
Comment. Math. Helv. 93 (2018), 203–223
DOI 10.4171/CMH/433

Commentarii Mathematici Helvetici
© Swiss Mathematical Society

A transfer principle and applications
to eigenvalue estimates for graphs
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Abstract. In this paper, we prove a variant of the Burger–Brooks transfer principle which,
combined with recent eigenvalue bounds for surfaces, allows to obtain upper bounds on the
eigenvalues of graphs as a function of their genus. More precisely, we show the existence of a
universal constants C such that the kth eigenvalue �nr

k
of the normalized Laplacian of a graphG

of (geometric) genus g on n vertices satisfies

�nrk .G/ � C
dmax.g C k/

n
;

where dmax denotes the maximum valence of vertices of the graph. Our result is tight up to a
change in the value of the constant C , and improves recent results of Kelner, Lee, Price and
Teng on bounded genus graphs.

To show that the transfer theorem might be of independent interest, we relate eigenvalues
of the Laplacian on a metric graph to the eigenvalues of its simple graph models, and discuss
an application to the mesh partitioning problem, extending results of Miller–Teng–Thurston–
Vavasis and Spielman–Teng to arbitrary meshes.
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1. Introduction

The spectrum of the Laplacian of a finite graph reflects information about the
structural properties of the graph and has been successfully used in a large variety
of applications to other domains. In particular, the eigenvalues of a bounded degree
graph provide information on the existence of good clusterings of that graph, see [1]
for clustering in two classes and [20,22] for k-way clusterings, whose optimal quality
is shown to relate to the kth eigenvalue.

In particular, upper bounds on the eigenvalues of a class of graphs directly translate
into efficient clustering algorithms with quality guarantees. This motivated a series
of work, starting with Spielman and Teng [27], who gave an O.1=n/ bound for
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the Fiedler value of a bounded degree planar graph on n vertices, using a suitably
centered circle packing representation of the graph. Kelner extended this result to
an O..g C 1/=n/ bound for (geometric) genus g graphs [16]. The argument uses
Riemann–Roch theorem to find a circle packing representation of the graph. Recently,
Kelner, Lee, Price and Teng proved an O..gC 1/ log.gC 1/2k=n/ upper bound for
the kth eigenvalue [17], using a multicommodity flow problem to suitably uniformize
the graph metric.

The study of the spectrum of a finite graph is in many ways related to the
spectral theory of Riemannian manifolds, and results in geometric analysis have
been a source of inspiration to state and prove corresponding results concerning
finite graphs. In particular, eigenvalue bounds for surfaces have a somewhat parallel
history. Hersch [13] first proved an O.1=vol.M// bound for the Neumann value of
the sphere S2 equipped with a Riemannian metric. Yang and Yau [28] then showed
that for genus g surfaces an O..g C 1/=vol.M// bound holds, and Li and Yau
improved the latter result by replacing the genus with the finer conformal invariant
they defined [21]. It is interesting to notice that these proofs are quite similar at
a high level to the ones later used in the graph setting. Conformal uniformization
was used in place of circle packing representations, but the very same topological
argument for centering the packing in the discrete case was used in the manifold case
as well. For higher eigenvalues, Korevaar [19] established an O..g C 1/k=vol.M//

for genus g surfaces, and Hassannezhad [15] improved this to O..g C k/=vol.M//,
by combining the two methods of constructing disjoint capacitors of Grigor’yan,
Netrusov and Yau [14], and Colbois and Maerten [8].

While traditionally bounds on graph eigenvalues are used to prove bounds for
Riemannian manifolds [3–6, 9, 10], it is intriguing to see that the spectral theory of
Riemannian manifolds has not been much used so far to provide information on the
spectral properties of general finite graphs.

Our aim in this paper is to show how eigenvalue bounds for surfaces combined
with basic spectral theory of (singular) surfaces, and a suitable transfer principle,
allows to obtain eigenvalue estimates for graphs in terms of their geometric genus.
In this way, we are able to extend the above mentioned result of [15, 19, 28] for
surfaces to the graph setting using a suitable variant of the Burger–Brooks transfer
method, c.f. Theorem 1.2. Our results are tight and improve the recent results of
Kelner, Lee, Price and Teng [17] on bounded genus graphs. In addition to providing
a uniform arguably more conceptual proof of the results of [16,17,27], we hope that
our method makes the above mentioned existing similarities between the methods
used in the spectral theory of surfaces and graphs more transparent.

The transfer principle proved in this paper may be of independent interest. In
fact, we shall show it can be used to provide uniform upper and lower bounds on
the eigenvalues of metric graphs in terms of the eigenvalues of their simple graph
models. Furthermore, it allows to generalize to completely arbitrary meshes the mesh
partitioning results of Miller, Teng, Thurston, and Vavasis [24] and Spielman and
Teng [27].
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1.1. Statement of the main theorem on eigenvalues of bounded genus graphs.
Let G D .V;E/ be a finite simple graph, that we assume connected all through the
paper. For two vertices u; v 2 V , we write u � v if the two vertices u and v are
connected by an edge in G. The valence of a vertex v of G is denoted by dGv , or
simply dv if there is no risk of confusion and the graph G is understood from the
context. We denote by dmax the maximum degree of vertices of the graph, and by n
the number of vertices. The geometric genus of G is by definition the minimum
integer g such that G can be embedded with no crossing on the compact orientable
surface of genus g.

Denote by C.G/ the vector space of all real valued functions f defined on the set
of vertices of G. The (discrete) Laplacian � and the normalized Laplacian L of G
are defined as follows: the Laplacian �WC.G/! C.G/ is the linear operator which
sends a function f 2 C.G/ to �.f / 2 C.G/ defined by

8 v 2 V.G/; �.f /.v/ D
X
uWu�v

f .v/ � f .u/:

Let S be the linear operator on C.G/ whose matrix in the standard basis of C.G/
is diagonal with entries the valences of the vertices of G, i.e. for any f 2 C.G/

8 v 2 V.G/; S.f /.v/ D dvf .v/:

The normalized Laplacian is the operator S�1=2�S�1=2.

We denote by

�0.G/ D 0 < �1.G/ � �2.G/ � � � � � �n�1.G/

the set of eigenvalues of �, which we call the standard spectrum of G, and by

�nr0 .G/ D 0 < �
nr
1 .G/ � � � � � �

nr
n�1.G/

the set of all eigenvalues of the normalized LaplacianL, whichwe call the normalized
spectrum. The standard and normalized spectrum of G are easily seen to satisfy the
inequalities dmin �

nr
k
.G/ � �k.G/ � dmax �

nr
k
.G/ for any k.

In this paper we prove the following theorem.

