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Diophantine approximations for translation surfaces
and planar resonant sets

Luca Marchese, Rodrigo Treviño and Steffen Weil

Abstract. We consider Teichmüller geodesics in strata of translation surfaces. We prove lower
and upper bounds for the Hausdorff dimension of the set of parameters generating a geodesic
bounded in some compact part of the stratum. Then we compute the dimension of those
parameters generating geodesics that make excursions to infinity at a prescribed rate. Finally
we compute the dimension of the set of directions in a rational billiard having fast recurrence,
which corresponds to a dynamical version of a classical result of Jarník and Besicovich. Our
main tool are planar resonant sets arising from a given translation surface, that is the countable
set of directions of its saddle connections or of its closed geodesics, filtered according to length.
In an abstract setting, and assuming specific metric properties on a general planar resonant
set, we prove a dichotomy for the Hausdorff measure of the set of directions which are well
approximable by directions in the resonant set, and we give an estimate on the dimension of
the set of badly approximable directions. Then we prove that the resonant sets arising from a
translation surface satisfy the required metric properties.
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1. Introduction

In this paper we consider a translation surface X and we measure the distortion of
its flat geometry when we apply the Teichmüller geodesic flow gt to the surface X in
a given direction � . In § 1.1 we give estimates on the Hausdorff dimension of the
set of directions � for which the geometry has uniformly bounded distortion, which
is equivalent to saying that .gtr� �X/t>0 is contained in some compact subset of the
parameter space with prescribed size. In § 1.2 we consider directions � for which
the the flat geometry has unbounded distortion, that is .gtr� �X/t>0 has unbounded
excursions to the non compact part of the parameter space, and we state a dichotomy
for the Hausdorff measure of the set of directions for which the rate of excursions
is prescribed, generalizing some classical results of Jarník, Besicovich and Khin
chin. It’s well known that translation surfaces are closely related to rational billiards,
thus in § 1.3 we consider the billiard flow generated by a given direction � on a
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rational polygon Q, and we compute the Hausdorff dimension of the set of those �
for which the recurrence rate of the billiard flow has a given value in .0; 1/. The
value of the recurrence rate represents somehow a phase-space counterpart of the rate
of excursions in parameter space. All the dynamical properties described above are
consequences of specific diophantine conditions. In § 1.4 we describe the relevant
diophantine conditions in the abstract setting of planar resonant sets, then in § 1.5
we state results on translation surfaces which ensures that the abstract diophantine
conditions are satisfied on a given surface X .

A translation surface is a genus g closed surface X with a flat metric and a
finite set † of conical singularities p1; : : : ; pr , the angle at each pi being an integer
multiple of 2� . An equivalent definition of translation surfaceX is the datum .S;w/,
where S is a compact Riemann surface andw is a holomorphic 1-form on S having a
zero at each pi . The relation k1C � � �C kr D 2g� 2 holds, where k1; : : : ; kr are the
orders of the zeroes of w. In particular the total multiplicity at conical singularities
of X is the positive integer

m WD 2g � 2C ].†/:

Any translation surface can be obtained as quotient space X D P= � of a suitable
polygonP in the complex planeC via an equivalence relation� on the boundary @P .
More precisely, we assume that boundary @P is the union of 2d � 4 segments which
come in pairs and are denoted .�1; �01/; : : : ; .�d ; �0d /, and that there exist complex
numbers z1; : : : ; zd in C such that for any i D 1; : : : ; d the boundary segments �i
and �0i have the same direction and length of zi , and the opposite orientation induced
by the interior of P (that is any �i touches the interior of P from the opposite side
as �0i ). The relation� is defined on the boundary @P identifying for any i D 1; : : : ; d
the sides �i et �0i by a translation. This induces identifications of the vertices of P ,
which correspond to conical singularities. The initial polygon P is not necessarily
connected, but we assume that this is true for the quotient space X . The form dz

on C projects to the holomorphic 1-form w of X . Any surface arising from this
construction is a translation surface, the simplest examples being flat tori, which all
arise from euclidian parallelograms identifying opposite sides.

A stratum H D H .k1; : : : ; kr/ is the set of translation surfaces X whose
corresponding holomorphic one-form w has r zeros with orders k1; : : : ; kr , where
k1C � � � C kr D 2g � 2. It is an affine orbifold with complex dimension 2gC r � 1,
where affine coordinates around any element X 2 H are given by the complex
numbers z1; : : : ; zd introduced above, possibly modulo some linear equations with
coefficients inQ. Any stratum admits an action of SL.2;R/, indeed for any translation
surface X D .S;w/ and any element G 2 SL.2;R/ a new translation surface
G � X D .G�S;G�w/ is defined, where the 1-form G�w is the composition of w
with G, and G�S is the complex atlas for which G�w is holomorphic. If X is
represented as a polygon P= � with identified sides then G � X corresponds to the
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affine image G � P of P with sides pasted according to the same identifications as
in P . Indeed affine maps preserve parallelism and ratios between lengths. The
stabilizer SL.X/ of a translation surface X under this action is known as the Veech
group ofX , which is always a discrete subgroup of SL.2;R/. Those surfacesX such
that SL.X/ is a lattice in SL.2;R/ are called Veech surfaces.

Any G 2 SL.2;R/ preserves the euclidian area form dx ^ dy D i=2dz ^ d Nz on
the plane; therefore we have Area

�
G �X

�
D Area.X/, where for X D .S;w/ we set

Area.X/ WD
i

2

Z
X

dw ^ d xw:

It follows that SL.2;R/ acts on the real sub-orbifold H .1/ of H , defined as the set
of those translation surfaces X with Area.X/ D 1. It is well-known that X is a
Veech surface if and only if its orbit M WD SL.2;R/ � X is closed in H .1/, and in
this case M is isometric to SL.2;R/=SL.X/. Relevant subgroups actions are the
diagonal group gt , the group of rotations r� and the horocyclic flow us , which are
given respectively by

gt WD

�
et 0

0 e�t

�
I us WD

�
1 s

0 1

�
I r� WD

�
cos � � sin �
sin � cos �

�
:

The action of the diagonal group gt is also known as Teichmüller flow, and
corresponds to the geodesic flow for the Teichmüller metric, and we refer to gt orbits
as Teichmüller geodesics. We refer the reader to [17] and [38] for an exhaustive
introduction to translation surfaces and Teichmüller dynamics.

1.1. Bounded geodesics in moduli space. We identify the complex plane with R2.
Any segment 
 of a geodesic for the flat metric ofX has a development in the complex
plane, also said holonomy vector, denoted by Hol.
; X/ 2 R2 and defined by

Hol.
; X/ WD
Z



w;

wherew is the holomorphic one formofX . Any such segment 
 is a geodesic segment
also on the surface G �X for any G 2 SL.2;R/, and we denote by Hol.
;G �X/ its
holonomy vector with respect to the surface G �X . By definition we have

Hol.
;G �X/ D G
�
Hol.
; X/

�
:

The length of 
 on the surfaceG �X is jHol.
;G �X/j, where j � j denotes the euclidian
metric on R2.

A saddle connection of X is a segment 
 of a geodesic for the flat metric
connecting two conical singularities pi and pj and not containing other conical
singularities in its interior. The systole Syssc.X/ of X is the length jHol.
; X/j of
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the shortest saddle connection 
 of X . According to the Mumford criterion, for any
fixed � > 0 the set of those X 2 H .1/ such that Syssc.X/ � � is a compact subset of
the stratum.

Fix a translation surface X . Any � 2 Œ��=2; �=2Œ corresponds to a directions
on X , more precisely the direction which makes a positive angle � with the vertical.
The directions � 2 Œ��=2; �=2Œ giving rise to positive geodesics whose limit set is
contained in K� are the elements of the set

Baddyn.X; �/ WD
n
� ; inf

t�0
Syssc.gtr��X/ � �

o
:

One can consider also the set of all bounded directions

Baddyn.X/ WD
[
�>0

Baddyn.X; �/:

Although it is a set with zero Lebesgue measure, Kleinbock and Weiss showed
it to be thick, that is its intersection with any subinterval of Œ��=2; �=2Œ has full
Hausdorff dimension (see [24]). Later, Cheung, Chaika, and Masur [10] improved
this result by showing that Baddyn.X/ is an absolute winning set for the absolute
Schmidt game (see [31]), which implies thickness, among other qualitative properties.
We also refer to the work of Hubert, Marchese and Ulcigrai [19], who studied the
Lagrange spectrum over the set of bounded directions. Theorem 1.1 below develops a
quantitative version of the qualitative result in [24], that is thickness. More precisely
it establishes non-trivial upper and lower bound for the Hausdorff dimension of
Baddyn.X; �/ in terms of the parameter �. Note that via the Dani correspondence, in
the case of flat tori we obtain similar inequalities as in the classical work of Jarník on
the set of badly approximable numbers (see [20]). Further Jarník-type inequalities
are established by Weil in [36], which is the main source for the techniques used in
the proof of Theorem 1.1.

Fix a translation surface X with Area.X/ D 1 and let H be its stratum. Recall
that we denote by m the total multiplicity at conical singularities of a translation
surface X . If X is a Veech surface, let M WD SL.2;R/ � X be its closed orbit under
the action of SL.2;R/. For any subsetE � Œ��=2; �=2Œ let dim.E/ be its Hausdorff
dimension.
Theorem 1.1. There exist positive constants �0, cu, cl and 0 < ˇ � 1, depending
only on the integer m, such that for any with 0 < � < �0 � Syssc.X/2 we have

1 �
cl

Syssc.X/ˇ
�
�ˇ

j log �j
� dim

�
Baddyn.X; �/

�
� 1 � cu �

�2

j log �j
:

In particular the explicit form of ˇ is

ˇ D
1

3m � 1
:
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Moreover, if X is a Veech surface, the same inequality holds with ˇ D 1 and with
some �0 which can be chosen uniformly on M.

It is natural to ask whether one can get ˇ D 2 in the lower bound in Theorem 1.1,
at least for anyVeech surface. We refer to § 1.6.1 for some comments on this question.

1.2. Unbounded geodesics in moduli space. In this paper we also consider geo-
desics having excursions to the non-compact part of strata at a prescribed rate. The
estimates that we prove follow from Theorem 1.7 below, which establishes a rather
general dichotomy for the size of the set of directions satisfying a given diophantine
condition. Unfortunately, while Theorem 1.7 admits a very general statement, its
dynamical consequences cannot be explicitly stated in full generality. We have first
a result on the generic behavior in � , namely Theorem 1.2 below, which generalizes
a previous result of one of the authors (see [27]). Most of the ideas in the proof of
Theorem 1.2 were introduced in [9].
Theorem 1.2. LetX be any translation surface and let 'WRC ! RC be a decreasing
monotone function.
(1) If

R1
0
'.t/dt converges as t !C1, then for almost any � we have

lim
t!1

Syssc.gtr�X/p
'.t/

D C1:

(2) If
R1
0
'.t/dt diverges as t !C1, then for almost any � we have

lim inf
t!1

Syssc.gtr�X/p
'.t/

D 0:

In particular, considering the one parameter family of functions '�.t/ WD t�.1C�/
and applying both parts of the Theorem, it follows that for almost every � we have

lim sup
t!1

� log Syssc.gtr� �X/
log t

D
1

2
: (1.1)

Equation (1.1) above gives the asymptotic maximal size of � log Syssc.gtr� �X/
along the geodesic in the generic direction � , and it is inspired by logarithmic laws
for geodesics obtained by D. Sullivan and H. Masur, respectively for the case of
non-compact hyperbolic manifolds (see [34]) and of the moduli space of Riemann
surfaces (see [30]). In [11] one can find details on the comparison between the result
in [30] and other analogue logarithmic laws measuring the degeneration of the flat
geometry of gtr� �X . Subsets of directions � having asymptotic rate for the maximal
excursion bigger than in Equation (1.1) have zero Lebesgue measure, but they can
be measured by general Hausdorff measures Hf via Theorem 1.7 and parts (3)
and (4) of Theorem 1.9 below, plus an elementary observation corresponding to
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Equation (1.9). In particular, for a fixed real number ˛ with 0 < ˛ < 1 consider the
subset of Œ��=2; �=2Œ defined by

SX .˛/ WD

�
� ; lim sup

t!1

� log Syssc.gtr� �X/ � ˛t
log t

D
1

2

�
:

Inspired by the classical Jarník–Besicovich theorem on the dimension of the set of real
numbers with given diophantine exponent, we develop Theorem 1.3 below, which is
a version of Jarník–Besicovich result for the geodesic flow in moduli space. Actually,
a natural dynamical behavior corresponding to Jarník–Besicovich theorem would be

lim sup
t!1

� log Syssc.gtr� �X/
t

D ˛:

The finer asymptotic that we consider is an adaptation to the geodesic flow on the
moduli space of translation surfaces of estimates developed in § 3.1 of [5].
Theorem 1.3. Let X be any translation surface. For any ˛ 2 .0; 1/ we have

dim
�
SX .˛/

�
D 1 � ˛ and H 1�˛

�
SX .˛/

�
D C1:

1.3. Recurrence in a rational billiard. LetQ be a rational polygon, that is a poly-
gon in the planewhose angles are rationalmultiples of� . The linear part of reflections
at the sides ofQ generate a finite group of linear isometries of the plane, so that any
direction � belongs to a finite equivalence class Œ� �, which is the orbit of � under the
action of reflections at sides ofQ. For any class of directions Œ� �, the billiard flow y�Œ��
is well defined. A classical unfolding construction of the rational polygonQ defines
a translation surface X D X.Q/, and for any class Œ� � on Q we have a well defined
directional flow �t

�
onX . Fix a class Œ� � of directions on the rational polygonQ. The

diophantine conditions developed in this paper have a relation with the recurrence
rate function !Œ��WQ! Œ0;C1�, defined on points p 2 Q by

!Œ��.p/ WD lim inf
r!0

log
�
RŒ��.p; r/

�
� log r

;

where for any r > 0 the quantity RŒ��.p; r/ WD infft > r ; j�t
Œ��
.p/ � pj < rg

denotes the return time of p at scale r . It is possible to see that !Œ��.p/ is defined
for all those p whose billiard trajectory never ends in a corner of Q, more details
can be found in § 7.1. The function p 7! !Œ��.p/ is obviously invariant under the
billiard flow �Œ��. Therefore, when �Œ�� is uniquely ergodic, !Œ��.p/ is constant for
almost any p 2 Q. By a theorem of Masur (see [28]), the Hausdorff dimension
� D �.Q/ of the set of directions � on Q such that �Œ�� is not uniquely ergodic
satisfies 0 � � � 1=2. Fix � � 2 and define the set

S� WD

�
� ; �Œ�� is uniquely ergodic and !Œ��.p/ D

1

� � 1
for a.e. p 2 Q

�
:
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In a related setting (see [23]), D. H. Kim and S. Marmi prove that for almost
any interval exchange transformation T the almost everywhere constant value of
the recurrence rate function is equal to one. Theorem 1.4 below is a counterpart of
Theorem 1.3 for the dynamics of the billiard flow on a rational polygon. Closely
related results appear in [22].
Theorem 1.4. LetQ be a rational billiard and let 0 � � � 1=2 be the dimension of
the set of non uniquely ergodic directions on Q. Then for any � with 2 � � < 2=�

we have
dim

�
S�
�
D
2

�
:

The same result obviously holds for linear flows �� on a translation surface X .
In [12], Y. Cheung, P. Hubert and H. Masur find polygons Q for which � D 0, so
that Theorem 1.4 applies for any � � 2.

1.4. Diophantine approximations for planar resonant sets. We consider
diophantine conditions in terms of approximations of a given direction in R2 by the
directions of a countable set of vectors. Such approach is naturally formalized in
polar coordinates, via the notion of planar resonant set. We parametrize the set of
lines in R2 passing through the origin by the angle � 2 Œ��=2; �=2Œ that they form
with the vertical. Intuitively a planar resonant set corresponds to a countable family
of vectors v 2 R2, and for a given direction � one considers those directions �v of
vectors v in the countable family such that the distance j� ��vj is small, compared to
the length jvj of v. Formal definitions are given below. Denote by B.�; r/ the open
subinterval of Œ��=2; �=2Œ with length 2r centered at � . For any measurable subset
E � Œ��=2; �=2Œ denote by jEj its Lebesgue measure.

A planar resonant set is the datum .R; l/, where R is a countable subset R �

Œ��=2; �=2Œ and l WR ! RC is a positive function, such that for any L > 0 the set
f� 2 R ; l.�/ < Lg is finite. Given a real number K > 1, we often consider the
partition of R into subsets

R.K; n/ WD f� 2 R ; Kn�1 < l.�/ � Kng for n � 1;
R.K; 0/ WD f� 2 R ; l.�/ � 1g:

An approximation function is a decreasing function  WRC ! RC. The set of
directions in Œ��=2; �=2Œwhich arewell approximable by elements inR with respect
to  is

W.R;  / WD
\
L>0

[
l.�/>L

B
�
�;  

�
l.�/

��
:

Given � > 0, the set of points in Œ��=2; �=2Œ which are �-badly approximable with
respect to R is

Bad.R; �/ WD
h
��

2
;
�

2

h
n

[
�2R

B
�
�;

�2

l.�/2

�
:
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In the following we consider subintervals I � Œ��=2; �=2Œ and we refer to them
simply as intervals. We introduce the following metric properties for planar resonant
sets.

