul complex on P2 � P1

we solve the problems mentioned in Steps 1 and 2 above at the same time for the
case n D 2, and then employ a combination of a trick first appearing in [6] and a
generalization of a geometric construction of good Prym curves in [1] to settle the
general case n D 2m in Theorem 1.1. We believe that some of the techniques in this
section could also be of independent interest, e.g., to construct standard conic bundles
associated to Prym curves explicitly, or to study adjacency relations in compactified
moduli spaces of Prym curves.

In Section 4 we finally give the proof of Theorem 1.1 in full, for any n independent
of the parity; the proof was communicated to us by Zhiyu Tian (the method is also
used in forthcoming work of Zhi Jiang, Zhiyu Tian, and Letao Zhang) and reduces
the statement to the n D 2 case by an induction, which in turn is based on a result
due to Colliot-Thélène and Totaro [22, Lemma 2.4].

Acknowledgements. We would like to thank Ivan Cheltsov for pointing out the
question to us in the first place, and Fedor Bogomolov, Fabrizio Catanese, Jean-Louis
Colliot-Thélène, Andrew Kresch, Kristian Ranestad, Miles Reid, and Yuri Tschinkel
for useful discussions and suggestions about part of the material in this article.

We are especially thankful to Zhi Jiang, Zhiyu Tian, and Letao Zhang for
communicating the material in Section 4 to us and letting us include it in a revised
version of this text.

2. Determinantal degenerations

In this Section we prove the case n D 2 of Theorem 1.1 using determinantal
degenerations. Note that in this case, A.u; v;w/ is a three by three symmetric matrix



Vol. 93 (2018) Stable rationality of conic bundles and Prym curves 139

of quadratic forms on P2, which is general with this property for a very general
hypersurface H2;n, so to apply Theorem 1.2 in conjunction with Theorem 1.3, it
suffices to find a symmetric three by three matrix of quadratic forms with determinant
the union of two smooth cubic curves meeting transversely, and such that the two-
torsion line bundle ˛ defined by this matrix restricts nontrivially to each of these two
cubics.

We will first accomplish this over a finite field, and then show that our example
lifts to characteristic 0.

We recall two results from [6]. They can also already be found in [11].

Theorem 2.1. Let .C; ˛/ be a pair consisting of a smooth plane curve C of even
degree d D 2e and a non-trivial line bundle ˛ with ˛˝2 ' OC .

Then for a general such pair .C; ˛/ the line bundle ˛ has a minimal resolution

0 // OP2.�e � 1/e
M // OP2.�e C 1/e // ˛ // 0 (2.1)

withM symmetric with quadratic entries, and detM is a defining equation for C .

This is [6, Prop. 4.6].
In our present case of plane sextics, e D 3, and we would like to understand

if we can find a reducible sextic, splitting as two cubics meeting transversely, with
an ˛ that has a resolution of the form (2.1). Our first task is to describe two-torsion
line bundles ˛ sitting in a resolution (2.1) concretely. Such an ˛ must satisfy that
L WD ˛.2/ has three sections. It is hence of the form L D O.D/ for a certain
effective divisorD of degree 12 on C . We can assume thatD consists of 12 points.
There is a quartic containing these 12 points, cutting out a divisor D0 residual to D
on C where degD0 D 12 as well, and jDj D j4H � D0j, thus the linear system
corresponding toD is cut out by the quartics throughD0. Actually, since 2D � 4H
as L˝2 ' OC .4/, one can chooseD0 D D, too.

The equation 2D � 4H means that there should be a quartic which cuts out the
points inD on C with a double structure on C , hence is tangent to C in those points.
This condition is equivalent to 2D � 4H , hence to ˛ being two-torsion.

Thus our construction of a pair .C; ˛/ with C D C1[C2 splitting as two smooth
cubicsmeeting transversely and˛ nontrivial 2-torsion onC , h0.C; ˛.2// D 3, having
a resolution as in (2.1), proceeds via the following steps. We work over a finite field F
first, then discuss the lifting problem to characteristic 0.

(1) Pick a smooth cubic C1 and six pointsD1 WD P1 [ � � � [ P6 on C1 at random.

(2) Compute the ideal of 2D1 (double on C !) and check whether the element of
smallest degree in it is a quartic. This is not always the case, so if not, go back to
Step 1. and wait till you get a quartic Q4. This works because the codimension
of the parameter space of the sought-for pairs .C1;D1/ is not too high.
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(3) Pick six pointsD2 WD Q1 [ � � � [Q6 onQ4 at random (different fromD1) and
search for a cubic C2 tangent toQ4 inD2 by the same random procedure as in 1.
and 2.

(4) Take C D C1 [ C2 and L WD OC .4H � D1 � D2/. Check whether now
h0.C;L/ D 3, i.e. whether there is a three-dimensional space of quartics
through D D D1 [ D2. This is not always the case (e.g. sometimes one
gets a 4-dimensional space), in which case one repeats the entire procedure until
one succeeds.

(5) Compute a resolution of the full module of sections of L on C . This gives you
a quadratic matrix N as in (2.1), but possibly not symmetric.

(6) We check if N is symmetrizable in the following way: if so, there will be scalar
base change matrices A and B such that ANB is symmetric; but then also
.A�1/ANB.A�1/t will be symmetric. In other words, there will be a matrix S
such thatNS DWM is symmetric. These are linear equations for the entries of S
whose solvability is easy to check.

