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Rigidity and flexibility for handlebody groups

Sebastian Hensel

Abstract.We show that finite index subgroups of the handlebody group are rigid in their ambient
mapping class group: any injective map of a finite index subgroup of the genus g handlebody
group into the genus g mapping class group is conjugation by a mapping class group element.

On the other hand, we construct an injection of the genus g handlebody group into a
genus h > g mapping class group which is not conjugate into a handlebody group.
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1. Introduction

Homomorphisms, and in particular injections, between mapping class groups have
received considerable attention over the last years. See [4] for a survey, and e.g. [1,2,
12,15,17,20,24] for examples of results. A guiding theme in this subject is to try and
imitate (super)rigidity results from the theory of lattices in Lie groups. For example,
under suitable complexity bounds, the only injections between mapping class groups
arise from “obvious” topological operations on surfaces.

In this article we investigate rigidity phenomena from a slightly different point
of view. Namely, we let the mapping class group play the role of the “ambient Lie
group”, and study rigidity of subgroups. To be precise, by rigidity we here mean the
following.

Definition 1.1. Let � be a subgroup of the mapping class group Mcg.†g/ of a
closed genus g surface†g . We say that � is rigid inMcg.†g/ if every injective map
f W� ! Mcg.†g/ is (the restriction of) an inner automorphism of Mcg.†g/.

We focus on an important, topologicallymotivated subgroup ofMcg.†g/, namely
the the handlebody group Hg < Mcg.†g/. It consists of all those mapping classes
which extend to a given handlebody V with boundary †g . We show.

Theorem 1.2 (Rigidity). Suppose that � < Hg is a finite index subgroup. Then �
is rigid inMcg.†g/.
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As a consequence we also obtain the following, which improves the main theorem
of [21].

Corollary 1.3. The abstract commensurator of Hg is equal to Hg .

The mapping class group itself, and its finite index subgroups are rigid in all but
a few exceptional low-complexity cases. These results have a long history, starting
with Ivanov’s study of the automorphism group and commensurator of the mapping
class group [16,19], whose methods were later greatly extended (see [5,6,17,29] and
the references therein). Rigidity is also known for the group generated by powers
of Dehn twists [3]. In [7, 18] it is shown that the Johnson kernel is rigid inside the
Torelli subgroup of the mapping class group.

We next study injections of Hg into higher genus mapping class groups. Here,
the situation is drastically different.

Theorem 1.4 (Flexibility). For any g � 2 there is an h > g, a finite index subgroup
� < Hg and an injection f W� ! Mcg.†h/, so that the image of f is not conjugate
into Hh.

The examples in Theorem 1.4 comes from a covering construction, and we can
completely characterise rigidity and flexibility for such injections.

Theorem 1.5 (Covers). Suppose that †0 ! † is a finite normal cover of a surface
of genus g � 3. Let � < Hg be a finite index subgroup of mapping classes which
lift to †0. Denote by � 0 a finite index subgroup of the lifts of elements in � .

Then � 0 is conjugate into a handlebody group of†0 if and only if†0 ! † can be
extended to a cover of handlebodies.

The genus restriction in this theorem is likely not required, and an artefact of our
proof.

In the course of the proof of Theorem 1.2 we show rigidity for a different group.
The twist group Tg < Hg is the subgroup generated by Dehn twists about meridians
of a handlebody. It is known to be of infinite index, not finitely generatable, and with
infinite rank first homology [26]. Nevertheless, rigidity holds:

Theorem 1.6. Suppose that � < Tg is a finite index subgroup. Then � is rigid in
Mcg.†g/. The commensurator of Tg is the handlebody group Hg.

The flexibility exhibited in Theorem 1.4, and restrictions for covering construc-
tions as in Theorem 1.5 is also already true for Tg .

Methods of proof. The argument which is used to show rigidity results on injec-
tions f between subgroups of mapping class groups goes back to Ivanov. It has by
now become somewhat standard, and consists of three main steps. First, one shows
that powers of Dehn twists map under f to (roots of) multi-twists. In this way one
obtains a map between curve graphs (or related objects). Then, one uses rigidity
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results for maps between curve graphs to find a candidate conjugation map which f
will be equal to. Checking this equality in a third step is then usually straightforward.

For finite index subgroups of Mcg.†/, the first step is well known and due to
Ivanov (see [6, 14] for well-written modern treatments of this argument). A key
ingredient in his proof is that one can characterise (powers of) Dehn twists in the
mapping class group via ranks of maximal Abelian subgroups of centralisers and
centralisers of centralisers.

In Section 3, we develop a variant of Ivanov’s argument, which may be of interest
in studying the rigidity of other subgroups of the mapping class group. It bypasses
an explicit identification of Dehn twists via their centralisers and also tries to avoid
using maximal Abelian subgroups as much as possible. A reader experienced with
arguments of this type who is only interested in the handlebody group may skip
directly to Section 4.

We want to emphasise that there is an alternative approach to this first step due
to Aramayona–Souto [4] which would work (with minor modifications) also for the
handlebody group (but, to the knowledge of the author, not the twist group, since it
has infinite rank first rational cohomology [26]).

The second and third steps of the proof require new arguments in the case of the
handlebody group. In Section 4, we show that the disk graph of a handlebody is rigid
inside the curve graph of the surface (compare also [3] for rigidity of subgraphs of
the curve graph). This is then used to find the candidate conjugation, relying on the
main result of [21].

In Section 6, we prove the Flexibility and Covering Theorems 1.4 and 1.5. The
proofs rely on two main ingredients: on the one hand, a theorem of Oertel [28]
characterises which multi-twists on the boundary of a handlebody extend to
homeomorphisms of that handlebody. This allows to translate the condition of
lifts being conjugate into Hg into a condition on lifts of meridians. Careful analysis
of how intersection patterns between meridians behave under lifting is then used to
show the results.

Acknowledgements. The authorwould like Juan Souto andDanMargalit for enlight-
ening discussions on rigidity of subgroups of mapping class groups. Furthermore,
we would like to thank Harry Baik for interest (and patience) during numerous
discussions. Finally, we thank the anonymous referee for helpful comments.

2. Preliminaries

In this section we collect some well-known facts that we will use throughout. A
few conventions: all curves will be simple, closed and essential. When not explicitly
stated otherwise, we will identify curves with their isotopy classes. By disjointness of
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two curves we always mean disjointness up to homotopy. Multicurves are collections
of disjoint curves, no two of which are freely homotopic.