Theorem 1.1. There exists a universal constant C such that the eigenvalues of the
normalized Laplacian of any graph G on n vertices satisfy:

8k 2 N; �nrk .G/ � C
dmax.g C k/

n
;

where dmax and g are the maximum valence and the geometric genus of G,
respectively.
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The linear dependance in the maximum degree is clearly optimal, as can be seen
by considering star graphs, which have lower bounded Fiedler value. The above
result also implies a similar bound for the eigenvalues of the standard Laplacian, at
the expense of an extra dmax factor. We note that Kelner, Lee, Price and Teng [17]
give a similar bound for the standard spectrum with a linear rather than quadratic
dependence in dmax. However, their bound has a gk log.gC 1/2 dependence instead
of our .g C k/ dependence. In addition to simplifying and improving the result
of [17] for bounded genus graphs, we note that the dependence in g and k of our
estimate is tight, at least when g is sufficiently high, see Remark 2.6.

Informally, the improvement over [17] means that the asymptotic behavior of
graphs’ eigenvalues do not depend on the (geometric) genus of the graph. This
fact, which may be seen as a one-sided discrete form of Weyl’s law for surfaces, is
consistent with the intuition that at a small scale, bounded genus graphs behave like
planar graphs. Finally, we note that the result in [17] also applies to graphs in any
fixed proper minor-closed family (where the genus g is replaced with a parameter h
depending on the family), while the stronger bounds of Theorem 1.1 cannot be
extended to minor-closed classes, as we show by explicit examples in Remark 2.7.

1.2. Two-fold covers and their associated discrete Laplacians. LetM be a meas-
ured topological space, and denote by � the measure on M . A 2-fold cover of M
is a finite collection U D .Uv/v2V , for a finite index set V , of open subsets Uv
of non-zero measure such that almost every point in M is covered by exactly two
subsets. To any 2-fold cover of a measured space we associate a discrete Laplacian
as follows:

We first form a graph G D .V;E/ on the set of vertices V and with edges
fu; vg 2 E for two vertices u; v such that �.Uv \ Uu/ ¤ 0. We define a weight
function !WE ! R which to any edge e D fu; vg of G, associates the weight
!.e/ D �.Uu \ Uv/. The weighted valence d!v of a vertex v of G is defined by

d!v D
X
uWu�v

�.Uu \ Uv/:

The discrete Laplacian associated to the 2-fold cover U denoted by LU is the
normalized graph Laplacian associated to the weighted graph .G; !/. This is defined
from the weighted Laplacian by normalizing using the weighted valence (as in the
previous section). Formally, define the weighted Laplacian �UWC.G/! C.G/ by

8v 2 V; �U.f /.v/ D
X
uWu�v

�
f .v/ � f .u/

�
w.fu; vg/;

for any f 2 C.G/. Let SU be the diagonal operator with entries the weighted
valence d!v of vertices v 2 V , i.e. for any f 2 C.G/,

8 v 2 V; SU.f /.v/ D d
!
v f .v/:
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Then we let LU WD S
� 1

2

U
�US

� 1
2

U
. Denote by �k.LU/ the kth smallest eigenvalue

of LU.

When .M;�/ carries a natural notion of Laplacian, it is possible to relate the
eigenvalues of the Laplacian onM to the eigenvalues of LU for any 2-fold cover U.
More precisely, let the measured space .M;�/ belong to any of the following three
classes:
(C1) a smooth manifold with a smooth Riemannian metric g, and � the measure

associated to the metric g;
(C2) a compact smooth surface with a conformal class of smooth Riemannian

metrics g, and � a Radon measure absolutely continuous with respect to �g,
c.f. Section 2.1;

(C3) a metric graph with � the Lebesgue measure.
In any of the above cases, we can define a Laplacian on .M;�/ c.f. Section 2.1
and Section 3, and we denote by �k.M;�/, or simply �k.M/ if there is no risk of
confusion, the eigenvalues for the corresponding Laplacian.

Our transfer principle is stated as follows.
Theorem 1.2. Let .M;�/ be a measured space as in .C1/, .C2/, or .C3/ above.
Assume all the elements in a 2-fold cover U of M have Neumann value at least �.
Then for all positive integers k we have:

�k.LU/ � 2
�k.M/

�
:

Themain difference with the classical versions of the transfer principle [3,5,23] is
that we discretize the continuous Laplacian as aweighted normalized graph Laplacian
instead of a combinatorial one, which allows for a closer connection between the two.
Our variant here uses a different notion of graph approximation that involves particular
weights. In addition, the abovementioned results take as input a partition ofM , while
our theorem is expressed in terms of two-fold covers, which adds more flexibility.

In order to prove Theorem 1.1, we apply the above theorem in the case where
.M;�/ is a measured surface equipped with a conformal class of smooth Riemannian
metrics g. This version seems to be required to get our Theorem 1.1 on eigenvalues
of bounded (geometric) genus graphs.

1.3. Organization of the paper. The necessarily background on Laplacian eigen-
values in measured surfaces is recalled in Section 2. The proof of Theorem 1.2 for
measured surfaces (Case (C2) among the above three cases) is given in Section 2.
The proof in the two other cases is similar and is thus omitted. Section 2 contains
also the proof of Theorem 1.1. In Section 3, we apply Theorem 1.2 in the case
of metric graphs with Lebesgue measure (C3)), to obtain a uniform quantitative
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complement to a theorem of X. Faber [11] on the spectral convergence of finite graphs
to metric graphs. Moreover, we give in Section 4 an algorithmic application of the
above theorem to mesh partitioning in numerical analysis, generalizing the results of
Miller–Teng–Thurston–Vavasis [24] and Spielman–Teng [27] to anisotropic meshes.

2. Eigenvalues of bounded genus graphs

In this section we give the proofs of Theorem 1.2 and Theorem 1.1. We start by
recalling the variational approach to study eigenvalue problems for surfaces with
measures [18], which provides a setting to study eigenvalue problems for singular
surfaces. This makes the statement of Theorem 1.2 precise in the case of a measured
metric surface.

2.1. Eigenvalues on measured surfaces. Let M be a smooth compact surface,
possibly with boundary, which we suppose equipped with a smooth Riemannian
metric g. Denote by �g the induced volume form onM . Let � be a Radon measure
onM which we suppose absolutely continuous with respect to the measure�g. For a
C1-smooth function f 2 L2.M;�/, the Rayleigh quotientRMg.f; �/ is defined by

RMg.f; �/ WD

R
M
jrg f j

2d�gR
M
f 2d�

:

The eigenvalues of the measured metric surface .Mg; �/ are defined by the
variational formula:

�k.Mg; �/ WD inf
ƒkC1

sup
f 2ƒ�

kC1

RMg.f; �/; (2.1)

where ƒkC1 � L2.M;�/ varies over subspaces of dimension k C 1 which consist
only of smooth functions on M , and ƒ�

kC1
D ƒkC1 n f0g. Note that in the case

� D �g, we recover the usual variational characterization of the eigenvalues of the
Laplacian �g associated to the Riemannian surfaceMg.

To see the point of introducing this formalism, assume that the two metrics g
and h on M are conformally equivalent. From the conformal invariance of the
Dirichlet integral, we see that RMg.f; �/ D RMh.f; �/. In particular, letting
� D �h, we see that the spectra of the metric h within the conformal class of Mg

coincides with the spectra of measured surface .Mg; �/ for an appropriate Radon
measure �. Now, if h is a metric with conical singularities, it is a classical fact
that M is conformally equivalent to a constant curvature metric g, the conformal
factor being square integrable with respect to the corresponding area form �g. Thus
the framework of measured metric surfaces allows in particular to define spectra
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of surfaces with conical singularities as the spectra of the measured metric surface
.Mg; �h/ [18].

