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Engel structures and weakly hyperbolic flows on four-manifolds
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Abstract.We study pairs of Engel structures on four-manifolds whose intersection has constant
rank one and which define the same even contact structure, but induce different orientations
on it. We establish a correspondence between such pairs of Engel structures and a class of
weakly hyperbolic flows. This correspondence is analogous to the correspondence between bi-
contact structures and projectively or conformally Anosov flows on three-manifolds found by
Eliashberg–Thurston and by Mitsumatsu.
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1. Introduction

Engel structures are maximally non-integrable two-plane fields D on four-manifolds.
They admit the local normal form ker.dz � ydx/ \ ker.dy � wdx/ in terms of
coordinates w; x; y; z. Manifolds with Engel structures are parallelisable, and it is
known fromwork of the second author that all parallelisable four-manifolds do indeed
carry Engel structures [16]. Moreover, all homotopy classes of parallelisations are
induced by Engel structures; see R. Casals, J. Pérez, A. del Pino and F. Presas [5].
This makes it interesting to try to understand the geometry of Engel manifolds, and
to attempt to single out geometrically significant ones.

The fact that Engel structures admit a local normal form is one of many properties
they share with contact structures. Another shared property is the stability under
sufficiently small perturbations, i.e. a C 2-small perturbation of an Engel structure is
again an Engel structure. These similarities between contact structures and Engel
structures suggest that notions from contact topology might have counterparts in the
theory of Engel structures.

In this direction, in this paper we define bi-Engel structures in analogy with
the bi-contact structures studied by Y. Eliashberg and W. Thurston [7] and by
Y. Mitsumatsu [11]. Among other results, these authors showed that bi-contact
structures correspond to flows satisfying a weak version of hyperbolicity. We define
another notion of weak hyperbolicity which allows us to show how to obtain bi-Engel
structures from weakly hyperbolic flows and vice versa.
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In Section 2 we recall the definitions and simple properties of Engel structures and
of even contact structures and we introduce bi-Engel structures. Section 3 is devoted
to flows which are weakly hyperbolic when restricted to a smooth invariant subbundle
of the tangent bundle. The definition of weak hyperbolicity and the discussion of its
most basic properties require no assumption on the dimensions of the manifold or
the subbundle.

Section 4 contains a detailed proof of our main result:
Theorem 1.1. Let E be an orientable even contact structure on a closed oriented
four-manifoldM , and W its characteristic foliation. Then W is weakly hyperbolic if
and only if E is induced by a bi-Engel structure .DC;D�/.

It is clear that with obvious changes of notation our argument also yields the
corresponding result whenever a one-dimensional foliation W is weakly hyperbolic
with respect to a rank three subbundle E , regardless of the dimension of the ambient
manifold. In the case when E is the tangent bundle of a three-manifold, one obtains
the correspondence between bi-contact structures and projectively or conformally
Anosov flows discussed in [7, 11]1.

Although bi-contact and bi-Engel structures have very similar definitions and both
have relations to flows which are weakly hyperbolic in an appropriate sense, there are
also important differences. As observed first by Mitsumatsu [12], every orientable
closed three-manifold has a bi-contact structure. More generally, M. Asaoka,
E. Dufraine and T. Noda [2] proved that every homotopy class of plane fields with
trivial Euler class (this is clearly necessary) is realised by bi-contact structures. For
parallelisable four-manifolds we know that Engel structures exist [5,16], but bi-Engel
structures are harder to come by. In contrast to bi-contact structures, the line field
of the flow associated to a bi-Engel structure is completely determined by one of the
two Engel structures, in fact by the underlying even contact structure. This makes it
difficult to construct examples. Nevertheless, in Section 5 we give many examples on
mapping tori of contactomorphisms of three-manifolds. There are two rather different
kinds of examples. The first, which was studied already in [15], and which was one
of the motivations for this paper, is the Thurston geometry Sol41, including mapping
tori of Nil3-manifolds. The second consists of suspensions of contact Anosov flows,
which are plentiful according to the work of P. Foulon and B. Hasselblatt [8].