Carrying out Steps 1 to 6, we found the following:
Proposition 2.2. Consider the matrix

M D

0@�10x2 C xy � 8y2 C 8xz C 5yz � 9z2 �4x2 � 5xy C 3y2 C 5xz � 11yz � 7z2 4xy � 8y2 C 6xz C yz � 8z2

�4x2 � 5xy C 3y2 C 5xz � 11yz � 7z2 �8x2 C 9xy � 2y2 � 7xz C yz � 9z2 8xy � 5y2 � 6xz C 11yz C 9z2

4xy � 8y2 C 6xz C yz � 8z2 8xy � 5y2 � 6xz C 11yz C 9z2 xy � 6y2 C 10xz C 2yz C 2z2

1A
over the finite field F23. Then:
(1) The determinant detM defines two smooth cubic curves C1 and C2 meeting

transversely, andM has corank 1 in every point of C1 [ C2.
(2) The two torsion line bundle ˛ defined byM is nontrivial on both C1 and C2.

Proof. This is a Macaulay2 computation, see [8].

Now we have to address the lifting problem.
Lemma 2.3. Suppose that over a finite field Fp , p ¤ 2, there is a reducible reduced
curve C which splits as a union of two smooth cubics C D C1 [ C2 meeting
transversely, and a nontrivial two-torsion line bundle ˛ on C which has a resolution
of the form (2.1); equivalently, this amounts to the existence of a symmetric matrixM
with quadratic forms as entries such that detM D 0 defines two smooth cubics
meeting transversely such thatM has rank 2 in every point of C D C1 [ C2. Also
assume that ˛ restricts nontrivially to both C1 and C2. Then there exists such an
example over C as well.

Proof. There exists an open subset

P .FpŒX0; X1; X2�3/
0
� P .FpŒX0; X1; X2�3/
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such that the parameter space of the pairs C1; C2 is given by

P WD P .FpŒX0; X1; X2�3/
0
� P .FpŒX0; X1; X2�3/

0;

a product of two open subsets in projective spaces (already defined over Z). The
datum of an ˛ on C1 [ C2 amounts to the datum of a nontrivial two-torsion line
bundle ˛1 on C1, a nontrivial two-torsion line bundle on C2, and an isomorphism of
the vector bundle fibers .˛1/x // .˛2/x in each intersection point of x 2 C1 \ C2.
Now the space P is the special fiber, over the closed point corresponding to p, of a
family

P // Spec.Z/

where P is an open in a product of two projective spaces defined over Z; and by [21]
the two-torsion points in the product of relative Jacobians over P form a finite flat
group scheme since p ¤ 2. Hence we can lift C1 [ C2 as well as ˛1 and ˛2 to
characteristic zero, and we can also lift the linear isomorphisms .˛1/x // .˛2/x in
the intersection points along with this.

Hence we get a family defined over some ring of integers o in a number field.
Now note that [6, Thm. B] and [6, Prop. 3.5] also hold for reduced, possibly reducible
plane curves with the same proofs since also these curves have dualizing sheaves.
This implies that the property that ˛ on C has a resolution of the required type (2.1)
is generic in this family, and it holds at a closed point of Spec.o/ lying over p. Hence
it holds at the generic point, hence over C as well, thus for a lift to characteristic 0.
Also the lift of ˛ will restrict nontrivially to each component since this is true at the
special point.

Theorem 2.4. The very general hypersurface of bidegree .2; 2/ in P2 � P2 is not
stably rational (over C).

Proof. This follows immediately from Theorems 1.2 and 1.3 now that we have
constructed the matrixM above and proven Lemma 2.3.

If one wants to proceed further, i.e. treat cases of hypersurfaces of bidegree .2; n/,
n even, for n > 2, then the above brute-force computational approach does not work
anymore (the codimension of the sought-for Prym curves in their parameter space is
too high). Thus in the next section we use a different method to prove Theorem 1.1
for any even n.

3. Construction methods for good Prym curves and degenerations
to Artin–Mumford type examples via the Koszul complex

In this section we prove Theorem 1.1 for any n D 2m even. We start with a
geometric method to construct good plane Prym curves in the sense of Definition 1.6,
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generalizing a geometric construction of Artin and Mumford in [1, p. 79 ff. and
p. 93/94].

Lemma 3.1. Let A be a smooth plane curve of even degree a, and let C1; : : : ; Cr be
smooth plane curves of degrees c1; : : : ; cr where all ci > a, and every Ci is tangent
to A in cia=2 distinct points. Let P be this set of points on C D C1 [ � � � [ Cr ,
and let Pi be the set of points lying on Ci . Then the line bundle ˛ associated to
P � .a=2/h (where h is the intersection of C with a general line in P2) is nontrivial
2-torsion on every component Ci .

Proof. This is an easy extension of [1, Lemma, p. 93]: by construction, 2P is cut out
by A on C , so ˛ is 2-torsion; it is nontrivial on every Ci by the following reasoning:
suppose by contradiction that it was trivial on Ci . Let q be the rational function
on P2 whose divisor is A� aH ,H some fixed line in P2 so that h D H \C . Then
the restriction xq of q to Ci would be a square xq D xs2 for some xs 2 C.Ci / if ˛ was
trivial on Ci . Then

xs 2 H 0.C;OCi
..a=2/H:Ci /

and since H 0.P2;OP2..a=2/H// //H 0.Ci ;OCi
..a=2/H:Ci / is surjective, there

would be a function s in C.P2/ that lifts xs. Moreover, .s/ D R � .a=2/H where R
is another curve of degree a=2 in P2. But then, set-theoretically, A \ Ci would be
equal to R \ Ci , hence A \ Ci � A \ R, and the latter consists of at most a2=2
points, which is strictly smaller than aci=2, contradiction.