Definition 1.5. Let .R; l/ be a planar resonant set.
QG. The set .R; l/ has quadratic growth if there exists a constantM > 0 such that
for any R > 0 we have

]f� 2 R ; l.�/ � Rg �M �R2: (1.2)

IQG. The set .R; l/ has isotropic quadratic growth if there exists a constantM > 0

such that for any interval I and any R > 0 with R2jI j � 1 we have

]f� 2 I \R ; l.�/ � Rg �M � jI j �R2: (1.3)

U. The set .R; l/ satisfies ubiquity, if for anyK > 1 which is big enough there exist
c1 > 0, c2 > 0 and a > 0 with a

c1
D o.K2/ such that for any n and any interval I

with
jI j �

c2

Kn

we have ˇ̌̌̌
I \

[
l.�/�Kn

B
�
�;

a

K2n

�ˇ̌̌̌
� c1jI j: (1.4)

DIR. The set .R; l/ satisfies the .�; U; �/-Dirichlet property for � > 0, U > 0 and
1 < � < 0 if there exist some L0 > 0 such that for any L � L0 and any interval I
with jI j � 2U=L2 we haveˇ̌̌̌

I \
[

l.�/�L

B
�
�;

�2

2l.�/2

�ˇ̌̌̌
� � jI j: (1.5)

DEC. Fix 0 < � < 1 and 0 < � < 1 and set K WD 1=�. The set .R; l/ is
.�; �/-decaying if for any n � 1 and any interval I with

jI j D
1

K2n
and I \

n�1[
jD0

[
�2R.K;j /

B
�
�;

�2

l.�/ �Kj

�
D ; (1.6)

we have ˇ̌̌̌
I \

[
�2R.K;n/

B
�
�;

2�2

l.�/ �Kn

�ˇ̌̌̌
� � � jI j: (1.7)

Moreover there exists an interval I0 satisfying Condition (1.6) for n D 1.
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Remark 1.6. The notion of ubiquity has already been deployed in several otherworks,
starting from [4]. Here condition a=c1 D o.K2/ is a technical assumption adapted to
our simplified proof of Theorem 1.7 in the setting of planar resonant sets. In related
settings, the upper bound of the Hausdorff dimension of badly approximable sets is
proved with a property which is derived from some version of Dirichlet theorem, that
was first called Dirichlet property in [36]. Dirichlet property and Ubiquity are quite
similar, indeed for translation surfaces they both follow from Proposition 4.1. We
give two separate abstract definitions because ubiquity is a qualitative property, stated
in terms of constants which do not appear in Theorem 1.7 below, while the constants
in Dirichlet property also appear in the upper bound in Theorem 1.8. Finally, the
name for .�; �/-Decaying was chosen because it states a property which is similar
to that of absolutely decaying measures, which were introduced in [25] and proved
to be a valuable concept for establishing lower bounds on Hausdorff-dimension of
badly approximable sets (see also § 3.2 and § 6.5 in [32]).

A dimension function is a continuous increasing function f WRC ! RC such that
either f .r/=r is decreasing with limr!0 f .r/=r D 1, like for example f .r/ D rs
with 0 < s < 1, or f is the identity f .r/ D r . For a fixed subset E � Œ��=2; �=2Œ
and for � > 0, a �-cover of E is a countable collection fBig of intervals Bi with
length jBi j � � for each i such that E �

S
i Bi . Such a cover exists for every � > 0.

For a dimension function f define

Hf
� .E/ WD inf

X
i

f
�
jBi j

�
;

where the infimum is taken over all �-covers ofE. TheHausdorff f -measureHf .E/

of E with respect to the dimension function f is defined by

Hf .E/ WD lim
�!0

Hf
� .E/ D sup

�>0

Hf
� .E/:

For the dimension function f .r/ D rs with 0 < s � 1, the measureHf is the usual
s-dimensional Hausdorff measure H s , which coincides with the Lebesgue measure
of Œ��=2; �=2Œ for s D 1. The Hausdorff dimension dimE of a set E is defined by

dimE WD inffs W H s.E/ D 0g D supfs W H s.E/ D1g:

In terms of the metric properties introduced in Definition 1.5 we establish the
following two results on diophantine approximations for planar resonant sets.

Theorem 1.7 (Abstract Khinchin–Jarník, after [3]). Consider a planar resonant
set .R; l/ with quadratic growth, an approximation function  and a dimension
function f such that the function l 7! lf ı  .l/ for l > 0 is decreasing monotone.

(1) If
P1
nD1 nf . .n// <1 then we haveHf .W.R;  // D 0.
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(2) If
P1
nD1 nf . .n// D1 and if moreover .R; l/ is ubiquitous and has isotropic

quadratic growth, then we haveHf .W.R;  // D Hf . Œ��=2; �=2Œ /.

Theorem 1.8. Consider a planar resonant set .R; l/.

(1) If .R; l/ satisfies the .�; U; �/-Dirichlet property for � > 0,U � 0 and 1 < � < 0
then we have

dim
�
Bad.R; �/

�
� 1 �

j log.1 � �/j
j log.�2=.8U //j

:

(2) If .R; l/ is .�; �/-decaying with � < 1 � �4=3, we have

dim
�
Bad.R; �/

�
� 1 �

j log.1 � � � �4=3/j
4=3j log.�/j

:

Note. Condition � < 1 � �
4=3 is a technical assumption. Later on it will be trivially

satisfied since for us � D O.�ˇ / for some ˇ > 0.

1.5. Planar resonant sets of translation surfaces. Let X be a translation surface
with Area.X/ D 1 and let m be the total multiplicity at conical singularities of X ,
that is

m D 2g � 2C ].†/:

If 
 is a saddle connection of X , denote by �
 its direction. It is well known that
for a given direction � there exist at most 4g � 4 saddle connections 
i such that
�
i D � for any i . For a direction � D �
 of a saddle connection 
 let 
min.�/ be
the saddle connection parallel to 
 with minimal length. Define the planar resonant
set Rsc and the length function l scWRsc ! RC by

Rsc
WD f� D �
 ; 
 saddle connection of Xg

l sc.�/ WD j
min.�/j:

We consider also closed geodesics � of X , and we denote �� the direction of any
such � . Given any closed geodesic � , there exists a family of closed geodesics which
are parallel to � with the same length and the same orientation. A cylinder for X
is a connected open set C� foliated by such a family of parallel closed geodesics
and maximal with this property. By maximality, it follows that the boundary of
a cylinder C� around a closed geodesic � is union of saddle connections parallel
to � . Any cylinder C� � X defines a holonomy vector Hol.C� / D

R
�
w, which

is also denoted by Hol.�/. We need to restrict to cylinders whose euclidian area is
bounded from below by a positive constant. Let � be a direction such that there a
closed geodesic � in direction �� D � whose cylinder satisfies Area.C� / > 1=m.
Such � is not unique. If f�1; : : : ; �j g is the family of all parallel geodesics in
direction � with Area.C�j / > 1=m, we denote by �min.�/ the shortest element in the
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family f�1; : : : ; �j g. Finally, we define the planar resonant set Rcyl and the length
function lcylWRcyl ! RC by

Rcyl
WD

n
� D �� ; � closed geodesic for X with Area.C� / >

1

m

o
lcyl.�/ WD j�min.�/j:

In this second case, in order to state results in the sharpest form, let us define the
quantity

Syscyl.X/ D minflcyl.�/ ; � 2 Rcyl
g:

In the following, when there is not risk of ambiguity, we will denote both l sc and lcyl
simply by l .

For the sets Rsc and Rcyl we will obtain the diophantine condition stated in
Theorem 1.7 and Theorem 1.8, provided that the required assumptions are satisfied,
which is ensured by Theorem 1.9 below. In order to obtain all the consequences of
the three statements combined, consider a direction � 2 Rcyl and let � D �min.�/,
so that �� D � , then let C� be the corresponding cylinder. The boundary of C� is
union of saddle connections 
 in direction �� with j
 j � j� j. Therefore we have
Rcyl � Rsc, moreover if �WRcyl ! Rsc denotes the inclusion, then for any � 2 Rcyl

we have

l sc
�
�.�/

�
� lcyl.�/: (1.8)

It follows that for any approximation function  and any � > 0 we have

W.Rcyl;  / � W.Rsc;  / and Bad.Rsc; �/ � Bad.Rcyl; �/: (1.9)

The quadratic growth for resonant sets arising from translation surfaces is
established by a well-known result of Masur (see [29]). In a refined version by
Eskin and Masur, namely Theorem 5.4 in [15], it is proved that for any translation
surface X with Area.X/ D 1 there exists a constantM > 1 such that for any L > 1
we have

]f�� 2 RcylI lcyl.�� / � Lg

L2
�
]f�
 2 RscI l sc.�
 / � Lg

L2
< M:

Moreover, given any compact subset K � H .1/, the constant M D M.X/ can be
chosen uniformly for allX 2K . In this paper, using previous results ofVorobets [35],
Chaika [9] andMinsky–Weiss [32], we prove further properties of holonomy resonant
sets.
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Theorem 1.9. Let X be a translation surface with Area.X/ D 1 and let m be the
total multiplicity at conical singularities of X .
(1) There are positive constants M > 1, r0 > 0 and 0 < ˇ � 1, depending

only on m, such that for any � with 0 < � < minfr0;Syssc.X/g the set Rsc is
.�; �/-decaying with � DM � �ˇ . In particular we have

ˇ D
1

3m � 1
:

Moreover, if X is a Veech surface, the same result holds with ˇ D 1 and r0
depending only on the closed orbit M D SL.2;R/ �X of X .

(2) For any � with 0 < � < 1 the set Rsc satisfies .U; �; �/-Dirichlet property in
terms of the constants

U D
12

m2�2
and � D

m�2
p
48
:

(3) The set Rcyl has isotropic quadratic growth in terms of the constant

M WD m.mC 1/:

(4) The set Rcyl satisfies ubiquity. In particular, for any

K �

p
2

Syscyl.X/
� 22

4mC1

;

Equation (1.4) is satisfied with constants

c1 WD
1

2
, c2 WD

K

2mSyscyl.X/
, a WD

p
3K:

Remark 1.10. Point (4) in Theorem 1.9 and Equation (1.8) implies directly that Rsc

satisfies ubiquity with the same constants as Rcyl. On the other hand, according
to Lemma B.1 in Appendix § B of this paper, if X is a surface with SL.2;R/-
orbit dense in H .1/, then the set Rsc.X/ does not have isotropic quadratic growth.
Moreover, with constructions appearing in § 5.3 in [1], it is possible to see that for
such a surface isotropic quadratic growth fails also for the set of directions �� of
all closed geodesics � , i.e. directions of closed geodesics around any cylinder C� ,
without any positive lower bound on Area.C� /. After the preprint of this paper was
available online, closely related results on counting the number of saddle connections
in angular sectors where obtained in [14].

Theorem5.3 andTheorem6.1 respectively in § 5 and in § 6 give explicit statements
of some consequences of Theorem 1.9 above and of the abstract Theorems 1.7 and 1.8.
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1.6. Further comments and questions.

1.6.1. Sharpest lower bound in Theorem 1.1. Let T2 WD R2=Z2 be the standard
torus and Bad.�/ be the set of those ˛ 2 R such that qjq˛ � pj � �2 for all but
finitely many p=q, one can see that

Baddyn.T2;
p
2 � �/ D Bad.�/:

In [20], Jarník gave the first estimates on the dimension of Bad.�/. In [26], Kurzweil
proves that for any � > 0 small enough, we have

1 �
99

100
� �2 � dim

�
Bad.�/

�
� 1 �

1

4
� �2:

In [18], Hensley gives the asymptotic for dim
�
Bad.�/

�
up to the term of order �4.

In our case, at least for Veech surfaces, it would be interesting to determine if the
lower bound in Theorem 1.1 can be improved to get ˇ D 2, as it happens for the
very special surface X D T2. Nevertheless the gap between the exponent in lower
and upper bound does not seem to be removable with our techniques. Recently,
in [33], Simmons computed the first order asymptotic of the dimension of uniformly
badly approximable matrices, showing that in this case there is no gap between the
exponent in lower and upper bound. This was not evident in previous estimates
by Weil in [36] and by Broderick and Kleinbock in [8], even in the extremal case
of minimal dimension, where matrices (or vectors, in case of [36]) coincide with
real numbers. While the techniques used in [8] and in [36] have a counterpart for
translation surfaces, namely quantitative non-divergence and Schmidt games, it is not
evident that the same is true for the ideas introduced in [33].

1.6.2. Limits of the general approach. Theorem 1.2 and Theorem 1.3 are con-
sequences of the metric properties for the resonant sets Rsc and Rcyl stated in
Theorem 1.9 and of the general Theorem 1.7. Although these results can be applied to
any pair of approximation function and dimension function f such that f ı is not
increasing, a dynamical estimate for the excursions of � log Syssc.gtr� �X/ requires
an explicit choice of  and f . This is because a comparison between Syssc.gtr� �X/
and a given function of time  .t/ passes through a comparison between the length
of a saddle connection 
 on the surface X and the instant t D t .�; 
/ when such 

becomes short on the deformed surface gtr� �X . See § 6.

1.6.3. Unique ergodicity and diophantine type. Let � WD dim.NUE.X// be the
dimension of the set of directions � on the surface X such that the flow �� is
not uniquely ergodic. For � � 2 let W.�/ WD W.Rcyl;  � / n

S
� 0>� W.R

sc;  � 0/,
where  � denotes the approximation function  � .r/ WD r� . It is easy to see that



238 L. Marchese, R. Treviño and S. Weil CMH

dim.W.�// D 2=� . In order to remove the assumption � < 2=� in Theorem 1.4
(see § 7.3) we ask if we have the strict inequality

dim
�
W.�/ \ NUE.X/

�
<
2

�
‹

For � D 2 the answer is affirmative and corresponds to the well known fact that

dim
�
NUE.X/

�
� 1=2 < 1 D dim

�
W.2/

�
:

1.7. Contents of this paper. In § 2 we prove Theorem 1.7. The convergent case
follows from a very simple covering argument, which we give in § 2.2. In divergent
case, Lebesgue and general Hausdorff measure Hf are considered separately. The
first case in treated in § 2.3 using Lebesgue density points. The second case is
more involved: some general techniques are resumed in § 2.4, proofs are completed
in § 2.5.

In § 3 we prove Theorem 1.8. In § 3.1 we prove the lower bound using Decaying
property and the general tools from § 2.4. In § 3.2 we prove the upper bound via the
construction of a sequence of coverings based on Dirichlet property.

In § 4we proveTheorem1.9. Themain tools are aDirichlet theorem for translation
surfaces, namely Proposition 4.1, and a version of Margulis’ non-divergence of
horocycles adapted to translation surfaces, namely Theorem 4.10, which is due to
Minsky–Weiss.

In § 5 we prove Theorem 1.1. As an intermediate step, we state and prove a
version of the same result for Bad.Rsc; �/, that is Theorem 5.3.

In § 6 we prove Theorem 1.2 and Theorem 1.3. As an intermediate step we
state and prove a version of the abstract Theorem 1.7 for the sets W.Rsc;  / and
W.Rcyl;  /, namely Theorem 6.1.

In § 7 we prove Theorem 1.4.
In Appendix § A we give the proof of Corollary 4.11, which is a sharper version

of Theorem 4.10 for the specific case of Veech surfaces.
In Appendix § B we prove that isotropic quadratic growth of number of saddle

connections fails for a generic surface X .
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2. Hausdorff measure ofW.R;  /: proof of Theorem 1.7

In this section we prove Theorem 1.7. Some of the constructions developed here, that
is the content of § 2.4, will be used also in the next section in the proof of Theorem 1.8.
Statement (1) in Theorem 1.7, that is the case when the series

P1
nD1 nf . .n//

converges, is proved in § 2.2. Statement (2), that is when the series
P1
nD1 nf . .n//

diverges, requires a more specific analysis. The case of Lebesgue measure is rather
simple and is treated in § 2.3 using Lebesgue density points. The case of Hausdorff
measure is more involved: general tools are developed in § 2.4, then the proof is
completed in § 2.5. In all this section f WRC ! RC is a dimension function and
 WRC ! RC is a positive function such that l 7! lf ı .l/ is decreasing monotone.
Recall that for us intervals are always considered as subintervals I � Œ��=2; �=2Œ.

2.1. Separation properties for planar resonant sets. In this subsectionwe develop
separation properties for a given planar resonant set .R; l/ which satisfies ubiquity
and has isotropic quadratic growth as in Definition 1.5, that is such that there exist
a constant M > 1, and for any K > 1 big enough constants c1 D c1.K/ > 0,
c2 D c2.K/ > 0 and a D a.K/ > 0 with a=c1 D o.K2/ such that for any integer n
and any interval I we haveˇ̌̌̌

I \

n[
jD1

[
�2R.K;j /

B
�
�;

a

K2n

� ˇ̌̌̌
� c1jI j provided that jI j >

c2

Kn
;

]f� 2 R \ I ; l.�/ < Kng < M � jI j �K2n provided that jI j >
1

K2n
:

Observe that since a=c1 D o.K2/ then, modulo increasingK > 1, we can choose
a constant b D b.K/ with b � a such that

c1

8.aC b/
>
M

K2
: (2.1)

For example, one can choose a D b. We use different names to stress that the two
constants a and b play a different role. Once K > 1 and a D a.K/; c2 D c2.K/ are
fixed, observe that there exists n0 D n0.K/ such that for any n � n0 we have

Kn �
4a

c2
: (2.2)

For any n and any interval I introduce the set of directions

R.n; I / WD
n
� 2 R.K; n/ ; B

�
�;

a

K2n

�
� I

o
: (2.3)

For a fixed � > 0 we say that a subset T � Œ��=2; �=2Œ is �-separated if
j� � � 0j > � for any pair of different points � and � 0 of T . Such a set is necessarily
finite.