2.1. Canonical reduction systems and centralisers. Let † be a surface of finite
type, possibly with boundary and/or marked points. We let Mcg.†/ denote the
mapping class group, i.e. the group of homeomorphisms of † up to isotopy. Given
a mapping class � 2 Mcg.†/ we say that � is reducible if there is some multicurve
on † which is (set-wise) preserved by �. The mapping class � is pure if there is
a multicurve C so that � preserves every component of C , and induces on each
component of S � C either the identity, or a pseudo-Anosov map. If � is pure, then
the canonical reduction system C.�/ is the (unique) smallest such multicurve. If �
is pseudo-Anosov, we set C.�/ D ;.

The following is due to Ivanov (compare e.g. [15, Theorem 1.2]).
Proposition 2.1. There is a finite index subgroup �p < Mcg.†/ so that every
reducible element in �p is pure.

Hence, we may define the canonical reduction system for any element � to be the
canonical reduction system of a suitably big, pure power of �.

We need a version for subgroups as well. If � < Mcg.†/ is a pure subgroup, i.e
every reducible element in � is pure, then we define the canonical reduction system

C.�/ D
\
�2�

C.�/

to be the intersection of all canonical reduction systemsC.�/ of every element � 2 � .
If � is not pure, we define C.�/ as the canonical reduction system of a finite index
pure subgroup.

C.�/ has the property that for each complementary component Y of C.�/, either
every pure element � 2 � restricts to the identity in Y , or there is an element in �
which restricts to a pseudo-Anosov map in Y .

We also use the following standard results on (non-)commuting elements in the
mapping class groups.
Proposition 2.2 ([25]). Let  be a pseudo-Anosov. Then the cyclic group generated
by  is finite index in the centraliser of  .

In particular, if  is a pseudo-Anosov, then no Dehn twist commutes with  ,
and neither does an independent pseudo-Anosov (i.e. one which does not admit a
common root, or alternatively, has different stable and unstable foliations).

The following facts on Dehn twists can e.g. be found in [9, Section 3.3].
Lemma 2.3. Some powers of two Dehn twists T˛ and Tˇ commute if and only if ˛
and ˇ are disjoint.
Lemma 2.4. Two powers T n˛ and Tm

ˇ
of Dehn twists are equal if and only if n D m,

˛ D ˇ.
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2.2. Meridians and handlebody groups. Let V be a handlebody of genus g.
Identify the boundary @V of V with a surface † of genus g. A meridian for V is a
curve ˛ on † which bounds a disk in V .

Suppose that ˛; ˇ are two meridians. A wave of ˛ with respect to ˇ is a (closed)
subarc a � ˛ with the following properties:
(i) a intersects ˇ exactly in its endpoints.
(ii) a intersects ˇ on the same side at both endpoints. More formally, there is a

regular neighbourhood U of ˇ so that the intersection of a with U n ˇ consists
of two arcs which are contained in the same component of U n ˇ.

(iii) There is a subarc b � ˇ so that a [ b is a meridian1.

Figure 1. A wave.

The importance of waves stems form the following standard observation, whose proof
we sketch for completeness. For more details of this argument, compare e.g. the proof
of Theorem 5.3 in [27] (note that this source does not use the term “wave”, but does
construct them in the process of explaining surgery of disks).
Lemma 2.5. Suppose that A;B are two multicurves consisting of meridians. Then
either A and B are disjoint (up to isotopy), or there are ˛ 2 A; ˇ 2 B and a wave
of ˛ with respect to ˇ, which only intersects B in its endpoints.

Proof. If the geometric intersection number i.A;B/ is zero, then there is nothing
to prove. Otherwise, let A D f˛1; : : : ; ˛rg, B D fˇ1; : : : ; ˇsg. Up to isotopy, we
can find properly embedded disksD1; : : : ;Dr ;D01; : : : ;D0s in the handlebody so that
@Di D ˛i , 1 � i � r , @D0j D ˇj , 1 � j � s, and additionally the intersection of
.D1[� � �[Dr/\.D

0
1[� � �[D

0
s/ consists of

1
2
i.A;B/ arcs (compare e.g. Lemma 5.1

of [27]). In particular, the multi-curves A and B are in minimal position.
SinceA andB intersect, there is some i so that the intersectionDi\.D01[� � �[D0s/

is nonempty. Let b0 be an outermost component in this intersection. By this we mean
that b0 � Di \.D01[� � �[D0s/ is an arc which bounds, together with an arc a � @Di ,
a subdisk C � Di so that the interior of C (in Di ) is disjoint from all D0j . The
arc a then clearly fulfills properties (i) and (ii) from the definition of a wave. If b

1We warn the reader that requirement (iii) is not standard everywhere “wave” is used in the literature.
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is any subarc of a component of B with the same endpoints as b0, then a and b
also satisfy (iii). Namely, a [ b is embedded (because of property (ii)), and it is an
essential curve (because A and B are in minimal position). Note that b and b0 are
homotopic relative to their endpoints in the handlebody, since they are both contained
in one of the disksD0j . Thus a[ b is homotopic to a[ b0, which bounds the disk C ,
and is therefore nullhomotopic in the handlebody. This shows (iii).

The restriction map induces a homomorphism

Mcg.V /! Mcg.†/

whose image Hg we call the handlebody group of V . Up to conjugation, Hg

is independent of the identification of @V with †. Usually, we will not need to
distinguish between different conjugates, and fix some handlebody group Hg . In
any case, the statement that some group is conjugate into Hg is well-defined without
choices.

A reduced disk system for V is a multicurve ˛1; : : : ; ˛g consisting of meridians
so that †� .˛1 [ � � � [ ˛g/ is connected. Note that every simple closed curve which
is disjoint from a reduced disk system is a meridian. This is due to the fact that
any curve on the boundary of a ball bounds a disk in the ball. The following is
standard, and an immediate consequence of the fact that any homeomorphism of a
sphere extends to the ball it bounds.
Lemma 2.6. Suppose that � 2 Mcg.†/ is such that �.C / is a reduced disk system
for V for some reduced disk system C for V . Then � 2 Hg.

The following lemma describes a well-known method to transform one reduced
disk system into another. See [11, Lemma 5.4] for a formulation and proof very close
to our language, but the result also follows from the arguments of e.g. [13, Lemma 1.3]
or [23, Lemma 1.1].
Lemma 2.7. Let C;C 0 be reduced disk systems for V . Then there is a sequence

C D C1; C2; : : : ; Cn D C
0

of reduced disk systems for V so that Ci ; CiC1 are disjoint for all i .

