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On p-adic absolute Hodge cohomology
and syntomic coefficients. I
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Abstract. We interpret syntomic cohomology defined in [50] as a p-adic absolute Hodge
cohomology. This is analogous to the interpretation of Deligne–Beilinson cohomology as an
absolute Hodge cohomology by Beilinson [8] and generalizes the results of Bannai [6] and
Chiarellotto, Ciccioni, Mazzari [15] in the good reduction case. This interpretation yields a
simple construction of the syntomic descent spectral sequence and its degeneration for projective
and smooth varieties. We introduce syntomic coefficients and show that in dimension zero they
form a full triangulated subcategory of the derived category of potentially semistable Galois
representations.

Along the way, we obtainp-adic realizations of mixedmotives including p-adic comparison
isomorphisms. We apply this to the motivic fundamental group generalizing results of Olsson
and Vologodsky [56, 71].
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1. Introduction

In [8], Beilinson gave an interpretation of Deligne–Beilinson cohomology as an
absolute Hodge cohomology, i.e. as derived Hom in the derived category of mixed
Hodge structures. This approach is advantageous: absolute Hodge cohomology
allows coefficients. It follows that Deligne–Beilinson cohomology can be interpreted
as derived Hom between Tate twists in the derived category of Saito’s mixed Hodge
modules [38, A.2.7].

Syntomic cohomology is a p-adic analog of Deligne–Beilinson cohomology.
The purpose of this paper is to give an analog of the above results for syntomic
cohomology. Namely, we will show that the syntomic cohomology introduced in [50]
is ap-adic absolute Hodge cohomology, i.e. it can be expressed as derived Hom in the
derived category of p-adic Hodge structures, and we will begin the study of syntomic
�The authors’ research was supported in part by the ANR (grants ANR-12-BS01-0002 and ANR-14-

CE25, respectively).
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coefficients — an approximation of p-adic Hodge modules. This generalizes the
results of Bannai [6] and Chiarellotto, Ciccioni, Mazzari [15] in the good reduction
case.

Let K be a complete discrete valuation field of mixed characteristic .0; p/ with
perfect residue field k. Let GK D Gal. xK=K/ be the Galois group of K. For the
category of p-adic Hodge structures we take the abelian category DFK of (weakly)
admissible filtered .';N;GK/-modules defined by Fontaine. For a varietyX overK,
we construct a complex R�DFK

.X xK ; r/ 2 D
b.DFK/, r 2 Z. The absolute Hodge

cohomology of X is then by definition

R�H .X; r/ WD RHomDb.DFK/
.K.0/;R�DFK

.X xK ; r//; r 2 Z:

For r � 0, it coincides with the syntomic cohomology R�syn.X; r/ defined in [50].
Recall that the latter was defined as the following mapping fiber

R�syn.X; r/ D ŒR�BHK.X/
'Dpr ;ND0 �dR

��!R�dR.X/=F
r �;

where R�BHK.X/ is the Beilinson–Hyodo–Kato cohomology from [10], R�dR.X/ is
the Deligne de Rham cohomology, and the map �dR is the Beilinson–Hyodo–Kato
map.

We present two approaches to the definition of the complex R�DFK
.X xK ; r/. In

the first one, we follow Beilinson’s construction of the complex of mixed Hodge
structures associated to a variety [8]. Thus, we build the dg category DpH of p-
adic Hodge complexes (an analog of Beilinson’s mixed Hodge complexes) which is
obtained by gluing two dg categories, one, corresponding morally to the special fiber,
whose objects are equipped with an action of a Frobenius and a monodromy operator,
and the other one, corresponding to the generic fiber, whose objects are equippedwith
a filtration thought of as the Hodge filtration on de Rham cohomology. It contains
a dg subcategory of admissible p-adic Hodge complexes with cohomology groups
belonging to DFK . The category Dad

pH admits a natural t -structure whose heart is
the category DFK and Dad

pH is equivalent to the derived category of its heart. That
is, we have the following equivalences of categories

� WDFK
�
�! D

ad;~
pH ; � WDb.DFK/

�
�! Dad

pH :

The interest of the category Dad
pH lies in the fact that, for r 2 Z, a variety X over K

gives rise to the admissible p-adic Hodge complex

R�pH .X xK ; r/ WD .R�
B
HK.X xK ; r/; .R�dR.X/; F

�Cr/; �dR/ 2 Dad
pH

We define R�DFK
.X xK ; r/ WD �

�1R�pH .X xK ; r/.
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Since the category DFK is equivalent to that of potentially semistable
representations [20], i.e. we have a functor VpstWDFK

�
�! Reppst.GK/, we can also

write
R�H .X; r/ D HomDb.Reppst.GK//

.Qp;R�pst.X xK ; r//;

for R�pst.X xK ; r/ WD VpstR�DFK
.X xK ; r/. Using Beilinson’s comparison theo-

rems [10] we prove that R�pst.X xK ; r/ ' R�Ket.X xK ;Qp.r// as Galois modules. It
follows that there is a functorial syntomic descent spectral sequence (constructed
originally by a different, more complicated, method in [50])

HE
i;j
2 WD H

i
st.GK ;H

j

Ket .X xK ;Qp.r///) H
iCj

H
.X; r/;

where H i
st.GK ; �/ WD ExtiReppst.GK/

.Qp; �/. By a classical argument of Deligne [25],
it follows from Hard Lefschetz Theorem, that it degenerates at E2 for X projective
and smooth.

A more direct definition of the complex R�DFK
.X xK ; r/, or, equivalently, of

the complex R�pst.X xK ; r/ of potentially semistable representations associated to
a variety was proposed by Beilinson [11] using Beilinson’s Basic Lemma. This
lemma allows one to associate a potentially semistable analog of a cellular complex
(of a CW-complex) to an affine variety X over K: one stratifies the variety by
closed subvarieties such that consecutive relative geometric étale cohomology is
concentrated in the top degree (and is a potentially semistable representation). For a
general X one obtains Beilinson’s potentially semistable complex by a Čech gluing
argument.

All the p-adic cohomologies mentioned above (de Rham, étale, Hyodo–Kato,
and syntomic) behave well, hence they lift to realizations of both Nori’s abelian and
Voevodsky’s triangulated category of mixed motives. We also lift the comparison
maps between them, thus obtaining comparison theorems for mixed motives. We
illustrate this construction by two applications. The first one is a p-adic realization
of the motivic fundamental group including a potentially semistable comparison
theorem. We rely on Cushman’s motivic (in the sense of Nori) theory of the
fundamental group [22]. This generalizes results obtained earlier for curves and
proper varieties with good reduction [1, 37, 56, 71]. The second is a compatibility
result. We show that Beilinson’s p-adic comparison theorems (with compact support
or not) are compatible with Gysin morphisms and (possibly mixed) products.

To define a well-behaved notion of syntomic coefficients (i.e. coefficients for
syntomic cohomology) we useMorel-Voevodskymotivic homotopy theory, and more
precisely the concept of modules over (motivic) ring spectra. Recall that objects of
motivic stable homotopy theory, called spectra, represent cohomology theories with
suitable properties. Amultiplicative structure on the cohomology theory corresponds
to a monoid structure on the representing spectrum, which is then called a ring
spectrum. These objects should be be thought of as a generalization of (h-sheaves1 of)

1An h-sheaf is a sheaf for the h-topology. The h-topology is the Grothendieck topology generated by
universal topological epimorphisms (see [69, 3.1.2]).
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differential graded algebras. In fact, as we will only consider ordinary cohomology
theories (as opposed to K-theory or algebraic cobordism with integral coefficients),
we will always restrict to this later concept. Therefore modules over ring spectra
should be understood as the more familiar concept of modules over differential
graded algebras.

One of the basic examples of a representable cohomology theory is de Rham
cohomology in characteristic 0. Denote the corresponding motivic ring spectrum
by EdR. By [18, 28], working relatively to a fixed complex variety X , modules
over EdR;X satisfying a suitable finiteness condition correspond naturally to (regular
holonomic) DX -modules of geometric origin.

In [50] it is shown that syntomic cohomology can be represented by a motivic dg
algebra Esyn, i.e. we have

R�syn.X; r/ D RHomDMh.K;Qp/.M.X/;Esyn.r//; (1.1)

where M.X/ is the Voevodsky’s motive associated to X and DMh.K;Qp/ is the
category of h-motives. So we have the companion notion of syntomic modules, that
is, modules over the motivic dg-algebra Esyn. The main advantage of this definition
is that the link with mixed motives is rightly given by the construction and, most of
all, the 6 functors formalism follows easily from the motivic one.

Now the crucial question is to understand how the category of syntomic modules
is related to the category of filtered .';N;GK/-modules, the existing candidates for
syntomic smooth sheaves [30, 31, 62, 66], and the category of syntomic coefficients
introduced in [24] by a method analogous to the one we use but based on Gros-
Besser’s version of syntomic cohomology. In this paper we study this question only
in dimension zero, i.e. for syntomicmodules over the base field. With a suitable notion
of finiteness for syntomic modules, called constructibility, we prove the following
theorem.
Theorem (Theorem 5.13). The triangulated monoidal category of constructible
syntomic modules over a p-adic field K is equivalent to a full subcategory of the
derived category of admissible filtered .';N;GK/-modules.

It implies, by adjunction from (1.1), that p-adic absolute Hodge cohomology
coincides with derived Hom in the (homotopy) category of syntomic modules, i.e. we
have

R�H .X; r/ D RHomEsyn- modX
.Esyn;X ;Esyn;X .r//:

In the conclusion of the paper, we use syntomic modules to introduce new
notions of p-adic Galois representations (Definition 5.20). We define geometric
representations which correspond to the common intuition of representations
associated to (mixed) motives, and constructible representations, corresponding to
cohomology groups of Galois realizations of syntomic modules.

We expect that the categories of geometric, constructible, and potentially
semistable representations are not the same. This is at least what is predicted by
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the current general conjectures. Note that this is in contrast to the case of number
fields where the analogs of these notions are conjectured to coincide with the known
definition of “representations coming from geometry” [34].

1.0.1. Notation. Let OK be a complete discrete valuation ring with fraction fieldK
of characteristic 0, with perfect residue field k of characteristic p. Let xK be an
algebraic closure ofK. LetW.k/ be the ring ofWitt vectors ofkwith fraction fieldK0
and denote by Knr

0 the maximal unramified extension of K0. Set GK D Gal. xK=K/
and let IK denote its inertia subgroup. Let ' be the absolute Frobenius on Knr

0 . We
will denote by OK , O�K , and O0

K the scheme Spec.OK/ with the trivial, canonical
(i.e. associated to the closed point), and .N! OK ; 1 7! 0/ log-structure respectively.
For a scheme X over W.k/, Xn will denote its reduction mod pn, X0 will denote
its special fiber. Let VarK denote the category of varieties over K, i.e. reduced,
separated, K-schemes of finite type.

For a dg category C with a t -structure, we will denote by C~ the heart of
the t -structure. We will use a shorthand for certain homotopy limits. Namely, if
f WC ! C 0 is a map in the dg derived category of abelian groups , we set

Œ C
f // C 0 � WD holim.C ! C 0  0/:

And, if

C1

��

f // C2

��
C3

g // C4

is a commutative diagram in the dg derived category of abelian groups , we set26664
C1

��

f // C2

��
C3

g // C4

37775 WD �ŒC1 f
! C2�! ŒC3

g
! C4�

�
:
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2. A p-adic absolute Hodge cohomology. I

2.1. The derived category of admissible filtered .'; N; GK /-modules.
2.1. For a field K, let VK denote the category of K-vector spaces. It is an abelian
category. Wewill denote byDb.VK/ its bounded derived dg category and byDb.VK/

—its bounded derived category. LetV KdR denote the category ofK-vector spaces with
a descending exhaustive separated filtration F �. The category V KdR (and the category
of bounded complexes C b.V KdR /) is additive but not abelian. It is an exact category
in the sense of Quillen [57], where short exact sequences are exact sequences of
K-vector spaces with strict morphisms (recall that a morphism f WM ! N is strict
if f .F iM/ D F iN \ im.f /). It is also a quasi-abelian category in the sense of [61]
(see [60, 2] for a quick review). Thus its derived category can be studied as usual
(see [12]).

An object M 2 C b.V KdR / is called a strict complex if its differentials are strict.
There are canonical truncation functors on C b.V KdR /:

��nM WD � � � !M n�2
!M n�1

! ker.dn/! 0! � � �

��nM WD � � � ! 0 � � � ! coim.dn�1/!M n
!M nC1

! � � �

with cohomology objects

��n��n.M/ D � � � ! 0! coim.dn�1/! ker.dn/! 0! � � �

We will denote the bounded derived dg category of V KdR by Db.V KdR /. It is defined as
the dg quotient [29] of the dg category C b.V KdR / by the full dg subcategory of strictly
exact complexes [48]. A map of complexes is a quasi-isomorphism if and only if it
is a quasi-isomorphism on the grading. The homotopy category of Db.V KdR / is the
bounded filtered derived categoryDb.V KdR /.

For n 2 Z, let Db
�n.V

K
dR / (resp., Db

�n.V
K
dR /) denote the full subcategory of

Db.V KdR / of complexes that are strictly exact in degrees k > n (resp., k < n)2. The
above truncation maps extend to truncations functors

��nWD
b.V KdR /! Db

�n.V
K
dR / and ��nWD

b.V KdR /! Db
�n.V

K
dR /:

The pair .Db
�n.V

K
dR /;D

b
�n.V

K
dR /) defines a t-structure onDb.V KdR / by [61]. The heart

Db.V KdR /
~ is an abelian category LH.V KdR /. We have an embedding

V KdR ,! LH.V KdR /

that induces an equivalence

Db.V KdR /
�
�! Db

�
LH.V KdR /

�
:

This t-structure pulls back to a t-structure on the derived dg category Db.V KdR /.

2Recall [61, 1.1.4] that a sequence A
e
�! B

f
�! C such that fe D 0 is called strictly exact if the

morphism e is strict and the natural map im e! kerf is an isomorphism.



Vol. 93 (2018) On p-adic absolute Hodge cohomology and syntomic coefficients. I 77

2.2. Let the field K be again as at the beginning of this article. A '-module
over K0 is a pair .D; '/, where D is a K0-vector space and the Frobenius ' D 'D
is a '-semilinear endomorphism of D. We will usually write D for .D; '/. The
category MK0

.'/ of '-modules over K0 is abelian and we will denote by Db
K0
.'/

its bounded derived dg category.
For D1;D2 2 MK0

.'/, let HomK0;'.D1;D2/ denote the group of Frobenius
morphisms. We have the exact sequence

0! HomK0;'.D1;D2/! HomK0
.D1;D2/! HomK0

.D1; '�D2/; (2.1)

where the last map is ıW x 7! 'D2
x � '�.x/'D1

. Set Hom]K0;'
.D1;D2/ WD

Cone.ı/Œ�1�. Beilinson proves the following lemma.
Lemma 2.3 ([10, 1.13, 1.14]). ForD1;D2 2 Db

K0
.'/, the map

RHomK0;'.D1;D2/! Hom]K0;'
.D1;D2/

is a quasi-isomorphism, i.e.

RHomK0;'.D1;D2/ D Cone
�
HomK0

.D1;D2/
ı
! HomK0

.D1; '�D2/
�
Œ�1�:

Proof. Note that, for D1;D2 2 Db
K0
.'/, from the exact sequence (2.1), we get a

map

˛WRHomK0;'.D1;D2/

! Cone
�
RHomK0

.D1;D2/
ı
�! RHomK0

.D1;R'�D2/
�
Œ�1�:

Since

RHomK0
.D1;D2/ ' HomK0

.D1;D2/;

RHomK0
.D1;R'�D2/ ' HomK0

.D1; '�D2/

it suffices to show that the map ˛ is a quasi-isomorphism.
The forgetful functor MK0

.'/ ! VK0
has a right adjoint M ! M' , where the

'-module M' WD
Q
n�0 '

n
�M with Frobenius 'M'

W .x0; x1; : : : ; / ! .x1; x2; : : :/.
The functor M ! M' is left exact and preserves injectives. Since all K0-modules
are injective, the map M ! M' , m 7! .m; '.m/; '2.m/; : : :/, embeds M into an
injective '-module. It suffices thus to check that the map ˛ is a quasi-isomorphism
forD1 any '-module andD2 D G' . We calculate

RHomK0;'.D1; G'/
�
 � HomK0;'.D1; G'/

�
�! Cone

�
HomK0

.D1; G'/
ı
! HomK0

.D1; '�G'/
�
Œ�1�

�
�! Cone

�
RHomK0

.D1; G'/
ı
! RHomK0

.D1;R'�G'/
�
Œ�1�:

This proves the lemma.
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2.4. A .';N /-module is a triple .D; 'D; N / (abbreviated often toD), where .D; 'D/
is a finite rank '-module over K0 and 'D is an automorphism, and N is a K0-linear
endomorphism ofD such that N'D D p'DN (hence N is nilpotent). The category
MK0

.';N / of .';N /-modules is naturally a Tannakian tensor Qp-category and
.M; 'M ; N / 7!M is a fiber functor over K0. Denote by Db

';N .K0/ andD
b
';N .K0/

the corresponding bounded derived dg category and bounded derived category,
respectively.