An outstanding problem about Engel structures, again in parallel with three-
dimensional contact topology, is whether there is a useful notion of tightness for
them. While we do not directly address this question here, we will in Subsection 5.3
discuss a remarkable rigidity property of the flow lines of the characteristic foliation
of certain Engel structures, which follows from work of R. Bryant and L. Hsu [4];
compare the very recent [14]. Remarkably, this rigidity property is tautologically
satisfied for bi-Engel structures, which may or may not provide a useful hint towards
isolating non-flexible properties which may distinguish between different kinds of
Engel structures.

1We found the explanations in those references to be somewhat elliptical. Related arguments also
appear in [6].
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2. Engel and bi-Engel structures

This section contains the definitions and elementary facts about the distributions
appearing in this note. More information about even contact structures can be found
for example in [10], while [9, 13] and [16] contain background on Engel structures.

2.1. Even contact structures.
Definition 2.1. An even contact structure on a 2n-dimensional manifold M is a
maximally non-integrable smooth hyperplane field E .

Such a hyperplane field can be defined locally by a one-form ˛ with the property
that ˛ ^ .d˛/n�1 is nowhere zero. A global defining form exists if and only if E

is coorientable. The two-form d˛ has maximal rank on E . If one changes the
defining form ˛, then the restriction of d˛ to E changes only by multiplication with
a function, so its conformal class is intrinsically defined. The kernel of d˛ restricted
to E coincides with the kernel of the .2n � 1/-form ˛ ^ .d˛/n�1. This kernel is
a line field W � E giving rise to the characteristic foliation of E , and the quotient
bundleE=W carries a conformal symplectic structure. The form .d˛/n�1 givesE=W

an orientation independent of choices precisely when n is odd.
If W is any vector field tangent to W , then

LW ˛ D diW ˛ C iW d˛ D iW d˛

vanishes on E , and is therefore a multiple of ˛. Thus any flow tangent to the
characteristic foliation W preserves E D ker˛.
Lemma 2.2. If n is even, the orientability of M is equivalent to the orientability
of W .

Proof. Note that E=W defines a contact structure on transversals to W , and therefore
orients the transversals canonically exactly when n is even. The holonomy of W

preserves this orientation. Therefore W is orientable if and only if TM is.

We now discuss the condition for the existence of a defining form ˛ for E which
is preserved by the holonomy of the characteristic foliation.
Lemma 2.3. Let E be a coorientable even contact structure, with characteristic
foliation W . The following conditions are equivalent:
(1) The defining form ˛ for E can be chosen such that d˛ is of constant rank 2n� 2.
(2) The characteristic foliation W is the kernel of a closed .2n � 1/-form.
(3) The characteristic foliation W has volume-preserving holonomy.

Proof. The equivalence of the second and third conditions is well known; both
conditions amount to saying that a spanning vector field is divergence-free with
respect to a suitable volume form.
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We prove the equivalence of the first two conditions. If d˛ is of constant rank
2n � 2, then ˛ ^ .d˛/n�1 is a closed .2n � 1/-form with kernel W . Conversely,
suppose that ˇ is an arbitrary defining form for E , and that  is a closed .2n�1/-form
with kernel W . Then ˇ^ .dˇ/n�1 is another .2n�1/-form with kernel W , and after
replacing  by its negative if necessary, we see that

 D fˇ ^ .dˇ/n�1

for some positive smooth function f on M . Set ˛ D f 1=nˇ. This is a defining
form for E , with .d˛/n identically zero. The rank of d˛ is therefore strictly smaller
than 2n, and as it can not be smaller than 2n � 2, it is 2n � 2 everywhere.