Remark 3.2. In particular, if the curve C D C1 [ � � � [ Cr in Lemma 3.1 has only
ordinary double points, the pair .C; ˛/ is a good Prym curve and by Theorem 1.3, the
associated conic bundle is not stably rational. Here is one geometric way to produce
an arrangement of curves A;C1; : : : ; Cr as in Lemma 3.1: in fact, it suffices to show
how to produce smooth plane curves C;A, degC > degA with degA D a D 2a0

even, and C tangent to A in a0c distinct points. For this, we can use Theorem 2.1 (1)
and Bertini’s theorem. Start with a smoothA of degree a D 2a0 > 2with a nontrivial
square-root ˛ of OA with a resolution of type 2.1. Suppose the linear system j˛.m/j
is of dimension � 1 and base-point free. By Theorem 2.1 (1) this will be the case
as soon as m � a0 � 1. Hence, by Bertini’s base-point free pencil theorem, there
will be an effective divisor in j˛.m/j, D say, consisting of m � a distinct points.
Then j2Dj D jO.2m/j, hence there is a curve C0 of degree c D 2m intersecting A
tangentially in the points inD. Suppose now we choosem such that c > a. Consider
the linear system L of plane curves of degree c intersecting A tangentially in the
points in D. L contains curves which are smooth in the points in D, e.g. A C C 0
for a general curve C 0 of degree c � a. This also shows that the linear system L

has no basepoints outside of D (since C0 intersects A only in D and belongs to L,
but a curve of type AC C 0 can avoid any given point outside A). Hence the general
curve in L will be smooth (by Bertini’s theorem again, and this will also hold in the
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pointsD since there are curves in L that are smooth inD) and cut out precisely 2D
on A as desired.

This method produces many examples of good Prym curves and hence of conic
bundles which are not stably rational.

We would like to thank Kristian Ranestad for suggesting this geometric approach.
For our immediate purpose of proving Theorem 1.1 for n even, we will, however,

construct good Prym curves of degree degC D d even and divisible by 3, hence
d D 6m, for m � 1, by a “dirty trick” different from the construction method in
Remark 3.2. Note that n D 2m then in the notation of Theorem 1.1. These curves
will have minimal graded free resolutions

0 // OP2 .�5m/˚OP2 .�4m/
M // OP2 .�m/˚OP2 .�2m/ // ˛ // 0 (3.1)

whereM is a two by twomatrix with entries homogeneous polynomials inCŒu; v; w�
of degrees �

4m 3m

3m 2m

�
:

The construction method will allow us to conclude that we can degenerate our
discriminant Prym curves with resolution type 1.1 to these good Prym curves once
we have proven that fact for n D 2.
Proposition 3.3. There are good Prym curves .C 0; ˛0/with resolution type 3.1 which
are pull-backs of good plane sextic Prym curves with resolution type 3.1 (for the case
m D 1) under a (degree m2 ramified) covering map


 WP2 // P2; .u W v W w/
� // .um W vm W wm/:

Proof. It is easy to construct good Prym curves of degree 6 using Lemma 3.1 with A
a conic and C D C1 [ C2 with Ci cubics: this is what Artin and Mumford do on
page 79 ff.; it just amounts to the existence of smooth cubics tangent to a given conic
in some set of three points (which we are free to choose a priori). Now if we choose
coordinates u; v;w such that A;C1; C2 and the cubic cutting out the six tangency
points on A are all transverse to u D 0, v D 0 and w D 0 in smooth points, and
contain none of the intersection points of two of the coordinate axes, then we can
apply Lemma 3.1 to the curvesA0 D 
�.A/; 
�.C1/; 
�.C2/ (all of these are smooth,
hence irreducible, under the above assumptions) to conclude that ˛0 D 
�.˛/ is still
nontrivial on every component ofC 0 D 
�.C / (this is the main usage of Lemma 3.1)
and .C 0; ˛0/ has resolution type 3.1 with a presentation matrix�

c0 b0

b0 a0

�
where a0 has degree 2m, c0 degree 4m, b0 degree 3m, and this matrix is obtained
from a matrix �

c b

b a

�
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where a has degree 2, c degree 4, b degree 3, by the substitution

u
� // um; v

� // vm; w
� //wm:

To prove Theorem 1.1 for n even we now start with a solution of the case n D 2
(where the discriminant curve is a plane sextic) that is different from the one in the
previous section, and involves degeneration to Artin–Mumford type Prym sextics. A
few more pieces of terminology are useful.
Definition 3.4. Henceforth in this section a plane sextic Prym curve .C; ˛/will mean
an at most nodal reduced plane curve C with smooth irreducible components where
˛ is a two torsion line bundle on it.