Let U be an open subset of M , and denote by SU the topological closure of U
in M . The Neumann value �.U / of U is defined as the infimum of the Rayleigh
ratio

R
U
jrgf j

2d�g=
R
U
f 2d� over all smooth functions f on U which extend

continuously to SU and satisfy
R
U
fd� D 0,

�.U / WD inf
f W
R

U fd�D0

R
U
jjrgf jj

2d�gR
U
f 2d�

:

2.2. Proof of Theorem 1.2. We supposeM;�; g, and �g as above, and consider a
2-fold cover U D .Uv/v2V of M . Denote by � the minimum of �.Uv/ for v 2 V .
Let G be the associated weighted graph with vertex set V and weight matrix WU D

Œ!.fu; vg/�u;v , where !.fu; vg/ D �.Uu \ Uv/ for u ¤ v. Let LU be the matrix of
the associated normalized graph Laplacian. We have LU D I � S

�1=2

U
WUS

�1=2

U
,

where the matrix SU is diagonal with entries given by the weighted valences of the
vertices d!v D

P
uWu�v !.fu; vg/.

Proof of Theorem 1.2. Let v 2 V and f any smooth function onM . By restricting f
to Uv and substracting the mean over Uv , we get:Z

Uv

jjrgf jj
2 d�g � �.Uv/

Z
Uv

�
f �

1

�.Uv/

Z
Uv

fd�
�2
d�

� �
� Z

Uv

f 2 d� �
1

�.Uv/

�Z
Uv

f d�
�2 �

:

Summing the last inequalities over v 2 V yields:
2

�

Z
M

jjrgf jj
2d�g � 2jjf jj

2
2 �

X
v

1

�.Uv/

�Z
Uv

fd�
�2
; (2.2)

where the L2 norm jj:jj2 is with respect to the measure �. Denote by 1Uv
the

characteristic function of the open set Uv , and let �v D �.Uv/
�1=21Uv

. Define
ˆWL2.M/! C.G/, by

ˆ.f /.v/ WD

Z
M

f �v;

on any vertex v of G. We see that the quadratic form in f in the right hand side of
Equation (2.2) is given by 2jjf jj22 � jj f̂ jj22.

Let � > 0, and denote byƒ�
kC1

a .kC 1/-dimensional space of smooth functions
onM such that for any f 2 ƒkC1 n f0g, we haveR

M
jjrgf jj

2d�gR
M
f 2d�

� .1C �/�k.M/:
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Note that by the variational characterization of the eigenvalues (see e.g. (2.1)
and (3.1)), such a space exists. For any f 2 ƒ�

kC1
, by inequality (2.2), we have:

2.1C �/�k.M/

�
jjf jj22 �

2

�

Z
M

jjrgf jj
2d�g � 2jjf jj

2
2 � jj f̂ jj

2
2:

That is:
jj f̂ jj22 � 2

�
1 �

.1C �/�k.M/

�

�
jjf jj22:

Let ˆ� denote the adjoint of the operator ˆWL2.M/ ! C.G/. From the
variational characterization of the eigenvalues, this implies that the compact self-
adjoint operator ˆ�ˆ on L2.M/ has at least kC 1 eigenvalues greater than or equal
to 2.1 � .1C �/�k.M/=�/. We can assume that this latter quantity is positive,
otherwise there is nothing to prove since all the eigenvalues of the normalized
Laplacian are at most 2. Since the non zero eigenvalues of ˆ�ˆ are the same
as the non zero eigenvalues of ˆˆ�, we thus deduce that

�k.2I �ˆˆ
�/ �

2.1C �/�k.M/

�
: (2.3)

To conclude the proof, it suffices to notice that

Œˆˆ��u;v D

Z
M

�u�v D
�.Uu \ Uv/

.�.Uu/�.Uv//1=2
:

Because U is a 2-fold cover, the vth entry of the diagonal matrix DU is equal to
�.Uv/. We thus easily check that 2I � ˆˆ� D LU. Therefore, inequality (2.3)
gives

�k.LU/ �
2.1C �/�k.M/

�
:

Since this holds for any � > 0, the theorem follows.

2.3. Proof of Theorem 1.1. We first give some background about graphs embedded
in a surface, and refer to [25] for more details. We assume that all surfaces are
compact, orientable and without boundary. An embedding of a graph G in a
surface M is a drawing of G on M so that all vertices of G are distinct on M ,
and every edge of G form a simple arc on M connecting its two endpoint vertices.
Interior of edges and vertices are assumed to be pairwise disjoint. A face of and
embedding, or simply a face of G if the embedding is clear from the context, is a
connected component of the complementary of G inM .

An embedding is called cellular if every face is homeomorphic to an open disk
in R2.

The genus g.G/ is the minimum integer g such that G has an embedding in a
surfaceM of genus g. The following result will allow us to suppose that a graph G
with a given genus g.G/ is embedded in a cellular way.
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Proposition 2.1 ([25, Proposition 3.4.1]). Every embedding of a connected graphG
in a surface of genus g.G/ is cellular.

Suppose from now on that the connected graph G is embedded in a cellular way
in a surfaceM of genus g, so that every face F is homeomorphic to an open diskDF
in R2. The boundary of the face F in M is the image of the boundary @DF ' S1

under a continuous map, which is locally a homeomorphism away from the preimage
of the vertices. We denote by F the set of all faces of G. For any face F 2 F , we
define a boundary walk of F to be any walk in the graph G consisting of vertices
and edges as they are encountered when walking along the whole boundary of F ,
following the circle @DF , and starting at some vertex. Note that some edges may
appear more than once in a boundary walk. The degree of a face F 2 F , denoted
deg.F /, is the number of edges on any boundary walk of F .

We define a new multigraph G D .V ;E/ embedded in M , and containing G as
an induced subgraph, by coning over boundary walks of faces as follows. The vertex
set V of G consists of the vertices in G and a new vertex vF for each face F of F ,
i.e. V D V t

˚
vF
	
F 2F

. For each face F of F , let v1; : : : ; vdeg.F / be the vertices
of G which appear in this order in a boundary walk of F . Note that a vertex might
appear more than once. The edge set E of G consists of the edges in E, and new
edges fvF ; vig; for i D 1; : : : ; deg.F /. The embedding of G inM is obtained in the
following natural way: each face F 2 F is homeomorphic to a disk DF in R2, and
under this homeomorphism, the vertices v1; : : : ; vdeg.F / in the boundary walk of F ,
appear in this cyclic order on the boundary of DF . Choose the center of DF as the
image of vF and the rays from vF to vi as the image of the edges fvF ; vig. We refer
to all the new edges fvF ; vig added in the process as cone edges of G .

Call an embedding of a graph in M a weak triangulation if the degree of any
face of the embedding is three. We use this terminology since it can happen that two
different faces of the embedding share more than one edge, in which case we do not
have a triangulation.