We need the following criterion for a multitwist to be an element of Hg , which
relies on [28, Theorem 1.11].
Theorem 2.8. Let � D T˛1

� � �T˛n
be a product of Dehn twists about disjoint

curves ˛i and suppose that � is an element of Hg .
Then, up to relabeling, there is a l > 0 and a bijection kW fl C 1; : : : ; ng !

fl C 1; : : : ; ng so that
(i) ˛i is a meridian for all i � l .
(ii) ˛i and ˛k.i/ are joined in V by a properly embedded annulus for all i > l .
(iii) If i > l , then T˛i

and T˛k.i/
are not both left or both right Dehn twists.
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Proof. Theorem 1.11 of [28] implies that � is the restriction to @V of a homeo-
morphism F WV ! V , which is a product of twists about disjoint disks and annuli in
the handlebody. A twist about a disk in V restricts to a Dehn twist about a meridian ˛i
on @V . A twist about an annulus A with boundary @A D ˛i [ ˛k.i/ restricts to the
product of a left and a right Dehn twist about ˛i and ˛k.i/ (or vice versa). This shows
the theorem.

Corollary 2.9. Suppose that ˛1; : : : ; ˛k are disjoint simple closed curves. Then the
product of left Dehn twists T˛1

� � �T˛k
is an element of Hg if and only if all ˛i are

meridians.

3. Full and abundant subsurfaces

In this section we discuss the first step of the rigidity proof outline given in the
introduction.

Throughout, † will be a finite type surface, possibly with boundary or cusps. A
subsurface S � † is essential if every component of @S is an essential simple closed
curve on †. If � < Mcg.†/ is any subgroup, we denote by Stab�.S/ the subgroup
of � consisting of all elements which preserve S (up to isotopy).

If S is a surface with a specified collection of boundary components B , we
denote by yS the surface obtained from S by gluing punctured disks to each boundary
component of S in B . We say that yS is obtained from S by cusping off the
boundaries B . There is a homomorphism

rS WMcg.S/! Mcg. yS/

To ease notation, we will often say that � 2 � has a property when viewed as a
mapping class of yS if rS .�/ has this property. Also note that the kernel of rS consists
of Dehn twists about the boundary components B . See [9, Section 4.2] for this, and
related background on mapping class groups.

If S � † is an essential subsurface, then we will always denote by yS the surface
obtained by cusping off all boundary components which are not contained in the
boundary of †.
Definition 3.1. Let S � † be an essential subsurface. A subgroup � < Mcg.†/ is
� full in S : if there are elements �1; �2 which are independent pseudo-Anosov
elements when viewed as mapping classes of yS .

� abundant in S : if additionally there is a pants decomposition f˛1; : : : ; ˛kg of yS
and T1; : : : ; Tk 2 Stab�.S/ so that Ti is a power of Dehn twist about ˛i (viewed as
a mapping class of yS ).

Remark 3.2. If � 0 < � is finite index, and � is full or abundant in S , then so is � 0.
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Lemma 3.3. Suppose that S � † is an essential subsurface and that � < Mcg.†/
is full in S . Then every element in the centre of Stab�.S/ has a power which is a
multitwist about @S .

Proof. Consider the induced map

rS WStab�.S/! Mcg. yS/

If the centre of Stab�.S/ contains an element none of whose powers are multitwists
about @S , then its image is an infinite order element in the centre of rS .Stab�.S//.
However, since we assume that � is full in S , the group rS .Stab�.S// contains two
independent pseudo-Anosov elements. By Proposition 2.2 this is impossible.

Proposition 3.4. Suppose that S � † is an essential subsurface and that � <

Mcg.†/ is full in S . Suppose f W� ! G is a homomorphism.
If ker.f / \ Stab�.S/ contains an element none of whose powers are multitwists

about @S , then ker.f /\Stab�.S/ contains an element which is pseudo-Anosov when
viewed as a mapping class of yS .

Proof. Since � is full in S , there is an element  2 Stab�.S/ which is pseudo-
Anosov as a mapping class on yS . Furthermore, by assumption, there is an element
� 2 ker.f / \ Stab�.S/, none of whose powers are multitwists about @S . Thus, �
defines an infinite order mapping class on yS . If � or any power of it is pseudo-Anosov,
we are already done.

Otherwise, consider � n��1. As a mapping class of yS this is pseudo-Anosov.
In fact, it is an independent pseudo-Anosov to  : by Lemma 2.2, any infinite order
element in the centraliser of a pseudo-Anosov has a power which is a pseudo-Anosov
itself.

Thus, for any n > 0, the element � n��1 �n is contained in ker.f / since the
latter is normal. Once n is large enough, it will also be pseudo-Anosov, since large
powers of independent pseudo-Anosovs on yS generate a purely pseudo-Anosov group
(compare [10]).

The following is the core technical result of this section.

Theorem 3.5. Let S � † be an essential subsurface and suppose that � < Mcg.†/
is full in S . Let f W� ! Mcg.†0/ be an injection into another mapping class group.

Then there is a complementary component Y of the canonical reduction system
C.f .Stab�.S/// and a finite index subgroup � 0 < Stab�.S/, so that the induced
map

f W� 0 ! Mcg.Y /

is an injection. The kernel of the induced map yf W� 0 ! Mcg. OY / consists of
multitwists about the boundary of S .
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Proof. We may assume that f .�/ is pure (otherwise, pass to a suitable finite index
subgroup � 0). Put C D C.f .Stab�.S///. If there is only one complementary
component of C , there is nothing to prove for the first claim. The second claim
follows since any � so that yf .�/ D 1 is contained in the centre of Stab�.S/.

Hence, suppose that there is more than one complementary component of C ;
let †1, †2 be two disjoint nonempty unions of complementary components of C
whose union is all of †0. Denote byc†i the surface obtained from †i by cusping off
the boundary components corresponding to curves in C .

The injection f induces maps

fi WStab�.S/! Mcg.†i /; i D 1; 2

and yfi WStab�.S/! Mcg.c†i /; i D 1; 2:

By induction, it suffices to show that one of the fi is injective.
We define the product map

yf D yf1 � yf2WStab�.S/! Mcg.c†1/ �Mcg.c†2/:
Suppose that � is such that yf .�/ D 1. Then f .�/ is a multitwist about C , and
thus commutes with every element in f .Stab�.S//. As f is injective, this implies
that � commutes with every element of Stab�.S/, and thus � has a power which is a
multitwist about the boundary of S by Lemma 3.3.