We call .C; ˛/ of general type if C is smooth, and ˛ is nontrivial with minimal
graded free resolution

0 // OP2.�4/3
A // OP2.�2/3 // ˛ // 0 (3.2)

where A is a symmetric three by three matrix with quadratic entries.
We call a plane sextic Prym curve .C; ˛/ of Artin–Mumford type if there is a

minimal graded free resolution

0 // OP2.�5/˚OP2.�4/
B // OP2.�1/˚OP2.�2/ // ˛ // 0 (3.3)

where B is symmetric and the degrees of the entries in B are�
4 3

3 2

�
:

We call a plane Prym sextic curve of Artin–Mumford type good if moreover it is
good in the sense of Definition 1.6.

The proof of Theorem 1.1 for n even will be an immediate consequence of
Theorem 1.2 and Theorem 1.3 together with Theorem 3.5 below and Proposition 3.3
above.
Theorem 3.5. (i) There is a Zariski-open neighborhoodB of the origin02A1�P1,

and a (flat) family of sextic plane Prym curves

.C ; ˛/

�

��
B

(3.4)

such that for t 2 B , t ¤ 0, the fiber .Ct ; .˛/t / is a Prym sextic of general type,
and .C0; .˛/0/ is a plane sextic Prym curve of Artin–Mumford type.

(ii) Any general sextic plane Prym curve of Artin–Mumford type occurs as the
central fiber .C0; .˛/0/ in a family as in (i).
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(iii) The families of Prym curves in (i) and (ii) can be chosen to arise as the family
of discriminant Prym curves of a family of conic bundles over P2

Q P .E/

P2 � B

p
p

(3.5)

where:

(a) E is a rank 3 vector bundle over P2 � B with Et ' O.�2/3 for t ¤ 0 and
E0 ' �

1.�1/˚O.�1/.
(b) For t ¤ 0 general, the total space of Qt

// P2 � ftg ' P2 is smooth and
this conic bundle has discriminant Prym curve .Ct ; .˛/t /.

(c) For t D 0, the total space of Q0
// P2 � f0g ' P2 has at worst double

points as singularities and this conic bundle has discriminant Prym curve
.C0; .˛/0/. Double points occur if .C0; .˛/0/ is good, hence does have
nodes.

(iv) There exists a family of conic bundles as in (iii) such that .C0; .˛/0/ is a good
sextic plane Prym curve of Artin–Mumford type.

Before embarking on the proof of Theorem 3.5, let us show how Theorem 1.1
for n even follows from it.

Proof of Theorem 1.1 for n even. Using Theorem 1.3, Theorem 1.2 is applicable to a
family of conic bundles as in Theorem3.5 if the central fiber is a goodArtin–Mumford
plane sextic Prym curve, which we may assume by part (iv) of Theorem 3.5. This
shows the case n D 2 of Theorem 1.1.

If n D 2m > 2, we start with a family as for the proof of the case n D 2 we just
gave, and pull it back via the covering map of Proposition 3.3:


 WP2 // P2; .u W v W w/
� // .um W vm W wm/:

If we choose the projective coordinate system generic, we will get a family of conic
bundles with generic discriminant Prym curves of type 1.1, and special fiber with
discriminant Prym curve of type 3.1 and moreover good in the sense of Definition 1.6
by Proposition 3.3. Hence Theorem 1.1 for n even follows from Theorem 1.2
again.

Our method to prove Theorem 3.5 is closely related to the Koszul complex and
replaces the deformation theory of Azumaya algebras and tame Deligne–Mumford
stacks in [15] by something a lot more concrete in this special situation.
Description of the family of vector bundles in Theorem 3.5 (iii)(a): By the Euler
sequence

0 // OP2
// OP2.1/3 // TP2

// 0 (3.6)
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we see that we can take E_0 .�6/ WD O.�5/ ˚ T .�5/ as a bundle that deforms to
O.�4/3 (and is not graded free) because generically we have a non split extension
giving O.�4/3, and the split extension is E_0 .�6/. Hence, E0 ' �

1.�1/˚O.�1/.
Also note the duality

T ' �1.3/ (3.7)

obtained from the nondegenerate pairing T ˝ T //K�1
P2 .

In principle, this describes a family E , but it is convenient to give a more explicit
construction of E via the Koszul complex: take P2 with homogeneous coordinates
u; v;w and P1 with homogeneous coordinates s; t and look at the bi-graded Koszul
complex for the regular sequence .u; v; w; t/:

0 // OP2�P1
S // 3O.1; 0/˚O.0; 1/

A // 3O.2; 0/˚ 3O.1; 1/ (3.8)

where

S D .u; v; w; t/t ; A D

�
t 0 0 w 0 v

0 t 0 0 w �u

0 0 t �u �v 0

�u �v �w 0 0 0

t̆

and we write O.i; j / D pr�
P2OP2.i/˝ pr�

P1OP1.j /.
We twist this complex by .�5; 0/:

0

**

0

E_.�6; 0/

**

44

0 // O.�5; 0/
S // 3O.�4; 0/˚O.�5; 1/

A //

44

3O.�3; 0/˚ 3O.�4; 1/

(3.9)
Note that for t ¤ 0, E_.�6; k/ restricts to 3OP2.�4/ on P2 � f.s W t /g, and for

t D 0, it restricts to E_0 .�6/ by the Euler sequence.