In the situation of this lemma, if ˛ is chosen such that d˛ is of rank 2n�2, andW
is tangent to W , then LW ˛ D iW d˛ vanishes, as W is in the kernel of d˛. Thus the
flow of W preserves the form ˛, and not just its kernel.

2.2. Engel structures.
Definition 2.4. An Engel structure on a 4-dimensional manifold M is a smooth
rank 2 distribution D with the property that ŒD ;D � is an even contact structure E .

If E is an even contact structure and D is an Engel structure whose derived
distribution ŒD ;D � coincides with E , we say that E is induced by D , and that D is
subordinate to E .
Lemma 2.5. If D is subordinate to E , then the characteristic foliation W of E is
contained in D .

Proof. We argue by contradiction. If p 2M is a point withWp not contained inDp ,
we choose a local frame X , Y for D around p, and a local defining form ˛ for E .
Then d˛ is non-degenerate on Dp , and so d˛.X; Y / does not vanish at p. Therefore

˛.ŒX; Y �/ D LX .˛.Y // � LY .˛.X// � d˛.X; Y / D �d˛.X; Y / ¤ 0 ;

contradicting ŒX; Y � 2 E D ker˛.

We now discuss orientations for the distributions involved in the definition of an
Engel structure subordinate to a given even contact structure.
Lemma 2.6. 1. Every Engel structure defines a canonical orientation on its induced

even contact structure.
2. The following conditions on a 4-manifoldM endowed with an Engel structure are

equivalent:

(a) M is orientable,
(b) W is orientable,
(c) E is coorientable.



Vol. 93 (2018) Engel structures and weakly hyperbolic flows on four-manifolds 479

Proof. Suppose that X and Y are vector fields forming a local frame for an Engel
structure D . Then X , Y and ŒX; Y � form a local frame for the induced even contact
structure, and the local orientation of E given by this frame is independent of the
choice of X and Y . This proves the first statement.

The equivalence of (a) and (c) follows immediately from what we just proved.
The equivalence of (a) and (b) was proved in Lemma 2.2.

2.3. Bi-Engel structures. The first part of Lemma 2.6 motivates the following:
Definition 2.7. A bi-Engel structure on a 4-dimensional manifold M is a pair of
Engel structures .DC;D�/ inducing the same even contact structure E , defining
opposite orientations for E , and having one-dimensional intersection.

By Lemma 2.5, the two Engel structures making up a bi-Engel structure must
both contain the characteristic foliation W of the induced even contact structure E .
Thus their intersection is precisely W , and their span is E .

The geometric meaning of the definitions of Engel and bi-Engel structures can
be elucidated as follows. The holonomy of the characteristic foliation W of an even
contact structure E preserves E . An Engel structure D subordinate to E is a plane
field inside E , which turns in a fixed direction around the axis W under the holonomy
ofW . Specifying the direction in whichD turns amounts to specifying an orientation
for E . The two Engel structures D˙ making up a bi-Engel structure intersect in W ,
and rotate around it in opposite directions under the holonomy of W . Moreover, the
condition that the two Engel planes never coincide, prevents them from making full
turns around W . This means that for the flow 't of a spanning vector field for W one
hasD'�t .D.'t .p/// ¤ D.p/ for all t ¤ 0.

To end this section, we point out that the requirement that DC \ D� be one-
dimensional can not be omitted from Definition 2.7. If two Engel structures, not
necessarily forming a bi-Engel structure, are subordinate to the same even contact
structureE and define opposite orientations ofE , then they turn in opposite directions
under the holonomy of the characteristic foliation. Therefore, on every leaf of W

the points where the two Engel distributions coincide form a discrete subset of the
leaf. In particular, the two Engel distributions are different almost everywhere, but it
is possible that they coincide at some points. This is what happens in the following
example, which is a variation on the classical prolongation, cf. [13].
Example 2.8. Let N be a closed 3-manifold and � a contact structure which is
trivial as a vector bundle over N . Pick a global framing of � by vector fields X
and Y . Consider S1 with coordinate t 2 R modulo 2� , and let M D N � S1.
The distribution E D � ˚ TS1 is an even contact structure onM with characteristic
foliation W D TS1 D R @

@t
.