240 L. Marchese, R. Treviño and S. Weil CMH

Proposition 2.1. Let R be a planar resonant set satisfying ubiquity and isotropic
quadratic growth in terms of the constants above. Assume that Equation (2.1) is
satisfied. Assume that n is big enough so that Equation (2.2) is satisfied. Then for
any interval I such that

jI j > 2 �
c2

Kn
;

there exists a b
K2n

-separated subset T .n; I / � R.n; I / with cardinality

]T .n; I / �
c1

8.aC b/
� jI j �K2n:

Proof. Let I 0 � I be the subinterval of maximal size such that we have the
implication

B
�
�;

a

K2n

�
\ I 0 ¤ ; ) B

�
�;

a

K2n

�
� I:

The definition of I 0 implies jI 0j � jI j � 4a � K�2n. Since jI j > 2c2 � K
�n then

Equation (2.2) implies jI j > 8a �K�2n and thus

jI 0j � jI j �
4a

K2n
�
jI j

2
:

In particular we have jI 0j > c2 �K�n, so that we can apply ubiquity to I 0. Consider
the set

U.n; I 0/ WD
n
� 2 R ; l.�/ � Kn ; B

�
�;

a

K2n

�
\ I 0 ¤ ;

o
:

We show that U.n; I 0/ contains a bK�2n-separated subset Usep.n; I 0/ with
cardinality at least c1 � jI jK2n=4.a C b/. Fix N 2 N and suppose that �1; : : : ; �N
are bK�2n-separated points of U.n; I 0/ and that N is maximal with such property.
It follows that for any � 2 U.n; I 0/ there exists some j with 1 � j � N such that
j� � �j j < bK

�2n. Ubiquity of R implies the claim observing that

c1jI j

2
� c1jI

0
j <

ˇ̌̌̌ [
�2U.n;I 0/

B
�
�;

a

K2n

�
\ I 0

ˇ̌̌̌
� 2N

aC b

K2n
:

Moreover, since U.n; I 0/ � I , then isotropic quadratic growth implies

]f� 2 U.n; I 0/ ; l.�/ � Kn�1g �M jI jK2.n�1/:

Set
T .n; I / WD f� 2 Usep.n; I 0/ ; Kn�1 < l.�/ � Kng:

We have T .n; I / � R.n; I / and T .n; I / is bK�2n-separated by construction.
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Moreover the estimates above and Condition (2.1) imply

]T .n; I / D ]Usep.n; I / � ]f� 2 U.n; I 0/ ; l.�/ � Kn�1g

�
c1 � jI j

4.aC b/
K2n �M � jI jK2.n�1/

D

� c1

4.aC b/
�
M

K2

�
� jI jK2n �

c1

8.aC b/
� jI jK2n:

Recall that a=c1 D o.K2/. Modulo taking K bigger, and arguing as for
Equation (2.1), assume that we have

c1

16.aC b/
>
3M

K2

strictly. Then consider a constant ı > 0 small enough compared to b in order to
satisfy the condition

c1

16.aC b/
�
ı

b
C
3M

K2
: (2.4)

Observe that the condition above implies

c1

16.aC b/
>
ı

b

and since c1 < 1 then we must have also ı < 1.
Corollary 2.2. Consider n 2 N which satisfies Equation (2.2) and an interval I
such that jI j > 2c2 �K�n. Let I WD

SN
iD1 Ii be the union of N subintervals Ii of I

such that jIj < ıjI j and N < M jI jK2.n�1/. Then the b=K2n-separated set T .n; I /

in Proposition 2.1 contains at least .c1 � jI j=16.aC b//K2n points � such that

I \ B
�
�;

b

K2n

�
D ;:

Proof. Set � WD bK�2n and observe that any subinterval Ii contains atmost jIi j=�C1
points which are �-separated, so that the union I contains at most jIj=�CN points
which are �-separated. Then the �-neighborhood of I contains at most

jIj

�
C 3N �

� ı
b
C
3M

K2

�
jI j �K2n

points which are �-separated. The corollary follows observing that Proposition 2.1
and Condition (2.4) imply

]T .n; I / � ]f� 2 T .n; I / ; B.�; bK�2n/ \ I ¤ ;g

�

� c1

8.aC b/
�
ı

b
�
3M

K2

�
jI j �K2n �

c1

16.aC b/
� jI j �K2n:
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2.2. Proof of convergent case in Theorem 1.7. The proof follows from a simple
covering argument, that we give below for the sake of completeness.

Fix � > 0 and � > 0. Since .l/! 0 and l 7! lf ı .l/ is decreasing monotone
for l !1, for any N big enough we obtain a �-covering ofW.R;  / by taking the
union

1[
nDN

[
�2R.K;n/

B
�
�;  .Kn�1/

�
:

The summability of
1X
nD1

nf
�
 .n/

�
is equivalent to the summability of

1X
nD1

K2nf
�
 .Kn/

�
;

thus modulo increasing N one also has

1X
nDN

K2nf
�
 .Kn�1/

�
< �:

Hence
Hf

�
W.R;  /

�
< 2�;

and since � is arbitrarily small we getHf .W.R;  // D 0.

2.3. Proof of divergent case in Theorem 1.7 for Lebesgue measure. We closely
follow the argument of [7], pages 7 and 8. In the proof, an interval I is fixed once and
for all, around some Lebesgue density point. It is possible to see that in such situation
the argument only uses ubiquity and quadratic growth for the resonant set R, but not
isotropic quadratic growth (see [7] for details). Our proof assumes isotropic quadratic
growth in order to stay in the setting developed in § 2.1. Isotropic quadratic growth
will be strictly necessary in the case of Hausdorff measure, where the construction
of some Cantor set will require to consider intervals at smaller and smaller scale.

Let R be a planar resonant set satisfying ubiquity and isotropic quadratic growth.
LetM , K, a, c1 and c2 be constants as in Definition 1.5. As in § 2.1, increase K if
necessary and introduce constants b and ı such that Equation (2.4) is satisfied.

Observe that if  0.l/ �  .l/ for any l > 0 then we haveW.R;  0/ � W.R;  /.
Hence it is enough to prove the statement for an approximating sequence satisfying

 .l/ D min
n
 .Kn/;

b

K2n

o
for Kn�1 < l � Kn:
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Fix an interval I . LetN be an integer such that any n � N satisfies Equation (2.2)
and moreover we have also jI j > 2c2 �K�n, so that Proposition 2.1 and Corollary 2.2
can be applied. Then fix any m > N and, recalling the sets R.n; I / defined in
Equation (2.3), consider the set

I.N;m/ WD I \

m[
nDN

[
�2R.n;I /

B
�
�;  .Kn/

�
:

Lemma 2.3. There exists m > N such that jI.N;m/j � ıjI j.

Proof. Fix m � N C 1 and set I WD I.N;m � 1/, which is the union of at most
M jI jK2.m�1/ subintervals of I , according to isotropic quadratic growth of R. If
jIj � ıjI j then we are done. If jIj < ıjI j then Corollary 2.2 implies that R.m; I /

contains at least .c1 � jI j=16.aC b//K2m points � which are bK�2m-separated and
such that B.�; bK�2m// \ I D ;. This implies B.�;  .Km/ \ I D ;, since
 .Km/ � bK�2m. It follows thatˇ̌

I.N;m/
ˇ̌
�
ˇ̌
I.N;m � 1/

ˇ̌
C

c1

16.aC b/
jI jK2m .Km/:

The lemma follows from the divergence assumption of
P
K2m .Km/.

The divergent case in Theorem 1.7 for Lebesgue measure follows observing that,
according to the lemma above we have

ˇ̌ S1
nDNC1 I.N;m/

ˇ̌
> ıjI j for any N big

enough, and thus

ˇ̌
W.R;  / \ I

ˇ̌
D

ˇ̌̌̌ \
N2N

1[
nDNC1

I.N;m/

ˇ̌̌̌
� ıjI j:

The estimate above holds for any small interval I , therefore the complement of
W.R;  / has no density points, that is W.R;  / has full measure.

2.4. Mass distribution�f on theCantor SetK. Weconsider a dimension function
with f .r/=r !1 for r ! 0. Given a Cantor set K � Œ��=2; �=2Œ we describe a
classical construction of a probability measure�f supported onKwhich is somehow
natural with respect to the dimension function f . For convenience of notation we
write simply � instead of �f .

For any positive integer nwe define a familyK.n/ of subintervals of Œ��=2; �=2Œ
which are disjoint in their interior. The nth level of the Cantor set is given by

K.n/ WD
G

B2K.n/

B:
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The families K.n/ are chosen so that K.n/ � K.n � 1/ for any n > 1, then the
Cantor set is defined by K D

T1
nD1 K.n/. For any B 2K.1/ we set

�.B/ WD
f
�
jBj
�P

B02K.1/ f
�
jB 0j

�
For any n > 1, any B0 2 K.n � 1/ call K.n; B0/ the subfamily of those balls
B 2K.n/ with B � B0, then for any B 2K.n; B0/ set

�.B/ WD
f
�
jBj
�P

B02K.n;B0/
f
�
jB 0j

��.B0/:
The construction of the measure � on K is completed by the following lemma, which
corresponds to Proposition 1.7 in [16].
Lemma 2.4. The function �W

S
n2N K.n/ ! RC extends to a Borel probability

measure supported on K setting

�.E/ D �.E \K/ WD inf
X
B

�.B/;

where E is any Borel subset of R and the inf is taken over all coverings of E with
balls B in

S
n2N K.n/.

The following lemma gives a classical method to obtain lower bounds forHf of
a set K. A version for the Hausdorff measures H s corresponding to the dimension
function fs.x/ D xs with 0 < s < 1 can be found in § 4.2 in [16].
Lemma 2.5. Let � be a probability measure supported on a subset K of R. Suppose
that there are constants � > 0 and �0 > 0 such that

�.B/ �
f
�
jBj
�

�
(2.5)

for any ball with radius � < �0. Then we haveHf .E/ � � � �.E/ for any subset E
of K.

Proof. For any �-cover fBig of E with � < �0 we have

�.E/ D �
�[

Bi

�
�

X
�.Bi / � �

�1
X

f
�
jBi j

�
:

Remark 2.6. Fix n � 1 and an interval B0 2K.n � 1/, where B0 WD Œ��=2; �=2Œ
for n D 1. Observe that any subinterval B 2 K.B0; n/ satisfies Condition (2.5) if
and only if X

B02K.n;B0/

f
�
jB 0j

�
> ��.B0/: (2.6)
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The following lemma follows by an easy computation, which is left to the reader,
and gives a criterion to get Condition (2.5) for the intervals in

S
n2N K.n/.

Lemma 2.7. Let B0 be any interval and K be a finite family of subintervals B � B0
which are pairwise disjoint. Fix constants 0 < ı < 1 and C > 0. Assume that we
have X

B2K

jBj > ıjB0j: (2.7)

and moreover that for any B 2K we have also

f
�
jBj
�

jBj
>

C

ıjB0j
:

Then we have
P
B2K f

�
jBj
�
> C .

2.5. Proof of divergent case in Theorem1.7 forHausdorffmeasure. Webasically
follow [3]. Consider an approximation function  such that

1X
nD1

K2nf
�
 .Kn/

�
D1:

Let .R; l/ be a planar resonant set satisfying ubiquity and isotropic quadratic
growth, in terms of the constants M , K, a, c1 and c2 introduced in Definition 1.5.
Fix constants b > 0 and ı > 0 as in § 2.1 and modulo increasing K assume that
Condition (2.4) is satisfied, so that Proposition 2.1 and Corollary 2.2 can be applied.
In order to simplify the notation, set

c WD
c1

16.aC b/
:

Finally, recall from § 2.1 that for any subinterval B0 � Œ��=2; �=2Œ, Equation (2.3)
defines R.l; B0/ as the set of those � 2 R.K; l/ such that

B
�
�;

a

K2l

�
� B0:

Proposition 2.8 (Local construction of measure �). Fix a subinterval B0 �
Œ��=2; �=2Œ and a constant C > 0.

There exist positive integersm.B0/ and l.B0/ and a finite familyK.B0/ of disjoint
subintervals B � B0 of the form B D B

�
�;  .Kl/

�
for some m.B0/ < l � l.B0/

and some � 2 R.l; B0/ which are pairwise disjoint and such thatX
B2K.B0/

f
�
jBj
�
> C: (2.8)
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Moreover, there exists an universal constant� > 1 not depending onB0 such that
for any subinterval I � B0, denoting K.B0; I / the family of those ballsB 2K.B0/

with B \ I ¤ ;, we haveX
B2K.B0;I /

f
�
jBj
�
< �
jI j

jBj

X
B2K.B0/

f
�
jBj
�
: (2.9)

Proof. We give first a sketch of the proof. The first step in the proof is to define the
integerm.B0/. Oncem.B0/ is defined, for l > m.B0/we consider familiesK.B0; l/

made of disjoint intervals B of the form B D B.�;  .Kl// for � 2 R.l; B0/, so that
the sum in Condition (2.8) takes the form

lX
jDm.B0/C1

X
B2K.B0;j /

f
�
jBj
�
:

The Lebesgue measure of such families of intervals is big enough if we have

lX
jDm.B0/C1

X
B2K.B0;j /

jBj � ıjB0j:

If the last condition is satisfied we set l.B0/ WD l and Condition (2.8) follows
from Lemma 2.7. Otherwise Corollary 2.2 tells us that there exists an extra family
K.B0; l C 1/ containing at least cjB0jK2.lC1/ intervals which are disjoint from all
the previous ones. Adding this .l C 1/th term the sum in Condition (2.8) increases
by X

B2K.B0;lC1/

f
�
jBj
�
� cjB0j �K

2.lC1/ .KlC1/:

The latter is the .lC1/th term of a divergent series, thus Condition (2.8) is eventually
satisfied. Then we define l.B0/ as the last term in the finite sum. The second part of
the statement will follow easily. We now start the formal proof of the Proposition.

Definition of m.B0/. In order to apply Proposition 2.1 and Corollary 2.2, fix
m D m.B0/ such that for any l > m.B0/ Condition (2.2) is satisfied and moreover
we have

jB0j �
2 � c2

Kl
:

Moreover recall that  .Kl/ ! 0 for l ! C1 and that f .r/=r ! 1 for r ! 0.
Therefore, modulo increasingm.B0/we can assume also that for any l > m.B0/ and
any interval of the form B D B.�;  .Kl// with � 2 R.l; B0/ we have

f
�
jBj
�

jBj
>

C

ıjB0j
:



Vol. 93 (2018) Translation surfaces and planar resonant sets 247

Definition of l.B0/. The family K.B0/ is defined as union of subfamilies K.B0; l/

inductively defined for l D mC1; : : : ; l.B0/. The integer l.B0/ is defined as the last
step of the construction, when the required properties of K.B0/ are satisfied. The
inductive procedure is described below.

Initial step. According to Proposition 2.1 there exists a subset

T .B0; mC 1/ � R.mC 1; B0/;

which isbK�2.mC1/-separated and has cardinality ].T .B0; mC1// � 2cjB0jK2mC2.
Define K.B0; mC 1/ as the family of balls B.�;  .KmC1// for � 2 T .B0; mC 1/

and set
K.B0; mC 1/ WD

G
B2K.B0;mC1/

B:

Inductive step. Assume inductively that for l � mC 1 the families

K.B0; mC 1/; : : : ;K.B0; l/

are defined, where for any j D mC 1; : : : ; l any B 2K.B0; j / is an interval of the
form B D B.�;  .Kl// for some � 2 R.l; B0/, and assume inductively also that all
the intervals in

Sl
jDmC1 K.B0; j / are disjoint. Then set

K.B0; l/ WD
lG

jDmC1

G
B2K.B0;j /

B:

Since intervals in K.B0; l/ are balls centered at points � 2
Sl
jDmC1 R.j; B0/, then

by isotropic quadratic growth these intervals are at mostM jB0jK2l .

(1) If the family
Sl
jDmC1 K.B0; j / satisfies Condition (2.7) then we set l.B0/ WD l

and

K.B0/ WD

l[
jDmC1

K.B0; j /:

Lemma 2.7 implies that Condition (2.8) is satisfied too, and the first part of the
proposition is proved.
(2) If Condition (2.7) is not satisfied, observe that K.B0; l/ is a union of at
most M jB0jK2l disjoint intervals with jK.B0; l/j < ıjB0j. Then according to
Corollary 2.2 there exists a bK�2.lC1/-separated subset T .B0; lC1/ ofR.lC1; B0/

with cardinality
]
�
T .B0; l C 1/

�
� cjB0jK

2.lC1/

such that for any � 2 T .B0; l C 1/ we have

B
�
�; bK�2.lC1/

�
� B0 nK.B0; l/:
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Then defineK.B0; lC1/ as the family of ballsB.�;  .KlC1// for � 2 T .B0; l C 1/

and observe that
SlC1
jDmC1 K.B0; j / is a family of disjoint balls.

The inductive procedure eventually stops. Repeat the analysis in the inductive step
replacing l by l C 1. Eventually at least one of the following two conditions is
satisfied.

(1) The family
Sl
jDmC1 K.B0; j / eventually satisfies Condition (2.7) and thus also

Condition (2.8), as in point (1) of the inductive step. The construction of K.B0/ is
therefore complete.

(2) Otherwise the family
Sl
jDmC1 K.B0; j / eventually satisfies directly Condi-

tion (2.8). Indeed, reasoning as in point (2) of the inductive step, we add an
extra subfamily K.B0; l C 1/. Since each K.B0; j / contains at least cjB0jK2j
subintervals of size  .Kj /, and since all the intervals in all the families K.B0; j /

are mutually disjoint, we have

lX
jDmC1

X
B2K.B0;l/

f .jBj/ � cjB0j �

lX
jDmC1

K2jf
�
 .Kj /

�
;

and Condition (2.8) follows from the divergence of
P1
nD1K

2nf . .Kn//.