For .';N /-modules M;T , let Hom';N .M; T / be the group of .';N /-module
morphisms. Let Hom]';N .M; T / be the complex [10, 1.15]

HomK0
.M; T /! HomK0

.M; '�T /˚ HomK0
.M; T /! HomK0

.M; '�T /

beginning in degree 0 and with the following differentials

d0W x 7! .'2x � x'1; N2x � xN1/I

d1W .x; y/ 7! .N2x � pxN1 � p'2y C y'1/:

Clearly, we have Hom';N .M; T / D H 0Hom]';N .M; T /. Complexes Hom]';N
compose naturally and supply a dg category structure on the category of bounded
complexes of .';N /-modules.

Beilinson states the following fact.
Lemma 2.5 ([10, 1.15]). ForD1;D2 2 Db

K0
.';N /, the map

RHom';N .D1;D2/! Hom]';N .D1;D2/

is a quasi-isomorphism, i.e.

RHom';N .D1;D2/ D

26664
HomK0

.D1;D2/
ı1 //

ı2

��

HomK0
.D1; '�D2//

ı0
2

��
HomK0

.D1;D2/
ı0

1 // HomK0
.D1; '�D2//

37775
Here

ı1W x 7! '2x � x'1; ı01W x 7! p'2x � x'1I

ı2W x 7! N2x � xN1; ı02W x 7! N2x � pxN1:

Proof. By devissage we may assume thatD1;D2 are just .';N /-modules placed in
degree 0. By devissage on m such that NmD1 D 0, we may assume that N D 0

onD1. Fix such aD1. Since, clearly, the map in the lemma induces an isomorphism
on H 0, it suffices to show that, as a functor of D2, the cohomology groups H i ,
i D 1; 2, are effaceable in the category of .';N /-modules.
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We will start withH 2. To killH 2Hom]';N .D1;D2/ by an injectionD2 ,! D3,
take m such that Nm D 0 onD2 and define

L.m/ WD K0.0/˚K0.1/˚ � � � ˚K0.m/; N W .a0; : : : ; am/ 7! .a1; : : : ; am; 0/;

f WD2 ! D3 WD D2 ˝K0
L.m/; a 7! .a; 0; : : : ; 0/:

It is easy to check (by induction on m) that, for every x 2 D2 there exists a y 2 D3,
y D .0; y1; : : : ; ym/ such that Ny D x in D3. It follows that the same property
holds for the map

ı02WHomK0
.D1; '�D2/! HomK0

.D; '�D2/;

killingH 2 as wanted.
To treatH 1, pass first toD3 as above so that, for every class

x 2 H 1Hom]';N .D1;D2/;

f .x/ can be represented by an element y 2 HomK0
.D1; '�D

ND0
3 /. By Lemma 2.3,

there exists a finite '-module M , where ' is an isomorphism, and an embedding
DND0
3 ,!M such that the image of

HomK0
.D1; '�D

ND0
3 /! HomK0

.D1; '�M/

is in the image ofHomK0
.D1;M/by themap ı1. Note that ı2D0 on HomK0

.D1;M/.
It follows that the pushoutD4 D D3

`
DND0

3
M killsH 1Hom]';N .D1;D2/, i.e. that

the image of the map

H 1Hom]';N .D1;D2/! H 1Hom]';N .D1;D4/

is zero. This concludes our proof.

2.6. A filtered .';N /-module is a tuple .D0; ';N; F �/, where .D0; ';N / is
a .';N /-module and F � is a decreasing finite filtration of DK WD D0 ˝K0

K

by K-vector spaces. There is a notion of a (weakly) admissible filtered
.';N /-module [20]. Denote by

MF ad
K .';N / �MFK.';N / �MK0

.';N /

the categories of admissible filtered .';N /-modules, filtered .';N /-modules, and
.';N /-modules, respectively. We know [20] that the pair of functors

Dst.V / D .Bst ˝Qp
V /GK ; DK.V / D .BdR ˝Qp

V /GK I

Vst.D/ D .Bst ˝K0
D0/

'DId;ND0
\ F 0.BdR ˝K DK/
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defines an equivalence of categories MF ad
K .';N / ' Repst.GK/ � Rep.GK/,

where the last two categories denote the subcategory of semistable Galois represent-
ations [32] of the category of finite dimensional Qp-linear representations of the
Galois group GK . The rings Bst and BdR are the semistable and de Rham period
rings of Fontaine [32]. The category MF ad

K .';N / is naturally a Tannakian tensor
Qp-category and .D0; ';N; F �/ 7! D0 is a fiber functor over K0.

A filtered .';N;GK/-module is a tuple .D0; ';N; �; F �/, where
(1) D0 is a finite dimensional Knr

0 -vector space;
(2) 'WD0 ! D0 is a Frobenius map;
(3) N WD0 ! D0 is a Knr

0 -linear monodromy map such that N' D p'N ;
(4) � is a Knr

0 -semilinear GK-action on D (hence �jIK is linear) that is smooth,
i.e. all vectors have open stabilizers, and that commutes with ' and N ;

(5) F � is a decreasing finite filtration ofDK WD .D˝Knr
0

xK/GK byK-vector spaces.
Morphisms between filtered .';N;GK/-modules areKnr

0 -linear maps preserving all
structures. There is a notion of a (weakly) admissible filtered .';N;GK/-module
[20, 33]. Denote by

DFK WDMF
ad
K .';N;GK/ �MFK.';N;GK/ �MK.';N;GK/

the categories of admissible filtered .';N;GK/-modules (DF stands for Dieudonné–
Fontaine), filtered .';N;GK/-modules, and .';N;GK/-modules, respectively. The
last category is built from tuples .D0; ';N; �/ having properties 1, 2, 3, 4 above. We
know [20] that the pair of functors

Dpst.V / D inj lim
H

.Bst ˝Qp
V /H ; H � GK � an open subgroup,

DK.V / WD .V ˝Qp
BdR/

GK I

Vpst.D/ D .Bst ˝Knr
0
D0/

'DId;ND0
\ F 0.BdR ˝K DK/

define an equivalence of categoriesMF ad
K .';N;GK/ ' Reppst.GK/, where the last

category denotes the category of potentially semistable Galois representations [32].
We have the abstract period isomorphisms

�pstWDpst.V /˝Knr
0
Bst ' V ˝Qp

Bst; �dRWDK.V /˝K BdR ' V ˝Qp
BdR; (2.2)

where the first one is compatible with the action of ';N , and GK , and the second
one is compatible with filtration. The categoryMF pst

K is naturally a Tannakian tensor
Qp-category and .D0; ';N; �; F �/ 7! D0 is a fiber functor overKnr

0 . We will denote
by Db.DFK/ and Db.DFK/ its bounded derived dg category and bounded derived
category, respectively.

The category MK.';N;GK/ is abelian. We will denote by Db
K.';N;GK/

and Db
K.';N;GK/ its bounded derived dg category and bounded derived category,
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respectively. For .';N;GK/-modulesM;T , let Hom';N;GK
.M; T / be the group of

.';N;GK/-module morphisms and let HomGK
.M; T / be the group of Knr

0 -linear
and GK- equivariant morphisms. Let Hom]';N;GK

.M; T / be the complex

HomGK
.M; T /! HomGK

.M; '�T /˚ HomGK
.M; T /! HomGK

.M; '�T /:

This complex is supported in degrees 0; 1; 2 and the differentials are as above for
.';N /-modules. Clearly, we have Hom';N;GK

.M; T / D H 0Hom]';N;GK
.M; T /.

Complexes Hom]';N;GK
compose naturally. Arguing as in the proof of Lemma 2.5,

we can show that, forM;T 2 Db
K.';N;GK/,

RHom';N;GK
.M; T / ' Hom]';N;GK

.M; T /: (2.3)

Let M , T be two complexes in C b.MFK.';N;GK//. Define the complex
Hom[.M; T / as the following homotopy fiber

Hom[.M; T / WD Cone
�
Hom]';N;GK

.M0; T0/˚ HomdR.MK ; TK/

can� can
�����! HomGK

.M xK ; T xK/
�
Œ�1�;

whereHomdR.MK ; TK/ is the group of filteredK-linearmorphisms andHomGK
.M xK ; T xK/

is the group of GK-equivariant, xK-linear morphisms. Complexes Hom[ compose
naturally.
Proposition 2.7. We have RHomDFK

.M; T / ' Hom[.M; T /:

Proof. We follow the method of proof of Beilinson and Bannai [8, Lemma 1.7],
[6, Prop. 1.7]. Denote by fM;T the morphism in the cone defining Hom[.M; T /:We
have the distinguished triangle

ker.fM;T /! Hom[.M; T /! coker.fM;T /Œ�1�

We also have the functorial isomorphism

HomKb.DFK/

�
M;T Œi �

� �
�! H i

�
ker.fM;T /

�
Hence a long exact sequence

! H i�2
�
coker.fM;T /

�
! HomKb.DFK/

�
M;T Œi �

�
! H i

�
Hom[.M; T /

�
! H i�1

�
coker.fM;T /

�
!

Let IT be the category whose objects are quasi-isomorphisms sWT ! L in
Kb.DFK/ and whose morphisms are morphisms L! L0 in Kb.DFK/ compatible
with s. Since

inj lim
IT

HomKb.DFK/

�
M;LŒi�

�
D HomD.DFK/

�
M;T Œi �

�
;
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it suffices to show that

inj lim
IT

H i
�
Hom[.M;L/

�
D H i

�
Hom[.M; T /

�
and that

inj lim
IT

H i
�
coker.fM;L/

�
D 0:

The first fact follows from Lemma 2.5 and the second one from the Lemma 2.8
below.

Lemma 2.8. Let u 2 HomjGK
.M xK ; T xK/. There exists a complex E 2 C b.DFK/

and a quasi-isomorphism T ! E such that the image of u in the cokernel of the
map f is zero.

Proof. We will construct an extension

0! T ! E ! Cone
�
M

Id
�!M

�
Œ�j � 1�! 0

in the category of filtered .';N;GK/-modules. Since the category of admissible
modules is closed under extension, E will be admissible. The underlying complex
of Knr

0 -vector spaces is

E0 WD Cone
�
M0Œ�j � 1�

.0;Id/
���! T0 ˚M0Œ�j � 1�

�
:

The Frobenius, monodromy operator, and Galois action are defined on

E
iCj
0 WD T

iCj
0 ˚M i�1

0 ˚M i
0

coordinatewise. The filtration on

E
iCj
K WD E

iCj
0 ˝Knr

0

xK

is defined as

F nE
iCj
K D F nT

j
K ˚ f.u

i .x/; 0; x/jx 2 F nM i
Kg

˚ f.dT .u
i�1.x//;�x;�dM .x//jx 2 F

nM i�1
K g:

Now take

� D .0; 0; Id/C .ui ; 0; Id/ 2 Hom]';N;GK
.M i

0; E
iCj
0 /˚ HomdR.M

i
K ; E

iCj
K /:

We have f .�/ D .ui ; 0; 0/, as wanted.
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2.2. The category of p-adic Hodge complexes.
2.9. Let V G

xK
be the category of xK-vector spaces with a smooth xK-semilinear action

ofGK . It is aGrothendieck abelian category. Wewill consider the following functors:
� FdRWV

K
dR ! V G

xK
, which to a filtered K-vector space .E; F �/ associates the

xK-vector space E ˝K xK with its natural action of GK .
� F0WMK.';N;GK/ ! V G

xK
, which to a .';N;GK/-module M associates the

xK-vector spaceM ˝Knr
0

xK whose GK-action is induced by the given GK-action
onM .

Both functors are exact and monoidal. Note in particular that they induces functors
on the respective categories of complexes which are dg-functors.
2.10. Let Db.V G

xK
/ and Db.V G

xK
/ denote the bounded derived dg category and the

bounded derived category of V G
xK
, respectively. We define the dg category DpH of

p-adic Hodge complexes as the homotopy limit

DpH WD holim
�
Db

�
MK.';N;GK/

� F0
�! Db.V GxK /

FdR
 Db.V KdR /

�
:

We denote byDpH the homotopy category of DpH . By [63, Def. 3.1], [13, 4.1], an
object of DpH consists of objectsM0 2 Db.MK.';N;GK//,MK 2 Db.V KdR /, and
a quasi-isomorphism

F0.M0/
aM
��! FdR.MK/

inD.V G
xK
/. Wewill denote the object above byM D .M0;MK ; aM /:Themorphisms

are given by the complex HomDpH
..M0;MK ; aM /; .N0; NK ; aN //:

HomiDpH

�
.M0;MK ; aM /; .N0; NK ; aN /

�
D Homi

Db.MK.';N;GK//
.M0; N0/˚ Homi

Db.VK
dR /
.MK ; NK/

˚ Homi�1
Db.VG

xK
/

�
F0.M0/; FdR.NK/

�
:

(2.4)

The differential is given by

d.a; b; c/ D
�
da; db; dc C aNF0.a/ � .�1/

iFdR.b/aM
�

and the composition

HomDpH

�
.N0; NK ; aN /; .T0; TK ; aT /

�
˝HomDpH

�
.M0;MK ; aM /; .N0; NK ; aN /

�
! HomDpH

�
.M0;MK ; aM /; .T0; TK ; aT /

�
(2.5)

is given by

.a0; b0; c0/.a; b; c/ D
�
a0a; b0b; c0F0.a/C FdR.b

0/c
�
:
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It now follows easily that a (closed) morphism

.a; b; c/ 2 HomDpH

�
.M0;MK ; aM /; .N0; NK ; aN /

�
is a quasi-isomorphism if and only so are the morphisms a and b (see [13,
Lemma 4.2]).

By definition, we get a commutative square of dg categories over Qp:

DpH
TdR //

T0 ��

Db.V KdR /

FdR��
Db.MK.';N;GK//

F0 // Db.V G
xK
/:

(2.6)

Given a p-adic Hodge complexM , we will call TdR.M/ (resp., T0.M/) the generic
fiber (resp., special fiber) of M . As pointed out above, a morphism f of p-adic
Hodge complexes is a quasi-isomorphism if and only if TdR.f / and T0.f / are quasi-
isomorphisms.
2.11. Let us recall that, since the category DpH is obtained by gluing, it has a
canonical t -structure [36, Prop. 4.1.12]. We will denote by DpH;�0 (resp., DpH;�0)
the full dg subcategory of DpH made of non-positive (resp., non negative) p-adic
Hodge complexes. Let M be a p-adic Hodge complex. We define its non positive
truncation ��0.M/ according to the following formula:

��0.M/ WD .��0M0; ��0MK ; ��0aM /:

The functors FdR and F0 being exact, this is indeed a p-adic Hodge module. The non
negative truncation is obtained using the same formula. According to this definition,
we get a canonical morphism of p-adic Hodge complexes:

��0.M/!M

whose cone is positive. This is all we need to get that the pair .DpH;�0;DpH;�0/

forms a t -structure on DpH .
Definition 2.12. The t -structure .DpH;�0;DpH;�0/ defined above will be called the
canonical t -structure on DpH .
2.13. LetM 2 C b.MFK.';N;GK//. Define �.M/ 2 DpH to be the object

�.M/ WD .M0;MK ; IdM WM xK 'M xK/

Through this functor we can regard MFK.';N;GK/ as a subcategory of the heart
of the t -structure on DpH .
Lemma 2.14. The natural functor

� WMFK.';N;GK/!D~pH

is fully faithful.
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Proof. Analogous to [36, Prop. 4.1.12], [61, 1.2.27].

Definition 2.15. Wewill say that a strictp-adic Hodge complexM is admissible if its
cohomology filtered .';N;GK/-modules Hn.M/ are (weakly) admissible. Denote
by Dad

pH the full dg subcategory of DpH of admissible p-adic Hodge complexes. It
carries the induced t -structure.

Since � preserves quasi-isomorphisms, it induces a canonical functor:

� WDb.DFK/! Dad
pH :

This is a functor between dg categories compatible with the t -structures.