Let D˙ be the span of W and cos.t/ � X ˙ sin.t/ � Y . Then the D˙ are Engel
structures subordinate to E , but inducing opposite orientations on E . However, they
do not form a bi-Engel structure because they agree at the points where sin.t/ D 0.
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3. Weakly hyperbolic flows

In this section we introduce a weak notion of hyperbolicity for flowswhich are tangent
to a fixed distribution, and which preserve this distribution.

Let M be a closed manifold, E � TM a smooth subbundle, and W � E an
orientable line field with ŒW ;E� � E . This ensures that E is preserved by any flow
tangent to W . Moreover, such a flow then acts on the quotient bundle E=W .
Definition 3.1. The flow 't onM generated by a non-zero vector fieldW spanningW

is said to be weakly hyperbolic if there are constantsK; c > 0 and a continuousmetric
on E=W such that for all p 2M there is a decomposition

E.p/=W.p/ D EC.p/˚ E�.p/

for which the following inequality holds for all t > 0 and 0 ¤ v˙ 2 E˙

kD't .vC/k

kvCk
� Kect

kD't .v�/k

kv�k
: (3.1)

This condition is independent of the spanning vector field W chosen for W , as
long as we fix an orientation for W . It is also independent of the choice of metric g,
cf. [1].
Remark 3.2. If ' is weakly hyperbolic with respect to the metric g, then after
replacing g by 1=T

R T
0
'�t g dt one can choose K D 1 if T is large enough.

Lemma 3.3. The subspaces E˙.p/ for p 2 M of E=W in Definition 3.1 are
't -invariant, have constant dimension and depend continuously on p.

Proof. The proof is a modification of a proof in [1]; cf. p. 121 of the English version.
Let first p 2 M be arbitrary. Note that if 0 ¤ X 2 E�.p/, then for all

Y 2 E n E� there are constants TY ; KY > 0 depending only on the angle between Y
and E� (and K; c, of course) such that

kD't .Y /k

kD't .X/k
� KY e

ct kY k

kXk
(3.2)

for t > TY .
For the verification let X 2 E� and fix Y 2 E n E�. We write Y D YC C Y�

with Y˙ 2 E˙; 0 ¤ YC and � > 0 such that kY�k � �kYCk. By (3.1) we have

kD't .Y�/k

kD't .YC/k
� K�1e�ct� < 1;

where the last inequality holds for large enough t . Then because of

kY k � kYCk C kY�k � .1C �/kYCk
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and (3.1) we get

kD't .Y /k

kD't .X/k
�
kD't .YC/k �K

�1e�ct�kD't .YC/k

kD't .X/k

�
K � �e�ct

1C �
ect
kY k

kXk
:

Thus we can choose TY so large thatK > 2�e�cTY andKY D K=.2.1C�//. These
constants depend only on K; c and �.

Now we show that E� is continuous at p 2M . Let pn be a sequence converging
to p. After passing to a subsequence we may assume that limn!1ŒE˙.pn/� D ŒE 0˙�
for some E 0

˙
, and that dim.EC.pn// is constant. Since dim.EC.pn// and

dim.E�.pn// have constant sum (D dim.M/ � 1), the latter is also constant.
Let us assume that E 0� is not contained in E�.p/. Then we may fix sequences

Xn 2 E�.pn/; Yn 2 E.pn/ such that limn!1Xn D X … E�.p/ and limn!1 Yn D
Y 2 E�.p/. In particular, we may assume that the angle between Yn and E�.pn/

is uniformly bounded away from 0. This means that for Yn D YnC C Yn�,
Yn˙ 2 E˙.pn/ the ratio kYn�k=kYnCk is bounded from above by a constant � > 0,
which is independent of n. The constants TY ; KY appearing in (3.2) actually depend
only on c;K and �, thus choosing TY independently of n such that for t > TY we
have

kD't .Yn/k

kD't .Xn/k
� KY e

ct kYnk

kXnk
;

kD't .X/k

kD't .Y /k
� KY e

ct kXk

kY k
:

Since 't is smooth, we get a contradiction if t satisfies KY ect > 1 as n goes to1.
This implies E 0� � E�.p/.