Suppose now that ker. yfi / contains elements which do not have powers which are
multitwists about @S for both i D 1; 2. We let �1, �2 be mapping classes so that

(1) �i 2 ker. yfi /;

(2) �i is pseudo-Anosov on S ;

whose existence is guaranteed by Proposition 3.4.
Then, f2.�1/ is a multitwist about @†2 and f1.�2/ is a multitwist about @†1 and

therefore
1 D Œf .�1/; f .�2/� D f

�
Œ�1; �2�

�
:

Since f is injective this implies that �1 and �2 commute. Thus, �1, �2, seen as
mapping classes of yS , are commuting pseudo-Anosovs and thus powers of a common
pseudo-Anosov of yS . By passing to powers we may therefore assume that �1 D  T1,
�2 D  T2 for some  pseudo-Anosov on yS and T1; T2 multitwists about @S . In
other words, �2 D �1m for some m in the centre of Stab�.S/.

If �1 D �2, then yf .�1/ D 1 and hence f .�1/ is central. By injectivity of f this
would imply that �1 is central, which is impossible by Lemma 3.3.

Otherwise, ��11 �2 D m ¤ 1 is a nontrivial central element. Since � is full in S ,
there is an element � so that

Œ�1; �� ¤ 1
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(there are independent pseudo-Anosovs, hence not every element can commute
with �1). By injectivity of f , we therefore have that

Œf .�1/; f .�/� ¤ 1:

Since the kernel of yf is central, this implies that

Œ yf .�1/; yf .�/� ¤ 1:

As yf1.�1/ D 1 this means that

Œ yf2.�1/; yf2.�/� ¤ 1:

But since yf2.�1/ D yf2.m
�1/, this would imply that yf2.m/ and yf2.�/ do not

commute, contradicting the fact that m is central.
This contradiction shows that we may assume (up to relabeling) that ker. yf1/

contains only contains elementswhich do have a powerwhich is amultitwist about @S .
Suppose now that m is an element of ker.f1/. By the above, it has a power mk

which is a multitwist about @S , and therefore central in Stab�.S/. Hence, either m
is finite order, or f .mk/ is nontrivial multitwist about C.f .Stab�.S///. In the latter
case f1.m/ ¤ 1. Taking � 0 so that Stab�.S/ is torsion-free therefore shows the
theorem.

Using this result we can show that, under suitable assumptions, images of
Dehn twists are roots of Dehn twists. In the proof we require the notion of the
complexity �.F / of a finite type surface. Namely, �.F / D 3g.F /C2b.F /�3 is the
number of curves in a pants decomposition for F , where g.F / is the genus and b.F /
is the number of boundary components and cusps.
Corollary 3.6. Let 
 be a non-separating simple closed curve on†, and let S be the
complement of 
 . Suppose that � is abundant in S , and that f W� ! Mcg.†/ is any
injection. Then f .T
 / has a power which is a Dehn twist about some non-separating
curve ı.

Proof. Using that � is full in S , we can replace � with the finite index subgroup � 0
from Theorem 3.5 and there is then a complementary component Y � † and an
injective map

Stab�.S/! Mcg.Y /

so that the induced map
Stab�.S/! Mcg. OY /

has a kernel consisting only of twists about 
 . Using that � is abundant in S , there
is a free Abelian group of rank �.†/ � 1 in Stab�.S/ which does not contain any
twist about 
 , and therefore there is such an Abelian group in in Mcg. OY /. Thus, OY
has at least complexity �.†/ � 1, but is obtained by taking a subsurface of † and
cusping off boundaries. This is only possible if Y is the complement of a single
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non-separating curve ı, and thus the canonical reduction system of f .Stab�.S// is a
single curve. This implies that some power of T
 , which maps to a central element
in f .Stab�.S//, is a Dehn twist about ı.

In fact, by induction, we also obtain the following result. For its statement, recall
that a cut system is a multicurve ˛1; : : : ; ˛g on a surface so that the complement
† � .˛1 [ � � � [ ˛g/ is connected and has genus 0.
Corollary 3.7. Suppose that ˛1; : : : ; ˛g is a cut system for †. Assume that � is
abundant in † � .˛1 [ � � � [ ˛k/ for all 1 � k � g.

Let f W� ! Mcg.†/ be injective for some � < Mcg.†/. Then f .T˛i
/ have

powers which are Dehn twists about a cut system in †.

Proof. By the previous Corollary 3.6, f .T˛1
/ has a powerwhich is aDehn twist about

some non-separating ı1, and furthermore f induces an injection of Stab�.† � ˛1/
into Mcg.† � ı1/. By the assumption on abundance, we can continue the argument
inductively.

4. Rigidity of the disk graph

Recall that V is a handlebody of genus g, and we have identified the boundary @V
of V with a surface † of genus g.

The curve graph of † is the simplicial complex C.†/ whose k-simplices
correspond to multicurves with k C 1 components. The disk graph D.V / of V
is the full sub-complex of the curve graph C.†/ spanned by the meridians for V .
Explicitly, k-simplices of D.V / correspond to multicurves with k C 1 components,
each of which is a meridian. We will usually identify a multicurve with the simplex
of C.†/ or D.†/ that it defines. The following is obvious from the definitions.
Lemma 4.1. Let ˛1; : : : ; ˛k be a multicurve on †, and let Y1; : : : ; Yl be its
complementary components. Then the link of the simplex � defined by ˛1; : : : ; ˛k

lk.�/ D C.Y1/ � � � � � C.Yk/

is the join of the curve graphs of the Yi .
In this section we show a combinatorial rigidity for the disk graph inside the curve

graph (compare also [3] for a stronger definition of rigid subgraph). Recall from [14]
that a superinjective map between (subgraphs) of curve graphs is a simplicial map �
with the property that �.˛/ and �.ˇ/ are joined by an edge if and only if ˛ and ˇ are
joined by an edge.
Theorem 4.2. Let �WD.V / ! C.†/ be a superinjective simplicial map. Then � is
induced by a mapping class of †: there is a mapping class � 2 Mcg.†/ so that
�.˛/ D �.˛/ for all simple closed curves ˛.

We expect that the result is also true for injective simplicial maps �, but have not
explored this (since it is not used in the sequel).