The embedded (multi)graph G constructed above has the following properties.
Proposition 2.2. The embedding of G inM is a weak triangulation, and each face
of G is incident to exactly one edge of G. Moreover, for any vertex v of G, we have
d G
v D 2d

G
v , where d G

v and dGv denote the valence of v in G and G, respectively.

Proof. By definition of the embedding, each face of G consists of two cone edges
and an edge of G, which proves the first assertion. To prove the second statement,
let F1; : : : ; Fk 2 F be all the faces of G which are incident to the vertex v 2 V . For
each i D 1; : : : ; k, the number of edges fvFi

; vg in E is half the number of edges
of G in a boundary walk of Fi . Each edge e 2 E incident to v appears precisely
twice in the union of the edges of the boundary walks of F1; : : : ; Fk . This shows that
the total number of edges of E of the form fvFi

; vg, for i D 1; : : : ; k, is equal to dGv ,
which proves the claim.
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Definition 2.3 (Open star). For each vertex v ofG, we define the open star of v inM
with respect to the embedding of G , or simply the open star of v, denoted by Sv , as
the interior of the union of all the faces of G which contain v in their boundaries.

Let now .M; g; �/ be any surface as in Section 2.1, so the measure� is absolutely
continuous with respect to the volume form �g of the smooth Riemannian metric g.
Proposition 2.4. The open stars of vertices of G form a 2-fold cover ofM .

Proof. By Proposition 2.2, the boundary walk of each face of G is a triangle which
has exactly two vertices in G. It follows that every point ofM n G appears in exactly
two open stars, which proves the claim by absolute continuity of � with respect
to �g.

We now introduce a metric h on M with conical singularities (and will later
assume � D �h). For reasons that will soon become clearer, we set the length of
each edge of E � E to be equal to one, and the length of each cone edge in E to be
cos.�=.2dmax//

�1=2. We equipM with the natural metric h such the triangles have
the Euclidean metric induced by their edge lengths. Note that for any triangle T of G ,
the angle of T at any of its vertices that belongs to the graphG is equal to �=.2dmax/.
The metric h has only conical singularities, and we denote by �k.M/ D �k.Mh/,
the eigenvalues of the surfaceM as defined in Section 2.1. Thus, �k.M/ is the kth
eigenvalue of the measured metric surface .Mg; � D �h/, where g is a metric of
constant curvature in the conformal class of h.

Using Theorem1.2we can relate the eigenvalues ofM to those ofG. Denote byU

the 2-fold cover ofM given by the open stars Sv of vertices of V , c.f. Proposition 2.4.
The intersection of two distinct open stars Su and Sv , for two vertices u and v of G,
has non zero measure if and only if u and v are neighbors in G. Moreover, all
non-empty intersections have the same measure, equal to the area of two triangles
in M . Therefore, the normalized Laplacian LU equals the normalized Laplacian
ofG. Hence, in order to apply the transfer result Theorem 1.2, we only need to lower
bound the Neumann value of the open stars Sv of the vertices of G.

We do so by again applying the transfer result to a specific 2-fold cover of each
open star Sv , for v 2 V . Thanks to the choice of edge lengths, the vertices of G
in .M; h/ have non negative curvature. It follows that by cutting Sv along an arbitrary
cone edge, we can unfold Sv to the plane without overlap. Denote by S 0v the unfolded
star of v as isometrically embedded in R2. The cutting operation can only decrease
the Neumann value so it is sufficient to bound from below the Neumann value of the
unfolded open subset S 0v of R2.

We call a kite in S 0v the union of two triangles in S 0v which share an edge of G.
So for any edge e D fv; ug 2 E, there is a kite Ke , and the union of the kites Ke
for e incident to v is equal to the planar set S 0v . For any edge e 2 E incident to v, the
kiteKe has two diagonals composed of the edge e and the diagonal opposite to e, that
we denote by diagope . CutS 0v along all the opposite diagonals diag

op
e for e 2 E incident
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to v. This cuts S 0v into an open region Pv with polygonal boundary containing the
vertex v, together with one triangle Te for each kite Ke for e 2 E incident to v.
Define

Uv WD
˚
Ke
	
eDfv;ug2E

[
˚
Te
	
eDfv;ug2E

[
˚
Pv
	
:

The cover Uv of S 0v is a 2-fold cover.

Proposition 2.5. Any X 2 Uv is a convex set of diameter at most two.

Proof. The triangle Te , for e D fu; vg 2 E, is obviously convex of diameter one,
and so is the kite Ke . As for the region Pv , to prove the convexity of P , it will be
enough to show that the angle of P at v is at most � . As we previously observed,
by the choice of the edge lengths, all the triangles of G has angle �=2dmax at any
of their vertices which belong to G. The number of triangles of S 0v is at most 2dGv ,
since dGv � dmax, it follows that the angle at v of P is at most � , and the convexity
follows. The claim on the diameter follows from the fact that all the edges of G have
length equal to one.

Since any element of Uv is a planar convex sets of diameter at most two, there
exists a universal constant C1 > 0 such that for any X 2 Uv , we have �.X/ � C1
for �.X/ the Neumann value of X [26]. For the 2-fold cover of S 0v , the non-zero
element �h.X \ Y / for X ¤ Y 2 Uv have the same value, equal to the area of
a triangle in M . Therefore, the normalized Laplacian LUv

equals the normalized
Laplacian of the graph whose edges are the pairs X ¤ Y 2 Uv whose intersection
has positive measure. This graph S1

d
is obtained from the star graph with d edges by

inserting a new vertex in the middle of each edge. (Recall that a star graph with d
edges has a central vertex connected to d other vertices.) The Neumann value of S1

d

is lower bounded by an absolute constant C2 > 0 independent of d . Hence, applying
the transfer theorem 1.2 to the 2-fold cover Uv , it follows that there exists a universal
constant C3 D C1:C2=2 > 0 such that the Neumann value of S 0v is bounded from
below by C3, i.e. �.S 0v/ � C3. This gives �.Sv/ � C3:

We get from these observations, and Theorem 1.2 applied to the 2-fold cover
of U, that

�nrk D �k.LU/ � 2
�k.M/

C3
: (2.4)

A result of Hassannezhad [15] states now that there is a universal constantA such
that for each k:

�k.M/�.M/ � A.g C k/: (2.5)

Note that this result is not explicitly stated in the framework of measured metric
surfaces in [15], however the proof given in [15] works also in this setting and
gives the above statement. Putting Equations (2.4) and (2.5) together, and observing
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that�.M/ � C4n=dmax for some constantC4, we conclude that forC D 2A=.C3C4/,
we have

�nr.G/ � C
dmax.g C k/

n
;

which is the statement of Theorem 1.1.
Remark 2.6. It is shown in [7] that for large g, there are area one and genus g
Riemannian surfaces S with

�k.S/ �
4�

5
.g � 1/C 8�.k � 1/ � �

for any � > 0. Now, the classical Brooks-Burger method implies the existence of
a bounded degree genus g graph G with n vertices such that �k.G/ � C�k.S/=n.
Hence, at least for large enough n and g, there are graphs whose eigenvalues match
the behaviour of the estimate in Theorem 1.1.
Remark 2.7. The following example shows that the strong estimates as in
Theorem 1.1 cannot hold for more general classes of graphs closed under taking
minor.