Lemma 2.16. The natural functor

� WDFK
�
�! D

ad;~
pH

is an equivalence of abelian categories.

Proof. By Lemma 2.14, it suffices to prove essential subjectivity. Note that a strict
p-adic Hodge complex M is in the heart of the t -structure if and only if M is
isomorphic to ��0��0.M/. According to the formula for this truncation, we get
thatM is isomorphic to an object zM such that zM0 is a .';N;GK/-module, zMK is a
filtered K-vector space, and one has a GK-equivariant isomorphism

zM0 ˝Knr
0

xK ' zMK ˝K xK:

In particular, zM0 has the structure of a filtered .';N;GK/-module, as wanted.

Theorem 2.17. The functor � induces an equivalence of dg categories

� WDb.DFK/
�
�! Dad

pH :

Proof. Since, by Lemma 2.16, we have the equivalence of abelian categories

� WDFK D Db.DFK/
~ �
�! D

ad;~
pH

and we work with bounded complexes, it suffices to show that, given two complexes
M ,M 0 of C b.MF pst

K /, the functor � induces a quasi-isomorphism:

� WHomDb.DFK/
.M;M 0/! HomDpH

�
�.M/; �.M 0/

�
:

By (2.3) and Proposition 2.7, since

F0.M0/ D FdR.MK/ DM xK ; F0.M
0
0/ D FdR.M

0
K/ DM

0
xK
;
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we have the following sequence of quasi-isomorphisms

HomDpH

�
�.M/; �.M 0/

�
D HomDpH

�
.M0;MK ; IdM /; .M 00;M

0
K ; IdM 0/

�
'
�
HomDb.MK.';N;GK//

.M0;M
0
0/

F0
�! HomDb.VG

xK
/.M xK ;M

0
xK
/

FdR
 �� HomDb.VK

dR /
.MK ;M

0
K/
�

'
�
Hom]';N;GK

.M0;M
0
0/

F0
�! HomGK

.M xK ;M
0
xK
/
FdR
 �� HomdR.MK ;M

0
K/
�

' HomDb.DFK/
.M;M 0/:

This concludes our proof.

2.3. The absolute p-adic Hodge cohomology.
2.18. Any potentially semistable p-adic representation is a p-adic Hodge complex.
Therefore, we can define the Tate twist in DpH as follows: given any integer r 2 Z,
we let K.r/ be the p-adic Hodge complex

K.�r/ D .Knr
0 ; K; IdK W xK

�
�! xK/

that is equal to Knr
0 and K concentrated in degree 0; the Frobenius is 'K.�r/.a/ D

pr'.a/, the Galois action is canonical and the monodromy operator is zero; the
filtration is F i D K for i � r and zero otherwise.

As usual, given any p-adic Hodge complexM , we putM.r/ WD M ˝K.r/. In
other words, twisting a p-adic Hodge complex r-times divides the Frobenius by pr ,
leaves unchanged the monodromy operator, and shifts the filtration r-times.
Example 2.19. Given any p-adic Hodge complexM , by formula (2.5) and by (2.3),
we have the quasi-isomorphism of complexes of Qp-vector spaces

HomDpH

�
K.0/;M.r/

�
' Cone

�
M
]
0 ˚ F

rMK

aM�can
�����! FdR.MK/

GK
�
Œ�1�;

whereM ]
0 is defined as the following homotopy limit (we set 'i WD '=pi )

M
]
0 WD

266664
M
GK

0

1�'r //

N
��

M
GK

0

N
��

M
GK

0

1�'r�1//MGK

0

377775
2.20. Let X be a variety over K. Consider the following complex in Dad

pH

R�pH .X xK ; 0/ WD
�
R�BHK.X xK/; .R�dR.X/; F

�/;R�BHK.X xK/
�dR
�! R�dR.X xK/

�
:
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Here R�BHK.X xK/ is the (geometric) Beilinson–Hyodo–Kato cohomology [10], [50,
3.4]; by definition it is a bounded complex of .';N;GK/-modules. The filtered
complexR�dR.X/ is theDeligne deRhamcohomology. Themap �dR is theBeilinson–
Hyodo–Kato map [10] that induces a quasi-isomorphism

�dRW R�BHK.X xK/˝Knr
0

xK
�
�! R�dR.X xK/:

The comparison theorems of p-adic Hodge theory (proved in [10, 14, 31, 53, 65])
imply that the p-adic Hodge complex R�pH .X xK ; 0/ is admissible.

We will denote by

R�pH .X xK ; r/ WD R�pH .X xK ; 0/.r/ 2 Dad
pH

the r th Tate twist of R�pH .X xK ; 0/. We will call it the geometric p-adic Hodge
cohomology ofX . Since theBeilinson–Hyodo–Katomap is amap of dgKnr

0 -algebras,
the assignmentX 7! R�pH .X xK ;�/ is a presheaf of dg algebras onVarK . Moreover,
we also have the external product R�pH .X xK ; r/˝ R�pH .Y xK ; s/ in Dad

pH .
Lemma 2.21 (Künneth formula). The natural map

R�pH .X xK ; r/˝ R�pH .Y xK ; s/
�
�! R�pH .X xK � Y xK ; r C s/

is a quasi-isomorphism.

Proof. This follows easily from the Künneth formulas in the filtered de Rham
cohomology and the Hyodo–Kato cohomology (use the Hyodo–Kato map to pass
to de Rham cohomology).

Set

R�DFK
.X xK ; r/ WD �

�1R�pH .X xK ; r/ 2 Db.DFK/;

R�pst.X xK ; r/ WD Vpst�
�1R�pH .X xK ; r/ 2 Db.Reppst.GK//:

Lemma 2.22. There exists a canonical quasi-isomorphism in Db.Rep.GK//

R�pst.X xK ; r/ ' R�Ket.X xK ;Qp.r//:

Proof. To start, we note that we have the following commutative diagram of dg
categories.

Db.Reppst.GK//

Dpst
��

can // Db.Rep.GK//

can

��
Db.DFK/

Vpst

OO

� // Dad
pH

rKet // D.Spec.K/proKet/
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Here the functor
rKetWD

ad
pH ! D.Spec.K/proKet/

associates to a p-adic Hodge complex .M0;MK ; aM WF0.M0/ ! FdR.MK// the
complex�
ŒM0 ˝Knr

0
Bst�

'DId;ND0
˚ F 0.MK ˝K BdR/

aM˝��can˝�
���������! FdR.MK/˝ xK BdR

�
D
�
ŒM0 ˝Knr

0
Bst�

'DId;ND0 aM˝�
����! .FdR.MK/˝ xK BdR/=F

0
�

where �WBst ,! BdR is the canonical map of period rings3. To see that the diagram
commutes, recall that we have the fundamental exact sequence

0! Qp.r/! B'Dp
r ;ND0

st ˚ F rBdR
�
! BdR ! 0; r 2 N: (2.7)

It follows that, for V 2 Db.Reppst.GK//, we have a canonical morphism

V '
�
V ˝Qp

B'DId;ND0st ˚ V ˝Qp
F 0BdR

Id˝��can˝�
��������! V ˝Qp

BdR
�

'
�
ŒV ˝Qp

Bst�
'DId;ND0

˚ V ˝Qp
F 0BdR

Id˝��can˝�
��������! V ˝Qp

BdR
�

.�pst˚�dR;�dR/
���������!

�
ŒDpst.V /˝Knr

0
Bst�

'DId;ND0
˚ F 0.DK.V /˝K BdR/

aM˝��can˝�
���������! DK.V /˝K BdR

�
' rKet�Dpst.V /:

Since the abstract period morphisms �pst; �dR from (2.2) are isomorphisms, the above
morphism is a quasi-isomorphism and we have the commutativity we wanted.

The above diagram gives us the first quasi-isomorphism in the formula

R�pst.X xK ; r/ ' rKetR�pH .X xK ; r/ ' R�Ket.X xK ;Qp.r//: (2.8)

It suffices now to prove the second quasi-isomorphism. But, we have

R�pH .X xK ; r/ D
�
R�BHK.X xK ; r/; .R�dR.X/; F

�Cr/;

R�BHK.X xK ; r/˝Knr
0

xK
�dR
! R�dR.X xK/

�
;

wherewe twisted theBeilinson–Hyodo–Kato cohomology to remember the Frobenius
twist. Recall that Beilinson has constructed period morphisms (of dg-algebras) [9,
3.6], [10, 3.2]4

�pstWR�BHK.X xK/˝Knr
0
Bst ' R�Ket.X xK ;Qp/˝Qp

Bst;

�dRWR�dR.X xK/˝ xK BdR ' R�Ket.X xK ;Qp/˝Qp
BdR:

3For an explanation why we work with the pro-étale site as well as the technicalities involved in the
passage between continuousGalois cohomology and pro-étale cohomology see [50, proof of Theorem4.8].

4Wewill be using consistently Beilinson’s definition of the period maps. It is likely that the uniqueness
criterium stated in [54] can be used to show that these maps coincide with the other existing ones.
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The first morphism is compatible with Frobenius, monodromy, and GK-action; the
second one with filtration. These morphisms allow us to define a quasi-isomorphism

ˇW rKetR�pH .X xK ; r/ ' R�Ket.X xK ;Qp.r//

in D.Spec.K/proKet/ as the composition

ˇW rKetR�pH .X xK ; r/D
�
ŒR�BHK.X xK/˝Knr

0
Bst�

'Dpr ;ND0 �dR
�! .R�dR.X xK/˝ xKBdR/=F

r
�

.�HK;�dR/
������!

�
R�Ket.X xK ;Qp/˝Qp

B'Dp
r ;ND0

st
�
�! R�Ket.X xK ;Qp/˝Qp

.BdR/=F
r
�

�
 �R�Ket.X xK ;Qp.r//

Here the last quasi-isomorphism follows from the fundamental exact sequence (2.7).
To finish we note that the quasi-isomorphism in (2.8) come from quasi-

isomorphisms between complexes of continuous representations of GK on (locally
convex) Qp-vector spaces.

Remark 2.23. The geometric p-adic Hodge cohomology R�pH .X xK ; r/ we work
with here is not the same as the geometric syntomic cohomology R�syn.X xK;h; r/

defined in [50]. While the first one, by the above lemma, represents the étale
cohomology R�Ket.X xK ;Qp.r//, the second one represents only its piece, i.e. we have
��rR�syn.X xK;h; r/ ' ��rR�Ket.X xK ;Qp.r//.
2.24. Thep-adic absoluteHodge cohomology ofX (also called syntomic cohomology
of X if this does not cause confusion) is defined as

R�H .X; r/ D R�syn.X; r/ WD HomDpH

�
K.0/;R�pH .X xK ; r/

�
: (2.9)

By Theorem 2.17, we have

R�H .X; r/ ' HomDb.DFK/

�
K.0/;R�DFK

.X xK ; r/
�

' HomDb.Reppst.GK//

�
Qp;R�pst.X xK ; r/

�
:

The assignment X 7! R�H .X; r/ D R�syn.X;�/ is a presheaf of dg Qp-algebras
on VarK .

SetH i
syn.X; r/ WD H

iR�syn.X; r/.
Theorem 2.25. (1) There is a functorial syntomic descent spectral sequence

synEi;j WD H i
st
�
GK ;H

j

Ket .X xK ;Qp.r//
�
) H iCj

syn .X; r/; (2.10)

whereH i
st.GK ; �/ is the group of (potentially) semistable extensionsExt

i
Reppst.GK/

.Qp; �/
as defined in [35, 1.19].
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(2) There is a functorial syntomic period morphism

�synWR�syn.X; r/! R�Ket.X;Qp.r//:

(3) The syntomic descent spectral sequence is compatible with the Hochschild–Serre
spectral sequence

KetE
i;j
2 D H

i
�
GK ;H

j

Ket .X xK ;Qp.r//
�
) H

iCj

Ket .X;Qp.r//: (2.11)

More specifically, there is a natural map synE
i;j
2 ! KetE

i;j
2 that is compatible

with the syntomic period map �syn.

Proof. From the definition (2.9) of R�pH .X xK ; r/ we obtain the following spectral
sequence

E
i;j
2 D ExtiReppst.GK/

�
Qp;H jR�pst.X xK ; r/

�
) H iCjR�syn.X; r/:

Since, by Lemma 2.22, we have R�pst.X xK ; r// ' R�Ket.X xK ;Qp.r//, the first
statement of our theorem follows.

We define the syntomic period map �synWR�syn.X; r/ ! R�Ket.X;Qp.r// as the
composition

�synWR�syn.X; r/ D HomDpH

�
K.0/;R�pH .X xK ; r//

�
rKet
�! HomD.Spec.K/proKet/

�
Qp; rKetR�pH .X xK ; r//

�
ˇ
�! HomD.Spec.K/proKet/

�
Qp;R�Ket.X xK ;Qp.r//

�
D R�Ket.X;Qp.r//:

The second statement of the theorem follows.
Finally, since the Hochschild–Serre spectral sequence

KetE
i;j
2 WD H

i
�
GK ;H

j .X xK ;Qp.r//
�
) H iCj .X;Qp.r//

can be identified with the spectral sequence
KetE

i;j
2 WD H

i
�
Spec.K/proKet;H j .X xK ;Qp.r//

�
) H iCj .X;Qp.r//

weget that the syntomic descent spectral sequence is compatiblewith theHochschild–
Serre spectral sequence via the map �syn, as wanted.

Theorem 2.26. Let R�syn.Xh; r/ be the syntomic cohomology defined in [50, 3.3].
There exists a natural quasi-isomorphism (in the classical derived category)

R�syn.Xh; r/
�
�! R�syn.X; r/; r � 0:

It is compatible with syntomic period morphisms and the syntomic as well as the étale
descent spectral sequences.
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Proof. Let r � 0. Recall that we have a natural quasi-isomorphism [50, Prop. 3.20]

R�syn.Xh; r/ ' Cone
�
R�BHK.X/

';N
˚ F rR�dR.X/

�dR�can
����!R�dR.X/

�
Œ�1�;

where

R�BHK.Xh/
';N
WD

266664
R�BHK.X/

1�'r //

N

��

R�BHK.X/

N

��
R�BHK.X/

1�'r�1// R�BHK.X/

377775
and the complex R�BHK.X/ is the (arithmetic) Beilinson–Hyodo–Kato cohomol-
ogy [10] that comes equipped with the Beilinson–Hyodo–Kato map [50, 3.3]

�dRWR�BHK.X/! R�dR.X/:

Since R�BHK.X/ ' R�BHK.X xK/GK and R�dR.X/ ' R�dR.X xK/
GK by [50,

Prop. 3.22], Example 2.19 and Theorem 2.17 yield

R�syn.Xh; r/ ' HomDpH

�
K.0/;R�pH .X xK ; r//

�
' HomDb.DFK/

�
K.0/;R�DFK

.X xK ; r//
�
' R�syn.X; r/;

as wanted. The last claim of the theorem is now clear.

Remark 2.27. The above theorems gives an alternative construction of the syntomic
descent spectral sequence from [50, 4.2] (that construction used the geometric
syntomic cohomology mentioned in Remark 2.23) and an alternative proof of its
compatibility with the Hochschild–Serre spectral sequence [50, Theorem 4.8]. In
the present approach the syntomic descent spectral sequence is a genuine descent
spectral sequence: from geometric étale cohomology to syntomic cohomology. In
the approach of [50] this sequence appears as a piece of a larger descent spectral
sequence that remains to be understood.
Remark 2.28. In everything above, the variety X can be replaced by a finite
simplicial scheme or a finite diagram of schemes. In particular, we obtain statements
about cohomology with compact support: use resolutions of singularities to get a
compactification of the variety with a divisor with normal crossing at infinity and then
represent cohomology with compact support as a cohomology of a finite simplicial
scheme built from the closed strata. In particular, we get the syntomic descent spectral
sequence with compact support:

syn;cE
i;j
2 WD H

i
st
�
GK ;H

j

Ket;c.X xK ;Qp.r//
�
) H iCj

syn;c.X; r/

that is compatible with the Hochschild–Serre spectral sequence for étale cohomology
with compact support.
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Corollary 2.29. For X smooth and projective overK, the syntomic descent spectral
sequence (2.10)

synE
i;j
2 .r/ D H i

st
�
GK ;H

j

Ket .X xK ;Qp.r//
�
) H iCj

syn .X; r/

degenerates at E2.