In both cases we obtain a family K.B0/ satisfying Equation (2.8). We define l.B0/
as the first l � mC1 such that this is true. The first part of the Proposition is proved.

Second part of the statement. In order to finish the proof, fix any subinterval I � B0.
Since ].T .B0; l// � cjB0jK2l for any integer l with m.B0/ < l � l.B0/, then we
have

S.B0; l/ WD
X

B2K.B0;l/

f
�
jBj
�
� cf

�
 .Kl/

�
� jB0j �K

2l :

On the other hand, the points � in T .B0; l/ are bK�2l -separated and thus, denoting
K.B0; I; l/ the set of those balls B 2K.B0; l/ with B \ I ¤ ;, we have

S.I; l/ WD
X

B2K.B0;I;l/

f
�
jBj
�
<
1

b
f
�
 .Kl/

�
� jI j �K2l :

Equation (2.9) follows with � WD .bc/�1 observing that

X
B2K.B0;I /

f
�
jBj
�
D

l.B0/X
lDm.B0/C1

S.I; l/

<
1

bc

jI j

jB0j

l.B0/X
lDm.B0/C1

S.B0; l/ D
1

bc

jI j

jB0j

X
B2K.B0/

f
�
jBj
�
:
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2.5.1. Construction of the Cantor set K with probability measure �. Fix any
� > 0. Recall the notation of § 2.4, where for any n we consider a family K.n/ of
disjoint subintervals of Œ��=2; �=2Œ , which defines the nth level K.n/ of a Cantor
set K, so that K.nC 1/ � K.n/ for any n and that K D

T1
nD1 K.n/. The inductive

construction of the levels K.n/ of K is given below.

First level. Set B0 WD Œ��=2; �=2Œ and C WD �. Let K.1/ WD
F
B2K.1/B , where

K.1/ WDK
�
B0 D Œ��=2; �=2Œ; C D �

�
is the family of disjoint interval corresponding to the interval B0 D Œ��=2; �=2Œ

and to the constant C D � which is constructed in Proposition 2.8. Observe that
any interval B 2 K.1/ satisfies Condition (2.5), according to Equation (2.8) and
Equation (2.6).

General level. suppose inductively that the levels K.1/; : : : ;K.n � 1/ are defined,
or equivalently the families K.1/; : : : ;K.n � 1/. Fix any B0 2 K.n � 1/, where
B0 D B.�;  .Km// for some m � n and some � 2 R.K;m/. Set C WD ��.B0/.
Let

K.n; B0/ WDK
�
B0; C D ��.B0/

�
be the family of disjoint intervals provided by Proposition 2.8 corresponding to the
intervalB0 2K.n�1/ and to the constantC D ��.B0/. According toEquation (2.8)
and Equation (2.6), any interval B 2 K.n; B0/ satisfies Condition (2.5). Finally
define the nth level and family of intervals by

K.n/ WD
[

B02K.n�1/

K.B0; n/;

K.n/ WD
G

B02K.n�1/

G
B2K.B0;n/

B:

Observe that for any n, the intervals in K.n/ are pairwise disjoint and any
B 2K.n/ is of the form B D B

�
�;  .Kl/

�
for some l � n and some � 2 R.K; l/.

In particular we have

K �
1\
nD1

�[
l�n

[
�2R.K;l/

B
�
�;  .Kl/

��
� W.R;  /:

Moreover, for any n any interval B 2K.n/ satisfies Condition (2.5), that is

�.B/ <
f
�
jBj
�

�
:
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2.5.2. End of the proof. For any n, any B 2 K.n/ and any subinterval I � B ,
denote by K.nC1; I / the set of those ballsB 0 2K.nC1; B/ such thatB 0\I ¤ ;.
Define

�0 WD min
˚
jt � t 0j ; t 2 B 2K.1/ ; t 0 2 B 0 2K.1/ ; B ¤ B 0

	
;

which is positive since K.1/ is a finite union of disjoint intervals. Let � be the
constant appearing in Equation (2.9) in Proposition 2.8.

Lemma 2.9. For any interval with jI j < �0 we have

�
�
jI j
�
<
�

�
f
�
jI j
�
:

Proof. By definition of �0, if jI j < �0 then there exists n such that I intersects at
most one B 2 K.n/. Moreover we can assume that I � B , since � does not give
positive measure to subsets E with E \K.n/ D ;. We have

�.I / �

P
B02K.nC1;I/ f

�
jB 0j

�P
B02K.nC1;B/ f

�
jB 0j

��.B/
< �
jI j

jBj
�.B/ < �

f
�
jI j
�

f
�
jBj
��.B/ < �

�
f
�
jI j
�
;

where the first inequality follows from to the definition of � (see Lemma 2.4),
the second follows from Equation (2.9) in Proposition 2.8, the third holds because
f .r/=r is decreasing monotone (for increasing r) and the fourth because any interval
B 2

S
n2N K.n/ satisfies Condition (2.5).

According to Lemma 2.5 we have Hf
�
K
�
�

�
�
. For any � > 0 we can define a

Cantor setK D K� withK � W.R;  /which satisfies the estimate above. Therefore
we have

Hf
�
W.R;  /

�
D C1:

The divergent case of Theorem 1.7 for Hausdorff measure is proved. This completes
the proof of Theorem 1.7.

3. Hausdorff dimension of Bad.R; �/: proof of Theorem 1.8

In this section we prove Theorem 1.8. For any real number s with 0 < s < 1,
consider the function fsWRC ! RC defined by fs.x/ D xs . The lower bound for
the Hausdorff dimension of Bad.R; �/ is proved in § 3.1. The upper bound is proved
in § 3.2.
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3.1. Proof of lower bound. Fix constants � > 0 and � > 0 with � < 1 and
� < 1 � �2, and set

� WD
1

K
:

Let .R; l/ be a planar resonant set, and assume that it is .�; �/-decaying. For
convenience of notation, for any n 2 N and any ı > 0 set

�.K; n; ı/ WD
[

�2R.K;n/

B
�
�;

ı

l.�/Kn

�
:

According to Definition 1.5, the .�; �/-decaying assumption on .R; l/means that for
any interval I and any integer n � 1 satisfying Condition (1.6), that is

jI j D
1

K2n
and I \

n�1[
jD1

�.K; j; �2/ D ;

the estimate in Equation (1.7) is satisfied too, that isˇ̌
I \�.K; n; 2�2/

ˇ̌
< � jI j;

and moreover there exists an interval I0 satisfying Condition (1.6) for n D 1.

3.1.1. Construction of a probability measure on a Cantor set. We apply the
constructions of § 2.4. Let I0 be an interval satisfying Condition (1.6) for n D 1.
Such interval exist by assumption in the definition of .�; �/-decaying resonant set.
We set K.1/ WD fI0g, then for any n � 1 we define inductively a family K.n/ of
intervals Ii mutually disjoint in their interior and satisfying Condition (1.6). Assume
that the first n families K.1/; : : : ;K.n/ are defined and consider any interval I in
the family K.n/, recalling in particular that jI j D K�2n. Let ŒK2� be the integer
part of K2. Consider a family .Ii /iD1;:::;ŒK2� of subintervals Ii � I , all of length
jIi j D jI j�

2 for any i and any two of them disjoint in their interior. Such family
of subintervals covers I modulo a subset of measure at most jI j�2. Define the
sub-family K.nC 1jI / of .Ii /iD1;:::;ŒK2� by

K.nC 1jI / WD
˚
Ii ; 1 � i � ŒK2� and Ii \�.K; n; �2/ D ;

	
; (3.1)

then define the family K.nC 1/ by

K.nC 1/ WD
[

I2K.n/

K.nC 1jI /:

Define a Cantor set by K D
T1
nDN K.n/, where any level is defined by K.n/ WDS

I2K.n/ I , so that K.n C 1/ � K.n/ for any n. For any � 2 R.K; n/ we have
Kn�1 � l.�/ < Kn, therefore, recalling that � D 1=K, we have

B
�
�;

�3

l.�/2

�
� B

�
�;

�2

l.�/Kn

�
:
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Hence

K � I0 n
1[
nD1

�.K; n; �2/ � I0 n
[
�2R

B
�
�;

�3

l.�/2

�
D Bad

�
R; �

3=2
�
\ I0:

Finally, as in § 2.4, a Borel probability measure � is defined and supported on K. We
recall that for the intervals in the construction above such measure is defined setting
�.I0/ WD 1 and, assuming that �.I / is defined for any I in K.n/, setting

�
�
jIi j

�
WD

fs
�
jIi j

�P
Ij2K.nC1;I/ fs

�
jIj j

���jI j� (3.2)

for any Ii 2 K.n C 1jI /. Actually, other than for I0, we will define �.I / only
for intervals I in K.n/ with n � N , where N is a positive integer given by
Proposition 3.1 below. The estimate on the lower bound in Theorem 1.8 follows
from a lower bound for dim.K/, which follows itself from the next Proposition.
Proposition 3.1. For any n � 1 and any interval I 2 K.n/ satisfying
Condition (1.6), the family K.nC 1jI / defined in Equation (3.1) has cardinality

]K.nC 1jI / � .1 � � � �2/K2:

In particular, whenever

s < 1 �
j log.1 � � � �2/j

2j log �j
(3.3)

for any n � 1 and any I 2K.n/ we haveX
Ii2K.nC1jI/

fs
�
jIi j

�
� fs

�
jI j
�
: (3.4)

Finally, there exists N � 2 such that for any s as above, for any n � N and any
interval I 2K.n/ Equation (2.5) is satisfied with � D 1, that is

�
�
I
�
� fs

�
jI j
�
:

Proof. Observe that every subinterval Ii of I has length �2jI j D �2.nC1/ and
any interval in �.K; n; �2/ has length at least 2�2.nC1/. Therefore any Ii such
that Ii \ �.K; n; �2/ ¤ ; must be contained in �.K; n; 2�2/. Since R is an
.�; �/-decaying resonant set and by assumption I satisfies Condition (1.6), we have�

1 �
]K.nC 1jI /

K2

�
jI j �

ˇ̌̌̌ [
Ii\�.K;n;�

2/¤;

Ii

ˇ̌̌̌
C
jI j

K2

� jI \�.K; n; 2�2/j C
jI j

K2
� .� C �2/ � jI j
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and hence ]K.n C 1jI / � .1 � � � �2/K2. According to this last estimate,
Equation (3.4) follows directly from Condition (3.3) with a simple computation,
recalling that fs.jI j/ D jI js and observing thatX

Ii2K.nC1jI/

fs
�
jIi j

�
� .1 � � � �2/K2

�
jI j

K2

�s
D .1 � � � �2/ � �2.s�1/jI js:

Finally, fix s satisfying Condition (3.3) and observe that such condition is
equivalent to .1 � � � �2/K2.1�s/ > 1. Therefore there exists N � 2 such that

.1 � � � �2/N�1K2.N�1/.1�s/ >
1

jI0js
:

We proved yet that the family K.N / contains at least .1 � � � �2/N�1K2.N�1/
intervals Ii � I0, each of size jIi j D jI0jK�2.N�1/ D K�2N , henceX

Ii2K.N/

jIi j � ıjI0j where ı WD .1 � � � �2/N�1:

According to our choice of N , for any Ii 2K.N / we have

fs
�
jIi j

�
jIi j

D

�
jI0j

K2.N�1/

�s�1
�

1

.1 � � � �2/N�1jI0j
D
�.I0/

ıjI0j
:

Let � be the mass distribution defined by Equation (3.2). Equation (2.6) and
Lemma 2.7 imply�.Ii / < fs.jIi j/, that is Equation (2.5) is satisfied by any interval Ii
in K.N /. We prove by induction that the same is true for any n � N , and this will
complete the proof of the proposition. Consider any n � N and any interval I in the
family K.n/, and assume that �.I / < fs.jI j/. For any Ii 2K.nC 1; I / we have

�
�
jIi j

�
D

fs
�
jIi j

�P
Ij2K.nC1;I/ fs

�
jIj j

���jI j�
�

fs
�
jIi j

�P
Ij2K.nC1;I/ fs

�
jIj j

�fs�jI j� � fs�jI j�;
where the equality corresponds to the definition of �, the first inequality corresponds
to the inductive assumption and the last inequality follows from Condition (3.4).

3.1.2. End of the proof. Herewe finish the proof of the lower bound in Theorem 1.8.
Consider s satisfying Condition (3.3). According to Proposition 3.1, Equation (2.5)
is satisfied with � D 1 for any n � N and any interval I 2 K.n/, where N is the
integer in the last part of the Proposition. We will deduce here that Equation (2.5) is
satisfied for any interval J with length jJ j � K�2N with

� WD
1

2K2s
:
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Consider any such interval J with J \K ¤ ;, that is J \K.n/ ¤ ; for any n � N .
Let m � N be the unique integer such that K�2.mC1/ < jJ j � K�2m. Since
jJ j � K�2m, then there are at most two intervals I1 and I2 in the family K.m/ such
that J \ Ii ¤ ; for i D 1; 2. We have �.I / � �.I1/C �.I2/, because � does not
charge sets disjoint to K.m/. Therefore

�.J / � �.I1/C �.I2/ � fs
�
jI1j

�
C fs

�
jI2j

�
D

2K2s

K2s.mC1/
� 2K2sfs

�
jJ j
�
D
fs
�
jJ j
�

�
;

where the second inequality follows from the last part of Proposition 3.1. According to
Lemma2.5 the last inequality impliesH s.K/ � � for any s satisfyingCondition (3.3),
therefore

dim.K/ � 1 �
j log.1 � � � �2/j

2j log.�/j
:

The lower bound in Theorem 1.8 follows recalling that K � Bad.R; �3=2/ by
replacing � by �3=2 in the last estimate.

3.2. Proof of upper bound. Fix constants �; U; � with 0 < � < 1, 0 < � < 1 and
U > 1 and let .R; l/ be a resonant set satisfying .�; U; �/-Dirichlet property. Set

K WD
4U

�2
:

Up to choosing a slightly bigger U > 0, assume that K 2 N. Recall from
Definition 1.5 that .�; U; �/-Dirichlet property for .R; l/ means that there exists
some L0 > 0 such that for any L � L0 and any interval I � Œ��=2; �=2Œ with
jI j � 2U=L2 Equation (1.5) is satisfied, that is we haveˇ̌̌̌

I \
[

l.�/�L

B

�
�;

�2

2l.�/2

�ˇ̌̌̌
� � jI j:

3.2.1. A sequence of coverings. In order to prove the upper bound in Theorem 1.8,
we fix some positive integer N and define a sequence of coverings .C.n//n�N for
Bad.R; �/ satisfying the properties below.

(1) For any n � N we have
Bad.R; �/ �

[
I2C.n/

I:

(2) Any interval I in C.n/ has length jI j D � �K�n.

(3) The covering C.n/ contains at most .1 � �/n�NKn intervals.
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The upper bound follows from the construction of such sequence of coverings,
indeed we have

H s
�
Bad.R; �/

�
D lim
ı!0

H s
ı

�
Bad.�/

�
� lim inf

n!1
]C.n/ �

� �
Kn

�s
;

where ]C.n/ denotes the number of intervals in the covering C.n/. According to
property (3) above we have

H s
�
Bad.R; �/

�
� lim inf

n!1
.1��/n�NKn�

� �
Kn

�s
D �s lim inf

n!1

�
.1��/1�N=n�K1�s

�n
:

ThereforeH s.Bad.R; �// < C1 whenever

.1 � �/ �K1�s < 1, s > 1C
log.1 � �/
log.K/

D 1 �
j log.1 � �/j
log.4U=�2/

:

3.2.2. End of the proof. Herewe give the definition of the coveringsC.n/ satisfying
the properties (1), (2) and (3) as above. For any n 2 N letLn > 0 be the real number
satisfying the relation

�

Kn
D

�2

2L2n
:

Consider the parameter L0 in the definition of Dirichlet property, then let N be the
positive integer such that Ln � L0 for any n � N . Observe that with this choice
of Ln, and recalling that K D 4U=�2, we have

�

Kn�1
D
2U

L2n
:

For n D N subdivide the interval Œ��=2; �=2Œ into KN intervals of length
� �K�N and define C.N / as the family of all these intervals. Such cover obviously
satisfies the properties .1/, .2/ and .3/ above. Consider n > N and assume that the
families C.i/ are defined for i D N; : : : ; n � 1. Fix any interval I in C.n � 1/ of
length jI j D �=Kn�1. Subdivide I into K intervals I1; : : : ; IK mutually disjoint in
their interior and all of equal length jIi j D jI j=K for any i . Define K.njI / as the
family of those intervals Ii which are disjoint to all intervals B.�; �2=2l.�/2/ with
l.�/ � Ln, that is

K.njI / WD

�
Ii ; Ii \

[
l.�/�Ln

B

�
�;
1

2

�2

l.�/2

�
D ;

�
:

Then set
C.n/ WD

[
I2C.n�1/

K.njI /:
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Proposition 3.2. For any interval I in the cover C.n � 1/ the family K.njI / has
cardinality

]K.njI / < .1 � �/K:

Moreover,
Bad.R; �/ \ I �

[
Ii2K.njI/

Ii :

Proof. Consider any � 2 R with l.�/ � Ln. The second claim follows observing
that for every interval Ii in K.njI / we have

jIi j D
�

Kn
�

�2

2l.�/2
:

Hence, every Ii intersecting some interval B.�; �2=2l.�/2/ with � 2 R and
l.�/ < Ln is contained in B.�; �2=l.�/2/. Therefore K.njI / is a covering of the set

B.I; �/ WD I n
[

l.�/�Ln

B

�
�;

�2

l.�/2

�
and it is evident that I \Bad.R; �/ � B.I; �/. Moreover, I satisfies the assumption
in the definition of Dirichlet Property for L D Ln, indeed we have

jI j D
�

Kn�1
D
2U

L2n
:

Therefore Dirichlet property for .R; l/ implies�
1 �

]K.njI /

K

�
� jI j D jI j �

X
Ij2K.njI/

jIj j �

ˇ̌̌̌
I \

[
l.�/�Ln

B

�
�;

�2

2l.�/2

�ˇ̌̌̌
� � � jI j;

showing that ]K.njI / � .1 � �/K and finishing the proof.