Considering '�t instead of 't one shows EC � EC.p/. The fact that

dim.EC.p//C dim.E�.p// D dim.M/ � 1 D dim.E 0C/C dim.E 0�/

then implies E 0
˙
D E˙.p/.

The 't–invariance of the bundles E� now follows from the property described
in (3.2) since this property can be used to characterize the elements of E�.

If we change the orientation of W , by replacing W with �W , say, then weak
hyperbolicity is preserved, but the roles of E˙ are interchanged. The holonomy
of W preserves E and acts naturally on the quotient E=W , and the condition in the
definition is that the holonomy is much more expanding on EC than on E�. This does
not preclude the possibility that the holonomy could be expanding (or contracting) on
both E˙, as long as the expansion (or contraction) rates are such that (3.1) is satisfied.
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In the case that E is the tangent bundle of a three-manifold, Definition 3.1 reduces
to the definition of flows that are conformally Anosov [7] or projectively Anosov
(pA) [11].

By an obvious simplification of terminology, we call W weakly hyperbolic,
without saying something like “weakly hyperbolic with respect to E”. A given line
field W may of course preserve several distributions it is contained in, and be weakly
hyperbolic for some but not for others. However, it will always be clear which
distribution is used for E when discussing weak hyperbolicity of W .

If the distribution E is integrable, then it defines a foliation, and a flow tangent
to W � E restricts to every leaf of this foliation. The flow is weakly hyperbolic in
the sense of Definition 3.1 if and only if its restriction to every leaf is conformally
Anosov.

For the purposes of this paper we are interested in the case when E is an even
contact structure, and W is its characteristic foliation. If the dimension ofM is four,
then E has rank three, and the subbundles E˙ are actually line fields. However, even
in higher dimensions, when these subbundles have higher rank, they tend to have a
very specific geometry. We shall return to this in Subsection 5.2 below.

4. Proof of the main theorem

In this section we prove Theorem 1.1. In the proof we shall use some facts about the
cross ratio. One of the numerous sources for this material is [3].

Let V be a real vector space of dimension 2. If x1; x2; x3 2 P .V / are distinct
and z 2 P .V / is arbitrary, then the cross ratio Œx1; x2; x3; z� 2 RP1 is the
image of z under the unique homography f WP .V /�!RP1 with f .x1/ D Œ1 W 0�,
f .x2/ D Œ0 W 1�, f .x3/ D Œ1 W 1�. In particular, if f WV�!V 0 is a linear isomorphism
(in our application of the cross ratio f will be the linearized holonomy of a foliation
of rank 1) and f is the induced map between projective spaces, then

Œx1; x2; x3; z� D
�
f .x1/; f .x2/; f .x3/; f .z/

�
:

After identifying RP1 n Œ1 W 0� with the real numbers, we can treat the cross ratio as
a number unless z D x1. In other words, Œx1; x2; x3; z� D Œ1 W 0� OD1 if and only if
z D x1.