346 S. Hensel CMH

Proof. The proof has various stages. In each stage, we might modify � by a mapping
class to ensure additional properties.
Reduced disk systems map to cut systems. Fix a reduced disk system ˛1; : : : ; ˛g
for V . This defines a .g � 1/–dimensional simplex � of D.V / � C.†/ whose
link in C.†/ is completely contained in D.V /, and is isomorphic to the curve graph
C.†0;2g/ of a 2g–holed sphere.

Consider the image �.˛1/; : : : ; �.˛g/. This is a .g�1/–dimensional simplex �.�/
in C.†/. We claim that �.˛1/; : : : ; �.˛g/ is non-separating, hence a cut system.
Namely, suppose that the complement had components Y1; : : : ; Yk . Choose some
curve ı disjoint from ˛1; : : : ; ˛g , and assume that �.ı/ is a curve contained in Y1.
Then, any ı0 with ı\ı0 ¤ ; satisfies �.ı/ � Y1 as well (as otherwise, �.ı/; �.ı0/would
be disjoint, violating superinjectivity). This shows that the sub-complex of lk.�/
spanned by every vertex not contained in the star st.ı/ is mapped into C.Y1/ (under
the identification given by Lemma 4.1).

Next, choose some ı0 to be distance at least 3 from ı in C.†0;2g/, and repeat the
argument with ı0 in place of ı, to see that st.ı/ \ lk.�/ is also mapped into C.Y1/.

Therefore, � induces a superinjective simplicialmapC.†0;2g/ Š lk.�/! C.Y1/.
Since the dimension of the curve graph is one less than the complexity of the surface,
and Y1 � †, this is only possible if Y1 is the only complementary component
of �.˛1/; : : : ; �.˛g/.

Since the mapping class group of † acts transitively on the set of cut systems, up
to modifying � by a mapping class, we may assume that �.˛1/ D ˛1; : : : ; �.˛g/ D ˛g
and therefore �.˛1/; : : : ; �.˛g/ is a reduced disk system for V .

Reduced disk systems map to reduced disk systems. Let ˇ1; : : : ; ˇg be a reduced
disk system for V , which is disjoint from ˛1; : : : ; ˛g . Then, �.ˇ1/; : : : ; �.ˇg/ is
a cut system, which is disjoint from the reduced disk system �.˛1/; : : : ; �.˛g/.

Next, note that any curve disjoint from a reduced disk system for V is also a
meridian for V . This is simply a consequence of the fact that any simple closed curve
on the sphere bounds a disk in the ball. Hence, �.ˇ1/; : : : ; �.ˇg/ is a reduced disk
system as well.

By Lemma 2.7, this inductively implies that �.ˇ1/; : : : ; �.ˇg/ is in fact a reduced
disk system for any reduced disk system ˇ1; : : : ; ˇg for V .

Meridians map to meridians. Note that anymeridian ı is disjoint from some reduced
disk system ˇ1; : : : ; ˇg , and hence �.ı/ is curve disjoint from the reduced disk system
�.ˇ1/; : : : ; �.ˇg/; and hence ameridian (by the same argument as above). This implies
that � is now a superinjective self-map of the disk graph D.V /.

Surjectivity of �. As a first step, we prove that � is locally surjective in the following
sense. Suppose that ˛1; : : : ; ˛g is a reduced disk system for V . By the previous steps,
�.˛1/; : : : ; �.˛g/ is also a reduced disk system for V . Arguing as above, � induces a
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superinjective map between links, which can be interpreted as a superinjective map

C.†0;2g/! C.†0;2g/:

By Theorem 2 of [6] such a map is induced by a mapping class, and thus in particular
surjective. This implies that every curve which is disjoint from �.˛1/; : : : ; �.˛g/ lies
in the image of �. By Lemma 2.7 and induction, this first implies that every reduced
disk system for V is the image of a reduced disk system under �. Since every meridian
is disjoint from some reduced disk system, � is in fact surjective.

Rigidity. At this point, � is a superinjective, surjective self-map of the disk graph,
and therefore in particular a simplicial automorphism. By the main result of [21], it
is therefore induced by a handlebody group element, finishing the proof.

5. Rigidity for the twist and handlebody groups

Recall that Tg < Hg is defined to be the subgroup of Hg generated by Dehn twist
about meridians. By Luft’s theorem [22], Tg agrees with the kernel of the canonical
map Hg ! Out.�1.V // induced by the action of homeomorphisms of V on the
fundamental group of V .

We begin with some generalities on the handlebody and twist groups.

Lemma 5.1. Let � < Tg be finite index. Suppose that S is a subsurface of † whose
boundary consists of meridians, and so that �.S/ > 0. Then � is abundant on S .

Proof. We begin by noting that a Dehn twist about a meridian is an element of Hg.
If �.S/ > 0, and S is bounded by meridians, then there are two meridians ˛1; ˛2
in S which fill S . Since the product T˛1

T˛2
2 Tg of Dehn twists about such curves is

pseudo-Anosov, and supported in S , there is an element � in Stab�.S/which defines
a pseudo-Anosov in yS . Since some power of T˛1

also lies in Stab�.S/, and does not
commute with �, by Proposition 2.2, � is full for S .

Also, if S is bounded by meridians, there is a pants decomposition of S consisting
of meridians. This shows abundance.

Lemma 5.2. Suppose that � 2 Hg is such that �.ı/ D ı for every meridian ı.
Then � D id.

Proof. Consider a reduced disk system ı1; : : : ; ıg for the handlebodyV . Denote byS
the subsurface obtained as the complement of the ıi . By assumption, � preserves
all ıi , and thusS . Every simple closed curve inS is ameridian, and thus� induces the
identity seen as a mapping class of yS . This implies that � is a multitwist about the ıi .
Since for each i there is a meridian crossing ıi , it is in fact the trivial multitwist.
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Now fix a finite index subgroup � < Tg or � < Hg. In fact, the only property
of � we use is that for any twist T˛ about some meridian, a suitable power T n˛ is
contained in � . Furthermore, assume that f W� ! Mod.†g/ is a given injection.
We now follow the strategy outlined in the introduction to show that f is in fact a
suitable conjugation.

In this setting, Corollary 3.6 implies that f .T n˛ / is the power of a non-separating
twist for any non-separating meridian ˛ and n big enough. First, we note that this
conclusion also holds for separating meridians.
Lemma 5.3. In the setting as above, if ı is any meridian, there is some n > 0 so that
f .T n

ı
/ is the power of some Dehn twist.