Proof. The argument proceeds along standard lines [25, Thm 1.5]. Let X be a
smooth and projective variety overK, of equal dimension d . Recall that we have the
Hard Lefschetz Theorem [26, Thm 4.1.1]: if L 2 H 2.X xK ;Qp.1// is the class of a
hyperplane, then for i � d , the map

Li WHd�i
Ket .X xK ;Qp/! HdCi

Ket .X xK ;Qp.i//; a 7! a [ Li ;

is an isomorphism. This gives us the Lefschetz primitive decomposition

H i
Ket
�
X xK ;Qp.r/

�
D ˚k�0L

kH i�2k
prim

�
X xK ;Qp.r � k/

�
; (2.12)

where
H a

prim
�
X xK ;Qp.b/

�
WD KerLd�aC1 � H a

Ket
�
X xK ;Qp.b/

�
:

Moreover, we get a morphism of spectral sequences

LW synE
i;j
2 .r/! synE

i;jC2
2 .r C 1/:

Take s � 2. Assume that the differentials of our spectral sequence d2 D � � � D
ds�1 D 0. We want to show that ds D 0. This assumption is trivially true for s D 2.
By the inductive assumption synE

i;j
s D

synE
i;j
2 . We note that Hard Lefschetz gives

us that the differentials

dsWH
j
st
�
GK ;H

i�2k
prim .X xK ;Qp.r �k//

�
! H

jCs
st

�
GK ;H

i�2k�sC1
Ket .X xK ;Qp.r �k//

�
(2.13)

are trivial. Indeed, we have the following commutative diagram (we set q D i � 2k,
t D r � k, a D d � q C 1)

H
j
st
�
GK ;H

q
prim.X xK ;Qp.t//

� ds //

LaD0
��

H
jCs
st

�
GK ;H

q�sC1

Ket .X xK ;Qp.t//
�

La

��
'

tt

H
j
st
�
GK ;H

qC2a

Ket .X xK ;Qp.t C a//
� ds // H jCs

st
�
GK ;H

q�sC1C2a

Ket .X xK ;Qp.t C a//
�

Ls�2

��
H
jCs
st

�
GK ;H

qC2aCs�3

Ket .X xK ;Qp.t C aC s � 2//
�

which implies that the top map ds is zero. Applying Lk to the differentials in (2.13)
we obtain that the differentials

dsWH
j
st
�
GK ; L

kH i�2k
prim .X xK ;Qp.r � k//

�
! H

jCs
st

�
GK ;H

i�sC1
Ket .X xK ;Qp.r//

�
are trivial as well. By (2.12), this gives that ds D 0, as wanted.
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Remark 2.30. In fact, we have the Decomposition Theorem, i.e. there is a natural
quasi-isomorphism inDb.Reppst.GK//M

i

H i
Ket.X xK ;Qp/Œ�i �

�
�! R�pst.X xK ;Qp/:

Our corollary follows immediately from that.

3. A p-adic absolute Hodge cohomology. II: Beilinson’s definition

In this section we will describe the definition of p-adic absolute Hodge cohomology
due to Beilinson [11]. Beilinson associates to any variety overK a canonical complex
of potentially semistable representations of GK representing the geometric étale
cohomology of the variety as a Galois module. Then he defines p-adic absolute
Hodge cohomology of this variety as the derived Hom in the category of potentially
semistable representations from the trivial representation to this complex.

3.1. Potentially semistable complex of a variety.

3.1.1. Potentially semistable cellular complexes. The Basic Lemma of Beilinson
[7, Lemma 3.3] allows one, in analogy with the cellular complex forCW -complexes,
to associate a canonical complex of potentially semistable representations of GK
to any affine variety over K. Recall that the cellular complex associated to a
CW -complex X is a complex of singular homology groups

� � � ! HB
2 .X

2; X1/
d2
! HB

1 .X
1; X0/

d1
! HB

0 .X
0;;/

d0
! 0 (3.1)

whereXj denotes the j -skeleton ofX. The homology of the above complex computes
the singular homology ofX : we haveHB

j .X
j =Xj�1/ ' HB

j ._jI jS
j / '

P
i2I eiZ;

I being the index set of j -cells in X .
We will briefly sketch the construction of potentially semistable (cohomological)

cellular complexes and we refer interested reader for details to [39, 43, 55].

Definition 3.1. (1) A pair is a triple .X; Y; n/, for a closed K-subvariety Y � X of
a K-variety X and an integer n.

(2) Pair .X; Y; n/ is called a good pair if the relative geometric étale cohomology

H j .X xK ; Y xK ;Qp/ D 0; unless j ¤ n:

(3) A good pair is called very good ifX is affine andX nY is smooth and eitherX is
of dimension n and Y of dimension n� 1 or X D Y is of dimension less than n.



94 F. Déglise and W. Nizioł CMH

Lemma 3.2 (Basic Lemma). Let X be an affine variety over K and let Z � X be
a closed subvariety such that dim.Z/ < dim.X/. Then there is a closed subvariety
Y � Z such that dim.Y / < dim.X/ and .X; Y; n/, n WD dim.X/, is a good pair, i.e.

H j .X xK ; Y xK ;Qp/ D 0; j ¤ n:

Moreover, X n Y can be chosen to be smooth.

Proof. See [7, Lemma 3.3] (a result in any characteristic) ([55]; [40, 7]; [43]).

Corollary 3.3. (1) Every affine variety X over K has a cellular stratification

F�X W ; D F�1X � F0X � � � � � Fd�1X � FdX D X

That is, a stratification by closed subvarieties such that the triple .FjX;Fj�1X; j /
is very good.

(2) Celullar stratifications of X form a filtered system.
(3) Let f WX ! Y be a morphism of affine varieties over K. Let F�X be a cellular

stratification on X . Then there exists a cellular stratification F�Y such that
f .FiX/ � FiY .

Proof. See Corollary D.11, Corollary D.12 in [39].

Having the above facts it is easy to associate a potentially semistable analog of
the cellular complex (3.1) to an affine variety X over K [39, Appendix D]. We just
pick a cellular stratification

F�X W ; D F�1X � F0X � � � � � Fd�1X � FdX D X

and take the complex

R�pst.X xK ; F�X/ WD 0! H 0.F0X xK ;Qp/! � � � ! H j .FjX xK ; Fj�1X xK ;Qp/
dj

�! H jC1.FjC1X xK ; FjX xK ;Qp/
djC1

���! � � � ! Hd .X xK ; Fd�1X xK ;Qp/! 0:

This is a complex of Galois modules that, by p-adic comparison theorems, are
potentially semistable. To get rid of the choice we take the homotopy colimit over all
cellular stratifications, i.e. we set

R�Tpst.X xK/ WD hocolimF�X R�pst.X xK ; F�X/:

It is a complex inD.Ind�Reppst.GK//whose cohomology groups are in Reppst.GK/
hence we can think of it as being in D.Reppst.GK//.

The complex R�Tpst.X xK/ computes the étale cohomology groups H�.X xK ;Qp/
as Galois modules. More precisely, we have the following proposition.
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Proposition 3.4 ([43, Prop. 2.1]). (1) Let F�X be a cellular stratification of X .
There is a natural quasi-isomorphism

�.X;F�X/WR�pst.X xK ; F�X/ ' R�Ket.X xK ;Qp/
that is compatible with the action of GK .

(2) Let f WY ! X be a map of affine schemes and let F�Y be a cellular stratification
of Y such that, for all i , FiY � FiX . Then the following diagram commutes (in
the dg derived category)

R�pst.Y xK ; F�Y /
�.Y;F�Y /

�
// R�Ket.Y xK ;Qp/

R�pst.X xK ; F�X/

f �

OO

�.X;F�X/

�
// R�Ket.X xK ;Qp/

f �

OO

(3) There exists a natural quasi-isomorphism

�X W R�Tpst.X xK/ ' R�Ket.X xK ;Qp/
that is compatible with the action of GK .

Proof. Wehave the following commutative diagram ofGalois equivariantmorphisms

H 0.F0X xK ;Qp/

o

��

// � � � // H k.FkX xK ; Fk�1X xK ;Qp/ //

o

��

� � � // Hd .X xK ; Fd�1X xK ;Qp/

o

��
R�Ket.F0X xK ;Qp/ //

��

� � � // ŒR�Ket.FkX xK ;Qp/! R�Ket.Fk�1X xK ;Qp/�Œk� //

��

� � � // ŒR�Ket.X xK ;Qp/! R�Ket.Fd�1X xK ;Qp/�Œd �

��
0 // � � � // 0 // � � � // R�Ket.X xK ;Qp/Œd �

The first vertical maps are the truncations ��d ��d . We obtain the map �.X;F�X/ from
the first statement of the proposition by taking homotopy fibers of the rows of the
diagram. Second statement is now clear. The third one is an immediate corollary of
the first statement and Corollary 3.3.

3.1.2. Potentially semistable complex of a variety. For a general varietyX overK,
one (Zariski) covers it with (rigidified) affine varieties defined over K, takes the
associated Čech covering, and applies the above construction to each level of the
covering [39, D.5–D.10]. Then, to make everything canonical, one goes to limit over
such coverings.

Proposition 3.4 implies now the following result [39, Prop. D.3].
Theorem 3.5. LetX be a variety overK. There is a canonical complexR�Bpst.X xK/ 2
Db.Reppst/ which represents the étale cohomology R�Ket.X xK ;Qp/ of X xK together
with the action of GK , i.e. there is a natural quasi-isomorphism

�X WR�Bpst.X xK/ ' R�KetX xK ;Qp/;
that is compatible with the action of GK .
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3.2. Beilinson’s p-adic absolute Hodge cohomology. Beilinson [11] uses the
above construction of the potentially semistable complexes to define his syntomic
complexes.
Definition 3.6 ([11]). Let X be a variety over K, r 2 Z. Set R�Bpst.X xK ;Qp.r// WD
R�Bpst.X xK/.r/ and

R�BH .X; r/ D R�Bsyn.X; r/ WD HomDb.Reppst.GK//

�
Qp;R�Bpst.X xK ;Qp.r//

�
;

H i
syn.X; r/ WD H

iR�Bsyn.X; r/:

Immediately from this definition we obtain that
(1) For X D Spec.K/, we have R�Bsyn.X; r/ D HomDb.Reppst.GK//

.Qp;Qp.r//:
(2) There is a natural syntomic descent spectral sequence

synE
i;j
2 WD H

i
st
�
GK ;H

j .X xK ;Qp.r//
�
) H iCj

syn .X; r/: (3.2)

(3) We have a natural period map

�BsynWR�
B
syn.X; r/! R�Ket.X;Qp.r//

defined as the composition

R�Bsyn.X; r/ D HomDb.Reppst.GK//

�
Qp;R�Bpst.X xK ;Qp.r//

�
��! HomDb.Spec.K/proKet/

�
Qp;R�Bpst.X xK ;Qp.r//

�
�X
��! HomDb.Spec.K/proKet/

�
Qp;Rf X� Qp.r/

�
D R�Ket.X;Qp.r//:

It follows that the syntomic descent spectral sequence is compatible with the
Hochschild–Serre spectral sequence via the map �Bsyn.

3.3. Comparisonof the two constructions of syntomic cohomology. We will show
now that the syntomic complexes defined in 2.24 and by Beilinson are naturally quasi-
isomorphic.
Corollary 3.7. (1) There is a canonical quasi-isomorphism in Db.Reppst.GK//

R�pst.X xK ; r/
�
�! R�Bpst.X xK ;Qp.r//:

(2) There is a canonical quasi-isomorphism

�BsynWR�
B
syn.X; r/ ' R�syn.X; r/; r 2 Z:

It is compatible with period maps to étale cohomology and the syntomic as well
as the étale descent spectral sequences.
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Proof. The second statement follows immediately from the first one. To prove
the first statement, consider the complex R�BDFK

.X xK ; r/ in Db.DFK/ defined
by a procedure analogous to the one we used in Proposition 3.4 to define
R�Bpst.X xK ;Qp.r//(but starting with cohomology R�pH .Y xK ; r/ of good pairs Y
instead of pst-representations R�Ket.Y xK ;Qp.r// of such pairs). This is possible since,
for a good pair .X; Y; j /, we have

R�pH .X xK ; Y xK ; r/ '
�
H
j
HK.X xK ; Y xK ; r/; .H

j
dR.X; Y /; F

�Cr/;

H
j
HK.X xK ; Y xK/

�dR
�! H

j
dR.X xK ; Y xK/

�
;

and, by p-adic comparison theorems, this is an element of DFK . Proceeding as in
the proof of Proposition 3.4, we get a functorial quasi-isomorphism in Db.DFK/:

�X WR�BDFK
.X xK ; r/ ' R�DFK

.X xK ; r/:

For good pairs .X; Y; j /, the Beilinson period maps �HK; �dR [9, 3.6], [10, 3.2]
induce the period isomorphism

VpstR�pH .X xK ; Y xK ; r/
�
�! H j .X xK ; Y xK ;Qp.r//:

This period map lifts to a period map

VpstR�BDFK
.X xK ; r/

�
�! R�Bpst.X xK ;Qp.r//:

We define the map R�pst.X xK ; r/
�
�! R�Bpst.X xK ;Qp.r// as the following composition

R�pst.X xK ; r/
��1

X
��! VpstR�BDFK

.X xK ; r/ ' R�Bpst.X xK ;Qp.r//:

3.4. The Bloch–Kato exponential and the syntomic descent spectral sequence.
Let V be a potentially semistable representation. Let D D Dpst.V / 2 DFK . The
Bloch–Kato exponential

expBKWDK=F 0 ! H 1.GK ; V /

is defined as the composition [50, 2.14]

DK=F
0
! C.GK ; Cpst.D/Œ1�/! C.GK ; C.D/Œ1�/

�
 � C.GK ; V Œ1�/;

whereC.GK ; �/ denotes the continuous cochains cohomology ofGK . The complexes
Cpst.D/, C.D/ are defined as follows

Cpst.D/WDst
.N;1�';�/
����!Dst ˚Dst ˚DK=F

0 .1�p'/�N
�������! Dst;

C.D/WD ˝Knr
0
Bst

.N;1�';�/
������! D ˝Knr

0
Bst ˚D ˝Knr

0
Bst ˚ .D xK ˝ xK BdR/=F

0

.1�p'/�N
�������! D ˝Knr

0
Bst:

We have Cpst.D/ D C.D/
GK .
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The following compatibility result is used in the study of special values of
L-functions. Its f -analog was proved in [52, Theorem 5.2]5.

Proposition 3.8. Let i � 0; r � 0. The composition

H i�1
dR .X/=F r

@
�! H i

syn.Xh; r/
�syn
��! H i

Ket.X;Qp.r//! H i
Ket.X xK ;Qp.r//

is the zero map. The induced (from the syntomic descent spectral sequnce) map

H i�1
dR .X/=F r ! H 1.GK ;H

i�1
Ket

�
X xK ;Qp.r//

�
is equal to the Bloch–Kato exponential associated with the Galois representation
H i�1
Ket .X xK ;Qp.r//.

Proof. By the compatibility of the syntomic descent spectral sequence and the
Hochschild–Serre spectral sequence [50, Theorem 4.8], we have the commutative
diagram

H iR�syn.Xh; r/0
�syn //

ı1

��

H i
Ket.X;Qp.r//0

ı1

��
H 1

st .GK ;H
i�1
Ket .X xK ;Qp.r///

can // H 1.GK ;H
i�1
Ket .X xK ;Qp.r///;

where

H iR�syn.Xh; j /0 WD ker
�
H iR�syn.Xh; r/! H 0

st .GK ;H
i
Ket.X xK ;Qp.r///

�
;

H i
Ket.X;Qp.r//0 WD ker

�
H i
Ket.X;Qp.r//! H i

Ket.X xK ;Qp.r//
�
:

It suffices thus to show that the dotted arrow in the following diagram

H iR�syn.Xh; r/ H iR�syn.Xh; r/0

ı1

��

oo

H i�1
dR .X/=F r

@

44

@

OO

// H 1
st .GK ;H

i�1
Ket .X xK ;Qp.r////

exists and that this diagram commutes.
To do that, we will use freely the notation from the proof of Corollary 3.7. Set

zR�Bsyn.X; r/ D HomDb.DFK/

�
K.0/;R�BDFK

.X xK ; r/
�

D holimCpst
�
R�BDFK

.X xK ; r/
�
:

5There the exponential expst is called l .
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Arguing as in the proof of Proposition 3.4, we get the following commutative diagram
(we denoted by .H�HK.X; r/;H�dR.X; r// the r th twist of the canonical Dieudonné–
Fontaine modules associated to X )

H i zR�Bsyn.X; r/0

ı1

((

ı0
1

��

�

�X // H iR�syn.Xh; r/0

ı0
1tt

ı1

vv

H 1.Cpst.H
i�1
dR .X; r///

o .�HK;�dR/

��
H 1

st .GK ;H
i�1
Ket .X xK ;Qp.r///

Moreover the comparison map �X is compatible with the boundary maps @ from the
de Rham cohomology complexes R�dR.X/ and R�BdR.X/. It suffices thus to show
that the dotted arrow in the following diagram

H i zR�syn.X; r/ H i zR�syn.X; r/0

ı0
1

��

oo

H i�1
dR .X/=F r

@

55

@

OO

// H 1.Cpst.H
i�1
dR .X; r///

exists and that this diagram commutes.
Let

R�BDFK
.X xK ; r/ D D

�
D D0 d0

��!D1 d1

��!D2 d2

��!� � �

Then holimCpst.R�BDFK
.X xK ; r// is the total complex of the double complex below.