Recall that the Cartesian productG1�G2 of two graphsG1 D .V1; E1/ andG2 D
.V2; E2/ has vertex set V1 � V2 and there is an edge between .v1; v2/ and .u1; u2/
in V1 � V2 if either u1 D v1 and fu2; v2g 2 E2, or u2 D v2 and fu1; v1g 2 E1. The
Laplacian eigenvalues ofG1�G2 are of the form�i .G1/C�j .G2/ for i D 1; : : : ; jV1j
and j D 1; : : : ; jV2j.

Let d be a fixed large enough integer, and for any ` 2 N, consider the Cartesian
product C2l�G of a cycle C2` of length 2l with a d -regular graph G on t vertices,
for an integer t 2 N.

For any fixed t 2 N, we get in this way a family of graphs by varying ` and G.
All these graph are of treewidth bounded by some f .t/ for a (linear) function f
of t . Bounded treewidth graphs form a minor-closed family, so all these graphs
belong to a fixed proper minor-closed family Ft . For G a random d -regular graph
on t vertices, and for the l th eigenvalue of C2l�G 2 Ft , for l 2 N, we have
�l.C2`�G/ D �. tl

jC2l �Gj
/ with high probability as t tends to infinity. This shows

that there do not exist in general constants h D h.Ft / and C D C.Ft / associated
to Ft ensuring that the inequality �k.G/ � C d2max .gt C k/=n hold for any graph
G 2 Ft on n vertices, and for any k 2 N (unlike what happens for the class of
bounded genus graphs). In particular, the strong estimates as in Theorem 1.1 cannot
hold for general minor-closed classes of graphs.

3. Eigenvalues of the Laplacian on metric graphs

We briefly review the basic definitions concerning the spectral theory of metric
graphs, and refer e.g. to [2, 29] for more details.
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Let G D .V;E/ be a finite connected graph and let `WE ! R>0 be a (length)
function on the edges of G. The length of e is denoted by `e . We define the metric
realization of .G; `/ as follows: for each edge e D uv of G take a closed interval
Ie � R of length `e , and a surjection �eW @Ie ! fu; vg (which identifies the two
extremities of Ie with the vertices of G in e). Define the topological space (with the
quotient topology)

� WD
�
V t

G
e

Ie
�
=
˚
x D �e.x/ 8e 2 E & x 2 @Ie

	
:

The space � has a natural metric, the shortest path metric induced by piecewise
isometric paths between points, see e.g. [2]. We call a metric graph any metric
space � isometric to a metric realization of a pair .G; `/, as above. The pair .G; `/
is called a model of �; when G is a simple graph, the model is called simple. Note
that there are plenty of models for a metric graph � , e.g. any finite subset of points
of � can be part of a simple model of � .

For any point p 2 � , we denote by T 1p� the set of unit tangent vectors to � at p.
For an interval I D Œa; b�, in R, we define T 1a I D fE1g, with E1 the unit vector in R.
For a metric graph � and a point p 2 � , let .G; `/ be a simple model of � with
p 2 V.G/, and let e1; : : : ; ed be the edges of G incident to v. Define T 1p� as the
set of all unit tangent vectors at p of the intervals Iej

, as above. Let Eu 2 T 1p� be a
unit tangent vector, and let I D Ie be the corresponding interval (corresponding to
the edge e of a simple graph model .G; `/). For � > 0 sufficiently small, we denote
by p C � Eu the unique point in I at distance � from p on I . A function f W� ! R
is piecewise smooth if there exists a simple graph model G D .V;E/ of � such that
the restriction of f to the intervals Ie , for e 2 E, are of class C 2. The space of
piecewise smooth function on � is denoted by S.�/. Let f W� ! R be a piecewise
smooth function on a metric graph � . Let p 2 � and Eu 2 T 1x � a unit tangent vector
to at x. The (outgoing) slope of f along Eu denoted by dEu.f / is defined by

dEu.f / WD lim
�!0C

f .p C � Eu/ � f .p/

�
:

For a point p 2 � , we define �p as the sum of the slopes of f along unit tangents:

�p WD
X
Eu3T 1

p�

dEuf .p/;

Note that for all but at most a finite number of points p 2 � , we have �p D 0. A
metric graph � has a natural Lebesgue measure denoted by dx. The Laplacian of �
is the (measure valued) operator � on � which to a function f 2 S.�/ associates
the measure

�.f / WD �f 00dx �
X
p2�

�pıp:
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Define the Zhang space Zh.�/ as the space of all functions f 2 S.�/ such that
f 00 2 L1.�; dx/. The inner product . ; / and the Dirichlet pairing . ; /Dir on Zh.�/
are defined by

8f; g 2 Zh.�/; .f; g/ WD

Z
�

fg dx; and

.f; g/Dir WD

Z
�

f�.g/ D

Z
�

g�.f / D

Z
�

f 0g0 dx D .f 0; g0/:

A function f in Zh.�/ is an eigenfunction of the Laplacian on� with eigenvalue�
if for any function g 2 Zh.�/, we have .f; g/Dir D �.f; g/. The eigenvalues
of � are all nonnegative and, assuming � is connected, they form a discrete subset
0 D �0.�/ < �1.�/ < �2.�/ < � � � < �n.�/ < � � � of R. In addition, �k.�/ has
the following (usual) variational characterization:

�k.�/ D inf
ƒkC1�Zh.�/

dim.ƒkC1/DkC1

sup
f 2ƒkC1

.f; f /Dir

.f; f /
: (3.1)

Definition 3.1 (Dilation of a metric graph). Let � be a metric graph with a simple
graph model .G; `/, and ˇ 2 R>0. The metric graph ˇ� is defined as the metric
realization of the pair .G; ˇ`/.

The following proposition is straightforward, see e.g. [2].
Proposition 3.2. Let � be a metric graph and ˇ > 0 a real. For any integer k � 0,
we have �k.ˇ�/ D 1

ˇ2�k.�/.

By ametric starS wemean themetric realization of a pair .Sd ; `/withSd D K1;d
a star graph of arbitrary valence d , and ` a length function on E.Sd /. For such a
metric star, define `max.S/ WD maxe2E.Sd / `.e/.
Lemma 3.3. For any metric star S , we have:

�1.S/ �
�2

4`2max.S/
:

Proof. Assume that S is the metric realization of a pair .Sd ; `/ with d 2 N. We
adapt the argument in [12, Example 3] to the case where the branches of S have
non-necessary equal lengths. Let us parametrize each each edge e of Sd with
the interval Œ0; `e� starting from the leaf vertex towards the central vertex of Sd .
In this parametrization, an eigenfunction � of the Laplacian, with corresponding
eigenvalue �, must be of the form ae cos.

p
�xe/, where xe is the length parameter

of the edge e in S , for e 2 E.Sd /. This follows in particular from the fact that
the slope of an eigenfunction must be zero at leaves. Now let a be the value of the
eigenfunction � at the center of S . If a D 0, we get that

p
�`e 2 �=2 C N, for

any edge e, which implies the claim. If a is non zero, then we use the fact that at
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the center of S , the sum of the (out-going) slopes of � along the branches must be
zero [2, Proposition 15.1], which givesX

e2E.Sd /

ae sin.
p
�`e/ D 0:

Since ae cos.
p
�`e/ D a for any edge e of Sd , this impliesX

e2E.Sd /

tan.
p
�`e/ D 0;

and so, again, at least one of the arguments in the tangents must be at least �=2, and
the lemma follows.