If x1; x2; x3; z 2 P .V / n fptg are pairwise distinct, then the cross ratio
Œx1; x2; x3; z� 2 RP1 n f1g can be computed in terms of affine coordinates on
P .V / n fptg as follows:

Œx1; x2; x3; z� D
.x3 � x1/.z � x2/

.z � x1/.x3 � x2/
:
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Using this formula one can show the following relation for pairwise distinct points
x; a; a0; b0; b; y of P .V /

Œx; a0; b0; y� D Œx; a; b; y� � Œa; a0; b0; b� � Œa; a0; b; y� � Œx; a; b0; b� :

In particular, when the points x; a; a0; b0; b; y lie in this order on the projective
line P .V /, then it follows from the definition of the cross ratio that

Œa; a0; b; y� > 1; Œx; a; b0; b� > 1 :

Therefore we obtain the following inequality if the assumption on the ordering of
x; a; a0; b0; b; y is satisfied:

Œx; a0; b0; y� > Œx; a; b; y� � Œa; a0; b0; b� : (4.1)

We can finally prove our main result.

Proof of Theorem 1.1. Recall that by Lemma 2.2 the characteristic foliation W is
orientable if and only if the same is true forM .

Let E be an orientable even contact structure whose characteristic foliation W is
weakly hyperbolic and oriented. We fix a positive spanning vector field W for W

and denote its flow by 't . We also fix the splitting E=W D EC ˚ E�, a continuous
metric g and constants c and K as in the definition of weak hyperbolicity. By
Remark 3.2 we may assume K D 1.

Assume first that the line fields E˙ are orientable, and that X˙ are sections of E

projecting to E=W as spanning vector fields for E˙, of unit length with respect to g,
say. As the line fields E˙ are invariant under the flow of W , we find that there are
continuous real-valued functions �˙.t; p/ on R �M such that

Dp't .X˙.p// D �˙.t; p/X˙.'.t// mod W :

That 't is a flow implies �˙.0; p/ D 1, and

�˙.t; 's.p// � �˙.s; p/ D �˙.t C s; p/

for all p 2 M . The definition of weak hyperbolicity of the flow in this case means
that there is a constant c > 0 such that

�C.t; p/ � e
ct��.t; p/ (4.2)

for all p 2M and all t � 0.
If we assume that the vector fields X˙ are smooth, then so are the functions �˙.

In this case, by differentiating at 0 2 R, the inequality (4.2) implies

�0C.0; p/ � c C �
0
�.0; p/: (4.3)
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We can define smooth rank two subbundles D˙ � E as the span ofW andXC˙X�.
Using the smoothness assumption, we can calculate commutators:

ŒW;X˙�.p/ D
d

dt

ˇ̌̌
tD0
.D'�t /

�
X˙.'t .p//

�
D
d

dt

ˇ̌̌
tD0

� 1

�˙.t; p/
X˙.p/

�
mod W

D ��0˙.0; p/X˙.p/:

It follows that

ŒW;XC ˙X��.p/C �
0
C.0; p/.XC ˙X�/.p/

D ˙.�0C.0; p/ � �
0
�.0; p//X�.p/ mod W :

Combining this with (4.3) we see that the D˙ are Engel structures subordinate to E

and that they induce opposite orientations of E . Thus they form a bi-Engel structure.
Now let us consider the case when the X˙ are only continuous, not necessarily

smooth. In this case we first show that wemay assume theX˙ to have continuous first
and second derivatives along the flow lines of W . To achieve this we fix a mollifier,
i.e. a smooth function hWR�!RC0 with support in Œ�1; 1� and

R
R h.s/ ds D 1, and

consider the usual convolution�
h �X˙

�
.p/ D

Z
R
h.s/D's

�
X˙.'�s.p//

�
ds : (4.4)

By definition h �X˙ is a section of E˙ which is nowhere tangent to W . When h.s/
is replaced by h�.s/ D �h.�s/ in (4.4) then h� � X˙ converges uniformly to X˙ as
� ! 1. Moreover, the restrictions of h � X˙ to segments of W are smooth when
viewed as sections of the smooth bundle E=W . The derivatives

LW .h �X˙/.p/ D lim
�!0

D'�� .h �X˙/ .'�.p// � .h �X˙/ .p/

�

are continuous onM (not only along the leaves of W ), the same is true for derivatives
of higher order.