Proof. Let ı be arbitrary. Choose a reduced disk system ˛1; : : : ; ˛g disjoint from ı.
Then, by Corollary 3.7, the twists about ˛i map to twists about a non-separating
multicurve ˇ1; : : : ; ˇg . Thus, f induces an injective homomorphism

yf W� 0 ! Mod.S0;2g/

whose domain � 0 has the property that some power of any Dehn twist is contained
in � 0. By Corollary 2 of [3] such a map is induced by a surface diffeomorphism, and
in particular maps Dehn twists to Dehn twists.

Theorem 5.4. Suppose that � < Tg or � < Hg is any finite index subgroup, and
let f W� ! Mcg.†g/ be injective. Then f is the restriction of a conjugation by an
element in the mapping class group Mod.†/.

Proof. By the lemma above, for any meridian ı and n > 0 big enough, f .T n
ı
/ is

the power of a Dehn twist about some curve �.ı/. Furthermore, if ı; ı0 are disjoint,
then T n

ı
; T n
ı0 commute, thus so do the twist powers about �.ı/; �.ı0/; hence they are

disjoint (Lemma 2.3). In other words, � defines a simplicial map

�WD.V /! C.†/:

Since f is injective, this map � is superinjective: if ı; ı0 are not disjoint, then T n
ı
; T n
ı0

and hence f .T n
ı
/; f .T n

ı0/ do not commute; hence �.ı/; �.ı0/ are not disjoint.
By Theorem 4.2, � is therefore induced by some mapping class of†. Changing f

by a conjugation we may therefore assume that f .T n.ı/
ı

/ D T
m.ı/

ı
for every ı.

Now, let � 2 � be arbitrary. Note that for any meridian ı

T
m.�ı/

�.ı/
D f

�
T
n.�ı/

�.ı/

�
D f

�
�T

n.�ı/

ı
��1

�
D f .�/f

�
T
n.�ı/

ı

�
f .�/�1

and therefore

T
m.�ı/n.ı/

�.ı/
D f .�/T

m.ı/n.�ı/

ı
f .�/�1 D T

m.ı/n.�ı/

f .�/.ı/

and therefore f .�/.ı/ D �.ı/ for all meridians ı (by Lemma 2.4). This implies
f .�/ D � by Lemma 5.2.
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We are now ready to prove the second main result stated in the introduction.
Recall that if G is a group, the (abstract) commensurator of G is the group
of isomorphisms f WH1 ! H2 where H1;H2 < G are finite index, up to the
equivalence relation which identifies isomorphisms which agree on a finite index
subgroup. Via conjugation, G is always a subgroup of the commensurator of G
if G has trivial centre. If G is additionally a normal subgroup of a group G0,
then G0 is contained in the commensurator of G (again via the conjugation action).
The next corollary therefore shows that for the handlebody and twist groups, the
commensurators are as small as possible.

Corollary 5.5. The abstract commensurator of Hg is Hg. The abstract commensu-
rator of Tg is Hg.

Proof. In light of Theorem 5.4 the only claim to prove is the following: suppose
that � < Hg or Tg is finite index, and � is a mapping class such that ����1 < Hg,
then � 2 Hg. To show this, let ı be any meridian, and n > 0 be such that T n

ı
2 � .

Then by assumption T n
�.ı/
D �T n

ı
��1 2 Hg, and therefore �.ı/ is a meridian.

Hence, � is a mapping class which preserves the set of meridians for V , and therefore
contained in Hg.

6. Flexibility for the handlebody group

The first goal of this section is to prove the following.

Theorem 6.1. There is a finite index subgroup � < Hg and an inclusion f W� !
Mcg.†h/ whose image is not conjugate into Hh.

The construction is very explicit and uses finite covers. The strategy is to consider
a cover in which meridians lift to curves whose intersection pattern is incompatible
with being meridians (or even boundaries of annuli). For an example in genus 2,
consider Figure 2. While Theorem 6.1 formally can be concluded quickly from
Theorem 6.3, it is instructive to consider the (simpler) setting of Theorem 6.1 first,
to understand the argument involved.

Proof. Let ı0 be a meridian, and ˛ a curve intersecting ı once. The map �1.†/!
Z=3Z defined by algebraic intersection number (mod 3) with ˛ defines a cover
†0 ! † of degree 3.

Let ı1 be ameridian disjoint from ı, ˛, and let ı2 be ameridian which intersects ı1
in two points and ˛ in two points, with algebraic intersection number 0.

Hence, the Dehn twists Tı1
, Tı2

are in Hg and lift to †0. The lift of Tıi
is the

product of (left) Dehn twists about the three lifts ı.j /i , j D 1; 2; 3 of ıi to †0.
By construction, each ı.j /1 intersects exactly two ı.k/2 ; each in one point.
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Suppose that both the lifts fTı1
and fTı2

would be conjugate into the same
handlebody group. By Theorem 2.8, the multitwists T

ı
.1/

i

T
ı

.2/

i

T
ı

.3/

i

are then products
of twists about meridians and twists about annuli.

Since 3 is odd and twist curves for annulus twists come in pairs, at least one of
each of the curves involved is a meridian. On the other hand, as every ı.j /1 intersects
some ı.k/2 in one point, it is impossible that all three curves are meridians.

Hence, we may assume that we have the following situation:
� ı

.1/
1 is a meridian.

� ı
.1/
1 intersects ı.1/2 ı

.2/
2 , and the latter two are connected by an annulus in the

handlebody.
� ı

.3/
2 is a meridian.

However, in such a situation the product of left Dehn twists about ı.1/2 and ı.2/2
is not in the handlebody group, leading to a contradiction.

Thus, it is impossible that fTı1
and fTı2

are conjugate into the same handlebody
subgroup of Mcg.†h/. Taking � to be a subgroup which lifts to†0 yields the desired
inclusion.

Figure 2. A 3-fold cover inducing odd intersections of meridians. The handlebody for the
bottom surface is the “outside” handlebody of the standard Heegaard splitting of S3: curves
are meridians if they can be contracted in the non-compact region of the page bounded by the
surface.