Deformation theory of symmetric maps ˆ0WE_0 .�6/ // E0 to symmetric maps
ˆWE_.�6;�2/ // E: We will prove parts (ii), (iii), (iv) of Theorem 3.5 in one
stroke; we need a few preliminary observations. We start with a method to produce
symmetric such maps ˆ0.
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Consider a diagram

0 // O.�5/
.u;v;w;0/t// 3O.�4/˚O.�5/

At
//

N0

��

3O.�3/˚O.�5/˚O.�4/

M

��
0 O.�1/oo 3O.�2/˚O.�1/

.u;v;w;0/oo 3O.�3/˚O.�1/˚O.�2/
A

oo

(3.10)
where

M D

ˇ
0 0 u v w

0 f cu cv cw
u cu 1 0 0

v cv 0 1 0

w cw 0 0 1




(3.11)

with cu; cv; cw and f homogeneous polynomials of degrees 2; 2; 2 and 4 in
KŒu; v;w�, and

A D

�
0 0 S

0 1 0

�
with

S D

�
0 w �v

�w 0 u

v �u 0

�
:

Every such
N0 D AMA

t

defines a symmetric map ˆ0WE_0 .�6/ // E0 via

0 // O.�5/
.u;v;w;0/t// 3O.�4/˚O.�5/ //

N0

��

E_0 .�6/

ˆ0

��

// 0

0 O.�1/oo 3O.�2/˚O.�1/
.u;v;w;0/oo E0oo 0oo

(3.12)

Now we look for a deformation ˆ of ˆ0

0 // O.�5;�2/
.u;v;w;t/t// 3O.�4;�2/˚O.�5;�1/ //

N

��

E_.�6;�2/ //

ˆ

��

0

0 O.�1; 0/oo 3O.�2; 0/˚O.�1;�1/
.u;v;w;t/oo Eoo 0oo

(3.13)
with NftD0g D N0 and ˆftD0g D ˆ0.



148 C. Böhning and H.-C. Graf von Bothmer CMH

Proposition 3.6. Every symmetric map ˆ0WE_0 .�6/ // E0 defined via a matrixM
as in 3.11 via diagrams 3.10 and 3.12 can be deformed to a symmetric map
ˆWE_.�6;�2/ // E as in diagram 3.13.

Proof. For this observe that N0 can be written as

N0 D

�
�S2 gt

g f

�
with g D .gu; gv; gw/ a vector of degree 3 polynomials and g.u; v; w/t D 0.

We look for a symmetric N over KŒu; v;w�˝KŒs; t � such that

N.u; v;w; t/t D 0

and
NftD0g D N0:

For this we write

N0 D

�
�S2 0

0 0

�
C

�
0 gt

g 0

�
C

�
0 0

0 f

�
The first matrix already satisfies our conditions. We now show that there are
symmetric matrices G and F , correctly bi-graded, that reduce to the second and
third matrix for t D 0 and also satisfy

G.u; v;w; t/t D F.u; v; w; t/t D 0:

We then set
N D s2

�
�S2 0

0 0

�
C sG C F:

Thus the proof of Proposition 3.6 is concluded by Lemmata 3.7 and 3.8 below.

Lemma 3.7. Let g D .gu; gv; gw/ be a vector of homogeneous polynomials of
degree 3 in KŒu; v;w� such that

ugu C vgv C wgw D 0:

Then there exists a symmetric 4 � 4 matrix G over KŒu; v;w; t � such that

GftD0g D

�
0 gt

g 0

�
and

G

0BB@
u

v

w

t

1CCA D 0:
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Moreover, the entries of sG in the upper left 3 � 3 submatrix have bi-degree .2; 2/
in .u; v; wI s; t/, the bottom right entry has bi-degree .4; 0/, the remaining entries
bi-degree .3; 1/.

Proof. Let

J D

0@.gu/u .gu/v .gu/w
.gv/u .gv/v .gv/w
.gw/u .gw/v .gw/w

1A
be the Jacobian matrix of g. Observe that

J

0@uv
w

1A D 3gt :
Differentiating the equation

ugu C vgv C wgw D 0

we obtain

guC u.gu/uC v.gv/uCw.gw/u D 0 ” u.gu/uC v.gv/uCw.gw/u D �gu:

as well as similar equations for �gv and �gw . It follows that

.u; v; w/J D �g:

Setting

G D

�
�t
2

�
J C J t

�
gt

g 0

�
the above calculations show

G

0BB@
u

v

w

t

1CCA D 0:
Lemma 3.8. Let f 2 KŒu; v;w� be as above a homogeneous polynomial of degree 4.
Then there exists a symmetric 4 � 4 matrix F over KŒu; v;w; t � such that

FftD0g D

�
0 0

0 f

�
and

F

0BB@
u

v

w

t

1CCA D 0:
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Moreover, the entries of F in the upper left 3 � 3 submatrix have bi-degree .2; 2/
in .u; v; wI s; t/, the bottom right entry has bi-degree .4; 0/, the remaining entries
bi-degree .3; 1/.

Proof. Consider the Jacobian matrix

J D .fu; fv; fw/

and the Hessian matrix

H D

0@fuu fuv fuw
fuv fvv fvw
fuw fvw fww

1A :
In this situation we have

J.u; v; w/t D 4f

and
H.u; v;w/t D 3J t :

We now consider the matrix

F D

 
t2

12
H �t

4
J t

�t
4
J f

!
:

F is symmetric with

FftD0g D

�
0 0

0 f

�
:

The above calculations show

F.u; v; w; t/t D 0:

Relation of the above construction of symmetric ˆ0’s to the Prym curves of
Artin–Mumford type

Lemma 3.9. Performing an appropriate base change in 3O.�3/˚O.�5/˚O.�4/

and symmetrically in 3O.�3/˚ O.�1/˚ O.�2/ any matrix M as in 3.11 can be
brought into the “Artin–Mumford” form

ˇ
a b 0 0 0

b c 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




;
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with

a D �u2 � v2 � w2

b D �ucu � vcv � wcw

c D �c2u � c
2
v � c

2
w C f:

Choosing f; cu; cv; cw inM appropriately, we can, up to a projective transformation,
obtain any smooth conic a and cubic b, quartic c in this way.