� � � � � � // � � � // � � �

Cpst.D
2/ W

d2

OO

D2
st
.N;1�';�/ //

d2

OO

D2
st ˚D

2
st ˚D

2
K=F

0 .1�p'/�N //

d2

OO

D2
st

d2

OO

Cpst.D
1/ W

d1

OO

D1
st
.N;1�';�/ //

d1

OO

D1
st ˚D

1
st ˚D

1
K=F

0 .1�p'/�N //

d1

OO

D1
st

d1

OO

Cpst.D
0/ W

d0

OO

D0
st
.N;1�';�/ //

d0

OO

D0
st ˚D

0
st ˚D

0
K=F

0 .1�p'/�N //

d0

OO

D0
st

d0

OO
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We note that D�st D R�BHK.X; r/, D�K D R�BdR.X/. The following facts are easy to
check.
(1) The map @WR�BdR.X/=F r ! zR�Bsyn.X; r/Œ1� is given by the canonical morphism

D�K=F
0
! ŒD�st��!D

�

st ˚D
�

st ˚D
�

K=F
0
��!D�st�Œ1�:

Similarly, the map H i�1
dR .X/=F r ! H 1.Cpst.H

i�1
dR .X; r/// is given by the

canonical morphism

H i�1
dR .X/=F r !

�
H i�1

HK .X; r/! H i�1
HK .X; r/˚H

i�1
HK .X; r/

˚H i�1
dR .X; r/=F 0 ! H i�1

HK .X; r/
�
Œ1�:

(2) The mapH i zR�Bsyn.X; r/! H 0.Cpst.H
i
dR.X; r/// is induced by .a; b; c/ 7! a.

(3) Themap ı01WH i zR�Bsyn.X; r/0 ! H 1.Cpst.H
i�1
dR .X; r/// is induced by .a; b; c/ 7!

b � d0a
0, where a0 is such that d ia0 D a.

(4) As a corollary of the above, we get that the composition

H i�1
dR .X/=F r ! H i zR�Bsyn.X; r/0

ı0
1
! H 1.Cpst.H

i�1
dR .X; r///

is induced by the map b 7! .0; b; 0/ 7! b.
This proves our proposition.

4. p-adic realizations of motives

4.1. p-adic realizatons of Nori’s motives. We start with a quick review of Nori’s
motives. We follow [5, 39, 44], and [2, 2].

Take an embedding K ,! C and a field F � Q. A diagram � is a directed
graph. A representation T W� ! VF assigns to every vertex in � an object in VF
and to every edge e from v to v0 a homomorphism T .e/WT .v/! T .v0/: LetC.�; T /
be its associated diagram category ([44, Thm. 41], [2, 2.1]): the category of finite
dimentional right End_.T /-comodules. It is the universal F -linear abelian category
together with a unique representation zT W�! C.�; T / and a faithful, exact,F -linear
functor T WC.�; T /! VF extending the original representation T . If� is an abelian
category then we have an equivalence � ' C.�; T /.

More specifically we have the following result of Nori.
Proposition 4.1 (Nori [2, Cor. 2.2.10, 2.2.11]). (1) Let R be an F -linear abelian

categorywith a faithful exact functor�WR! VF . Assume that the representation
T W� ! VF factors, up to natural equivalence, as T1�. Let A be an F -linear
abelian category equipped with a faithful exact functor U WA!R. IfGW�!A
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is a morphism of directed graphs such that T1 is equivalent to UG, then there
exist functors C.�; T /!R, zGWC.�; T /! A such that the following diagram

�
G //

zT
�� T1 &&

A

U

��
C.�; T / //

T

&&

zG

88

R

�

��
VF

commutes up to natural equivalence.
(2) For a commutative (up to natural equivalence) diagram

�

�

��

G //

T ((

A

��

U

!!
VF

�0
T 0

66

G0
// A0

U 0

==

we have a commutative (up to natural equivalence) diagram

C.�; T /

�

��

zG // A

��
C.�0; T 0/

zG0 // A0

Example 4.2. The following diagrams appear in the construction of Nori’s motives.
(1) The diagram �eff of effective pairs consists of pairs .X; Y; i/ and two types of

edges:

(a) (functoriality) for every morphism f WX ! X 0, with f .Y / � Y 0, an edge
f �W .X 0; Y 0; i/! .X; Y; i/.

(b) (coboundary) for every chain X � Y � Z of closed K-subvarieties of X ,
an edge @W .Y;Z; i/! .X; Y; i C 1/.

(2) The diagram �eff
g (resp., �eff

vg ) of effective good (resp., of effective very good)
pairs is the full subdiagram of �eff with vertices good (resp., very good) pairs
.X; Y; i/.

(3) The diagrams � of pairs, �g of good pairs, and �vg of very good pairs are
obtained by localization with respect to the pair .Gm; f1g; 1/ [39, B.18].
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Let H�W�g ! VF be the representation which assigns to .X; Y; i/ the relative
singular cohomologyH i .X.C/; Y.C/; F /:
Definition 4.3. The category of (resp., effective) Nori motives MM.K/F (resp.,
MM.K/F ) is defined as the diagram category C.�g ;H

�/ (resp., C.�eff
g ;H

�//.
For a good pair .X; Y; i/, we denote by H i

mot.X; Y / the object of EMM.K/F
(resp., MM.K/F ) corresponding to it and we define the Tate object as

1.�1/ WD H 1
mot.Gm;K ; f1g/ 2 EMM.K/F ; 1.�n/ WD 1.�1/˝n:

We have [39, Thm. 1.6, Cor. 1.7]
� EMM.K/F ' EMM.K/Q ˝Q F and MM.K/F ' MM.K/Q ˝Q F .
� As an abelian category EMM.K/F is generated by Nori motives of the form
H i

mot.X; Y / for good pairs .X; Y; i/; every object of EMM.K/F is a subquotient
of a finite direct sum of objects of the formH i

mot.X; Y /.
� EMM.K/F � MM.K/F are commutative tensor categories [44, p. 466].
� MM.K/F is obtained from EMM.K/F by˝-inverting 1.�1/.
� The diagram categories of �eff and of �eff

vg with respect to singular cohomology
with coefficients in F are equivalent to EMM.K/F as abelian categories. The
diagram categories of � and of �vg are equivalent to MM.K/F .6 In particular,
any pair .X; Y; i/ defines a Nori motiveH i

mot.X; Y /.
� Nori shows that these categories are independent of the embedding K ,! C.

From the universal property of the category EMM.K/F it is easy to construct
realizations. We will describe the ones coming from p-adic Hodge Theory.
Construction 4.4 (Galois realization). Consider the map �eff ! Rep.GK/:

.X; Y; i/ 7! H i .X xK ; Y xK ;Qp/:

We have H i .X xK ; Y xK ;Qp/ ' H i .X.C/; Y.C/;Qp/. Thus, by Proposition 4.1, we
obtain an extension which is the exact étale realization functor

RKetWEMM.K/Qp
! Rep.GK/:

Note that RKet.1.�1// D H 1.Gm; xK ; f1g;Qp/ D Qp.�1/. Hence the functor RKet lifts
to MM.K/Qp

.
In analogous way we obtain the exact potentially semistable realization

RpstWMM.K/Qp
! Reppst.GK/:

It factors RKet via the natural functor Reppst.GK/! Rep.GK/.
6This is shown by an argument analogous to the one we have used in the construction of Beilinson’s

potentially semistable complex of a variety in Section 3.1.2: via cellular complexes and Čech coverings
one lifts the representation H� from very good pairs to all pairs to a representation that canonically
computes relative singular cohomology.
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Construction 4.5 (Filtered .';N;GK/ realization). Consider themap�eff ! DFK :

.X; Y; i/ 7! H i
DF .X; Y / WD

�
H i

HK.X xK ; Y xK/; .H
i
dR.X; Y /; F

�/;

�dRWH
i
HK.X xK ; Y xK/˝Knr

0

xK
�
�! H i

dR.X xK ; Y xK/
�
:

By p-adic comparison theorems, we have

Dpst.H
i
DF .X; Y // ' H

i .X xK ; Y xK ;Qp/ ' H
i .X.C/; Y.C/;Qp/:

Thus, by Proposition 4.1, we obtain an extensionwhich is the exact filtered .';N;GK/
realization functor

RDFK
WEMM.K/Qp

! DFK :

Since RDF .1.�1// D K.�1/, the functor RDF lifts to MM.K/Qp
.

Projections yield faithful exact functors fromDFK to the categoriesMK.';N;GK/

and V KdR . Composing them with the realization RDF we get
� the exact Hyodo–Kato realization

RHKWMM.K/Qp
!MK.';N;GK/;

� the exact de Rham realization

RdRWMM.K/Qp
! V KdR :

Composing RDFK
with the projection on the third factor of the filtered .';N;GK/-

module, we obtain the Hyodo–Kato natural equivalence

�dRWRHK ˝Knr
0

xK ' RdR ˝K xKWMM.K/Qp
! V xK ; (4.1)

where the tensor product is taken pointwise.
Construction 4.6 (Realization of period isomorphism). To realize period isomor-
phisms, we define the category of realizations R.K/. An object of R.K/ is a tuple
M WD .MDF ;Mpst; �pst/ consisting of MDF 2 DFK , Mpst 2 Reppst.GK/, and a
comparison isomorphism �pstWVpstM ' Mpst of Galois modules. It is a abelian
category (it is naturally equivalent to the category Reppst.GK/). Projections yield
faithful exact functors from R.K/ to the categoriesDFK and Reppst.GK/.

Consider the following map �eff ! R.K/:

.X; Y; i/ 7!
�
H i
DF .X; Y /;H

i .X xK ; Y xK ;Qp/;
�pstWVpstH

i
DF .X; Y / ' H

i .X xK ; Y xK ;Qp/
�
:

Since the functor R.K/! Reppst.GK/! VQp
is faithful and exact, Proposition 4.1

gives us an extension EMM.K/Qp
! R.K/ that is compatible with the étale

realization. Since

.Gm; f1g; 1/ 7! .K.�1/;Qp.�1/; VpstK.�1/ ' Qp.�1//;
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again by Proposition 4.1, we obtain the exact realization

RRWMM.K/Qp
! R.K/:

Projecting on the first two factors we get back the realizations RDFK
and Rpst and

projecting on the third factor we get that the above two realizations are related via a
period morphism, i.e. we have a natural equivalence

�pstWVpstRDFK
' RpstWMM.K/Qp

! Reppst.GK/:

To sum up, we have a potentially semistable comparison theorem for Nori’s
motives.
Corollary 4.7. ForM 2 MM.K/Qp

, there is a functorial isomorphism

�pstWRHK.M/˝Knr
0
Bst ' RKet.M/˝Qp

Bst

that is compatible with Galois action, Frobenius, and the monodromy operator.
Moreover, after passing to BdR via the Hyodo–Kato map (4.1), it yields a functorial
isomorphism

�dRWRdR.M/˝K BdR ' RKet.M/˝Qp
BdR

that is compatible with filtration.
We can illustrate the above constructions by the following, essentially commuta-

tive, diagram of exact functors

Rep.GK/

˝QpBst ))

˝QpBdR

%%
Reppst.GK/

�

66

MBst.';N;GK/
//MFBdR

MM.K/Qp

RHK //

Rpst 55

RDFK ))

RKet
..

RdR 11

MK.';N;GK/
˝Knr

0
Bst

55

F0

))
DFK

66

((

Vpst

OO

V G
xK

V KdR

˝KBdR

II

FdR

55

HereMBst.';N;GK/ is the exact category of free finite rank Bst-modules equipped
with an action of ';N;GK (' is an isomorphism, N is nilpotent, and GK-action
is continuous — everything being compatible in the usual way and compatible with
the same structures on Bst). MFBdR is the exact category of filtered finite rank
BdR-modules equipped with a continuous action of GK compatible with its action
on BdR;MBst !MBdR is the natural functor.
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4.2. p-adic realizations of Voevodsky’s motives.

Recall 4.8. The category of Voevodsky’s motives DM.K;Qp/ with rational
coefficients admits several equivalent constructions, each interesting in its own. In
this section, we will be using the one of Morel (see [47]) for a review of which we
refer the reader to [24, §1].

By construction, the triangulated category DM.K;Qp/ is stable under taking
arbitrary coproducts. In this category, each smooth K-scheme X admits a
homological motive M.X/, covariant with respect to morphism of K-schemes
(and even finite correspondences). Each motive can be twisted by an arbitrary
integer power of the Tate object Qp.1/, and as a triangulated category stable under
taking coproducts,DM.K;Qp/ is generated by motives of the formM.X/.n/,X=K
smooth, and n 2 Z.

The category of constructible motives (see also 5.4) is the thick7 triangulated
subcategory of DM.K;Qp/ generated by the motives M.X/.n/, X=K smooth,
and n 2 Z, without requiring stability by infinite coproducts. It is equivalent to
Voevodsky’s category of geometricmotivesDMgm.K;Qp/ [70, Chap. 5] and can also
be described in an elementary way as follows. LetQpŒSmaff

K � be theQp-linearization
of the category of smooth affine K-varieties, Kb.QpŒSmaff

K �/ its bounded homotopy
category. This is a triangulated monoidal category, the tensor structure being induced
by cartesian products ofK-schemes. First we get the geometric A1-derived category
DA1;gm.K;Qp/ out of Kb.QpŒSm

aff
K �/ by the following operations:

(1) Take the Verdier quotient with respect to the triangulated subcategory generated
by complexes of the form:

� (homotopy) � � � ! 0 ! A1X
p
�! X ! 0 : : :, for X 2 Smaff

K , p canonical
projection;

� (excision) � � � ! 0! W
q�k
���! U ˚ V

jCp
���! X : : :, for any cartesian square

W
k //

q ��
V
p��

U
j // X

in Smaff
K such that j is an open immersion, p is étale and an isomorphism

above the complement of j .

(2) Formally invert the Tate object Qp.1/, which is the cokernel of f1g ! Gm

placed in cohomological degreeC1.

(3) Take the pseudo-abelian envelope.

7i.e. stable by direct factors [49, Definition 2.1.6].
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Let � be the automorphism of Qp.1/Œ1� ˝ Qp.1/Œ1� in DA1;gm.K;Qp/ which
permutes the factors. Because Qp.1/ is invertible, it induces an automorphism "

of Qp in DA1;gm.K;Qp/ such that "2 D 1. Then we can define complementary
projectors: pC D .1 � "/=2; p� D ." � 1/=2, which cut the objects, and therefore
the category, into two pieces:

DA1;gm.K;Qp/C D Im.pC/; DA1;gm.K;Qp/� D Im.p�/:

Then, according to a theorem of Morel (cf. [18, 16.2.13]),

DMgm.K;Qp/ ' DA1;gm.K;Qp/C:

Example 4.9. Let F be an extension field of Qp and A be a Tannakian F -linear
category with a fiber functor !WA! VF . Consider a contravariant functor:

RW .Smaff
K /

op
! C b.A/:

It automatically extends to a contravariant functor R0WKb.QpŒSmaff
K �/

op ! Db.A/.
The conditions forR0 to induce a contravariant functor defined onDMgm.K;Qp/ are
easy to state given the description of DMgm given above. We will use the following
simpler criterion:

We now suppose that the functor R takes its values in the bigger category
C b.Ind�A/ but we assume that there exists a functorial isomorphism

H i!R.X/ ' H i .X.C/; F /

and that the product mapH i .X.C/; F /˝H j .Y.C/; F /! H iCj .X.C/�Y.C/; F /
can be lifted to a map R.X/˝R.Y /! R.X �K Y / in C b.A/.