Property (1) holds for C.n/ because it holds for C.n�1/ by inductive assumption
and moreover according to the second part of Proposition 3.2 we have

Bad.R; �/ �
[

I2Cn�1

I \ Bad.R; �/ �
[

I2Cn�1

[
Ii2K.njI/

Ii D
[

I2C.n/

I:

Property (2) holds for C.n/ because it holds for C.n � 1/ by inductive assumption
and moreover for any I 2 C.n � 1/ and any Ii 2 K.njI / we have jIi j D jI j=K.
Property (3) holds for C.n/ because it holds for C.n � 1/ by inductive assumption
and moreover, according to the first part of Proposition 3.2, we have

]C.n/ D
X

I2C.n�1/

]K.njI / � ]C.n � 1/ � .1 � �/K

� .1 � �/n�1�NKn�1 � .1 � �/K D .1 � �/n�NKn:

The upper bound in Theorem 1.8 is proved.
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4. Planar resonant sets of a translation surface: proof of Theorem 1.9

Fix a translation surface X in some stratum H and let † be the set of its conical
singularities p1; : : : ; pr . Let m be the sum of the orders at all conical singularities,
that is

m WD 2g � 2C ]
�
†
�
:

In this section we consider the resonant sets Rsc and Rcyl defined in § 1.5 and we
prove Theorem 1.9. Statements (1) and (2) in the Theorem concern the set Rsc.
Statement (1) corresponds to Propositions 4.8 and 4.9, Statement (2) corresponds to
Proposition 4.2. Statements (3) and (4) in the Theorem concern the set Rcyl and they
correspond respectively to Proposition 4.4 and to Proposition 4.5.

4.1. Upper bound for systole and shortest cylinder. Most of the constants appear-
ing in the metric properties in Theorem 1.9 are expressed in terms of the positive
integerm, which depends only on the stratum H of the translation surface X . It will
be useful to introduce the following constants

S0 WD

p
2p

m
p
3

and T0 WD 2
24m :

For us a flat triangulation of a translation surfaceX is a triangulation ofX whose
vertices are the conical points in †, whose edges are saddle connections and whose
triangles do not contain other points of †. The number v, e and t respectively of
vertices, edges and triangles in such triangulation are topological invariants, and are
given by v D ].†/, e D 3m and t D 2m (see [21]). In [6] it is proved that for any
stratum H the surface X0 for which Syssc.X0/ is maximal admits a flat triangulation
whose triangles are all equilateral triangles with side’s length Syssc.X0/. It follows
that for any X in H we have

Syssc.X/ � Syssc.X0/ D S0:

Moreover, in Theorem 1.3 in [35] it is proved that any surface in H has closed
geodesic � with length j� j � T0 and whose cylinder C� satisfies Area.C� / > 1=m.
Therefore for any X in H we have

Syscyl.X/ � T0:

Finally, the constant S0 has a second geometrical interpretation, related to
Theorem 6.3 in [32]. Indeed 3m is the maximal number of saddle connections

1; : : : ; 
3m on a surfaceX which are mutually disjoint in their interior, because such
a set of saddle connections necessarily gives a flat triangulation of X . Therefore,
S0 is also the smallest bound such that any saddle connection 
1; : : : ; 
3m in a flat
triangulation of X has length j
i j � S0 for any i D 1; : : : ; 3m. Equivalently, on a



258 L. Marchese, R. Treviño and S. Weil CMH

translation surfaceX there are at most 3m�1 saddle connections which are mutually
disjoint in their interior and all strictly shorter than S0. This motivates the form of the
constant ˇ appearing in Theorem 6.3 in [32], which is the same as in Proposition 4.8
and is given by

ˇ WD
1

3m � 1
:

On the other hand, whenX is a Veech surface, we can find a bound r0 > 0 depending
only on the orbit SL.2;R/ � X such that we never have two non-parallel saddle
connections shorter than r0 (see Lemma A.1). This explains heuristically why for
Veech surfaces we have the better version of decaying, namely Proposition 4.9,
where ˇ D 1.

4.2. Dirichlet theorem. According to classical Dirichlet’s theorem, for any real
number ˛ and for any Q > 1 there exists a rational number p=q with q � Q such
that ˇ̌̌

˛ �
p

q

ˇ̌̌
�

1

qQ
:

We develop a version of Dirichlet’s theorem for the resonant sets Rsc and Rcyl. In
particular, for Rcyl we use a nontrivial result due to Vorobets, namely Theorem 1.3
in [35].
Proposition 4.1. Let X be any translation surface and � be any direction on X .

(1) For any L >
p
2S20

Syssc.X/
there exists �
 2 Rsc with l.�
 / � L such that

j� � �
 j �

p
2S20

l
�
�

�
L
D

p
8

m
p
3
�

1

l
�
�

�
L
:

(2) For any L >
p
2T 20

Syscyl.X/
there exists �� 2 Rcyl with l.�� / � L such that

j� � �� j �

p
2T 20

l
�
��
�
L
:

Proof. In order to prove the first statement, set

et WD
L

S0
�

p
2S0

Syssc.X/
�
p
2:

There is a saddle connection 
 on the surface X whose length on the surface gtr�X
satisfies

jHol.
; gtr�X/j � S0:
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Let �
 be the direction of such 
 on the surface X and let j
 j be its length on X . We
have

l.�
 / � j
 j D jHol.
; r�X/j � et jHol.
; gtr�X/j � etS0 D L:

Set .H; V / WD Hol.
; gtr�X/. We have obviously jH j � jHol.
; gtr�X/j � S0 and
thus, since L >

p
2S20=Syssc.X/ by assumption, we get

H 2e�2t �
S20
e2t
�
S40
L2
�

Syssc.X/2

2
:

On the other hand

H 2e�2t C V 2e2t D jHol.
; r�X/j2 D jHol.
; X/j2 � Syssc.X/2:

The last two estimates imply V 2e2t � H 2e�2t and therefore jV jet � j
 j=
p
2 �

l.�
 /=
p
2, so that we get finally

ˇ̌
� � �


ˇ̌
<
ˇ̌
tan.� � �
 /

ˇ̌
D

H

Ve2t
<

p
2S0

l.�
 /et
D

p
2S20

l.�
 /L
:

The second statement follows with the same argument. Replace S0 by T0 and set
et WD L=T0. Recall that, according to Vorobets Theorem 1.3 in [35], any translation
surface in the same stratum as X has a closed geodesic � with length j� j � T0 and a
corresponding cylinder C� with Area.C� / > 1=m. Thus let � be such geodesic for
the surface gtr� �X and repeat the same argument as above replacing 
 by � .

4.3. Dirichlet property. Statement (2) in Theorem 1.9 follows from Proposition 4.2
below.

Proposition 4.2. For any � > 0 the resonant set .Rsc; l/ satisfies .�; U; �/-Dirichlet
property with

U WD
12

m2�2
and � WD

m�2
p
48
;

that is for any L �
p
2S20

Syssc.X/
and any interval I with jI j �

2U

L2
we have

ˇ̌̌̌
I \

[
l.�/�L

B

�
�;

�2

2l.�/2

�ˇ̌̌̌
� � jI j:

Proof. FixL as in the statement, and for any �
 2 Rsc define the rescaling factor r.�
 /
by

r.�
 / WD
�2mL

l.�
 /
p
12
:
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Observe that r.�
 / � m�2=
p
12 for any �
 with l.�
 / � L, and moreover we can

have r.�
 / > 1 when l.�
 / is much smaller than L. Let I be an interval as in the
statement. According to Proposition 4.1 we have

I �
[

l.�
 /�L

B

�
�
 ;

p
3

ml.�
 /L

�
:

Let Rsc.L; I / be the set of directions �
 2 Rsc with �
 2 I and l.�
 / � L, then
define

�.I; L/ WD

ˇ̌̌̌
I \

[
�
2Rsc.L;I/

B

�
�
 ;

p
3

ml.�
 /L

�ˇ̌̌̌
:

If �.I; L/ � jI j=2 then we haveˇ̌̌̌
I \

[
l.�
 /�L

B

�
�
 ;

�2

2l.�
 /2

�ˇ̌̌̌
�

ˇ̌̌̌
I \

[
�
2Rsc.L;I/

B

�
�
 ;

�2

2l.�
 /2

�ˇ̌̌̌
D

ˇ̌̌̌
I \

[
�
2Rsc.L;I/

B

�
�
 ;

r.�
 /

ml.�
 /L

�ˇ̌̌̌
�
m�2
p
12
�.I; L/ �

m�2
p
48
jI j:

Otherwise, if �.I; L/ < jI j=2, there must be some �
 2 Rsc with l.�
 / � L and
�
 62 I such that ˇ̌̌̌

I \ B

�
�
 ;

p
3

ml.�
 /L

�ˇ̌̌̌
>
jI j

4
:

We finish the proof showing that such �
 must have rescaling factor r.�
 / > 1.
Observe first that since �
 62 I , we must have

p
3 � .ml.�
 /L/

�1 > jI j=4. Moreover
we have jI j � 2U=L2 by assumption, thus it follows

r.�
 / D

p
3

ml.�
 /
�
�2m2L
p
12
p
3
>
U

2L
�
�2m2L

6
D 1:

4.4. Isotropic quadratic growth. Statement (3) in Theorem 1.9 follows from Prop-
osition 4.4 below.

Lemma 4.3. Let � be a closed geodesics in X and let C� be the corresponding
cylinder. For any other closed geodesic � 0 intersecting C� we haveˇ̌

�� � �� 0
ˇ̌
>

Area.C� /
j� j � j� 0j

:
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Proof. The width of C� is Area.C� /=j� j. Since � and � 0 are not parallel, than � 0 is
not contained in C� , therefore

j� 0j � j sin
�
�� � �� 0

�
j >

Area.C� /
j� j

and the lemma follows since
ˇ̌
�� � �� 0

ˇ̌
> j sin

�
�� � �� 0

�
j.

Proposition 4.4. For any subinterval I � Œ��=2; �=2Œ and any L > 0 such that
L2jI j > 1 we have

]f� 2 I \Rcyl.X;L/g < m.mC 1/jI jL2:

Proof. Consider �1 D �.�1/ and �1 D �.�1/ in Rcyl.X;L/ be any two directions
of closed geodesics �1 and �2, and let C1 and C2 be the corresponding cylinders, so
that in particular Area.Ci / > 1=m for i D 1; 2. Assume that �1 and �2 belong to the
same interval J of length jJ j � 1=.mL2/. According to Lemma 4.3 the cylinders
C1 and C2 are disjoint, indeed the directions �1 and �2 satisfy

j�1 � �2j < jJ j <
1

mL2
<

1

ml.�1/l.�2/
:

Since Area.X/ D 1 then X contains at most m disjoint cylinders with area greater
that 1=m, therefore any interval J with length jJ j � 1=.mL2/ contains at most m
directions �i in Rcyl.X;L/. The Proposition follows covering I with

N WD
�
mL2jI j

�
C 1 < mL2jI j C 1 < .mC 1/L2jI j

intervals J1; : : : ; JN with length jJj j � 1=.mL2/ for any j D 1; : : : ; N .

4.5. Ubiquity. Statement (4) in Theorem 1.9 follows from Proposition 4.5 below.
Fix a translation surface X and fix a positive real number K > 1 such that

K �

p
2T 20

Syscyl.X/
D

p
2

Syscyl.X/
� 22

4mC1

:

According to such assumption, for any positive integer n � 1we can apply the second
statement in Proposition 4.1 for those �� 2 Rcyl such that l.�� / � Kn. Observe also
that, since Syscyl.X/ � T0 for any X , we have

K �
p
2T0 D

p
2 � 22

4m

> m
p
48:

This second property will be used in the end of the proof of Proposition 4.5 below.
The proposition is due to J. Chaika, and we follow the argument from [9].
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Proposition 4.5 (Chaika). Let X be a translation surface and consider

K �

p
2T 20

Syscyl.X/
:

For any positive integer n � 1 and any interval I � Œ��=2; �=2Œ such that

jI j �
1

2mSyscyl.X/Kn�1
(4.1)

we have ˇ̌̌̌
I \

[
l.�� /�Kn

B

�
�� ;

p
3K

K2n

�ˇ̌̌̌
�
jI j

2
: (4.2)

The dependence on K of the radius of the balls in Equation (4.2) can be reduced
to the simplified expression

p
3 �K2n�1. We keep the redundantK in the numerator

in order make clear the relation with Point (4) in Theorem 1.9. The assumption
in Equation (4.1) is not explicitly stated in Chaika’s statement of Ubiquity, namely
Proposition 2 in [9]. It seems to us that the same assumption is implicitly used in the
proof of Corollary 3 (at line 3) in [9]. Anyhow a lower bound on the length jI j of the
interval in Proposition 4.5 is obviously necessary, indeed the Proposition fails for any
interval I which is contained in the complement of

S
l.�� /�Kn

B.�� ;
p
3K=K2n/.

4.5.1. Preliminary lemmas.
Lemma 4.6. Fix r > 0 and 0 < � < 1. Let I be any interval in Œ��=2; �=2Œ with
jI j > r . For any � 2 Œ��=2; �=2Œ we have

jI \ B.�; � � r/j � 2� � jI \ B.�; r/j:

Proof. If � 2 I then we have jI \ B.�; � � r/j � 2� � r and jI \ B.�; r/j � r , thus
the statement follows. If � 62 I then r > jI \ B.�; r/j thus, since 0 < � < 1, we
have

�
�
r � jI \ B.�; r/j

�
< r � jI \ B.�; r/j;

which is equivalent to

jI \ B.�; � � r/j D � � r �
�
r � jI \ B.�; r/j

�
< � � jI \ B.�; r/j:

Lemma 4.7. Consider � with 0 < � <
1

2m
, a positive integer n and a subinterval

I � Œ��=2; �=2Œ such that

jI j �
1

2mSyscyl.X/Kn
:

We have ˇ̌̌̌
I \

[
l.�� /�Kn

B

�
�;

�

l.�� /Kn

�ˇ̌̌̌
< 2m2� � jI j:
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Proof. Fix any direction �0 2 I . Fix n. Consider �1 and �2 in Rcyl be any two
directions of closed geodesics �1 and �2 with l.�i / � Kn for i D 1; 2, and let
C1 and C2 be the corresponding cylinders, so that in particular Area.Ci / > 1=m

for i D 1; 2. Assume that we have

j�0 � �i j <
1

2mKnl.�i /
for i D 1; 2:

According to Lemma 4.3 the cylinders C1 and C2 are disjoint, indeed the directions
�1 and �2 satisfy

j�1 � �2j <
1

mKnminfl.�1/; l.�2/g
:

There exist at most m disjoint cylinders with area greater that 1=m, therefore there
exist at most m directions �i of closed geodesics �i such that

j�0 � �i j <
1

2mKnl.�i /
for i D 1; : : : ; m:

We get X
l.�� /�Kn

ˇ̌̌̌
I \ B

�
�;

1

2ml.�� /Kn

�ˇ̌̌̌
� m �

ˇ̌
I
ˇ̌
:

According to our assumption we have 2m� < 1 and jI j > 1=.2ml.�� /K
n/ for

any �� 2 Rcyl, thus the statement follows from the previous estimate and from
Lemma 4.6, observing thatˇ̌̌̌

I \
[

l.�� /�Kn

B

�
�;

�

l
�
��
�
Kn

�ˇ̌̌̌
<

X
l.�� /�Kn

ˇ̌̌̌
I \ B

�
�;

�

l.�� /Kn

�ˇ̌̌̌
� 2m� �

X
l.�� /�Kn

ˇ̌̌̌
I \ B

�
�;

1

2ml.�� /Kn

�ˇ̌̌̌
� 2m2� � jI j:

4.5.2. Proof of Proposition 4.5. Fix any n � 1. Recall that according to the second
statement in Proposition 4.1 we have

I �
[

l.�� /�Kn

B

�
�� ;

p
3

ml.�� /Kn

�
:

Moreover, recalling thatK � m
p
48 and applyingLemma4.7with � WD

p
3

mK
<

1

2m
,

we get ˇ̌̌̌
I \

[
l.�� /�Kn�1

B

�
�� ;

p
3

mKnl.�� /

�ˇ̌̌̌
< 2m2�jI j D

m
p
12

K
jI j:



264 L. Marchese, R. Treviño and S. Weil CMH

Therefore, recalling that Rcyl.K; n/ is the set of those �� 2 Rcyl such that Kn�1 <
l.�� / � K

n, we haveˇ̌̌̌
I \

[
l.�� /�Kn

B

�
�� ;

p
3K

K2n

�ˇ̌̌̌
�

ˇ̌̌̌
I \

[
��2Rcyl.K;n/

B

�
�� ;

p
3K

K2n

�ˇ̌̌̌
�

ˇ̌̌̌
I \

[
��2Rcyl.K;n/

B

�
�� ;

p
3

mKnl.�� /

�ˇ̌̌̌
� jI j �

ˇ̌̌̌
I \

[
l.�� /�Kn�1

B

�
�� ;

p
3

mKnl.�� /

�ˇ̌̌̌
� jI j �

m
p
12

K
jI j �

jI j

2
:

Proposition 4.5 is proved.