We choose smooth sections Z˙ of E which are C 0 close to X˙ and such that
the first and second derivatives along W are also close to those of X˙. There are
continuous functions w˙; s˙; u˙ which are C 2 along the leaves of W such that

Z˙ D w˙W C s˙X� C u˙XC :

Because ZC approximates XC, the function sC is C 0-close to 0 and uC is C 0-close
to 1, and similarly for the approximation of X� by Z�. Their first derivatives in the
direction ofW are close to zero. Therefore the calculation of commutators performed
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with Z˙ in place of X˙ shows thatW and ZC˙Z� span two Engel structures D˙
subordinate to E and inducing opposite orientations on E .

Finally if the line bundles E˙ are non-trivial, then we can only choose X˙ up
to sign. Nevertheless, the functions �˙ are well-defined, and the whole argument
goes through by using the approximating sections Z˙ to be invariant under sign
change. Thus we have proved that an even contact structure with weakly hyperbolic
characteristic foliation has a subordinate bi-Engel structure.

It remains to prove the converse. Let .DC;D�/ be a bi-Engel structure
subordinate to E and W a vector field spanning the characteristic foliation W � E .
Then the flow 't of W preserves E . In order to show that this is weakly hyperbolic
we have to find a splitting E=W D EC˚E� such that (3.1) holds. This is done in two
steps. First we find invariant plane fields D1 and D�1 whose intersection is W .
Then we check weak hyperbolicity for the induced splitting with E˙ D D˙1=W .

For the plane fields D˙1 we have candidates

D1˙ .p/ D lim
t!1

D'�t
�
D˙.'t .p//

�
D�1˙ .p/ D lim

t!�1
D'�t

�
D˙.'t .p/

�
for p 2 M . Each of these limits exists. We explain this for D1C . Let p 2 M
and consider the planes D'�t .DC.'t .p/// and D'�t .D�.'t .p/// in E.p/. Both
of them contain W.p/ and the fact that D˙ are Engel structures inducing opposite
orientations of E ensures that these planes rotate without stopping around W in
opposite directions as t increases. Since they are always transverse to each other this
implies that the limit defining D1C exists.

Let us now show that D1C .p/ D D1� .p/ for all p 2 M . Since M is compact,
there exists a sequence .t.i//i2N and q 2 M such that limi!1 t .i/ D 1 and
limi!1 't.i/.p/ D q. Fix a compact local transversal C of W through q and " > 0
such that

C�Œ�"; "� �!M

.c ; �/ 7�! '� .c/

is an embedding. For t 2 R let

d˙.t/ D
�
D'�t

�
D˙.'t .p//

��
2 P

�
E.p/=W.p/

�
:

Recall that DC \ D� D W . Because DC;D� are Engel structures which
induce opposite orientations of E , it follows that for 0 < t < s, the lines
dC.0/; dC.t/; dC.s/; d�.s/; d�.t/; d�.0/ are ordered in this way on P .E.p/=W.p//
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EC.p/ D D�1

DC.p/

D'�t
�
DC.'t .p//

�
E�.p/ D D1

D�.p/

D'�t
�
D�.'t .p//

�

Figure 1. Configuration of lines in E.p/=W.p/.

and these six lines are all distinct. In particular, all cross ratios below take values
in .1;1/. By compactness of C there is an ˛ > 1 such that�

dC.t.i/ � "/; dC.t.i/C "/; d�.t.i/C "/; d�.t.i/ � "/
�
> ˛

for all i . According to (4.1)�
dC.0/; dC.t.i/C "/; d�.t.i/C "/; d�.0/

�
> ˛

�
dC.0/; dC.t.i/ � "/; d�.t.i/ � "/; d�.0/

�
> ˛

�
dC.0/; dC.t.i � 1/C "/; d�.t.i � 1/C "/; d�.0/

�
> � � � > ˛i :

Hence
lim
t!1

�
dC.0/; dC.t/; d�.t/; d�.0/

�
D1:

This implies limt!1 dC.t/D limt!1 d�.t/ andwehave provedD1C DD1� DWD
C1

(and D�1C D D�1� DW D�1).
We now define EC D D�1 and E� D D1. This choice of signs is the correct

one in view of (3.1) and the standard definition of the commutator used to orient
E D EC ˚ E�; c.f. Figure 1.