Then the functor R0 uniquely extends to a realization functor

zR_WDMgm.K;Qp/op ! Db.A/

which is monoidal and such thatH i . zR_.M.X/// D H i .R.X//.8 After composing
this functor with the canonical duality endofunctor of the (rigid) triangulated
monoidal categoryDb.A/, we get a covariant realization:

zRWDMgm.K;Qp/! Db.A/

such that H i zR.M.X// D H i .R.X//_. Note also that, by construction, the pre-
ceding identification can be extended to closed pairs. Also, because DMgm.K;Qp/
satisfies h-descent (see section 5.5), it can be extended to singular K-varieties and
pairs of such.

8Note in particular that the permutation " acts by �1 on singular cohomology.
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Using this example we can easily build realizations:
Proposition 4.10. Let F be an extension field ofQp and A be a Tannakian F -linear
category with a fiber functor !WA! VF . Consider a representation A�W�g ! A

such that !A� is isomorphic to the singular representation (see Definition 4.3).
Then there exists a canonical covariant monoidal realization:

RAWDMgm.K;Qp/! Db.A/

such that for any good pair .X; Y; i/,H iRA.M.X; Y // D A
i .X; Y /_ and this identi-

fication is functorial in .X; Y; i/— including with respect to boundaries.
Moreover, this construction is funtorial with respect to exact morphisms of

representations.

Proof. Let X be a smooth affine K-scheme. To any cellular stratification of X
(cf. Corollary 3.3) F�X , we can associate the complex

R0A.F�X/ WD 0! A0.F0X/! A1.F1X;F0X/! � � � ! Ad .X; Fd�1X/! 0:

We put: R0A.X/ WD colimF�XR0A.F�X/. This defines a contravariant functor:

R0AW .Sm
aff
K /

op
! C b.Ind�A/;

which satisfies the assumptions of the previous example. Hencewe get the proposition
by applying the construction of this example.

Remark 4.11. Consider again a fiber functor!WA! VF and a contravariant functor

RW .SchK/op ! C b.Ind�A/

such that for any K-variety X , one has a functorial isomorphism H i!R.X/ '

H i .X.C/; F /. Then we can apply the preceding example to RjSmaff
K

and also the
preceding proposition to the unique representation A� induced by R such that
Ai .X; Y / D H i .Cone.R.X/ ! R.Y /Œ�1�/. By applying the construction of
the preceding proof, we get for any smooth affine K-scheme a canonical map of
complexes

R.X/! RA.X/;

which is a quasi-isomorphism. By the functoriality of the construction of the previous
example, we thus get a canonical isomorphism between the two realizations of any
Voevodsky’s motiveM :

zR.M/
�
�! RA.M/:

Remark 4.12. Voevodsky’s motives M.X/ are homological: they are covariant
in X . In fact, the monoidal categoryDMgm.K;Qp/ is rigid: any object has a strong
dual; this follows from [58] and from the existence of the monoidal triangulated
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functor SH.K/ ! DM.K;Qp/ [18, 5.3.35] (here SH.K/ denotes the stable
homotopy category ofMorel-Voyevodsky overK). Then for any smoothK-varietyX ,
M.X/_ is the cohomological motive of X=K. Using the notations of the previous
proposition, because RA is monoidal and therefore commutes with strong duals, we
get: H iRA.M.X/

_/ D Ai .X/.
Recall that the categoryDMgm.K;Qp/ can be extended to any base and satisfies

the 6 functors formalism (cf. [18], in particular 16.1.6). According to loc. cit., 15.2.4,
M.X/_ D f�.1X / where f WX ! Spec.K/ is the structural morphism. The
preceding relation can be rewritten:

H iRA.f�.1X // D A
i .X/:

Note finally that f� exists for any K-variety X . One can extend the above
identification to this general case using De Jong resolution of singularities and
h-descent, which is true for Voevodsky’s rational motives [18, 14.3.4] and for Betti
cohomology.

There is fully faithful monoidal functor

CHM.K/opQp
! DMgm.K;Qp/; h.X/ 7!M.X/

from the category of Chow motives (X is smooth projective over K) [70, Chapter 5,
Prop. 2.1.4, Cor. 2.4.6.]. Applying duality on the right hand side, we get a covariant
fully faithful monoidal functor:

CHM.K/Qp
! DMgm.K;Qp/; h.X/ 7!M.X/_ D f�.1X /:

In view of this embedding, it is convenient to identify the Chow motive h.X/ with
the Voevodsky’s (cohomological) motiveM.X/_.

Let us also state the following corollary which follows from the preceding prop-
osition and [27]:

Corollary 4.13. In the assumptions of the previous proposition, for any smooth
projective K-scheme X of dimension d , the complex RA.h.X// D RA.M.X/

_/ is
split: there exists a canonical isomorphism:

RA.h.X// D

2dM
iD0

H i
�
RA.h.X//

�
Œ�i � D

2dM
iD0

Ai .X/Œ�i �:

This decomposition statement follows simply from loc. cit. as the derived category
Db.A/ satisfies the assumptions of loc. cit. and the object RA.h.X// satisfies the
assumption (L.V.) for the map h.X/ ! h.X/.1/Œ2� given by multiplication by the
(motivic) first Chern class of an ample invertible bundle on X .
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Example 4.14. In particular, applying the preceding proposition to the functor�g !
MM.K/Qp

coming from the singular representation, we get the classical realization,9
due to Nori, of (cohomological) Nori’s motives:

�WDMgm.K;Qp/! Db.MM.K/Qp
/:

By definition, and applying the preceding remark, we get for any smooth projective
(resp., smooth, any) K-variety f WX ! Spec.K/:

H i�.h.X// D H i
mot.X/; resp.,H i�.M.X// D H i

mot.X/
_;

H i�.f�.1X // D H
i
mot.X/:

When X is smooth projective of dimension d , we also get by the above corollary the
decomposition:

�.h.X// D

2dM
iD0

H i
mot.X/Œ�i �:

Moreover, because of the functorialility statement of the proposition, this realization
of Voevodsky’s motives is the universal (initial) one.
4.15. More interestingly, using either Example 4.9 or Proposition 4.10, we can
get various p-adic realizations of Voevodsky’s motives, and extend the de Rham
p-adic comparison theorem to the derived situation as summarized in the following
essentially commutative diagram of triangulated monoidal functors:

Db
�
Rep.GK/

�
˝QpBdR

((
DMgm.K;Qp/

R�DFK
**

R�pst //

R�Ket //

R�dR

44

Db
�
Reppst.GK/

� �

55

Db.MFBdR/

Db.DFK/

Vpst
OO

// Db.V KdR /
˝KBdR

66

where � is the canonical functor.10 The functors R�Ket, R�pst and R�DFK
are obtained

either from 4.9 or equivalently from 4.10 (according to Remark 4.11) by considering
respectively the following functors:
� X 2 Smaff

K ; f WX ! Spec.K/ 7! Rf�.Qp/ and .X; Y; i/ 7! H i
Ket.X xK ; Y xK ;Qp/;

� X 2 Smaff
K 7! R�pst.X xK ; r/ ' R�Bpst.X xK ;Qp.r//

and .X; Y; i/ 7! H i
Ket.X xK ; Y xK ;Qp/ 2 Reppst.GK/;

� .X; Y; i/ 7! H i
DF .X; Y / (see Construction 4.5).

9Conjecturally, this is more than a realization: it is thought to be an equivalence of categories!
10One should be careful that though � is induced by a fully faithful functor on the corresponding abelian

categories, it is a non full faithful functor.
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The functor R�dR is obtained by composing R�DFK
with the canonical functor

DFK ! V KdR .
For " D Ket; pst;DFK , one has defined in the preceding section an analoguous exact

monoidal realization functor R" from the category of Nori’s motives MM.K/Qp
.

This functor being exact induces a functor on the (bounded) derived categories and
according to the functoriality in Proposition 4.10, one gets for any Voevodsky motive
M 2 DMgm.K;Qp/:

R�".M/ D R"
�
�.M/

�
: (4.2)

Same for the de Rham realizations: we have R�dR.M/ D RdR
�
�.M/

�
. Therefore,

the essential commutativity of the previous diagram simply follows from the de
Rham comparison theorem for Nori’s motives. More precisely, it yields, for any
Voevodsky’s motiveM , the de Rham comparison isomorphism:

�dRWR�dR.M/˝K BdR ' R�Ket.M/˝Qp
BdR

which is a quasi-isomorphism of complexes of filtered finite rank BdR-modules
equipped with an action ofGK (continuous and compatible with the canonical action
on BdR).

This comparison can be made more precise through the Hyodo–Kato realization,
as illustrated in the essentially commutative diagram:

Db
�
Rep.GK/

�
˝QpBst

**
.1/

˝QpBdR

##
Db
�
Reppst.GK/

� �

44

Db
�
MBst.';N;GK/

�
// Db.MFBdR/

DMgm.K;Qp/
R�HK //

R�pst 44

R�DFK
**

R�Ket
//

R�dR 00

Db
�
MK.';N;GK/

�˝Knr
0
Bst

44

F0

**
.2/Db.DFK/

44

**

Vpst

OO

Db
�
V G
xK

�
:

Db.V KdR /
FdR

44

˝KBdR

FF

The Hyodo–Kato realization R�HK is obtained by composing R�DFK
with the

projection DKF ! MK.';N;GK/. Then the essential commutativity of the part
(1) and (2) of the above diagram corresponds, respectively, for any Voevodsky’s
motiveM , to the potentially semistable comparison theorem and to the Hyodo–Kato
quasi-isomorphism:

�pstWR�HK.M/˝Knr
0
Bst ' R�Ket.M/˝Qp

Bst;

�dRWR�HK.M/˝Knr
0

xK ' R�dR.M/˝K xK:

Again, the identification (4.2) holds when " D HK and the above canonical
comparison quasi-isomorphisms correspond to the comparison isomorphisms
obtained in the previous section.
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Remark 4.16. By construction, for any (smooth) K-variety f WX ! Spec.K/, one
has a canonical identification: R�Ket.f�.1X // D Rf�.Qp/ where the right hand side
denotes the right derived functor of the direct image for étale p-adic sheaves.

This implies that the realization functor R�Ket constructed above coincideswith that
of [19, 7.2.24], denoted by ��p , and equivalently to the one defined in [4]. In particular,
it can be extended to any base and commutes with the six functors formalism. This
explains the preceding relation and why we have prefered the covariant realization
rather than the contravariant one (see the end of Example 4.9).11
Example 4.17. The above realizations allow us to define syntomic cohomology of a
motiveM inDMgm.K;Qp/ as

R�syn.M/ WD RHomD.Reppst/
�
Qp;R�pst.M/

�
D RHomD.DFK/

�
K.0/;R�DFK

.M/
�
:

In particular, we have the syntomic descent spectral sequence

synE
i;j
2 WD H

i
st
�
GK ;H

jR�Ket.M/
�
) H iCjR�syn.M/:

If we apply it to the cohomological Voevodsky’s motive M.X/_ D f�.1X / of any
K-variety X with structural morphism f , we get back the results of Theorem 2.25.

An interesting case is obtained by using the (homological) motive with compact
support M c.X/ in DMgm.K;Qp/ of Voevodsky for any K-variety X , and its
dual M c.X/_ D Hom.M c.X/;Qp/ which belongs to DMgm.K;Qp/. Then
R�syn.M

c.X/_.r// is the nth twisted syntomic complex with compact support
and we recover the syntomic descent spectral sequence with compact support from
Remark 2.28:

syn;cE
i;j
2 WD H

i
st
�
GK ;H

j

Ket;c.X xK ;Qp.r//
�
) H iCj

syn;c.X; r/:

Indeed, in terms of the 6 functors formalism, M c.X/_.r/ D fŠ.1X /.r/ and the
identification relevant to compute the above E2-term follows from the previous
remark.

4.3. Example I: p-adic realizations of the motivic fundamental group. Let
EHM.K/Qp

denote the category of effective homological Nori’s motives, i.e. the
diagram category

C.z�eff
g ;H�/; H� WD .H

�/� WD Hom.H�;Qp/;

where the diagram z�eff
g is obtained from the diagram �eff

g by reversing the edge f �
to f�W .X; Y; i/! .X 0; Y 0; i/ and changing @ to @W .X; Y; i/! .Y;Z; i � 1/. There

11In Section 5, we will similarly extend the realization functor R�pst to arbitrary K-bases (see more
precisely Rem. 5.16).
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is a duality functor _WEHM.K/Qp
! EMM.K/opQp

respecting the representations
H� and H� via the usual duality that sends a good pair .X; Y; i/ to .X; Y; i/.
This induces an equivalence on the derived categories _WDb.EHM.K/Qp

/
�
�!

Db.EMM.K/Qp
/op.

In [21] Cushman developed a motivic theory of the fundamental group, i.e. he
showed that the unipotent completion of the fundamental group of varieties over
complex numbers carries a motivic structure in the sense of Nori. We will recall his
main theorem.
� Let Var�K be the category of pairs .X; x/, where X is a variety defined over K
and x is a K-rational base point; morphism between such pairs are morphisms
between the corresponding varieties defined over K that are compatible with the
base points.

� Let Var��K be the category of triples .X I x1; x2/, where X is defined over K and
x1; x2 are K-rational base points.

For a varietyX overC, let �1.X; x/ be the fundamental group ofX with base point x
and let �1.X I x1; x2/ be the space of based paths up to homotopy from x1 to x2.
Denote by Ix2

– the augmentation ideal in QpŒ�1.X; x2/� (i.e. the kernel of the
augmentation map QpŒ�1.X; x2/�! Qp) which acts on the right on �1.X I x1; x2/.
The following theorem [22, Thm. 3.1] shows that the quotientQpŒ�1.X I x1; x2/�=I nx2

,
n 2 N, has motivic version…n.X I x1; x2/ (in the sense of Nori).
Theorem 4.18. For every n 2 N, there are functors

…n
WVar��K ! EHM.K/Qp

; …n
WVar�K ! EHM.K/Qp

:

These functors have the following properties.
(1) There is a natural transformation

…nC1.X I x1; x2/! …n.X I x1; x2/:

(2) We have a natural isomorphism of Qp-vector spaces

zH�.…
n.X.C/I x1; x2// ' QpŒ�1.X.C/I x1; x2/�=I nx2

:

(3) There are natural transformations

…n.X I x1; x2/˝…
n.X I x2; x3/! …n.X I x1; x3/

…nCmC1.X; x2/! …mC1.X; x2/˝…
nC1.X; x2/:

Via the natural isomorphisms in (2), these transformations are compatible with
the product and coproduct structures as well as with the inversion in the path
space.
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This data is equivalent to giving a pro-EHM structure on the inverse limit
QpŒ�1.X.C/I x1; x2/�=I nx2

such that all the obvious maps are motivic, and the
completed ideal I^x2

is a sub-motive.
Dualizing the realization functors of Nori’s motives used in Constructions 4.4,

4.5 we obtain the following functors

…n
KetWVar��K ! Rep.GK/; …n

Ket WD RKet…n
I

…n
HKWVar��K !MK.';N;GK/; …n

HK WD RHK…
n
I

…n
dRWVar��K ! V KdR ; …n

dR WD RdR…
n:

These realizations are compatible with change of the index n and with the structure
maps that endow these realizations with Hopf algebra structures.

From Constructions 4.5,4.6 (again dualizing) we obtain also the following
comparison isomorphisms.
Corollary 4.19. (1) There exists the Hyodo–Kato natural equivalence

�dRW…
n
HK.X I x1; x2/˝Knr

0

xK ' …n
dR.X I x1; x2/˝K

xK:

(2) There exists a natural equivalence (potentially semistable period isomorphism)

�pstW…
n
HK.X I x1; x2/˝Knr

0
Bst ' …

n
Ket.X I x1; x2/˝Qp

Bst

that is compatible with Galois action, Frobenius, the monodromy operator.
Extending to BdR and using the Hyodo–Kato equivalence, we get the de Rham
period isomorphism

�dRW…
n
dR.X I x1; x2/˝K BdR ' …

n
Ket.X I x1; x2/˝Qp

BdR

that is compatible with filtrations.
These comparison isomorphisms are compatible with change of the index n and

with Hopf algebra structures.
The above comparison statements were proved before in the case of curves in

[1, 37], for varieties with good reduction over slightly ramified base in [71], and
for varieties with good reduction over an unramified base in [56]. The various
realizations appearing in these constructions should be naturally isomorphic with
ours but we did not check it.

4.4. Example II: p-adic comparison maps with compact support
and compatibilities.

4.20. When " D HK; Ket; dR;DFK ; pst, we get from the preceding section, for any
K-variety, a complex

R�".X/ WD R�".M.X/_/ D R�".M.X//�
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which computes the "-cohomology with enriched coefficients. When " D Ket;HK; dR
this is the usual complex, respectively, of Galois representations, .';N;GK/-
modules, filtered K-vector spaces which computes, respectively, geometric étale
cohomology, Hyodo–Kato cohomology and De Rham cohomology with their natural
algebraic structures. These complexes are related by the comparison isomorphisms
�dR, �pst, and �dR.