4.6. Decaying. Statement (1) in Theorem 1.9 corresponds to Proposition 4.8 and
Proposition 4.9 below, whose proof is the subject of this section. Let X be a
translation surface with Area.X/ D 1. Recall that we set

ˇ WD
1

3m � 1
:

Proposition 4.8. There are positive constants M D M.m/ and r0 D r0.m/

depending only on m such that for any � with 0 < � < minfr0;Syssc.X/g the
resonant set Rsc is .�; �/-decaying with

� DM � �ˇ :

In other words, setting K WD 1=�, the following holds. For any n � 1 and any
interval I satisfying Condition (1.6), that is

jI j D
1

K2n
and I \

n�1[
jD0

[
�
2Rsc.K;j /

B

�
�
 ;

�2

l.�
 / �Kj

�
D ;

we have ˇ̌̌̌
I \

[
�
2Rsc.K;n/

B

�
�
 ;

2�2

l.�
 / �Kn

�ˇ̌̌̌
< M � �ˇ � jI j:

Moreover there exist at least .1 �M�ˇ /K2 intervals Ii � Œ��=2; �=2Œ which are
mutually disjoint in their interior and satisfy Condition (1.6) for n D 1.
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4.6.1. Decaying for a Veech surface.
Proposition 4.9. Let X be a Veech surface. Then the result in Proposition 4.8
holds with ˇ D 1 and with r0 that can be chosen uniformly on the closed orbit
M WD SL.2;R/ �X of X .

The proof of Proposition 4.9 follows exactly the same lines as Proposition 4.8.
The only difference is that the Minsky–Weiss estimate in Theorem 4.10 below will
be replaced by the stronger one in Corollary 4.11, which says that whenX is a Veech
surface the same estimate holds as in Theorem 4.10 with ˇ D 1. For completeness,
in § A we give a proof of Corollary 4.11, adapting the argument of [32]. All other
details of the proof of Proposition 4.9 will be omitted.

4.6.2. Non-divergence of horocycle. Wereport the statement ofTheorem 6.3 in [32],
which is the main tool in the proof of Decaying property. Fix a stratum H and let
C > 1, ˇ > 0 and �0 > 0 be the constants explicated above.
Theorem 4.10 (Minsky–Weiss). For any translation surface X 2 H the following
holds. Assume J is an interval and � is a real number with 0 < � < S0 such that for
any saddle connection 
 we have

sup
˛2J

ˇ̌
Hol.
; u�˛ �X/

ˇ̌
� �:

Then for any �0 with 0 < �0 � � we haveˇ̌˚
˛ 2 J ; Syssc.u�˛ �X/ � �0

	ˇ̌
� C �

�
�0

�

�ˇ
� jJ j:

Corollary 4.11. Let X be a Veech surface and let M WD SL.2;R/ � X be its closed
orbit. There exist constants C > 0 depending only on the stratum of X and r0 > 0

depending only on M such that the following holds. Assume that J is an interval and
0 < � < r0 is a positive real number such that for any saddle connection 
 we have

sup
˛2J

ˇ̌
Hol.
; u�˛ �X/

ˇ̌
� �:

Then for any �0 with 0 < �0 � � we haveˇ̌˚
˛ 2 J ; Syssc.u�˛ �X/ � �0

	ˇ̌
� C �

�0

�
� jJ j:

4.6.3. Notation and basic facts for the horocycle. For any saddle connection 
 on
the translation surfaceX we write Hol.
; X/ D .Re.
; X/; Im.
; X//. When there is
no ambiguity on the surfaceX we simply write .Re.
/; Im.
//. Moreover we denote
the slope of 
 by

˛
 WD
Re.
/
Im.
/

:



266 L. Marchese, R. Treviño and S. Weil CMH

The action of u˛ does not change the vertical part of the planar development of any
geodesic segment, that is Im.
; u˛ �X/ D Im.
; X/ for any geodesic segment 
 onX .
According to the previous remark, we write

Hol.
; u�˛ �X/ D
�
Re.
; ˛/; Im.
/

�
:

Recall that for any ˛ and t we have gtu˛ D ue2t˛gt . Recall also that � with
0 < � < Syssc.X/ is fixed, and that we set K D 1=�. In this paragraph, in order to
simplify the notation, for any real number � we set

G� WD g� logK D

�
K� 0

0 K��

�
:

Lemma 4.12. Let 
 be a saddle connection for the surface X and let ˛ 2 R. Then
for any � > 0 we have

ˇ̌
Hol.
;G� � u�˛ �X/

ˇ̌
D

s�
K� � jIm.
/j �

ˇ̌
˛ � ˛


ˇ̌�2
C

�
jIm.
/j
K�

�2
:

Proof. Let .x; y/ WD Hol.
; u�˛ �X/ and observe that

jyj D jIm.
; u�˛ �X/j D jIm.
/j
jxj D jRe.
; u�˛ �X/j D jyj � j˛ � ˛
 j:

The lemma follows fromˇ̌
Hol.
;G� � u�˛ �X/

ˇ̌2
D

ˇ̌̌̌ �
K� 0

0 K��

�
�

�
x

y

� ˇ̌̌̌2
D K2�jxj2 CK�2�jyj2:

In order to avoid ambiguity, in this section we denote by J � R intervals in the
horocycle variable u˛ , whereas we denote by I intervals in the circle variable, which
is parametrized by r� . The next lemma gives an estimate on the distortion in the
change of variable. The proof is immediate and thus omitted.
Lemma 4.13. For any ˛1; ˛2 in Œ�1; 1� we have

j˛1 � ˛2j

2
� j arctan.˛1/ � arctan.˛2/j � j˛1 � ˛2j:

4.6.4. Conditional probability along horocycle segments. Recall that we fix a
translation surface X and � > 0 such that � < Syssc.X/, and that we set K D 1=�.
Lemma 4.14. There exist at least .1 �M�ˇ / �K2 intervals Ji � Œ�1; 1� such that
any two of them are disjoint in their interior and any of them satisfies

jJi j D
2

K2
; Ji \

[
jIm.
/j�1

B

�
˛
 ;

2�2

jIm.
/j

�
D ;;

whereM > 0 is a constant depending only on the stratum of X .



Vol. 93 (2018) Translation surfaces and planar resonant sets 267

Proof. The first step in the proof is to show that for any saddle connection 
 for the
surface X we have

sup
�1�˛�1

ˇ̌
Hol.
;G1 � u�˛ �X/

ˇ̌
�

1
p
2
:

For any saddle connection 
 we have either jIm.
/j � Syssc.X/=
p
2 or jRe.
/j �

Syssc.X/=
p
2. Moreover, according to Lemma 4.12, for any ˛ 2 Œ�1; 1� we haveˇ̌

Hol.
;G1 � u�˛ �X/
ˇ̌
� K � jIm.
/j �

ˇ̌
˛ � ˛


ˇ̌
:

If jIm.
/j � Syssc.X/=
p
2, choose ˛ 2 Œ�1; 1� with j˛ � ˛
 j � 1. For such ˛ we

have ˇ̌
Hol.
;G1 � u�˛ �X/

ˇ̌
� KjIm.
/j �

KSyssc.X/
p
2

�
1
p
2
:

Otherwise we have jRe.
/j D jIm.
/j � j˛
 j � Syssc.X/=
p
2, thus for ˛ D 0 one

gets ˇ̌
Hol.
;G1 �X/

ˇ̌
� KjRe.
/j �

KSyssc.X/
p
2

�
1
p
2
:

Once the first step is proved, observe that for any saddle connection 
 with
jIm.
/j � 1 and any ˛ 2 Œ�1; 1� such that

ˇ̌
˛ � ˛


ˇ̌
< 2�2=jIm.
/j, according to

Lemma 4.12 we have

Syssc.G1 � u�˛ �X/ �
ˇ̌
Hol.
;G1 � u�˛ �X/

ˇ̌
�
p
8�:

According to Minsky–Weiss estimate in Theorem 4.10 we haveˇ̌̌̌
Œ�1; 1� \

[
jIm.
/j�1

B

�
˛
 ;

2�2

jIm.
/j

�ˇ̌̌̌
< C �

�p
8�

S0

�ˇ
�
ˇ̌
Œ�1; 1�

ˇ̌
:

In the union above, any interval B.˛
 ; 2�2=jIm.
/j/ has length at least 4�2. Divide
Œ�1; 1� into ŒK2� intervals Ji of equal size jJi j D 2�2 and a remaining set of measure
less than 2�2. Any Ji has length less than half the length of any interval in the union,
then the union of those Ji which do not satisfy the required property has measure at
most 2.

p
8�=�0/

ˇ �
ˇ̌
Œ�1; 1�

ˇ̌
. The good ones are therefore at least�

1 �

�p
8�

S0

�ˇ
� �2

�
�

ˇ̌
Œ�1; 1�

ˇ̌
2�2

�

�
1 �

�p
8�

S0

�ˇ
� �2

�
�K2:

For convenience of notation, for any j � 1 let �.X; j / be the set of saddle
connections 
 for the surface X such that Kj�1=

p
2 < jIm.
/j � Kj =

p
2.

Moreover let �.X; 0/ be the set of saddle connections 
 with jIm.
/j � 1=
p
2.

Set
S 00 WD min

�
S0;

1
p
8

�
:
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Lemma 4.15. Let J be an interval such that

jJ j D
1

K2n
; J \

n�1[
jD0

[

2�.X;j /

B

�
˛
 ;

�2
p
2 � jIm.
/j �Kj

�
D ;:

Then we haveˇ̌̌̌
J \

[
jIm.
/j�Kn

B

�
˛
 ;

2�2

jIm.
/j �Kn

�ˇ̌̌̌
< C �

�p
5�

S 00

�ˇ
�
ˇ̌
J
ˇ̌
:

Proof. As in the previous lemma, the first step in the proof is to show that for any
saddle connection 
 we have

sup
˛2J

ˇ̌
Hol.
;GnC1 � u�˛ �X/

ˇ̌
� min

�
S0;

1
p
8

�
:

Let 
 be any saddle connection for X . According to Lemma 4.12, for any ˛ 2 J we
have ˇ̌

Hol.
;GnC1 � u�˛ �X/
ˇ̌
� KnC1 � jIm.
/j �

ˇ̌
˛ � ˛


ˇ̌
:

Suppose that 
 2 �.X; j / for some j with 0 � j � n � 1. For any ˛ 2 J we have

j˛ � ˛
 j >
1

p
2 � jIm.
/j �KjC2

and thus ˇ̌
Hol.
;GnC1 � u�˛ �X/

ˇ̌
�

KnC1
p
2 �KjC2

�
1
p
2
� S0:

Otherwise, if jIm.
/j > Kn�1=
p
2, choose ˛ 2 J such that j˛ � ˛
 j � jJ j=2. For

such ˛ we haveˇ̌
Hol.
;GnC1 � u�˛ �X/

ˇ̌
� KnC1 � jIm.
/j �

jJ j

2
> jIm.
/j �

KnC1

2K2n
�

1
p
8
:

Once the first step is completed, observe that for any saddle connection 
 such
that jIm.
/j � Kn and for any real number ˛ such that

j˛ � ˛
 j �
2�2

KnjIm.
/j
;

according to Lemma 4.12 we have

Syssc
�
GnC1 � u�˛ �X

�
�
ˇ̌
Hol.
;GnC1 � u�˛ �X/

ˇ̌
D

s�
KnC1 � jIm.
/j �

ˇ̌
˛ � ˛


ˇ̌�2
C

�
jIm.
/j
KnC1

�2
�
p
5�:

Then the lemma follows according to Theorem 4.10.
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4.6.5. Proof of Proposition 4.8. Let Ji � Œ�1; 1� be the intervals given by
Lemma 4.14, which are at least .1 � M�ˇ / � K2, and for any such Ji let
Ii � Œ��=4; �=4Œ be its image under the function ˛ 7! arctan.˛/. Observe that
if � is a direction of a saddle connection 
 with jIm.
/j � 1 then we have l.�/ � 1.
According to the properties of the intervals Ji and to Lemma 4.13, any Ii satisfies
Condition (1.6) for n D 1.

Consider any interval I satisfying the same Condition for some n � 1, that is

jI j D
1

K2n
and I \

n�1[
jD0

[
�
2Rsc.K;j /

B

�
�
 ;

�2

l.�
 / �Kj

�
D ;

Let J be the image of I under the function � 7! tan.�/ and observe that jJ j � K�2n,
since the function tan.�/ has derivative bigger than 1. Consider any � 2 I and let
˛ WD tan.�/. If there exist some j with 0 � j � n � 1 and some 
 2 �.X; j / such
that

j˛ � ˛
 j �
�2

p
2jIm.
/jKj

then the direction �
 D arctan.˛
 / of 
 satisfies l.�
 / � j
 j �
p
2jIm.
/j � Kj ,

so that �
 2 Rsc.K; i/ for some i � j , and moreover we have

j� � �
 j < j˛ � ˛
 j �
�2

p
2jIm.
/jKj

�
�2

l.�
 /Ki
;

which is absurd by the assumption on I . According to Lemma 4.15 we haveˇ̌̌̌
J \

[
jIm.
/j�Kn

B

�
˛
 ;

2�2

jIm.
/j �Kn

�ˇ̌̌̌
< C �

�p
5�

S 00

�ˇ
�
ˇ̌
J
ˇ̌
:

Observe that the set of directions Rsc.K; j / is contained into the set of all the
directions �
 D arctan.˛
 / of saddle connections with jIm.
/j � Kn. According to
Lemma 4.13 we haveˇ̌̌̌

I \
[

�
2Rsc.K;n/

B

�
�
 ;

�2

l.�
 / �Kn

�ˇ̌̌̌
< 2C �

�p
5�

S 00

�ˇ
�
ˇ̌
I
ˇ̌

Proposition 4.8 is proved.

5. Bounded geodesics in moduli space

5.1. Proof of Theorem 1.1. Fix a translation surface X and let .Rsc; l/ be the
resonant set corresponding to saddle connections of X as in § 1.5. In this section we
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proveTheorem1.1. An intermediate step in the proof is an analogous statement for the
set Bad.Rsc; �/, namely Theorem 5.3 below, which is itself an immediate application
of Theorem 1.9 and Theorem 1.8. The second step in the proof is Lemma 5.1 below,
which is an adaptation of Proposition 1.1 in [19] to the setting of this paper and gives
a relation between the sets Baddyn.X; �/ and Bad.Rsc; �/. Let X be a translation
surface and � be a direction on X . For convenience of notation, let us introduce the
quantities

D.�/ WD inf
�
2Rsc

j� � �
 j � l.�
 /
2 and S.�/ WD inf

t�0
Syssc.gtr�� �X/:

It is clear that for any � we have

S.�/ � Syssc.X/: (5.1)

Moreover Proposition 4.1 implies that for any � we have

D.�/ �

p
8

m
p
3
: (5.2)

Finally, it is also practical to introduce the constant

M.X/ WD

p
8

m
p
3 �
�
Syssc.X/

�2 ;
where we observe thatM.X/ �

p
2 according to the discussion on the constants S0

and m at the beginning of § 4. For any direction � and any saddle connection 
 on
the surface X we write

Hol.
; r�� �X/ D
�
Re.�; 
/; Im.�; 
/

�
;

that is we call Re.�; 
/ and Im.�; 
/ the coordinates of the holonomy vector of 

in the rotated surface, where the direction � coincides with the vertical. We also
introduce the instant t D t .�; 
/ 2 R as the unique real number such that the saddle
connection 
 has unitary slope on the surface gtr�� �X , that is

et.�;
/ � jRe.�; 
/j D e�t.�;
/ � jIm.�; 
/j:

It is clear that the direction �
 of the saddle connection 
 satisfies j� � �
 j < �=4 if
and only if t .�; 
/ > 0.

Lemma 5.1. For any direction � on X we have

1

2
�
D.�/

S2.�/
�M.X/:
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Proof. Since jRe.�; 
/j D j
 j � j sin.� � �
 /j and jIm.�; 
/j D j
 j � j cos.� � �
 /j
for any direction � and saddle connection 
 on the surface X , then we get

jRe.�; 
/j � jIm.�; 
/j
j
 j2 � j� � �
 j

D

ˇ̌̌̌
sin 2.� � �
 /
2.� � �
 /

ˇ̌̌̌
� 1: (5.3)

Moreover 2=� < j.sin x/=xj � 1 for 0 < jxj < �=2, thus for any saddle connection 

whose direction �
 satisfies j� � �
 j < �=4 we have also

jRe.�; 
/j � jIm.�; 
/j
j
 j2 � j� � �
 j

�
2

�
: (5.4)

ConsiderD0 > D.�/ and let 
 be a saddle connection with j
 j2 � j� � �
 j < D0.
If j� � �
 j � �=4 then the definition of the systole and Equation (5.1) imply

D0

S2.�/
�

�
Syssc.X/

�2
� �=4

S2.�/
�
�

4
:

Otherwise, if j� � �
 j < �=4 then t .�; 
/ > 0 and Equation (5.3) implies

S2.�/ � jHol.
; gt.�;
/r�� �X/j2

D 2 � jRe.�; 
/j � jIm.�; 
/j
� 2 � j
 j2 � j� � �
 j < 2 �D

0:

Since the two inequalities above hold for anyD0 > D.�/ then it follows

S2.�/ � max
n
2;
4

�

o
�D.�/ D 2 �D.�/:

On the other hand consider S 0 > S.�/ and let t � 0 be a positive instant and 

be a saddle connection such that jHol.
; gtr�� � X/j < S 0. If j� � �
 j � �=4 then
we have

.S 0/2

D.�/
�
m
p
3

p
8
� .S 0/2 >

m
p
3

p
8
� jHol.
; gtr�� �X/j2

�
m
p
3

p
8
� jHol.
; r�� �X/j2 �

m
p
3

p
8
�
�
Syssc.X/

�2
;

where the first inequality follows from Equation (5.2) and the third holds because
t .�; 
/ � 0 implies jHol.
; gtr�� �X/j � jHol.
; r�� �X/j for any t � 0. Otherwise,
if j� � �
 j < �=4 then t .�; 
/ > 0. Observe that in this case we can assume
t D t .�; 
/, indeed jHol.
; gtr�� �X/j is minimal for such value of t . Thus we get

D.�/ � j
 j2 � j� � �
 j �
�

2
� jRe.�; 
/j � jIm.�; 
/j

D
�

4
� jHol.
; gt.�;
/r�� �X/j2 �

� � .S 0/2

4
;
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where the second inequality follows from Equation (5.4) and the equality holds by
definition of t D t .�; 
/. Since the two inequalities above hold for any S 0 > S.�/

then it follows

D.�/ � max
�
�

4
;

p
8

m
p
3 �
�
Syssc.X/

�2 � � S2.�/ D p
8 � S2.�/

m
p
3 �
�
Syssc.X/

�2 :
The lemma is proved.