Proof. The first part is an explicit computation, the second part is obvious from the
formulas for a; b; c.

Proposition 3.10. Suppose that M is as in 3.11 and a D b D c D 0 with the
notation in Lemma 3.9 has no solution; then the cokernels of ˆ0 in diagram 3.12
and M in diagram 3.10 are isomorphic; in particular, by Lemma 3.9, we get any
good sextic Prym curve of Artin–Mumford type via the construction above.

Proof. A computer algebra computation [8] shows that anyM as in 3.11 has rank 5
generically, rank 4 on a curveC of degree 6 (depending of course on the parametersM
depends on), and rank 3 only fora D b D c D 0. Similarly,N0 has rank 3 generically,
rank 2 on the same curve C , and rank 1 only if a D b D c D 0. This shows that
the cokernels of M and ˆ0 are line bundles ˇ and ˇ0 on the same sextic curve C
under the assumption that a D b D c D 0 has no solution. It remains to check
whether these line bundles are isomorphic. For this we compare the divisors of zeros
of certain canonically given sections of ˇ.1/ and ˇ0.1/.

First consider the diagram:

0

��
O.�1/

��

O.�1/

s

��
0 // 3O.�3/˚O.�5/˚O.�4/

M // 3O.�3/˚O.�1/˚O.�2/ //

��

ˇ

��

// 0

3O.�3/˚O.�5/˚O.�4/
SM // 3O.�3/˚O.�2/ //

��

OD //

��

0

0 0

where SM is the matrix obtained by erasing the second row ofM and D is the locus
where SM drops rank. By the diagram it is clear that D is the divisor associated to
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the section s inH 0.ˇ.1// on C . A direct calculation shows thatD is defined by

u2 C v2 C w2 D cuuC cvv C cww D 0 (i.e. a D b D 0).

Similarly consider the diagram

0

��
O.�1/

��

O.�1/

s0

��
0 // �.�2/˚O.�5/

ˆ0 // �.�1/˚O.�1/ //

��

ˇ0

��

// 0

�.�2/˚O.�5/
Ŝ

0 // �.�1/ //

��

OD0 //

��

0

0 0

where Ŝ0 is induced by the matrix SN0 which is obtained by erasing the last row
of N0. A direct calculation shows thatD0 is also defined by the equations above.

This provesD D D0 and therefore ˇ.1/ D ˇ0.1/.

Proof of Theorem 3.5. Since (i) is a special case of (ii), which in turn is implied
by (iii), it suffices to prove (iii) and (iv). For (iv) chooseM as 3.11 in such a way that
we get a good sextic plane Prym curve of Artin–Mumford type (in particular, it splits
as a union of two cubics tangent to a conic). Write down the deformation ˆ of the
correspondingˆ0 as constructed in the proof of Proposition 3.6 (using Lemmata 3.7
and 3.8), and verify byMacaulay2 that the general fiber of the family of conic bundles
defined by ˆ is smooth [8]. Then (iv) of Theorem 3.5 holds by Proposition 3.10.
Then also (iii) holds by Lemma 3.9, Proposition 3.6 and Proposition 3.10. Note
that generically, the conditions necessary for the validity of Proposition 3.10 (that
a D b D c D 0 has no solutions) will continue to hold, and the general fiber of
the resulting family of conic bundles associated to ˆ will still be smooth since we
verified this in a particular case above by explicit computation.

4. A lemma of Colliot-Thélène and Totaro and the general case of Theorem 1.1

Notice that in Sections 2 and 3 we have proved in two different ways that a very
general hypersurface H2;2 � P2

.xWyWz/
� P2

.uWvWw/
is not stably rational, and, in fact,

we have proved a little more by [13, Thm. 1.14]: we know that such a H2;2 does
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not have universally trivial Chow group of zero cycles. Recall: a smooth projective
variety X over k D C (k could be a different field in another set-up, though) has
universally trivial Chow zero if for any field L containing k

CH0.XL/ D ZxL

where x is a k-point of X ; in other words, for any base change XL to an overfield
L � k, the degree map induces an isomorphism between the Chow group and Z. In
fact, as explained in [2, §1.2], X has universally trivial Chow zero if and only if for
L D k.X/, the diagonal point ıL is rationally equivalent over L to some constant
point xL for x 2 X.k/. So it suffices to check the condition for L the function field
of X . Having universally trivial Chow zero is also equivalent to having an integral
Chow theoretic decomposition of the diagonal in the sense of Voisin [23]; i.e., one
can write

�X D Z1 CZ2 in CHdimX .X �X/

where Z2 D X � fxg for x 2 X.k/ and Z1 is supported onD �X for some proper
closed algebraic subsetD ¨ X .