An interesting point is that these complexes, as well as the comparison
isomorphisms are contravariantly functorial in the homologicalmotiveM.X/. Recall
Voevodsky’s motives are equipped with special covariant functorialities.

Let X and Y be K-varieties. A finite correspondence ˛ from X to Y is an
algebraic cycle inX �K Y whose support is finite equidimensional overX and which
is special over X in the sense of [18, 8.1.28].12 Then by definition, ˛ induces a map
˛�WM.X/!M.Y /.

Assume now that X and Y are smooth. Let f WX ! Y be any morphism
of schemes of constant relative dimension d . Then we have the Gysin maps
f �WM.Y /!M.X/.d/Œ2d � (cf. [23]).

Corollary 4.21. Consider the notations above. Then R�".X/ is contravariant with
respect to finite correspondences and covariant with respect to morphisms of smooth
K-varieties.

Moreover, the comparison isomorphisms �dR, �pst, �dR are natural with respect to
these functorialities.

Remark 4.22. (1) Note in particular that covariance with respect to finite correspon-
dences implies the existence of transfer maps f� for any finite equidimensional
morphism f WX ! Y which is special (eg. flat, orX is geometrically unibranch).

(2) The syntomic descent spectral sequence and the syntomic period map of
Example 4.17 are natural with respect to the functorialities of the corollary.

(3) We can deduce from [23] the usual good properties of covariant funtoriality
(compatibility with composition, projection formulas, excess of intersection
formulas,. . . )

4.23 (Products). Consider again the notations of the Paragraph 4.20. As said
previously, from the Künneth formula, R�" is a monoidal functor and the comparison
isomorphisms are isomorphisms of monoidal functors.

Consider a K-variety X with structural morphism f . Recall from Remark 4.12
that M.X/_ D f�.1X /. The functor f� is left adjoint to a monoidal functor.
Therefore it is weakly monoidal and we get a pairing:

�WM.X/_ ˝M.X/_ D f�.1X /˝ f�.1X /! f�.1X / DM.X/
_

12If X is geometrically unibranch, every ˛ whose support is finite equidimensional over X is special
(cf. [18, 8.3.27]). IfZ is a closed subset ofX �K Y which is flat and finite overX , the cycle associated
withZ is a finite correspondence (cf. [18, 8.1.31]).
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inDMgm.K;Qp/. This induces a cup-product on the "-complexes:

R�".X/˝ R�".X/ D R�"
�
f�.1X //˝ R�".f�.1X /

�
K
' R�"

�
f�.1X /˝ f�.1X /

� ��
��! R�"

�
f�.1X /

�
D R�".X/;

(4.3)
where the isomorphism labelledK stands for the structural morphism of themonoidal
functor R�", and corresponds to the Künneth formula in "-cohomology. When
" D Ket;HK; dR, we deduce from the definition of this structural isomorphism that
these products correspond to the natural products on the respective cohomology. As
the comparison isomorphisms are isomorphisms of monoidal functors, we deduce
that they are compatible with the above cup-products.

From the end of Example 4.17, we can also define the "-complex of X with
compact support:

R�";c.X/ D R�"
�
fŠ.1X /

�
:

Because we have a natural map f� ! fŠ of functors [18, 2.4.50(2)], we also deduce,
as usual, a natural map:

R�";c.X/! R�".X/:

From the 6 functors formalism, we get a pairing inDMgm.K;Qp/:

�c Wf�.1X /˝ fŠ.1X /
.1/
' fŠ

�
f �f�.1X /˝ 1X

�
D fŠ

�
f �f�.1X /

� .2/
��! fŠ.1X /

where the isomorphism (1) stands for the projection formula [18, 2.4.50(5)] and the
map (2) is the unit map of the adjunction .f �; f�/. Then, using �c instead of � in
formula (4.3), we get the pairing between cohomology and cohomologywith compact
support:

R�".X/˝ R�";c.X/! R�";c.X/: (4.4)

Using again the fact that the comparison isomorphisms �dR, �pst, �dR are isomorphisms
of monoidal functor, we deduce that they are compatible with this pairing. Let us
summarize:

Proposition 4.24. For � D ;; c, we have comparison isomorphisms

�HK;�WR�HK;�.X/˝Knr
0

xK ' R�dR;�.X/˝K xK;

�pst;�WR�HK;�.X/˝Knr
0
Bst ' R�Ket;�.X xK/˝Qp

Bst;

�dR;�WR�dR;�.X/˝K BdR ' R�Ket;�.X xK/˝Qp
BdR;

that are compatible with cup-products (4.3) and with the pairing (4.4).
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5. Syntomic modules

5.1. Definition. In this section we use the dg-algebra Esyn;K , which represents
syntomic cohomology of varieties over K [50, Appendix] to define a category of
syntomicmodules over any such variety. This is our candidate for coefficients systems
(of geometric origin) for syntomic cohomology. We prove that in the case of SpecK
itself the category of syntomic coefficients is (via the period map) a subcategory of
potentially semistable representations that is closed under extensions. We call such
representations constructible representations.

Let us first recall the setting of Voevodsky’s h-motives, with coefficients in a given
ring R and over any noetherian base scheme S . We let Sh.S;R/ be the category
of h-sheaves of R-modules on SchS — the category of separated schemes of finite
type over S . This is a monoidal Grothendieck abelian category with generators the
free R-linear h-sheaves represented by any X in SchS ; we denote them by RhS .X/.
In particular, its derived category D.Sh.S;R// has a canonical structure of a stable
monoidal1-category in the sense of [59, Def. 3.5] (see also [46]).13 Moreover, it
admits infinite direct sums. Let us define the Tate object as the following complex of
R-sheaves: RS .1/ WD RhS .P

1
S /=R

h
S .f1g/Œ�2�.

The following theorem is an1-categorical summary of a classical construction
phrased in terms of model categories in [19]:
Theorem 5.1. There exists a universal monoidal 1-category DMh.S;R/ which
admits infinite direct sums and is equipped with a monoidal1-functor

†1WD.Sh.S;R//! DMh.S;R/

such that:
� A1-Homotopy: for any scheme X in SchS , the induced map †1RhS .A

1
X / !

†1RhS .X/ is an isomorphism;
� P1-stability: the object †1RS .1/ is˝-invertible.
Moreover, the monoidal1-category DMh.S;R/ is stable and presentable.

Concerning the first point, the statement follows from the existence of localization
for monoidal 1-categories. The statement for the second point follows from [59,
4.16] and the fact that, up to A1-homotopy, the cyclic permutation on RS .1/˝;3 is
the identity.
Remark 5.2. According to [19] and [59], the1-category DMh.S;R/ is associated
with an underlying symmetric monoidal model category — this also implies it can
be described by a canonical R-linear dg-category. According to the description of
this model category, up to quasi-isomorphism, the objects of DMh.S;R/ can be

13Actually, this follows from the existence of a closed monoidal category structure on the category of
complexes of Sh.S;R/ (cf. [16] or [19]) and from [59, Sec. 3.9.1].
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understood as N-graded complexes of R-linear h-sheaves .Er/r2N which satisfy the
following properties:
� (Homotopy invariance) for any integer r , theh-cohomology presheavesH�

h
.�;Er/

are A1-invariant;
� (Tate twist) there exists a (structural) quasi-isomorphismEr ! Hom.RS .1/;ErC1/.

One should be careful however that, in order to get the right symmetric monoidal
structure on the underlying model category, one has to consider in addition an action
of the symmetric group of order r on Er , in a way compatible with the structural
isomorphism associated with Tate twists. The corresponding objects are called
symmetric Tate spectra.14

Example 5.3. Let S D Spec.K/ andR D Qp . Consider the h-sheaf associated with
the presheaf of dg-Qp-algebras

X 7!
�
R�syn.Xh; r/ ' R�syn.X; r/

�
defined in 2.9 (see Theorem 2.26 for the isomorphism). Because of [50], it satisfies
the homotopy invariance and Tate twist properties stated above; thus as explained
in Appendix B of [50], it canonically defines an object Esyn of DMh.K;Qp/.
Moreover, the dg-structure allows us to put a canonical ring structure on this object,
which corresponds to a strict structure (the diagrams encoding commutativity and
associativity are commutative not only up to homotopy).

For any scheme X in SchS , we put MS .X/ WD †1RhS .X/, called the
(homological) h-motive associated with X=S .

Definition 5.4. We define the stable monoidal1-category of h-motivesDMh.S;R/

(resp., constructible h-motives DMh;c.S;R/) over S with coefficients in R as the
smallest stable sub-1-category15 of DMh.S;R/ containing arbitrary direct sums
of objects of the form MS .X/.n/Œi � (resp., objects of the form MS .X/.n/Œi �) for a
smooth S -scheme X and integers .n; i/ 2 Z2.

We let DMh.S;R/ (resp., DMh;c.S;R/) be the associated homotopy category,
as a triangulated monoidal category.

Example 5.5. WhenR is aQ-algebra (resp.,R is aZ=n-algebra where n is invertible
on S ), DMh.S;R/ is equivalent to the triangulated monoidal category of rational
mixed motives (resp., derived category of R-sheaves on the small étale site of S );
see [19, Th. 5.2.2 (resp., Cor. 5.5.4)]. In particular, DMh.S;R/ is presentable by a
monoidal model category.

14See [18, Sec. 5.3] for the construction in motivic homotopy theory.
15Here, and later in Definition 5.7, a stable sub-1-category of an1-category D means a sub-1-

category D0 of D in the sense of [45, 1.2.11] such that the associated homotopy category hD0 is a full
triangulated subcategory of the associated homotopy category hD .
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The justification of the axioms of A1-homotopy and P1-stability added to the
derived category of h-sheaves comes from the following theorem:
Theorem 5.6 ([19]). The triangulated categoriesDMh.S;R/ for various schemes S
are equipped with Grothendieck 6 functors formalism and satisfy the absolute purity
property. If one restricts to quasi-excellent schemes S and morphisms of finite
type, the subcategories DMh;c.S;R/ are stable under the 6 operations, and satisfy
Grothendieck–Verdier duality.

We refer the reader to [18, A.5] or [19, Appendix A] for a summary of
Grothendieck 6 functors formalism and Grothendieck–Verdier duality.

Let us now take the notations of Example 5.3. We view Esyn in the model category
underlying DMh.K;Qp/, equiped with its structure of (commutative) dg-algebra.
According to [18, 7.1.11(d)], one can assume that Esyn is cofibrant (by taking a
cofibrant resolution in the category of dg-algebras according to loc. cit.). Given any
morphism f WS ! Spec.K/, we put

Esyn;S WD Lf �.Esyn/

which is again a dg-algebra because f � is monoidal. According to the construction
of [18, Sec. 7.2], the category Esyn-ModS of modules over this dg-algebra is
endowed with a monoidal model structure, and therefore with a structure of monoidal
1-category. The free Esyn-module functor induces an adjunction of1-categories:

RsynWDMh.S;Qp/ � Esyn-ModS WOsyn:

Given any S -scheme X , and any integer n 2 Z, we put

Esyn;S .X/.n/ WD Rsyn.MS .X/.n//:

Definition 5.7. Using the above notations, we define the 1-category of syntomic
modules (resp., constructible syntomic modules) over S as the smallest stable
1-subcategory of Esyn-ModS containing arbitrary direct sums of modules of the
form Esyn;S .X/.n/Œi � for a smooth S -scheme X and integers .n; i/ 2 Z2.

We denote it by Esyn-ModS (resp., Esyn-Modc;S ) and let Esyn- modS (resp.,
Esyn- modc;S ) be its associated homotopy category. This is a monoidal triangulated
category.

In particular, we get an adjunction of triangulated categories:

RsynWDMh.S;Qp/ � Esyn- modS W Osyn; (5.1)

such that Rsyn, called the realization functor, is monoidal and sends constructible
motives to constructible syntomic modules.
Remark5.8.Bydefinition, the triangulated categoryEsyn- modS (resp.,DMh.S;Qp/)
is generated by the objects of the form Esyn;S .X/.n/ (resp.,MS .X/.n/) for a smooth
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S -schemeX and an integer n 2 Z. By construction, the functor Osyn commutes with
arbitrary direct sums.16 Thus, because MS .X/.n/ is compact17 in DMh.S;Qp/
(see [18, 15.1.4]), we deduce that Esyn;S .X/.n/ is compact. This implies that a
syntomic module is constructible if and only if it is compact.18

Note also that Esyn- modS is a compactly generated triangulated category.

Essentially using the previous theorem and the good properties of the forgetful
functor Osyn, we get the following result:

Theorem 5.9. The triangulated categories Esyn-modS for various schemes S are
equipped with Grothendieck 6 functors formalism and satisfy the absolute purity
property. If one restricts to quasi-excellent K-schemes S and morphisms of finite
type, the subcategories Esyn-modc;S are stable under the 6 operations, and satisfy
Grothendieck–Verdier duality.

If one restricts to K-varieties S , the syntomic (pre-)realization functors:

R0synWDMh;c.S;Qp/! Esyn-modc;S ;

for various S , commute with the 6 operations and in particular with duality.

See Corollary 5.15 for the computation of this functor over the base field K.

Proof. All the references in this proof refer to [18]. According to 7.2.18, the fibred
triangulated category Esyn- modWS 7! Esyn- modS is a motivic triangulated category
(Definition 2.4.45) because DMh.�;Qp/WS 7! DMh.S;Qp/ is such a category.
Besides, it is oriented in the sense of 2.4.38 as the same facts hold forDMh.�;Qp/.
Thus it satisfies the six functors formalism as explained in 2.4.50.

Applying again 7.2.18, we also deduce that S 7! Esyn- modS is separated (see
Def. 2.1.7) and satisfies the absolute purity property (as stated in 14.4.1). This
implies in particular that Esyn- mod is � -compatible (see Definition 4.2.20 and
Example 4.2.22). Thus the assertion about the stability of constructible syntomic
modules under the 6 operations is an application of Theorem 4.2.29.

Besides, the absolute purity property also implies that Esyn- mod is � -dualizable
(see Definition 4.4.13 and Example 4.4.14). Thus the assertion about duality comes
from Theorem 4.4.21 and its Corollary 4.4.24.

The last assertion follows fromwhatwas said aboutEsyn- mod and Theorem 4.4.25
applied to the adjunction (5.1).

16This follows from the fact it is the derived functor of a left Quillen functor, more precisely the functor
which forgets the structure of Esyn-module in the category of symmetric spectra which trivially commutes
with arbitrary direct sums; see [18, proof of 7.2.14].

17Recall an object M of a triangulated category T is compact when the functor HomT .M;�/
commutes with arbitrary direct sums.

18This corresponds to the description of perfect complexes of a ring as compact objects of the derived
category.
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Remark 5.10. To get a feeling for the category Esyn- modc;S the reader might want
to recall a more classical case of coefficients defined by de Rham cohomology.
Let K D C be the field of complex numbers; let EdR be the commutative ring
spectrum representing de Rham cohomologyX 7! R�dR.X/, for varietiesX overK.
We have

Hn
dR.X/ D RHomDMh.K;C/

�
M.X/;EdRŒn�

�
:

We can define, in a way analogous to what we have done above, the category of
constructible de Rham coefficients EdR � modc;S , for varieties S that are smooth
over K. By [18, Example 17.2.22] (using the Riemann–Hilbert correspondence) or
by [28, Theorem 3.3.20] (more directly, using the isomorphism between Betti and
de Rham cohomologies) this category is equivalent to the bounded derived category
of analytic regular holonomic D-modules on S that are constructible, of geometric
origin.
5.11. Recall the Grothendieck–Verdier duality property means that for any regular
K-scheme S and any separated morphism of finite type f WX ! S , the syntomic
module MX D f Š.Esyn;S / is dualizing for the category of constructible syntomic
modules over X . In other words, the functor

DX WD Hom.�;MX /W .Esyn- modc;X /op ! Esyn- modc;X (5.2)

is an anti-equivalence of monoidal triangulated categories. Moreover, it exchanges
usual functors with exceptional functors: given any separated morphism of finite type
pWY ! X , one has: DYp� D pŠDX andDXp� D pŠDY .