For a simple graph G and a vertex v 2 V.G/, we denote by †G.v/ the star
subgraph of G with central vertex v and with the edge set all the incident edges to v.
Let .G; `/ be a simple graph model of a metric graph � . For any v 2 V.G/, we define
themetric star with center v (with respect toG) of � denoted by SG.v/, or simply Sv
if there is no risk of confusion, as the subset of � isometric to the metric realization
of †G.v/ with length function given by `. Denote by `max;G the maximum length of
edges in G, and note that `max;G D maxv2V.G/f`max.Sv/g.

Given a simple graph model .G; `/ of a metric graph � , the family of all the
metric stars Sv , for v 2 V.G/, forms a 2-fold cover S of � . Denote by �nr

k
.G; `/ the

kth eigenvalue of LS .
Lemma 3.3 together with Theorem 1.2 yields the following bound:

Theorem 3.4. Let � be a metric graph with a simple graph model .G; `/. For any
k 2 N, we have

�k.�/ �
�2

8`2max;G
�nrk .G; `/:

We now show that under certain natural conditions, it is possible to achieve
eigenvalue upper bounds closely matching the lower bounds of the above corollary.
For a simple graphmodel .G; `/ of� denote by `min;G the minimum length of edges e
in E.G/.
Definition 3.5. A simple graph model of a metric graph � is called length-balanced
if for any edge e 2 E.G/, we have `e � 2`min;G .

We have the following theorem.
Theorem 3.6. There are absolute constants c1; c2 > 0 such that for any length-
balanced simple graph model .G; `/ of � on n vertices, and for any non-negative
integer k � n � 1, we have

c2

dmax
`2min;G �k.�/ � �

nr
k .G; `/ � c1`

2
min;G �k.�/:



218 O. Amini and D. Cohen-Steiner CMH

Before giving the proof, we state an interesting corollary of the above theorem.
We first need the following definition.

Definition 3.7. Let � be a metric graph. Define `min as the supremum of `min;G over
all length-balanced simple graph models .G; `/ of � .

It is easy to see that there is a length-balanced simple graph model G of � such
that `min D `min;G . For such a simple graph model .G; `/, define the model .Gk; `/
as the kth subdivision of G where each edge e is subdivided into k edges of equal
lengths `e=k. Note that Gk is length-balanced, has at least k C 1 vertices, and has
minimum edge length equal to `min=k. Thus as a consequence of Theorem 3.6, we
get

Corollary 3.8. With the notations as above, there are absolute constants c1 and c2
such that for any metric graph � , we have

c2

dmax
`2min�k.�/ � k

2�nrk .Gk; `/ � c1`
2
min�k.�/:

Our results, especially corollary 3.8 above, should be viewed as a quantitative
complement to a theorem of X. Faber [11] on the spectral convergence of finite
graphs to metric graphs, in the sense that they provide uniform upper and lower
bounds on the eigenvalues of � in terms of eigenvalues of simple graph models of � .

Proof of Theorem 3.6. First note that since

�k.ˇ�/ D
1

ˇ2
�k.�/

and since
�nrk .G; ˇ`/ D �

nr
k .G; `/;

by the very definition, it will be enough to prove the theorem for `min D 1.
The right hand side inequality follows from Theorem 3.4, and the well-balanced

property of the simple graph model G of � . We now prove the other inequality,
namely the existence of c2 such that for any k � n � 1, c2 �k.�/ � dmax�

nr
k
.G; `/

(still under the assumption that `min D 1 and the length-balanced property of the
model .G; `/). Since the lengths of all edges are between 1 and 2, we get �nr

k
.G; `/ �

1
2dmax

�k.G/. Indeed, letting g D D
1=2

S
f , we have the following expression for the

Rayleigh quotient

.g;LSg/

.g; g/
D

P
eDfu;vg2E `.e/.f .u/ � f .v//

2P
v d

`
vf .v/

2

�
1

2dmax

P
eDfu;vg2E .f .u/ � f .v//

2P
v f .v/

2
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(where d `v D
P
uWu�v `.fu; vg/), which using the variational characterization of

the eigenvalues proves the claim. So it will be enough to show the existence of a
constant c02 such that

c02�k.�/ � �k.G/:

ConsiderWkC1 the vector space of dimension k C 1 generated by the first k C 1
eigenfunctions g0; : : : ; gk 2 C.G/ associated to �i .G/, for i D 0; : : : ; k. Note that
in particular

�k.G/ �
X

u;v2V.G/
u�v

.g.u/ � g.v//2P
v g.v/

2

for any g 2 WkC1 n f0g. We construct an injective linear map ‰WC.G/ ! Zh.�/
such that for any g 2 C.G/ n f0g, we have

.‰.g/;‰.g//Dir

.‰.g/;‰.g//
� 8

X
u;v2V.G/
u�v

.g.u/ � g.v//2P
v g.v/

2
:

Applying the variational characterization of �k.�/, given in Equation (3.1), to the
test space ‰.Wk/, for k � n � 1, will then give the result.

Consider an edge e D fu; vg of G, and denote by ue and ve the two points at
distance 1

4du
and 1

4dv
from u and v on e, respectively, where du and dv denote the

valence of the vertices u and v in G, respectively. Note that the length of each
segment Œue; ve� in � is at least 1

2
.

For any vertex v of G, denote by Bv the union of all segments Œv; ve� on the
edges e adjacent to v in G (i.e. Bv is the ball of radius 1

4dv
around v in �). For any

function g 2 C.G/, defined on the set of vertices of G, let ‰.g/ be the function
on � which takes value equal to g.v/ on each ball Bv , and which is affine linear of
slope .g.v/ � g.u//=`.Œue; ve�/ on each segment Œue; ve�, for any edge e 2 E.G/.
Obviously, ‰ is an injective linear map from C.G/ to Zh.�/.

Let now g 2 C.G/ n f0g and denote f D ‰.g/. We have

.f; f /Dir D

Z
�

f 02dx D
X

eDfu;vg2E.G/

1

`.Œue; ve�/
.g.u/ � g.v//2

� 2
X

fu;vg2E.G/

.g.u/ � g.v//2:

Denote by B the union [v2V.G/Bv . Since each ball Bv has total length equal
to 1=4, we have Z

�

f 2dx �

Z
B

f 2dx D
1

4

X
v2V.G/

g.v/2:
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It thus follows from the two above estimates that for any g 2 C.G/n f0g, we have

.‰.g/;‰.g//Dir

.‰.g/;‰.g//
� 8

X
u;v2V.G/
u�v

.g.u/ � g.v//2P
v g.v/

2
;

and the theorem follows.