One can inductively prove the .2; n/ case, n � 2, of Theorem 1.1 starting from
the .2; 2/ case. This possibility as well as the proof was kindly communicated to us
by Zhiyu Tian as it arises out of a method used by him, Zhi Jiang and Letao Zhang
in forthcoming work and we give this proof here with their permission. We thank
them very much for this. The main ingredient is a Lemma due to Colliot-Thélène
and Totaro [22, Lemma 2.4] which says the following:
Lemma 4.1. LetA be a discrete valuation ring with fraction fieldK and algebraically
closed residue field k. Let X be a flat proper scheme over A. Let X be the general
fiber X �A K and Y the special fiber X �A k. Suppose that X is geometrically
integral and there is a proper birational morphismX 0 //X withX 0 smooth overK.
Suppose that there is an algebraically closed field F containing K such that CH0
of X 0F is universally trivial. Then, for every extension field l of k, every zero-cycle
of degree zero in the smooth locus of Yl is zero in CH0.Yl/.

This can thus be viewed as in extension of the degeneration method in [13,
Thm. 1.14] to the case where the central fiber may be reducible: in the form made
precise in Lemma 4.1, the triviality of Chow zero is preserved also in this set-up.

Nowwe can apply this in our set-up as follows: suppose, inductively, that we have
already proven that a very general hypersurfaceH2;n of bidegree .2; n/ does not have
universally trivial Chow zero, the case n D 2 being settled. We want to prove the
assertion for n C 1. Now arguing by contradiction, assume a very general H2;nC1
had universally trivial Chow zero. Then we could find a family X as in Lemma 4.1
withX a smooth hypersurface of bidegree .2; nC1/ and Y the unionH[Z whereZ
is a hypersurface of bidegree .2; n/, still general in the sense that it has Chow zero
universally nontrivial, andH is of bidegree .0; 1/, i.e., is of the form P2

.xWyWz/
� h for
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a line h in P2
.uWvWw/

. Now we can use an argument in [22] (after Lemma 2.4) to get a
contradiction: to conclude the proof, by Lemma 4.1, it suffices to find a zero cycle
of degree 0 on

Zk.Z/ � .Z \H/k.Z/

that is not zero in CH0..Z [H/k.Z//. This follows if we can show that

CH0..Z \H/k.Z// //CH0.Zk.Z// (4.1)

is not surjective (use the Mayer–Vietoris sequence for Chow groups to see this). Now
the left hand side of 4.1 is just Z since Z \ H is a conic bundle over the line h
in P2

.uWvWw/
, hence a rational surface, and rational varieties have universally trivial

Chow zero. But the right hand side of 4.1 is precisely not equal to Z (there is some
nontrivial torsion group) since Z does not have universally trivial Chow zero by the
inductive assumption. This concludes the proof.

References

[1] M. Artin and D. Mumford, Some elementary examples of unirational varieties which
are not rational, Proc. London Math. Soc., 3rd series, 25 (1972), 75–95. Zbl 0244.14017
MR 321934

[2] A.Auel, J.-L. Colliot-Thélène, andR. Parimala, Universal unramified cohomology of cubic
fourfolds containing a plane, in Brauer Groups and Obstruction Problems: Moduli Spaces
andArithmetic, 29–55, Progr.Math., 320,Birkhäuser/Springer, Cham, 2017. Zbl 06770038
MR 3616006

[3] E. Ballico, C. Casagrande, and C. Fontanari, Moduli of Prym curves,Doc.Math., 9 (2004),
265–281. Zbl 1072.14029 MR 2117416

[4] A. Beauville, Prym varieties and the Schottky problem, Inv. Math., 41 (1977), 149–196.
Zbl 0368.14018 MR 572974

[5] A. Beauville, Variétés de Prym et Jacobiennes intermédiaires, Ann. scient. Éc. Norm. Sup.,
4e série, 10 (1977), no. 3, 309–391. Zbl 0368.14018 MR 472843

[6] A. Beauville, Determinantal hypersurfaces, Michigan Math. J., 48 (2000), no. 1, 39–64.
Zbl 1076.14534 MR 1786479

[7] A. Beauville, A very general quartic double fourfold or fivefold is not stably rational,
Algebraic Geometry, 2 (2015), no. 4, 508–513. Zbl 06554349 MR 3403239

[8] Chr. Böhning and H.-Chr. Graf v. Bothmer, Macaulay 2 files to “On stable rationality
of some conic bundles and moduli spaces of Prym curves”. Available at: http://www.
math.uni-hamburg.de/home/bothmer/m2.html

[9] G. Brown, A. Corti, and F. Zucconi, Birational Geometry of 3-fold Mori Fibre Spaces, in
Proceedings of the Fano Conference (Torino, Italy, 2004), 235–275, Univ. Torino, Turin,
2004. Zbl 1063.14019 MR 2112578

[10] L. Caporaso, C. Casagrande, and M. Cornalba, Moduli of roots of line bundles of curves,
Transactions of the AMS, 359 (2007), no. 8, 3733–3768. Zbl 1140.14022 MR 2302513

https://zbmath.org/?q=an:0244.14017
http://www.ams.org/mathscinet-getitem?mr=321934
https://zbmath.org/?q=an:06770038
http://www.ams.org/mathscinet-getitem?mr=3616006
https://zbmath.org/?q=an:1072.14029
http://www.ams.org/mathscinet-getitem?mr=2117416
https://zbmath.org/?q=an:0368.14018
http://www.ams.org/mathscinet-getitem?mr=572974
https://zbmath.org/?q=an:0368.14018
http://www.ams.org/mathscinet-getitem?mr=472843
https://zbmath.org/?q=an:1076.14534
http://www.ams.org/mathscinet-getitem?mr=1786479
https://zbmath.org/?q=an:06554349
http://www.ams.org/mathscinet-getitem?mr=3403239
http://www.math.uni-hamburg.de/home/bothmer/m2.html
http://www.math.uni-hamburg.de/home/bothmer/m2.html
https://zbmath.org/?q=an:1063.14019
http://www.ams.org/mathscinet-getitem?mr=2112578
https://zbmath.org/?q=an:1140.14022
http://www.ams.org/mathscinet-getitem?mr=2302513