Theorem 1.1 follows immediately from Theorem 5.3 in the next subsection and
from Corollary 5.2 below (modulo replacing the constants �0; cu; cl by new ones,
which still depend only on m).
Corollary 5.2. Let X be any translation surface. For any � > 0 we have

Bad
�
Rsc;

p
M.X/ � �

�
� Baddyn.X; �/ � Bad

�
Rsc;

�
p
2

�
:

5.2. Hausdorff dimension of Bad.Rsc; �/ for a translation surfaceX . Consider a
translation surfaceX withArea.X/D1 and totalmultiplicity at conical singularitiesm
and let H be its stratum. If X is a Veech surface, let M WD SL.2;R/ � X be
the its closed orbit under the action of SL.2;R/. Let .Rsc; l/ be the resonant set
corresponding to saddle connections of X as in § 1.5.
Theorem 5.3. There exist constants �0 > 0, 0 < ˇ � 1, cu > 0 and cl > 0 which
depend only on the integer m, such that for any � with 0 < � < minf�0;Syssc.X/g
we have

1 � cl �
�ˇ

j log �j
� dim

�
Bad.Rsc; �/

�
� 1 � cu �

�2

j log �j
:

In general we have ˇ D .3m � 1/�1. Moreover, if X is a Veech surface the same
estimate holds with ˇ D 1 and with some �0 depending only on M.

Proof. Fix any � as in the statement. The statement follows combining Theorem 1.9
and Theorem 1.8. In order to prove the upper bound, observe that � � j log.1 � �/j
for any � � 0 by convexity of the logarithm function. Therefore, since the
resonant set Rsc satisfies .�;K; �/-Decaying with constants U D 12=.m2�2/ and
� D m�2=

p
48, we have

dim
�
Bad.Rsc; �/

�
� 1 �

j log.1 � �/j
j log.�2=.5U //j

� 1 �
m�2=

p
48

j log.m2�4=60/j
� 1 �

m

4
p
48

�2

j log.�/j
:

In order to prove the lower bound, observe that there is some universal �0 > 0 such
that j ln.1 � �/j > �=2 for 0 � � � �0. Since the resonant set .Rsc; l/ also satisfies
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.�; �/-decayingwith � DM�ˇ , for � small enough (in terms of �0 and of the constants
in the explicit form of � ) we have

dim
�
Bad.Rsc; �/

�
� 1 �

j log.1 � � � �4=3/j
4=3j log.�/j

� 1 �
M

2 � 4=3

�ˇ

j log.�/j
:

The proof of the last inequality in case of Veech surfaces, whereˇ D 1, is similar.

6. Unbounded geodesics in moduli space

Fix a translation surface X and a direction � on X . Recall that for any saddle
connection/closed geodesic 
 on the surface X we write

Hol.
; r�� �X/ D
�
Re.�; 
/; Im.�; 
/

�
:

In this section we often consider the positive instant t .�; 
/ 2 R such that

et.�;
/jRe.
; �/j D e�t.�;
/jIm.
; �/j:

The length jHol.
; gtr�� �X/j is minimal for t D t .�; 
/, and the minimal value isˇ̌
Hol.
; gt.�;
/r�� �X/

ˇ̌
D
p
2jRe.�; 
/j � jIm.�; 
/j:

6.1. Khinchin–Jarník theorem for cylinders and saddle connections.
Theorem 6.1. Let X be any translation surface and consider an approximation
function  and a dimension function f such that t 7! tf ı  .t/ is decreasing
monotone for t > 0. Let R denote indifferently Rsc of Rcyl.
(1) If

R C1
0

tf . .t// dt converges as t !C1, then

Hf
�
W.R;  /

�
D 0:

Consequently, for any � 62 W.R;  / and for all saddle connections/closed
geodesic 
 long enough we have

jRe.�; 
/j > j
 j 
�
j
 j
�
:

(2) If
R C1
0

tf . .t// dt diverges as t !C1, then

Hf
�
W.R;  /

�
D Hf

�
Œ��=2; �=2�

�
:

Consequently, for any � 2 W.R;  / there exist infinitely many saddle
connections/closed geodesic 
 such that

jRe.�; 
/j < j
 j 
�
j
 j
�
:
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Proof. Both Rsc and Rcyl satisfy quadratic growth, thus in the first part of the
statement we haveHf .W.R;  // D 0 both for R D Rsc and R D Rcyl, according
to Theorem 1.7. For any � 62 W.R;  / and any saddle connection/closed geodesic 

long enough we have

jRe.
; �/j D j
 j � sin
�
j� � �
 j

�
� 0:5 � j
 j � j� � �
 j

� 0:5 � j
 j �  
�
l.�
 /

�
� 0:5 � j
 j �  

�
j
 j
�
;

where the first inequality holds because j sin.x/j � 0:5 � jxjwhenever jxj � �=2, and
the last one holds because  .�/ is decreasing monotone and l.�
 / � j
 j for any 
 .
The first part of the statement follows replacing the approximation function  .�/
by 2 .�/, which satisfies the same convergence assumption.

In order to prove the second part of the statement, observe that Theorem 1.7
and Theorem 1.9 imply Hf .W.Rcyl;  // D Hf .Œ��=2; �=2Œ/. Then according
to Equation (1.9) we have also Hf .W.Rsc;  // D Hf .Œ��=2; �=2Œ/. Both
for R D Rsc and R D Rcyl, and for any � 2 W.R;  / there exist infinitely many
saddle connections/closed geodesics 
 in direction �
 2 R such that

jRe.
; �/j D j
 j � sin
�
j� � �
 j

�
� j
 j � j� � �
 j � j
 j �  

�
l.�
 /

�
D j
 j �  

�
j
 j
�
:

Here the last equality holds because we can assume j
 j D l.�
 / for all 
 . The second
part of the statement is proved.

6.2. Proof of Theorem 1.2. In this subsection we use the following elementary
lemma, whose proof is left to the reader.
Lemma 6.2. Consider a decreasing function 'WRC ! RC and a > 0, then define
a function  W .1;C1/! RC by

 .s/ WD
1

s2
� '

�
ln s
a

�
:

Then the function s 7! s2 .s/ is decreasing monotone and for any t > 0 we have

'.t/ D e2at .eat /:

Moreover
R C1
0

'.t/dt diverges at t D C1 if and only if
R C1
1

s .s/ds diverges at
s D C1.

6.2.1. Proof of convergent case.
Lemma 6.3. Let 'WRC ! RC be a decreasing function such that

R C1
0

'.t/ dt

converges at t D C1. Then for almost any � we have

lim inf
t!1

Syssc.gtr� �X/p
'.t/

� 1:
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Proof. Consider the function  associated to ' and to the parameter a D 1 by
Lemma 6.2. Since

R C1
0

'.t/ dt converges at t D C1 then
R C1
1

s .s/ ds converges
at s D C1. Let W be the set of directions � such that there exist arbitrarily big
instants t > 0 with

Syssc.gtr� �X/2 � '.t/:

Fix any � 2 W . For any t as above, let 
 be the saddle connection for the surface X
such that

Syssc.gtr� �X/ D
ˇ̌
Hol.
; gtr� �X/

ˇ̌
:

For t > 0 big enough we have '.t/ < 1, thus it follows that et > j
 j, indeed we have

1 >
p
'.t/ �

ˇ̌
Hol.
; gtr� �X/

ˇ̌
� j
 je�t :

Fix t and 
 as above. Recalling the minimality property of the instant t .�; 
/, we
have

jRe.�; 
/j � j
 j < 2jRe.�; 
/j � jIm.�; 
/j
D jHol.
; gt.�;
/r� �X/j2

� jHol.
; gtr� �X/j2

� '.t/ D e2t .et / � j
 j2 
�
j
 j
�
;

where the last inequality holds because et > j
 j and the function s 7! s'.s/

is decreasing monotone. Observe finally that for any � and 
 as above we have
jRe.�; 
/j � '.t/=j
 j. Thus, since t is arbitrarily big, the saddle connection 
 must
be arbitrarily long, by discreteness of the set of values Hol.
; r� � X/. It follows
that for any � as above there exists infinitely many saddle connections 
n such that
jRe.�; 
n/j < j
nj �  .j
nj/. Theorem 6.1 implies Leb.W/ D 0. The lemma is
proved.

Here we finish the proof of the convergent case of Theorem 1.2. Let ' be a
function as in Lemma 6.3 and for any integer n � 1 consider the function 'n WD n �',
which also satisfies the assumption of the lemma. It follows that for any n there exists
a full measure set of directions � such that

1

n
lim inf
t!1

Syssc.gtr� �X/p
'.t/

D lim inf
t!1

Syssc.gtr� �X/p
'n.t/

� 1:

The convergent case of Theorem 1.2 follows because the countable intersection of
full measure sets has full measure.



276 L. Marchese, R. Treviño and S. Weil CMH

6.2.2. Proof of divergent case.
Lemma 6.4. Let 'WRC ! RC be a decreasing function such that

R C1
0

'.t/ dt

diverges at t D C1. Then for almost any � we have

lim sup
t!1

Syssc.gtr� �X/p
'.t/

�
p
2:

Proof. Observe first that according to the convergent case of Theorem 6.1, for almost
any � and for any saddle connection 
 long enough we have jRe.�; 
/j > j
 j�1:02.
Fix any such � , let 
 be a saddle connection long enough and consider the instant
t .�; 
/. We have

e2t.�;
/ D
jIm.�; 
/j
jRe.�; 
/j

< jIm.�; 
/j � j
 j1:02 �
�
j
 j1:01

�2
:

Consider the function  associated to ' and to the parameter a WD 1:02�1 � 0:98 by
Lemma 6.2. Since

R C1
0

'.t/ dt diverges at t D C1 then
R C1
1

s .s/ ds diverges
at s D C1. According to Theorem 6.1, for almost any � there exist infinitely many
saddle connections 
 such that

jRe.�; 
/j < j
 j �  
�
j
 j
�
:

According to the discussion at the beginning of the proof, we can also assume that
for any such � and 
 , at the instant t .�; 
/ we have

j
 j � eat.�;
/:

For any such � and 
 , recalling that the function s 7! s2 .s/ is decreasingmonotone,
we have

Syssc
�
gt.�;
/r� �X

�2
�
ˇ̌
Hol.
; gt.�;
/r� �X/

ˇ̌2
D 2jRe.�; 
/j � jIm.�; 
/j < 2j
 j2 

�
j
 j
�

< 2e2at.�;
/'
�
eat.�;
/

�
D 2'

�
t .�; 
/

�
:

Finally, observe that since 
 is arbitrarily long, then jRe.�; 
/j is arbitrarily small,
thus t .�; 
/ is arbitrarily big. The lemma is proved.

Here we finish the proof of the divergent case of Theorem 1.2. Let ' be a function
as in Lemma 6.4 and for any integer n � 1 consider the function 'n WD n�1 �', which
also satisfies the assumption of the lemma. It follows that for any n there exists a full
measure set of directions � such that

p
n � lim inf

t!1

Syssc.gtr� �X/p
'.t/

D lim inf
t!1

Syssc.gtr� �X/p
'n.t/

�
p
2:

The divergent case of Theorem 1.2 follows because the countable intersection of full
measure sets has full measure.



Vol. 93 (2018) Translation surfaces and planar resonant sets 277

6.3. Proof of Theorem 1.3. In this section we follow § 3.1 of [5]. Fix a translation
surfaceX . Fix � > 2 and � � 0 and consider the set of directionsW.�; �/ defined by

W.�; �/ D W.Rsc;  �;�/

for the approximation function

 �;�.t/ WD
1

t � .ln t /.1C�/�=2
:

In particular denote W.�/ WD W.�; � D 0/. Consider also the dimension function
f .r/ WD r

2=� , so that Hf D H
2=� , that is the standard Hausdorff measure of

parameter 2=� , and moreover

r � f ı  �;�.r/ D
1

r.ln r/1C�
;

so that Z C1
0

r � f ı  �;�.r/ dr diverges at r D C1 for any � > 0;Z C1
0

r � f ı  �;�D0.r/ dr converges at r D C1:

Lemma 6.5. If � 62 W.�; �/ then for any saddle connection 
 long enough we have

2t.�; 
/ < � ln j
 j C .1C �/
�

2
ln
�
ln j
 j

�
:

Proof. According to the definition of W.�; �/ and to Theorem 6.1, for any saddle
connection 
 long enough we have

jRe.
; �/j >
1

j
 j��1.ln j
 j/.1C�/�=2
:

therefore the lemma follows observing that for such 
 we have

e2t.�;
/ D
jIm.�; 
/j
jRe.�; 
/j

<
j
 j

jRe.�; 
/j
< j
 j� .ln j
 j/.1C�/�=2:

Corollary 6.6. If � 62 W.�; �/ then for any 
 long enough we have

ln j
 j >
t.�; 
/

�
:

Proof. We have ln j
 j > .1C�/=2 ln.ln j
 j/ for any saddle connection 
 . According
to Lemma 6.5, for any saddle connection 
 long enough we have

ln j
 j >
1

2

�
ln j
 j C

1C �

2
ln
�
ln j
 j

��
D

1

2�

�
� ln j
 j C .1C �/

�

2
ln
�
ln j
 j

��
>
t.�; 
/

�
:
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6.3.1. Endof the proof. Recall that according toTheorem6.1we haveH 1�˛.W.�//

D C1 andH 1�˛.W.�; �// D 0 for any � > 0, where we introduce the parameter

˛ WD 1 �
2

�
:

Theorem 1.3 follows from Proposition 6.7 and Proposition 6.8 below.
Proposition 6.7. Consider � 2 W.�/ n

S
�>0W.�; �/. We have

lim sup
t!1

� ln
�
Syssc.gtr� �X/

�
� .1 � 2=�/t

ln t
�
1

2
:

Proof. Since � 2 W.�/ then, according to Theorem 6.1, there exists an arbitrarily
long saddle connection 
 such that

jRe.
; �/j <
1

j
 j��1
�
ln j
 j

��=2 :
Since 
 is arbitrarily long, then t .�; 
/ is also arbitrarily big. Moreover the
minimizing property of the instant t D t .�; 
/ gives

1

2
jHol.
; gtr� �X/j2 D jRe.�; 
/j � jIm.�; 
/j <

1

j
 j��2
�
ln j
 j

��=2 :
Fix � > 0 and recall that � 62 W.�; �/. Without loss of generality 
 can be assumed
to be long enough to satisfy part (2) of Theorem 6.1. Then, according to the previous
inequality and to Lemma 6.5, for t D t .�; 
/ we get

� 2 ln
�
jHol.
; gtr� �X/j

�
> .� � 2/ ln j
 j C

�

2
ln
�
ln j
 j

�
� ln 2

�
� � 2

�

�
2t.�; 
/ � .1C �/

�

2
ln
�
ln j
 j

��
C
�

2
ln
�
ln j
 j

�
� ln 2

D

�
1 �

2

�

�
2t.�; 
/C

�
1C � �

��

2

�
ln
�
ln j
 j

�
� ln 2:

Finally, according to Corollary 6.6, for t D t .�; 
/ we obtain

� ln
�
jHol.
; gtr� �X/j

�
>

�
1 �

2

�

�
t C

�
1

2
�
�

2
C
��

4

�
ln t C c;

where c is a constant depending only on � and � . Since t D t .�; 
/ is arbitrarily big
we have

lim sup
t!C1

� ln
�
Syssc.gtr� �X/

�
� .1 � 2=�/t

ln t
�
1

2
�
�

2
C
��

4
:

The proposition follows because the last estimate holds for all � > 0.
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Proposition 6.8. Fix � � 2 and � > 0. Let � be a direction such that

lim sup
t!1

� ln
�
Syssc.gtr� �X/

�
�
�
1 � 2=�

�
t

ln t
>
1C �

2
: (6.1)

Then we have
� 2 W.�; �/:

Proof. Consider a direction � such that Equation (6.1) holds. According to the
assumption, there exists t arbitrarily big such that

� ln
�
Syssc.gtr� �X/

�
>

�
1 �

2

�

�
t C

1C �

2
ln t: (6.2)

Consider a saddle connection 
 D 
.t/ such that Syssc.gtr� �X/ D jHol.
; gtr� �X/j.
Observe that for such saddle connection 
 we haveˇ̌

Hol.
; gtr� �X/
ˇ̌
� e�t j
 j;

that is ln.jHol.
; gtr� �X/j/ > ln j
 j � t , therefore we get

2t

�
� ln j
 j >

1C �

2
ln t:

In particular we have et > j
 j, since jHol.
; gtr� �X/j < 1. It follows that

.� � 2/

�
2t

�
� ln j
 j

�
C .1C �/ ln t � .1C �/

�

2
ln ln j
 j

>
.� � 2/.1C �/

2
ln t C .1C �/ ln t �

� C ��

2
ln ln j
 j

D
� C ��

2

�
ln t � ln ln j
 j

�
> 0:

Resuming we have�
1 �

2

�

�
2t C .1C �/ ln t > .� � 2/ ln j
 j C .1C �/

�

2
ln ln j
 j: (6.3)

Therefore, for a direction � and an instant t as in Equation (6.2) and for a
saddle connection 
 such that jHol.
; gtr� � X/j D Syssc.gtr� � X/, according to
Equation (6.3) above, we have

�2 ln jHol.
; gtr� �X/j > .� � 2/ ln j
 j C .1C �/
�

2
ln ln j
 j

which implies

jIm.�; 
/j � jRe.�; 
/j �
jHol.
; gtr� �X/j2

2
<
1

2

1

j
 j��2
�
ln j
 j

�.1C�/�=2 ;



280 L. Marchese, R. Treviño and S. Weil CMH

that is, observing that jIm.�; 
/j > j
 j=2, we have

jRe.�; 
/j �
1

4

1

j
 j��1
�
ln j
 j

�.1C�/�=2 :
The last condition holds for a saddle connection 
 which can be chosen arbitrarily
long, therefore we have � 2 W.�; �/.