4. Anisotropic mesh partitioning

In this final section we discuss a practical application of our transfer theorem to
the mesh partitioning problem in scientific computing. Parallelizing finite elements
computations requires to split the base mesh in such a way that communication
between different pieces is minimized. This is naturally formalized as a (possibly
multi-way) sparsest cut problem, which we may want to solve using spectral
clustering. Guarantees for such methods in this setting were proved by Miller–Teng–
Thurston–Vavasis and Spielman–Teng [24, 27]. More precisely, these papers show
that spectral partitioning provides good cuts for meshes in d -dimensional Euclidean
space provided that all d -simplices in the mesh are well-shaped, i.e. not too far from
being equilateral.

It is not hard to design a 2-fold cover of a general mesh such that our transfer
result provides guarantees for spectral clustering applied to anisotropic meshes.
Specifically, let T be a triangulation of a domainD � Rd . Performing a barycentric
subdivision of all d -simplices gives a triangulation T 0. For a d -simplex � of T , let
now U� be the interior of the union of � with the d C 1 d -simplices of T 0 that share
a facet with � . The collection of U� forms a 2-fold cover U of the domain, and the
corresponding Laplacian LU is defined using weightsw�1;�2

that are proportional to
the sum of the volumes of �1 and �2. Hence, assuming that neighboring d -simplices
in T have volumes within a ratio of � > 1, we see that the eigenvalues of LU and
those of the normalized Laplacian of the dual graph of T are also within a ratio of �.
Proposition 4.1. The Neumann value ofU� is at leastC�1��1��2 for some universal
constant C > 0, where � is the maximum diameter of simplices in T .

Proof. Let �i , i D 1 : : : d C 1, be the d -simplices in T 0 that share a facet with � ,
and �i be the d -simplex in T 0 that is included in � and shares a facet with �i .
The interiors of � , �i , and of �i [ �i form a 2-fold cover of U� . The entries of
the corresponding Laplacian are within a factor � of the those of the normalized
Laplacian of the intersection graph of the elements of the cover, which is a once
subdivided star graph. Such a star graph has Fiedler value lower bounded by a
constant. Now each element in the cover is a convex set with diameter at most 2�, so
by [26] their Neumann value is lower bounded by a constant times ��2. The claim
then follows from Theorem 1.2.
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Therefore, Theorem 1.2 applied to the cover U yields that the Fiedler value of
the dual graph of T is at most 2C�2�1.D/�2. By Cheeger’s inequality, a suitable
spectral partitioning algorithm gives a balanced cut of size at most �C 0

p
�1.D/=�,

for some constant C 0. We note that if d -simplices in T are nearly equilateral, then
� ' .vol.D/=n/1=d , where n is the number of simplices in T . Hence in this case
we recover the n1=d behaviour proved in [24, 27] for the size of the cut, since the
assumption that simplices are well-shaped implies an upper bound on �. However, the
methods used in those works do not seem to apply to the case of general anisotropic
meshes.

Acknowledgements. This work was started during a stay of the first named author
at Laboratoire J. A. Dieudonné at Université de Nice Sophia-Antipolis, and pursued
during another visit at INRIA Sophia-Antipolis. He thanks both these institutions,
specially Philippe Maisonobe and Jean-Daniel Boissonnat, for their support.

This research has been partially supported by the European Research Council
under Advanced Grant 339025 GUDHI (Geometry Understanding in High Dimen-
sions).

References

[1] N. Alon and V. D. Milman, �1, Isoperimetric inequalities for graphs, and superconcen-
trators, J. Combin. Theory Ser. B, 38 (1985), 73–88. Zbl 0549.05051 MR 782626

[2] M. Baker and R. Rumely, Harmonic analysis on metrized graphs, Canad. J. Math., 59
(2007), 225–275. Zbl 1123.43006 MR 2310616

[3] R. Brooks, The spectral geometry of a tower of coverings, J. Differential Geom., 23 (1986),
97–107. Zbl 0576.58033 MR 840402

[4] R. Brooks and E. Makover, Random construction of Riemann surfaces, J. Differential
Geom., 68 (2004), 121–157. Zbl 1095.30037 MR 2152911

[5] M. Burger, Petites valeurs propres du Laplacien et topologie de Fell, thèse de doctorat,
Econom Druck AG (Basel), 1986.

[6] P. Buser, Cubic graphs and the first eigenvalue of a Riemann surface,Math. Z., 162 (1978),
no. 1, 87–99. Zbl 0371.53032 MR 505920

[7] B. Colbois and A. El Soufi, Extremal eigenvalues of the Laplacian in a conformal class
of metrics: the “conformal spectrum”, Ann. Global Anal. Geom., 24 (2003), 337–349.
Zbl 1036.58026 MR 2015867

[8] B. Colbois and D. Maerten, Eigenvalue estimates for the Neumann problem of a bounded
domain, J. Geom. Anal., 18 (2008), 1022–1032. Zbl 1158.58014 MR 2438909

[9] B. Colbois and Y. Colin de Verdière, Sur la multiplicité de la première valeur propre d’une
surface de Riemann à courbure constante, Comment. Math. Helv., 63 (1988), 194–208.
Zbl 0656.53043 MR 948777

https://zbmath.org/?q=an:0549.05051
http://www.ams.org/mathscinet-getitem?mr=782626
https://zbmath.org/?q=an:1123.43006
http://www.ams.org/mathscinet-getitem?mr=2310616
https://zbmath.org/?q=an:0576.58033
http://www.ams.org/mathscinet-getitem?mr=840402
https://zbmath.org/?q=an:1095.30037
http://www.ams.org/mathscinet-getitem?mr=2152911
https://zbmath.org/?q=an:0371.53032
http://www.ams.org/mathscinet-getitem?mr=505920
https://zbmath.org/?q=an:1036.58026
http://www.ams.org/mathscinet-getitem?mr=2015867
https://zbmath.org/?q=an:1158.58014
http://www.ams.org/mathscinet-getitem?mr=2438909
https://zbmath.org/?q=an:0656.53043
http://www.ams.org/mathscinet-getitem?mr=948777


222 O. Amini and D. Cohen-Steiner CMH

[10] Y. Colin de Verdière, Spectres de variétés Riemanniennes et spectres de graphes, in Proc.
Int. Congr. Math. (Berkeley, Calif., 1986). Vol. 1, 522–530, Providence, RI, American
Mathematical Society, 1987. Zbl 0693.58034 MR 934252

[11] X. Faber, Spectral convergence of the discrete Laplacian on models of a metrized graph,
New York J. Math., 12 (2006), 97–121. Zbl 1111.35015 MR 2242527

[12] L. Friedlander, Extremal properties of eigenvalues for a metric graph, Ann. Inst. Fourier
(Grenoble), 55 (2005), 199–211. Zbl 1074.34078 MR 2141695