Vol. 93 (2018) Stable rationality of conic bundles and Prym curves 155

[11] F. Catanese, Babbage’s conjecture, contact of surfaces, symmetric determinantal varieties
and applications, Invent. Math., 63 (1981), 433–465. Zbl 0472.14024 MR 620679

[12] J.-L. Colliot-Thélène and A. Pirutka, Revêtements cycliques qui ne sont pas stablement
rationnels, Izv. Ross. Akad. Nauk, Ser. Mat., 80 (2016), no. 4, 35–48; translation Izv. Math.,
80 (2016), no. 4, 665–677. Zbl 1375.14053 MR 3535357

[13] J.-L. Colliot-Thélène and A. Pirutka, Hypersurfaces quartiques de dimension 3 : non
rationalité stable, Ann. Sci. École Norm. Sup. (2), 49 (2016), 371–397. Zbl 1371.14028
MR 3481353

[14] G. Farkas, Prym varieties and their moduli, in Contributions to Algebraic Geometry, 215–
255, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012. Zbl 1259.14032 MR 2976944

[15] B. Hassett, A. Kresch, and Y. Tschinkel, Stable rationality and conic bundles,Math. Ann.,
365 (2016), no. 3, 1201–1217. Zbl 1353.14019 MR 3521088

[16] B. Hassett, A. Pirutka, and Y. Tschinkel, Stable rationality of quadric surface bundles over
surfaces, preprint, 2016. arXiv:1603.09262 [math.AG]

[17] B. Hassett, A. Pirutka, and Y. Tschinkel, A very general quartic double fourfold is not
stably rational, preprint, 2016. arXiv:1605.03220 [math.AG]

[18] B. Hassett and Y. Tschinkel, On stable rationality of Fano threefolds and del Pezzo
fibrations, preprint, 2016. arXiv:1601.07074 [math.AG]

[19] T. J. Jarvis, Torsion-free sheaves and moduli of generalized spin curves, Compositio
Mathematica, 110 (1998), 291–333. Zbl 0912.14010 MR 1602060

[20] A. Pirutka, Varieties that are not stably rational, zero-cycles and unramified cohomology,
preprint, 2016. arXiv:1603.09261 [math.AG]

[21] J. Tate, Finite flat group schemes, in Modular forms and Fermat’s last theorem (Boston,
MA, 1995), Gary Cornell, Joseph H. Silverman, and Glenn Stevens (eds.), 121–154, New
York, Springer-Verlag, 1997. Zbl 0924.14024 MR 1638478

[22] B. Totaro, Hypersurfaces that are not stably rational, J. Amer. Math. Soc., 29 (2016),
883–891. Zbl 06572969 MR 3486175

[23] C. Voisin, Unirational threefolds with no universal codimension 2 cycle, Invent. Math.,
201 (2015), 207–237. Zbl 1327.14223 MR 3359052

Received July 15, 2016

C. Böhning, Mathematics Institute, University of Warwick,
Coventry CV4 7AL, UK
E-mail: c.boehning@warwick.ac.uk

H.-C. Graf von Bothmer, Fachbereich Mathematik der Universität Hamburg,
Bundesstraße 55, 20146 Hamburg, Germany
E-mail: hans.christian.v.bothmer@uni-hamburg.de

https://zbmath.org/?q=an:0472.14024
http://www.ams.org/mathscinet-getitem?mr=620679
https://zbmath.org/?q=an:1375.14053
http://www.ams.org/mathscinet-getitem?mr=3535357
https://zbmath.org/?q=an:1371.14028
http://www.ams.org/mathscinet-getitem?mr=3481353
https://zbmath.org/?q=an:1259.14032
http://www.ams.org/mathscinet-getitem?mr=2976944
https://zbmath.org/?q=an:1353.14019
http://www.ams.org/mathscinet-getitem?mr=3521088
http://arxiv.org/abs/1603.09262
http://arxiv.org/abs/1605.03220
http://arxiv.org/abs/1601.07074
https://zbmath.org/?q=an:0912.14010
http://www.ams.org/mathscinet-getitem?mr=1602060
http://arxiv.org/abs/1603.09261
https://zbmath.org/?q=an:0924.14024
http://www.ams.org/mathscinet-getitem?mr=1638478
https://zbmath.org/?q=an:06572969
http://www.ams.org/mathscinet-getitem?mr=3486175
https://zbmath.org/?q=an:1327.14223
http://www.ams.org/mathscinet-getitem?mr=3359052
mailto:c.boehning@warwick.ac.uk
mailto:hans.christian.v.bothmer@uni-hamburg.de

	Introduction, description of the problem, and prerequisites
	Determinantal degenerations
	Construction methods for good Prym curves and degenerations to Artin–Mumford type examples via the Koszul complex
	A lemma of Colliot-Thélène and Totaro and the general case of Theorem 1.1