7. Fast recurrence in rational billiard: proof of Theorem 1.4

7.1. The recurrence rate function. LetX be a translation surface and† be the set
of its conical singularities. Let � be a direction on the surface X such that there are
not saddle connections in direction � , and thus nor closed geodesics. The recurrence
rate function !� WX ! Œ0;C1� is defined for any p 2 X by

!� .p/ WD lim inf
r!0

log
�
R� .p; r/

�
� log r

where R� .p/ WD minft > r ; j�t
�
.p/ � pj < rg. More precisely, the function !� is

defined on points which are recurrent for �t
�
with t > 0, and the set of such points is

equal to the set of points such that �t
�
.p/ is defined for all t > 0 (see § 3 in [37]). In

particular!� .p/ is defined on an open subset ofX with full Lebesguemeasure, which
is invariant under the flow �t

�
. Moreover, fix t > 0 and consider a point p 2 X such

that !� .p/ is defined. Since the domain of !� is open, then there exists r > 0 such
that �t

�
acts as a translation on the ball B.p; r/, that is �s

�
.B.p; r// does not contain

any conical singularity for 0 � s � t . Therefore we have R� .�t� .p/; r/ D R� .p; r/
and thus

!�
�
�t� .p/

�
D lim inf

r!0

log
�
R� .�

t
�
.p/; r/

�
� log r

D lim inf
r!0

log
�
R� .p; r/

�
� log r

D !� .p/:

(7.1)

7.2. Recurrence rate and diophantine approximations. Let Rsc and Rcyl be the
resonant sets defined in § 1.5 for the translation surface X . For � > 2 consider the
function  � .r/ WD r�� and define the sets of directions

W sc.�/ WD W
�
Rsc;  �

�
and W sc.�/ WD W

�
Rsc;  �

�
:

Lemma 7.1. Fix a direction � on the surfaceX . Consider a point p 2 X n† and an
instant T > 0 such that �T

�
.p/ is connected to p by an horizontal segment H with

length jH j � Syssc.X/. Then there exists a saddle connection 
 such that

jRe.�; 
/j � jH j and jIm.�; 
/j < T:
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Moreover, if Tn !C1 is a sequence of instants as above and 
n is the sequence of
the corresponding saddle connections, we have

jIm.�; 
n/j ! C1:

Proof. LetH be an horizontal segment as in the first part of the statement and assume
without loss of generality that �T

�
.p/ is its left endpoint and p is its right endpoint.

Then let H 0 be the horizontal segment with length jH 0j D jH j and left endpoint p.
Assume that for any point p0 2 H and any t with 0 � t � T � jp0 � pj=jH j we have
��t .p0/ 62 †, where jp0 � pj denotes the distance onH from p0 to p. In this case p
belongs to a closed geodesic � whose direction �� satisfies j���� j D arcsin.jH j=T /,
thus the boundary of the cylinder C� is union of saddle connection satisfying the
required property. Similarly, if �t .p0/ 62 † for any point p0 2 H 0 and for any t
with 0 � t � T � jp0 � pj=jH j, where jp0 � pj denotes the distance in H 0 from p0

to p, then again p belongs to a closed geodesic � in direction �� as above, and
the same argument gives a saddle connection with the required properties. In the
only remaining case we have two conical singularities pi and pj of † and instants
0 � s � T and 0 � t � T such that �t

�
.pi / 2 H and ��s

�
.pj / 2 H

0. Then pi
and pj can be connected by a saddle connection satisfying the required property.
The first part of the Lemma is proved. The second part just holds because the set of
vectors Hol.
/ for 
 saddle connection is a discrete subset of R2.

Lemma 7.2. Let � be any direction without saddle connections on the surface X .
Fix � > 2 and suppose that there exists a point p 2 X such that

!� .p/ <
1

� � 1
:

Then we have � 2 W sc.�/.

Proof. According to the definition of !� .p/ there exists r arbitrarily small with
R� .p; r/

��1 < 1=r . Set T WD R� .p; r/, so that we have j�T
�
.p/ � pj < r , and

assume without loss of generality that �T
�
.p/ is connected to p by an horizontal

segment of length less than r . According to Lemma 7.1 there exists a saddle
connection 
 such that jRe.�; 
/j < r and jIm.�; 
/j < T , that is

jRe.�; 
/j < r <
1

R� .p; r/��1
D

1

T ��1
<

1

jIm.�; 
/j��1
:

The lemma follows observing that, since r is arbitrarily small, 
 is arbitrarily long, that
is there exist infinitely many saddle connections satisfying the condition above.

Lemma 7.3. Let � be a direction without saddle connections on the surface X .
Assume that � is uniquely ergodic and that � 2 W cyl.�/. Then for almost every
p 2 X we have

!� .p/ �
1

� � 1
:
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Proof. It is not a loss of generality to assume that Area.X/ D 1. According
to the definition of W cyl.�/ there exists an arbitrarily long closed geodesic � ,
whose corresponding cylinder C� satisfies Area.C� / > a, such that jRe.�; �/j <
jIm.�; �/j�.��1/. Set T WD jIm.�; �/j and let Rec.C� / be the set of points p 2 C�
such that �T

�
.p/ 2 C� . Since Area.C� / > a then the horizontal transversalH� toC�

has length jH� j > a=T . Without loss of generality we can assume that aT ��2 > 2,
thus we have

Leb
�
Rec.C� /

�
>

�
1 �
jRe.u/j
jH� j

�
� Leb

�
C�
�
>

�
1 �

1

aT ��2

�
� Leb

�
C�
�
>
a

2
:

Moreover, setting r WD T �.��1/ and observing that for any p 2 Rec.C� / we have

j�T .p/ � pj D jRe.�; �/j < jIm.�; �/j�.��1/ D T �.��1/ D r

we get R� .p; r/��1 D T ��1 D r�1 and thus

log
�
R� .p; r/

�
� log r

D
1

� � 1
for any p 2 Rec.C� /: (7.2)

Since � 2 W cyl.�/, repeat the construction for a sequence of closed geodesics �n
whose corresponding cylinder C�n satisfies Area.C�n/ > a and such that
jRe.�; �n/j < jIm.�; �n/j�.��1/. Equation (7.2) is satisfied for any p 2 Rec.C�n/
and for rn WD jIm.�; �n/j�.��1/. If follows that

lim inf
r!0

log
�
R� .p; r/

�
� log r

�
1

� � 1
for any p 2

\
N2N

[
n>N

Rec.C�n/:

Finally observe that

Leb
� \
N2N

[
n>N

Rec.C�n/
�
� lim sup

n!1
Leb

�
Rec.C�n/

�
�
a

2
:

The lemma follows because !� WX ! RC is constant almost everywhere, since
it is a invariant under �t

�
, and there is a set of positive measure where !� .p/ �

1=.� � 1/.

7.3. End of the proof. Here we finish the proof of Theorem 1.4. Of course it is
enough to prove the analogous statement for the flow �� on a translation surface X .

Let NUE.X/ be the set of non-uniquely ergodic directions � on the translation
surface X and let � WD dim.NUE.X//. Recall that we have 0 � � � 1=2 and
consider � with 2 < � < 2=�, that is 1 > 2=� > �. Set

S� WD W cyl.�/ n
�
NUE.X/ [

[
�0>�

W sc.�0/
�
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According to Theorem 6.1 we haveH 2=�.W cyl.�// D C1 and for any � with � > �
we haveH 2=�.W sc.�// D 0. Moreover, for any �1 and �2 with �1 > �2 > � we have
W sc.�1/ � W sc.�2/, and thus H 2=�.

S
�>� W sc.�// D 0. Since 2=� > � we have

H
2=�.NUE.X// D 0. It follows thatH 2=�.S� / D C1:Applying again Theorem 6.1,

one gets H s.W cyl.�// D 0 for any s > 2=� , therefore dim.S� / D 2=� . Lemma 7.3
implies

!� .p/ �
1

� � 1
for any � 2 S� and for almost any p 2 X:

Finally, if there exists p 2 X and some �0 > � such that !� .p/ < 1=.�0 � 1/ then
Lemma 7.2 implies � 2 W sc.�0/ and thus � 62 S� . Theorem 1.4 is proved.

A. Proof of Corollary 4.11

Let X be any translation surface and let �.X/ be the set of its saddle connections.
For any 
 2 �.X/ consider the function

L
 WR! RC I ˛ 7! L
 .˛/ WD kHol.
; u�˛ �X/k1;

where k.x; y/k1 WD maxfjxj; jyjg for any .x; y/ 2 R2. Let G .X/ be the family
of functions G .X/ WD fL
 .�/I 
 2 �.X/g. Consider any 
 2 �.X/, any interval
J � R and any � > 0, then let J.
; �/ be the subinterval of J defined by

J.
; �/ WD
˚
˛ 2 I I L
 .˛/ � �

	
:

Define also J.X; �/ WD
S

2�.X/ J.
; �/, that is the set of those ˛ 2 J such that

there exists some 
 2 �.X/ with L
 .˛/ � �. For any interval J and any 
 2 �.X/
set also

kL
kJ WD sup
˛2J

L
 .˛/:

For any Borel set E � R denote by jEj its Lebesgue measure. According to
Proposition 4.5 in [32], for any translation surfaceX the family of functions G .X/ is
.2; 1/-good, that is for any � > 0, any interval J � R and any 
 2 �.X/ we have

jJ.
; �/j

jJ j
� 2 �

�

kL
kJ
;

where 1 in .2; 1/-good refers to the exponent of the term �=kL
kJ , which in the
general definition of .C; ˇ/-good families of functions is allowed to be smaller. The
general Proposition 3.2 in [32], adapted in our setting to the family of functionsG .X/,
says that if there exists constants � > 0 andM > 0 such that for any interval J � R
we have:
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(1) kL
kJ � � for any 
 2 �.X/;
(2) ]f
 2 �.X/IL
 .˛/ � �g �M for any ˛ 2 J .
Then for any 0 < � � � we have

jJ.X; �/j

jJ j
� 2M �

�

�
: (A.1)

For completeness, we give a proof of Equation (A.1). Observe first that Condition (2)
implies

I WD

Z
J

]
˚

 2 �.X/IL
 .˛/ � �

	
d˛ �M jJ j:

On the other hand, since the family G .X/ is .2; 1/-good, Condition (1) implies that
for any 
 2 �.X/ we have

jJ.
; �/j � 2jJ.
; �/j
�

�
:

Therefore Equation (A.1) follows observing that

I D
X


2�.X/

jJ.
; �/j �

�
2
�

�

��1 X

2�.X/

jJ.
; �/j �

�
2
�

�

��1
jJ.X; �/j:

In general, Condition (2) is not satisfied for any translation surface X . When X
is a Veech surface Condition (2) is satisfied according to Lemma A.1 below. In order
to prove Corollary 4.11, let X be a Veech surface. Fix any interval J � R and some
� > 0. Assume that for any 
 2 �.X/ we have

sup
˛2J

ˇ̌
Hol.
; u�˛ �X/

ˇ̌
� �:

It follows that kL
kJ � �=
p
2, according to the comparison between the norm k�k1

and the euclidian norm j � j on R2. For any 0 < � < � Equation (A.1) implies

jJ.X; �/j

jJ j
� 2
p
2M �

�

�
:

Finally the comparison between the norms k � k1 and j � j givesˇ̌˚
˛ 2 J I Syssc.u�˛ �X/ � �

	ˇ̌
� 4M �

�

�
� jJ j:

We complete the proof of Corollary 4.11 stating and proving Lemma A.1 below.
Lemma A.1. LetX be a Veech surface and let M WD SL.2;R/ �X be its closed orbit
under the action of SL.2;R/. Then there exists some r0 > 0, depending only on M,
such that for any G 2 SL.2;R/ we have

]
˚

 2 �.X/ I

ˇ̌
Hol.
;G �X/ � r0

ˇ̌	
� 4g � 4:
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Proof. Let �
 be the direction of any saddle connection. It is well known (see [17])
that there exists a decomposition of X into cylinders C1; : : : ; Cn in direction �
 ,
where n D n.�
 /. Moreover there exists a finite number of saddle connection
directions �1; : : : ; �N , where N is the number of cusps of M, such that the cylinder
decomposition in any saddle connection direction �
 is the affine image of the cylinder
decomposition in one of the saddle connection directions �1; : : : ; �N under some
element of the Veech group of X . It follows that there exists some a D a.M/ > 0

such for any G 2 SL.2;R/, any cylinder C� for G �X has area

Area.C� / � a2:

Moreover there exists someM DM.M/ > 1 such that is � is a closed geodesic and

 is a saddle connection parallel to � , then we have

j� j �M � j
 j;

where the last condition obviously holds for any affine deformation G � X of the
surface X , where G 2 SL.2;R/. We will prove the statement with

r0 WD
a

M
:

Let 
 be a saddle connection with jHol.
;G �X/j � a
M
. Let � be a closed geodesic

parallel to 
 and let C� be the corresponding cylinder. Since j� j � a then C� must
have transversal component W� � a. Therefore any saddle connection 
 0 which
crosses C� must have length jHol.
 0; G � X/j � a. The lemma follows observing
that for any saddle connection 
 there are at most 4g � 4 saddle connections parallel
to 
 , and all the other must cross at least one of the cylinders parallel to 
 .

B. Isotropic quadratic growth fails for saddle connections

In this appendix we show that isotropic quadratic growth fails for saddle connections
directions.
Lemma B.1. Let X be a translation surface whose orbit under SL.2;R/ is dense
in the connected component of its stratum H . Then the set Rsc.X/ does not satisfy
isotropic quadratic growth.

Proof. Consider a translation surface X and let Hol.X/ be the discrete set of all
holonomy vectors v D Hol.
; X/, where 
 varies among the set of all saddle
connections of X . If A � R2 is a bounded open subset set N.X;A/ WD
].A \ Hol.X//. More generally, if f WR2 ! R is a bounded function with compact
support its Siegel–Veech transform is the map �f WH ! R defined by�f .X/ WD X

v2Hol.X/

f .v/:
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In particular we have N.X;A/ D �fA.X/, where fA denotes the indicatrix
function of A, that is fA.v/ D 1 if v 2 A and fA.v/ D 0 otherwise. Let
B WD fv 2 R2 ; jvj < 1g be the unit euclidian ball and let fB its indicatrix function.
According toCorollary 5.11 in [1], the Siegel–Veech transform �fB is not inL3.H ; �/,
where � is the absolutely continuous SL.2;R/-invariant measure on H (see also
Line 4, page 3 in [2]). In particular �fB is not bounded. Now let � D �0 be the
equilateral triangle with vertices at .0; 0/, .3�1=4; 31=4/ and .�3�1=4; 31=4/ and let f�
be its characteristic function. Observe that Area.�/ D 1. Let also �1; : : : ; �5
the rotated copies of �, so that the union gives an hexagon containing B . Fix any
N 2 N. Since �fB is not bounded, modulo a rotation, the pigeonhole principle
implies that there exists some X0 2 H such that 1fB\�.X0/ > N . Considering a
smooth approximation g of f� and using the continuity of yg, one can see that there
exists an open set V � H with X0 2 V such that

N.X;B \�/ �
N

2
for any X 2 V :

Now let X 2 H be surface as in the statement, so that SL.2;R/ � X is dense in H .
Then by [13] there exists a direction � and t � 1 such that gtr��X 2 V ; so that

N.gtr��X;B \�/ >
N

2
:

The isosceles triangle

�0 WD .gtr�� /
�1.�/ D r�g�t�

has shortest side with length e�t � 2 � 3�1=4, while the altitude with respect to such
shortest side is et � 31=4. Let I � S1 be the angular sector spanned by �0 and set
R WD et � 3

1=4. If t � 1 is big enough we have

1 D Area.�/ D Area.�0/ � jI j �R2 � 2;

but on the other hand

]
˚
� 2 I \Rsc.X/ ; l.�/ � R

	
�

1

3m
]
˚
v 2 Hol.X/ ; jvj < R ; �v 2 I

	
�

1

3m
N
�
X; r�g�t .B \�/

�
D

1

3m
N
�
gtr��X;B \�

�
>
N

6m
>
jI j �R2

12m
;

where the first inequality holds because on any translation surfaceX 2 H there are at
most 3m parallel saddle connections, the second holds because for t � 1 big enough
we have g�t .B \ �/ � fv 2 R2 ; jvj < R ; �v 2 I g, and the last holds because
jI j �R2 < 2. The statement follows because N is arbitrarily big.
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