5.2. Comparison theorem.
5.12. Consider the abelian category Reppst.GK/ of potentially semistable represen-
tations and the coinvariants functor

!ŠWReppst.GK/! V
f
Qp

where the right hand side is the category of finite dimensional Qp-vector spaces. It
admits a right adjoint denoted by !Š which to a finite dimensionalQp-vector space V
associates the representation V with trivial action of GK . It is obviously exact and
monoidal. One could also put !� D !Š because it also admits a right adjoint !�
which to a potentially semistable representation V associates the Qp-vector V GK of
GK-invariants. The situation can be pictured as follows:

Reppst.GK/
!Š //

!�
// V
f
Qp
:!ŠD!�oo

It will be convenient for what follows to enlarge the category Reppst.GK/.
Consider the category

Rep1pst.GK/ WD Ind�Reppst.GK/



Vol. 93 (2018) On p-adic absolute Hodge cohomology and syntomic coefficients. I 121

of ind-objects. Thus, for us, an infinite potentially semistable representation V will
be a Qp-vector space V with an action of GK which is a filtering union of sub-
Qp-vector spaces stable under the action of GK which are potentially semistable
representations of GK . The category Rep1pst.GK/ is an abelian (symmetric closed)
monoidal category which contains Reppst.GK/ as a full abelian thick subcategory.
Moreover, it is a Grothendieck abelian category — it admits infinte direct sums and
filtering colimits are exact. The above diagram of functors extends to this larger
category. Note in particular that according to this definition, Formula (2.9) can be
rewritten:

Vpst�
�1
WR�syn.X; r/

�
�! R!�R�pst.X xK ; r/: (5.3)

Due to the Drew’s thesis [28] together with our main construction (§2.24), we get
the following computation of syntomic modules over K:
Theorem 5.13. There exist a canonical pair of adjoints of triangulated categories:

��WEsyn-modK � D
�
Rep1pst.GK/

�
W ��

such that �� is monoidal and which can be promoted to an adjunction of stable
1-categories. Moreover, the functor �� is fully faithful and induces by restriction a
monoidal fully faithfull triangulated functor:

��WEsyn-modc;K ! Db
�
Reppst.GK/

�
such that for any K-variety X with structural morphism f , there exists a canonical
quasi-isomorphism of complexes of GK-representations:

��
�
f�Esyn;X .r/

�
' R�pst.X xK ; r/: (5.4)

Proof. Wewill apply Theorem 2.2.7 and Proposition 2.2.21 of [28]. To be consistent
with the notations of loc. cit., we take B D Spec.K/ and put T0 D Reppst.GK/,
T D Rep1pst.GK/.

Consider the functor zEsynWX 7! R�pst.X xK ; 0/ (recall that R�pst.X xK ; 0/ '

R�Ket.X xK ;Qp.0// as Galois representations). This is a presheaf of dg-Qp-algebras
on K-varieties with values in T0. Then zEsyn satisfies the axioms of a mixed Weil
T0-theory in the sense of [28, 2.1.1]: the axiom (W1) comes from the fact zEsyn
satisfies h-descent which is stronger than Nisnevich descent, (W2), (W3) comes from
homotopy invariance of geometric p-adic Hodge cohomology and the computation
of the syntomic cohomology of K, (W4) comes from the projective bundle formula
for geometric p-adic Hodge cohomology, and (W5) was proved in Lemma 2.21.
Then we can apply 2.2.7 and 2.2.21 of loc. cit. to zEsyn and this gives the theorem.

Let us explain this in more detail. First, Drew generalizes Theorem 5.1, to
the category SHReppst.GK/.S/ of Nisnevich sheaves with values in the category of
ind-representations T , seen as an enriched category over T — morphisms are not
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simply sets but ind-representations. This defines the Reppst.GK/-enriched stable
homotopy category over any base scheme S . Drew proves that this category is a
stable monoidal1-category — actually it is defined by a monoidal model category
— that we will denote here byDA1.K; T /. We will denote byDA1.K;Qp/ the usual
monoidal1-category of A1-homology, obtained by replacing T with the category
of Qp-vector spaces — and the associated homotopy category still satisfies the 6
functors formalism (cf. loc. cit., Prop. 1.6.7).19

Then applying Theorem 2.1.4 of loc. cit. to the presheaf zEsyn we get that
the geometric p-adic Hodge cohomology is representable in SHReppst.GK/.S/ by
a commutative monoid zEsyn in the underlying model category — in our case the
corresponding object is simply the collections of presheaves X 7! R�pst.X xK ; r/, as
a N-graded dg-algebra indexed by r , seen as presheaves on SmK (the category of
smooth K-varieties) with values in T .

Then Drew shows that one can define a monoidal1-category of modules over the
dg-algebra zEsyn which is enriched over T , that we will denote here by zEsyn- modK .
It follows that we have the following interpretation of the Künneth formula: by
Theorem 2.2.7 of loc. cit. the functor

z�W zEsyn- modK
�
�! D.T /; M 7! RHomT

zEsyn
. zEsyn;M/;

where HomT
‹ indicates the enriched Hom (with values in complexes of T ), is an

equivalence ofmonoidal triangulated categories. Recall that any smoothK-varietyX
defines a canonical zEsyn-module zEsyn.X/. It follows from the construction that, for
any smooth K-variety X and any integer r 2 Z, there exists a canonical quasi-
isomorphism:

RHomT
zEsyn
. zEsyn.X/; zEsyn.r// ' R�pst.X xK ; r/ (5.5)

functorial in X .
Now we descend. According to loc. cit., 1.6.8, the pair of adjoint functors

.!�; !�/ induces an adjunction of stable1-categories:

L!� W DA1.K;Qp/ � DA1.K; T / W R!�

such that L!� is monoidal. Then Drew defines (loc. cit., 2.2.13) the absolute
cohomology associatedwith the enrichedmixedWeil cohomology zEsyn asR!�. zEsyn/;

seen as a monoid in DA1.K;Qp/— recall R!� is weakly monoidal. According to
this definition, Formula (5.3), and the definition recalled in Example 5.3, we get:

Esyn ' R!�. zEsyn/;

19Essentially, its object are graded presheaves on the category of smooth S -scheme with values in T

satisfying homotopy invariance, Tate twist, as in Remark 5.2, but we have to add the Nisnevich descent
property.



Vol. 93 (2018) On p-adic absolute Hodge cohomology and syntomic coefficients. I 123

the absolute cohomology associated with zEsyn. According to this definition, we
deduce from the adjunction .L!�;R!�/ an adjunction of stable1-categories:

L z!� W Esyn- modK � zEsyn- modK W Rz!�

whose left adjoint, L z!�, is monoidal. Therefore, one gets the first two statements of
the theorem by putting:

�� D z� ı L z!�; �� D z!� ı R z��1:

Moreover, Prop. 2.2.21 of loc. cit. tells us that L z!� is an equivalence of categories
if one restricts to constructible objects on both sides (i.e., generated by, respectively,
the objects of the form Esyn.X/.r/ and zEsyn.X/.r/ for a smoothK-scheme X and an
integer r 2 Z). The fact that �� is fully faithful is a formal consequence of this result
together with the fact that Esyn- modK is compactly generated (cf. Rem. 5.8).

Recall that, for any smooth K-variety X with structural morphism f WX !

Spec.K/, one gets:
zEsyn.X/ D L z!�.Esyn.X// D L z!�.fŠf ŠEsyn;K/

D L z!�DK.f�f �Esyn;K/ D L z!�DK.f�Esyn;X /;

where DK is the Grothendieck–Verdier duality operator on constructible syntomic
modules over K defined in Paragraph 5.11. Thus, in the case when X is a smooth
K-variety, Formula (5.4) follows from this identification, the definition of ��,
and (5.5). One removes the assumption that X is smooth using the fact that the
quasi-isomorphism (5.4) can be extended to diagrams of smoothK-varieties and that
both the left and the right hand side satisfies (by definition) cohomological descent
for the h-topology.

Remark 5.14. As a consequence, the category of constructible syntomic modules
over K can be identified with a full triangulated subcategory D of the derived
categoryDb.Reppst.GK//.

It is easy to describe this subcategory: using resolution of singularities, all
objects of Esyn- modc;K are obtained by taking iterated extensions20 or retracts of
syntomic modules of the form f�.Esyn;X /.r/ for a smooth projective morphism
f WX ! Spec.K/ and an integer r 2 Z (this is an easy case of the general result [18,
4.4.3]). So D is the full subcategory ofDb

�
Reppst.GK/

�
whose objects are obtained

by taking retract of iterated extensions of complexes of the form R�pst.X xK ; r/

for X=K smooth projective and r 2 Z.
Similarly, the (essential image of the) category of (not necessarily constructible)

syntomic modules over K can be identified with the smallest full triangulated
subcategory of D.Rep1pst.GK// stable under taking (infinite) direct sums and which
contains complexes of the form R�pst.X xK ; r/ with the same assumptions as above.

20Recall: in a triangulated category T , an objectM is an extension ofM 00 byM 0 if there exists a
distinguished triangleM 0!M !M 00!M 0Œ1� in T .
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Composing the syntomic realization functor over K with the fully faithful
functor �� above, we get:
Corollary 5.15. The syntomic (pre-)realization functor of Theorem 5.9 in the case
S D Spec.K/ defines a triangulated monoidal realization functor:

RsynWDMgm.K;Qp/ ' DMh;c.K;Qp/
R0syn
��! Esyn-modc;K

��

�! Db
�
Reppst.GK/

�
:

It coincides with the functor R�pst defined in Paragraph 4.15.

Proof. Only the last statement requires a proof. By definition, R�pst is the functor
defined on DMgm.K;Qp/ applying Example 4.9 to the functor which to a smooth
affineK-varietyX associates the complex R�pst.X xK ; r/. Thus the statement follows
from the description of the functor �� in the above proof and the identification (5.5).

Remark 5.16. The corollary means in particular that the realization R0syn of
Theorem 5.9 does indeed extends the realization R�pst to arbitrary K-bases in a
way compatible with the 6 operations.
Corollary 5.17. For a variety f WX ! Spec.K/, we have a natural quasi-
isomorphism

R�H .X; r/ D RHomEsyn-modX

�
Esyn;X ;Esyn;X .r/

�
:

Proof. Since, by the above theorem, ��.f�Esyn;X .r// ' R�pst.X xK ; r/, we have

RHomEsyn- modX

�
Esyn;X ;Esyn;X .r/

�
D RHomEsyn- modX

�
f �Esyn;K ;Esyn;X .r/

�
D RHomEsyn- modK

�
Esyn;K ; f�Esyn;X .r/

�
D RHomD.Reppst.GK/

�
Qp;R�pst.X xK ; r/

�
' R�H .X; r/;

as wanted.

This means that we can define syntomic cohomology of a syntomic module in the
following way.
Definition 5.18. Let X be a variety overK and M 2 Esyn- modX . Syntomic cohom-
ology of M is the complex

R�H .X;M/ D R�syn.X;M/ WD RHomEsyn- modX

�
Esyn;X ;M

�
:

This definition is compatible with the definition of syntomic cohomology of
Voyevodsky’s motives from Example 4.17. That is, for M 2 DMgm.K;Qp/, we
have a canonical quasi-isomorphism

R�syn
�
Spec.K/;R0syn.M/

�
' R�syn.M/:

This follows easily from Theorem 5.13 and Corollary 5.15.
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Remark 5.19. Syntomic cohomology with coefficients was studied before in [6, 51,
52, 64]. The coefficients used there could be called “syntomic local systems”. They
are variants of the crystalline and semistable local systems introduced by Faltings [30,
31]. There exists also a notion of “de Rham local systems”. Those were introduced
by Tsuzuki in his (unpublished) thesis [66] and later by Scholze [62] in the rigid
analytic setting.

In all these cases, syntomic local systems have a de Rham avatar and an étale one.
These two avatars are related by relative Fontaine theory and their cohomologies (de
Rham, étale, and syntomic) satisfy p-adic comparison isomorphisms. We hope that
this is also the case for the syntomic coefficients introduced here and we will discuss
it in a forthcoming paper.

5.3. Geometric and constructible representations.
Definition 5.20. Keep the notations of the previous section. We define the category
Repgm.GK/ (resp., RepN gm.GK/, resp., Repc.GK/) of geometric (resp., Nori’s
geometric, resp., constructible) p-adic representations of GK as the essential image
of the following (composite) functor:

DMgm.K;Qp/
Rsyn
��! Db

�
Reppst.GK/

� H0

��! Reppst.GK/;
resp., RpstWMM.K/Qp

! Reppst.GK/;

resp., Esyn- modc;K
��

�! Db
�
Reppst.GK/

� H0

��! Reppst.GK/:

Thus a geometric GK-representation can be described as the geometric étale
p-adic cohomology of aVoevodsky’smotive overK with its natural Galois action and
Nori’s geometricGK-representation— as the geometric étale p-adic cohomology of
a Nori’s motive. By Corollary 5.15, a geometric GK-representation is constructible
and by the compatibility of realizations of Nori’s and Voevodsky’s motives (4.2)
geometric representation is Nori’s geometric. So we have the following inclusions of
categories

Repc.GK/

Repgm.GK/ RepN gm.GK/ Reppst.GK/:

(5.6)

We do not knowmuch about these subcategories. Neither dowe have a conjectural
description of them in purely algebraic terms — this contrasts very much with the
case of number fields, see [34].

Here is a few trivial facts:
� All three subcategories are stable under taking tensor products and twists.
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� All three categories contain representations of the form H i
Ket.X xK ;Qp.r// for any

integers i; r 2 N � Z and any K-variety X (possibly singular). They also contain
kernel of projectors of these particular representations when the projector is
induced by an algebraic correspondence modulo rational equivalence for X=K
projective smooth, and any finite correspondence for an arbitrary X=K.

We do not know if any of these subcategories are stable under taking sub-objects,
quotients, or even direct factors.

The following fact is the only nontrivial result about stability.
Proposition 5.21. The category Repc.GK/ contains all potentially semistable
extensions of representations of the form H i

Ket.X xK ;Qp.r// for X=K smooth and
projective, i 2 N, r 2 Z.

Proof. Let D be the essential image of the functor

��WEsyn- modc;K ! Db
�
Reppst.GK/

�
:

Note that D is stable under taking retracts, suspensions, and extensions (see Re-
mark 5.14). Wefirst prove that for any smooth projectivemorphismf WX ! Spec.K/
and any integer r 2 Z, the representationH i

Ket.X xK ;Qp.r// belongs to D .
The complex or representations R�pst.X xK ; r/ ' Rf�.Qp/.r/ belongs to D

(according to the end of Theorem 5.13). Moreover, using [26, 4.1.1] and [25], there
exists an isomorphism inDb.Reppst.GK//:

Rf�.Qp/.r/ '
M
i2Z

Ri f�.Qp/.r/Œ�i �:

This means that Ri f�.Qp/.r/ is the kernel of a projector of Rf�.Qp/.r/, thus
belongs to D because the later is stable under taking retracts.

Thus the result follows, using the fact that D is stable under taking extensions in
Db.Reppst.GK//.

Remark 5.22. The preceding proof shows that the essential imageD of constructible
syntomic modules in complexes of pst-representations contains arbitrary truncations
of the complexes R�pst.X xK ; r/. A natural question would be to determine if, more
generally, D is stable under taking truncation. This would immediately imply that
Repc.GK/ is a thick abelian subcategory of Rep.GK/ (i.e. it is stable under taking
sub-objects and quotients) and that D is the category of bounded complexes of
pst-representations whose cohomology groups are constructible in the above sense.
Remark 5.23. In the diagram of inclusions (5.6) we believe that the first bottom one
is an equality and the rest are strict. We can support this belief with the following
observations. The first bottom inclusion should be an equality since the category of
Nori’s motives is expected to be the heart of a motivic t -structure onDMgm.K;Qp/
(see [42, p. 374]). The second bottom and the first skewed inclusions should be strict
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by the philosophy of weights: by Proposition 5.21, we allow all potentially semistable
extensions as extensions of certain geometric representations in the constructible
category but in the geometric category such extensions should satisfy a weight
filtration condition. For properties of geometric representations coming from abelian
varieties over Qp see the work of Volkov [67, 68].

For the second skewed inclusion, take k D Fq , the finite field with q D ps

elements. Let V 2 Repc.GK/ be a constructible representation. Then, by the
Conjecture of purity of the weight filtration, the '-module Dpst.V / is an extension
of “pure”'-modules, i.e.'-modules such that, for a numbera � s, 'a has eigenvalues
that are pa-Weil numbers21 (cf. [41, Conjecture 2.6.5]). But there are crystalline
representations that do not have this property. For example, any unramified character
�WGK0

! Qp , F r 7! � 2 Q�p , such that � is not a pa-Weil number for any a � 0
(such a � exists by the uncountability of Qp).
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