Denote by C�.†h/ the multicurve graph of †h, i.e. the graph whose vertices
correspond to (isotopy classes of) multicurves, and edges correspond to disjointness.
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We warn the reader that this graph is different from other multicurve graphs
considered in the literature. Namely, we allow the number of elements in the
multicurves to vary, and more importantly, adjacency does not correspond to basic
moves (e.g. exchange one curve). The graph C�

h
is however the natural object

when considering covering constructions. While there are strong restrictions for
simplicial injections between n–multicurve graphs (see e.g. [8]), any covering
induces interesting simplicial injections between multicurve graphs in our sense.
The construction employed in the proof of the previous result immediately implies
the following result on flexible inclusions of disk graphs.

Corollary 6.2. There is a map D.Vg/ ! C�.†h/ such that the images is not
conjugate into any sub-graph where all vertices correspond to multi-meridians. The
same remains true even if we allow that vertices map to multicurves which are
boundaries of annuli in the handlebody.

For covering constructions one can analyse the situation completely. The goal is
the following theorem, whose proof will occupy the rest of this section.

Theorem 6.3. Suppose that †0 ! † is a finite normal cover, where † is closed of
genus g � 3. Let � < Hg be a finite index subgroup of mapping classes which lift
to †0. Denote by � 0 a finite index subgroup of the lifts of elements in � .

Then � 0 is conjugate into a handlebody group of†0 if and only if†0 ! † can be
extended to a cover of the handlebody V corresponding to Hg.

One direction is easy: suppose V 0 ! V is a cover of handlebodies, and @V 0 D
†0 ! † D @V its boundary cover. If F WV ! V is a homeomorphism whose
restriction � to the boundary lifts to †0, then F lifts to a homeomorphism of V 0.
Hence, any group � 0 as in the statement is conjugate into the handlebody group
defined by V 0.

The other direction is more involved. We begin with the following, which is a
restatement of the final argument employed in proof of Theorem 6.1.

Proposition 6.4. Suppose that†0 ! † is a finite cover. Let � < Hg be a finite index
subgroup of mapping classes which lift to †0. Denote by � 0 a finite index subgroup
of the lifts of elements in � .

If � 0 is conjugate into a handlebody group of †0 then †0 can be identified with
the boundary of a handlebody V 0 so that for every meridian ı, each component of
the preimage of ı in †0 is a meridian for V 0.

Proof. Consider the left Dehn twist Tı about any meridian, and consider a lift of T n
ı
,

where n is big enough to ensure that ın lifts to a closed curve. The lift of T n
ı
is then

product of left Dehn twists about the preimages ı1; : : : ; ık of ın. By Corollary 2.9
this element is contained in the handlebody group of †0 if and only if all ıi are
meridians.
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To use this, we note the following standard lemma.
Lemma 6.5. Let†0 ! † be a finite cover, and suppose that† D @V . Then†0 ! †

extends to a cover of handlebodies (with base V ) if and only if every meridian for V
lifts to †0 with degree 1.

Proof. If the cover †0 ! † extends to V 0 ! V , then every meridian lifts with
degree 1. Namely, if ˛ is a meridian, letD � V be a disk bounding ˛. Being simply
connected,D lifts to a diskD0 � V 0, whose boundary will be a (degree 1) lift of ˛.

Conversely, suppose that†0 ! † is a cover with the property that every meridian
lifts with degree 1. Define

K D ker
�
�1.†/! �1.V /

�
;

where the map is induced by the inclusion of the boundary. Since K is generated
by meridians, we have K < �1.†

0/, as we assume that all meridians lift to †0 with
degree 1. Hence, �1.†0/=K < �1.V / defines a finite index subgroup, which in
term determines a cover V 0 ! V of handlebodies, with �1.V 0/ D �1.†

0/=K. By
construction, its boundary will have �1.@V 0/ D �1.†

0/ (as subgroups of �1.†/),
and hence V 0 ! V extends †0 ! † as claimed.

Thus, Theorem 6.3 will follow, once we can prove the following. In its
formulation, an elevation of a simple closed curve ˛ on † (with respect to a cover
pW†0 ! †) is any connected component of p�1.˛/.
Proposition 6.6. Suppose that †0 ! † is a regular finite cover, and † D @V ,
†0 D @V 0. Assume that any elevation of a meridian for V is a meridian for V 0. Then
every meridian of V lifts with degree 1.

For the rest of the section, we fix the cover †0 ! † and assume that it is given
by a surjection

� W�1.†; p/! G

to some finite group G. The core tool we use is the existence of waves (compare
Lemma 2.5).

The first part of the proof involves trying to construct a pair of meridians whose
elevations intersect in a manner incompatible with being meridians. Namely, we
have the following.
Lemma 6.7. Suppose that there is a pair of meridians ˛; ˇ intersecting only in the
basepoint p such that �.ˇ/ is not equal to a power of �.˛/ in G. Then there is a
meridian ı so that elevations of ˛ and ı cannot be simultaneously be meridians (for
any handlebody).

Proof. First note that we may assume that ˇ is non-separating in † � ˛, since non-
separating simple meridians generate the kernel ker.�1.@W / ! �1.W // for any
handlebody W . Note that ˇ0 D ˇ˛ (or ˛ˇ) also has the property that �.ˇ0/ is not
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equal to a power of �.˛/ inG. This means that (non-closed) lifts of ˇ and ˇ0 connect
different elevations of ˛ in †0.

Next, choose a curve � intersecting ˛; ˇ; ˇ0 in a single point, and transversely
intersecting a meridian ˛0 disjoint from ˛; ˇ in a single point (this is where we use
genus g � 3 to ensure the existence of the desired ˛0).

The desired curve is
ı D ˇ � � � ˇ0�1 � ��1

which is a simple meridian (compare Figure 3). Consider an elevation zı of ı. By our
choices, consecutive intersection points of zıwith components of the preimage of˛[˛0
are never on the same component of ˛ [ ˛0.

However, if zı and all elevations of ˛; ˛0 are meridians, this is a contradiction,
since by Lemma 2.5 the meridian zı should have a wave with respect to the preimage
of ˛ [ ˛0.

Figure 3. The construction in the proof of Lemma 6.7. The left figure shows the setup; the right
one the curve constructed in the proof.

Corollary 6.8. Assume that all meridians for V elevate to meridians for V 0. Suppose
that some meridian for V lifts to†0 with degree 1. Then all meridians for V lift to†0
with degree 1.

Proof. First, suppose that there is a non-separating meridian ı which lifts with
degree 1. We claim that then any meridian disjoint from ı also lifts with degree 1.