[13] J. Hersch, Quatre propriétés isopérimétriques de membranes sphériques homogènes, C.
R. Acad. Sci. Paris Sér. A-B, 270 (1970), A1645–A1648. Zbl 0224.73083 MR 292357

[14] A. Grigor’yan, Y. Netrusov, and S.T. Yau, Eigenvalues of elliptic operators and geometric
applications, Surv. Differ. Geom., IX (2004), 147–217. Zbl 1061.58027 MR 2195408

[15] A. Hassannezhad, Conformal upper bounds for the eigenvalues of the Laplacian and
Steklov problem, J. Funct. Anal., 261 (2011), 3419–3436. Zbl 1232.58023 MR 2838029

[16] J. Kelner, Spectral partitioning, eigenvalue bounds, and circle packings for graphs of
bounded genus, SIAM J. Comput., 35 (2006), 882–902. Zbl 1096.05048 MR 2203731

[17] J. Kelner, J. R. Lee, G. Price, and S. H. Teng, Metric uniformization and spectral bounds
for graphs, Geom. Funct. Anal., 21 (2011), 1117–1143. Zbl 1229.05094 MR 2846385

[18] G. Kokarev, Variational aspects of Laplace eigenvalues on Riemannian surfaces, Adv.
Math., 258 (2014), 191–239. Zbl 1296.58020 MR 3190427

[19] N. Korevaar, Upper bounds for eigenvalues of conformal metrics, J. Differential Geom.,
37 (1993), 73–93. Zbl 0794.58045 MR 1198600

[20] J. R. Lee, S. O. Gharan, and L. Trevisan, Multi-way spectral partitioning and higher-order
Cheeger inequalities, inProceedings of the forty-fourth annual ACMSymposium on Theory
of Computing (STOC ’12), 1117–1130, ACM, New York, NY, USA. Zbl 1286.05091
MR 2961569

[21] P. Li, S. T. Yau, A new conformal invariant and its application to the Willmore
conjecture and the first eigenvalue of compact surfaces, Invent. Math., 69 (1982), 269–291.
Zbl 0503.53042 MR 674407

[22] A. Louis, P. Raghavendra, P. Tetali, and S. Vempala, Many sparse cuts via higher
eigenvalues, in Proceedings of the forty-fourth annual ACM Symposium on Theory
of Computing (STOC ’12), 1131–1140, ACM, New York, NY, USA. Zbl 1286.05095
MR 2961570

[23] T. Mantuano, Discretization of compact Riemannian manifolds applied to the spectrum of
the Laplacian, Ann. Global Anal. Geom., 27 (2005), 33–46. Zbl 1077.58018 MR 2130531

[24] G. L. Miller, S. H. Teng, W. Thurston, S. A. Vavasis, Geometric separators for finite
element meshes, SIAM J. Scientific Computing, 19 (1998), 364–386. Zbl 0914.65123
MR 1618871

[25] B. Mohar, C. Thomassen, Graphs on surfaces, Johns Hopkins University Press, 2001.
Zbl 0979.05002 MR 1844449

[26] L. E. Payne and H. F. Weinberger, An optimal Poincaré inequality for convex domains,
Arch. Rational. Mech. Anal., 5 (1960), 286–292. Zbl 0099.08402 MR 117419

[27] D. Spielman and S. H. Teng, Spectral partitioning works: Planar graphs and finite element
meshes, Linear Algebra Appl., 421 (2007), 284–305. Zbl 1122.05062 MR 2294342

https://zbmath.org/?q=an:0693.58034
http://www.ams.org/mathscinet-getitem?mr=934252
https://zbmath.org/?q=an:1111.35015
http://www.ams.org/mathscinet-getitem?mr=2242527
https://zbmath.org/?q=an:1074.34078
http://www.ams.org/mathscinet-getitem?mr=2141695
https://zbmath.org/?q=an:0224.73083
http://www.ams.org/mathscinet-getitem?mr=292357
https://zbmath.org/?q=an:1061.58027
http://www.ams.org/mathscinet-getitem?mr=2195408
https://zbmath.org/?q=an:1232.58023
http://www.ams.org/mathscinet-getitem?mr=2838029
https://zbmath.org/?q=an:1096.05048
http://www.ams.org/mathscinet-getitem?mr=2203731
https://zbmath.org/?q=an:1229.05094
http://www.ams.org/mathscinet-getitem?mr=2846385
https://zbmath.org/?q=an:1296.58020
http://www.ams.org/mathscinet-getitem?mr=3190427
https://zbmath.org/?q=an:0794.58045
http://www.ams.org/mathscinet-getitem?mr=1198600
https://zbmath.org/?q=an:1286.05091
http://www.ams.org/mathscinet-getitem?mr=2961569
https://zbmath.org/?q=an:0503.53042
http://www.ams.org/mathscinet-getitem?mr=674407
https://zbmath.org/?q=an:1286.05095
http://www.ams.org/mathscinet-getitem?mr=2961570
https://zbmath.org/?q=an:1077.58018
http://www.ams.org/mathscinet-getitem?mr=2130531
https://zbmath.org/?q=an:0914.65123
http://www.ams.org/mathscinet-getitem?mr=1618871
https://zbmath.org/?q=an:0979.05002
http://www.ams.org/mathscinet-getitem?mr=1844449
https://zbmath.org/?q=an:0099.08402
http://www.ams.org/mathscinet-getitem?mr=117419
https://zbmath.org/?q=an:1122.05062
http://www.ams.org/mathscinet-getitem?mr=2294342


Vol. 93 (2018) A transfer principle and applications to eigenvalue estimates for graphs 223

[28] P. Yang and S. T. Yau, Eigenvalues of the Laplacian of compact Riemann surfaces
and minimal submanifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4 (1980), 55–63.
Zbl 0446.58017 MR 577325

[29] S. Zhang, Admissible pairing on a curve, Invent. Math., 112 (1993), 171–193.
Zbl 0795.14015 MR 1207481

Received August 25, 2016

O. Amini, CNRS, Département de mathématiques et applications,
École Normale Supérieure, 45, Rue d’Ulm, 75005 Paris, France
E-mail: oamini@math.ens.fr
D. Cohen-Steiner, INRIA, 2004 Route des Lucioles, BP93,
06902 Sophia-Antipolis, France
E-mail: david.cohen-steiner@inria.fr

https://zbmath.org/?q=an:0446.58017
http://www.ams.org/mathscinet-getitem?mr=577325
https://zbmath.org/?q=an:0795.14015
http://www.ams.org/mathscinet-getitem?mr=1207481
mailto:oamini@math.ens.fr
mailto:david.cohen-steiner@inria.fr

	Introduction
	Statement of the main theorem on eigenvalues of bounded genus graphs
	Two-fold covers and their associated discrete Laplacians
	Organization of the paper

	Eigenvalues of bounded genus graphs
	Eigenvalues on measured surfaces
	Proof of Theorem 1.2
	Proof of Theorem 1.1

	Eigenvalues of the Laplacian on metric graphs
	Anisotropic mesh partitioning