Namely, consider any meridian ı0 which is disjoint from ı and suppose that ı0
does not lift with degree 1. Take a basepoint p on ı, and homotope ı0 so that it
intersects ı only in p. Then Lemma 6.7 applies for ˛ D ı, ˇ D ı0, since �.˛/ D 1

(as ı lifts with degree 1) and �.ˇ/ ¤ 1 (as ı0 does not), and yields the contradiction
that ı and ı0 cannot both have elevations which are meridians.

Now suppose that ı0 is any non-separating meridian. Since the non-separating
disk graph is connected (this follows e.g. from Lemma 2.7), there is a sequence
ı D ı1; ı2; : : : ; ın D ı

0 of non-separating meridians so that for any i D 1; : : : ; n� 1
the curves ıi ; ıiC1 are disjoint. Inductively applying the above claim then yields
that ı0 lifts with degree 1. Hence, any non-separating meridian lifts with degree 1.
Since any meridian is disjoint from some non-separating meridian, the corollary
follows using the claim from above once again.
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We are thus left with the case that no non-separating meridian lifts with degree 1,
but there is a separating meridian ı which does. In this case, we can take (non-
separating) meridians ı1, ı2 in the two complementary components of ı which
do not lift with degree 1. Concatenating ı1 and ı2 yields a meridian ı0, whose
elevation intersects the preimages of ı without waves (arguing exactly as in the proof
of Lemma 6.7), and therefore its elevation and the preimages of ı cannot both be
meridians. This contradicts the assumption of the corollary.

Hence, for the rest of the section, we can make the following assumption
(AR) For any non-separating meridian ˛ through p , and any loop � which recurs to

the same side of ˛, and is a meridian for V , �.�/ is a power of �.˛/ in G.
Note that this first implies that any conjugate of ˛ also maps to a power of p.˛/
(conjugations by all of the standard generators of �1.†/ lie in the complement of
some meridian � as in AR). Since any two meridians can be joined by a sequence of
pairwise disjoint meridians, this implies that the image of the kernel

K D ker
�
�1.†/! �1.V /

�
in G is cyclic, generated by some element m. As K is normal, and �1.†/ ! G

surjective, the subgroup hmi is therefore normal in G. We thus have a tower of
regular coverings

†0 ! †0=hmi ! †:

By construction, and the fact that every cyclic cover of a surface is defined by algebraic
intersection with some curve, we therefore know:
(i) Every meridian for V lifts with degree 1 to †0=hmi.
(ii) There isn > 0 and a simple closed curve˛ � †0=hmi so that a curveˇ � †0=hmi

lifts to †0 with degree 1 if and only if i.ˇ; ˛/ D 0 mod n.
Lemma 6.9. Let H D G=hmi denote the deck group of †0=hmi ! †, and let ˛ be
as in (ii). Then, for any h 2 H , we have

hŒ˛� D ˙Œ˛� 2 H1
�
†0=hmi

�
Proof. Since the cover †0 ! † is normal, we have that a loop ˇ � †0=hmi lifts
to †0 with degree 1 if and only if this is true for h�1ˇ, for every h 2 H . In other
words,

i.ˇ; ˛/ D 0 , i.hˇ; ˛/ D i.ˇ; h˛/ D 0:

Thus, h˛ has algebraic intersection number 0 with exactly the same loops as ˛. This
implies that hŒ˛� is a multiple of Œ˛�, and the multiple is˙1 asH is finite.

Lemma 6.10. Either some meridian for V lifts to†0 with degree 1, or the following is
true: Let ı1; : : : ; ıg be any reduced disk system forV , and letY be the complementary
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subsurface. Choose orientations on ıi . Let Y 0 � †0=hmi be a (homeomorphic) lift
of Y , and let ıCi ; ı

�
i be lifts of ıi on the boundary of Y 0, oriented compatibly with

the orientation of ıi . Then

i.ıCi ; ˛/ D �i.ı
�
i ; ˛/

Proof. Since ıCi ; ı
�
i are (compatibly oriented) lifts of the same meridian, there is

some element h 2 H so that ı�i D hı
C

i . This already implies

i.ıCi ; ˛/ D ˙i.ı
�
i ; ˛/

by the above. We have to exclude the positive sign. However, note that there is
a simple closed meridian � in Y 0 which is homologous to ŒıCi � � Œı

�
i � (compare

Figure 4). If in the previous equation the sign is positive, this meridian has algebraic
intersection number 0 with ˛, therefore lifts with degree 1 to †0. Being a meridian
in Y 0 it is also a degree 1 lift of a simple closed meridian for V . This shows the
lemma.

Figure 4. The construction in the proof of Lemma 6.10.

Lemma 6.11. There is a meridian for V which lifts with degree 1 to †0.

Proof. Let ı1; : : : ; ıg be a reduced disk system forV , and letY be the complementary
subsurface. Choose orientations on ıi . Let Y 0 � †0=hmi be a (homeomorphic) lift
of Y , and let ıCi ; ı

�
i be lifts of ıi on the boundary of Y 0, oriented compatibly with

the orientation of ıi . If any i.ı˙i ; ˛/ D 0, we are done. Otherwise, assume that
i.ıC1 ; ˛/ > 0 and minimal among all ı˙i .

Now, note that (up to possibly swapping orientation of ı2) there is a curve�0 in Y 0
which is homologous to ŒıC2 �C Œı

C
1 �. This curve �0 is a degree 1 lift of a meridian �

for V , and we have
i.�; ˛/ D i.ıC2 ; ˛/C i.ı

C
1 ; ˛/:

Perform an disk system exchange move, replacing ı2 by �. Similarly, we modify Y 0
by removing the pair of pants bounded by ıC1 ; ı

C
2 ; �

0 and adding a pair of pants
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at ı�2 , whose boundary components are other lifts h1ıC1 ; h2�0 of ı1; �. Applying
Lemma 6.10 twice, both for Y 0 and its modification, we have

i.ıC1 ; ˛/ D �i.ı
�
1 ; ˛/ D i.h1ı

C
1 ; ˛/

Thus, repeating the argument, with � in place of ı2, we can find a meridian �, with
lift �0 so that

i.�; ˛/ D i.ıC2 ; ˛/C 2.ı
C
1 ; ˛/:

By induction, and since ı1 was chosen to minimise intersection with ˛, after finitely
many steps we will have found a meridian with i.�; ˛/ D 0, which is the desired
one.

Figure 5. The construction in the proof of Lemma 6.11.

With Corollary 6.8, this is enough to finish the proof of Theorem 6.3.
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