In view of Lemma 3.3 the continuity of E˙ is automatic, however there is a simple
argument in the present situation. Let p 2 M be arbitrary. If jT j is large enough,
then d˙.T / are very close to each other at p and for T > 0 respectively T < 0,
the section of P .E=W/ which corresponds to D1 respectively D�1 is confined
between dC.T / and d�.T / near p. Therefore DC1 and D�1 are continuous plane
fields.
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It follows immediately from the definition of D˙1 that these plane fields are
preserved by the holonomy of W . From the condition that DC and D� are always
transverse to each other in E it follows that DC1 ¤ D�1.

It remains to find a continuous Riemannian metric on E=W and constants c > 0
and K > 0 such that

kD't .vC/k

kvCk
� Kect

kD't .v�/k

kv�k
(4.5)

for all t > 0 and 0 ¤ v˙ 2 E˙.
Let X˙ be nowhere vanishing sections of E˙ such that

(i) V D XC CX� is smooth and tangent to DC=W ,
(ii) XC, X� is a positively oriented framing of E=W with respect to the orientation

defined by DC,
(iii) XC; X� are smooth along the leaves of W . As above, this can be achieved by

convoluting V;XC; X� with the same bump function.
Because the flow of W preserves E˙ there are continuous functions ˛˙ such that

d

dt

ˇ̌̌
tD0

�
D'�t .X˙/

�
D ˛˙X˙ :

This implies

ŒW; V � D
d

dt

ˇ̌̌
tD0

�
D'�t .XC CX�/

�
D ˛CXC C ˛�X� :

Since E is oriented byW;V; ŒW; V � and this orientation is equivalent to the one given
byW;XC; X�, it follows that ˛� > ˛C. For all T 2 R there are continuous functions
�˙.T / onM such thatD'TX˙ D �˙.T /X˙. These functions satisfy

�0˙.T /X˙ D
d

dt

ˇ̌̌
tDT

D't .X˙/ D �D'T

� d
dt

ˇ̌̌
tD0
D'�tX˙

�
D �D'T .˛˙X˙/ D �.˛˙ ı '�T /�˙.T /X˙:

By definition �˙.T / is positive for all T . Because of the compactness ofM , there is
a positive number c such that ˛� � ˛C > c. Thus we have the following differential
inequality

d

dt

ˇ̌̌
tDT

log
��C.t/
��.t/

�
D
�0C.T /

�C.T /
�
�0�.T /

��.T /

D �˛C ı '�T C ˛� ı '�T

> c:

If we choose a metric on E=W for which XC, X� is an orthonormal frame, then we
get the desired inequality (4.5) by integration.
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5. Examples and further discussion

5.1. The Thurston geometry Sol41. The Lie group Sol41 is a semidirect product

1�!Nil3�! Sol41�!R�!1 ;

where Nil3 is the three-dimensional Heisenberg group, and R acts by t � .x; y; z/ D
.e�tx; ety; z/. The Lie algebra of Nil3 has a basis X , Y and Z with Z central and
ŒX; Y � D Z. Therefore X and Y span a contact structure � on Nil3. The action of R
preserves � and acts on it contracting X and expanding Y . The Lie algebra of Sol41
has an additional generator W with

ŒW;X� D �X ; ŒW; Y � D Y ; ŒW;Z� D 0 :

This means that X , Y andW span an even contact structure E withW tangent to the
characteristic foliation W of E . The quotient E=W is spanned by the images of X
and Y , and the flow ofW is hyperbolic on this quotient. Therefore, by Theorem 1.1,
the distributions D˙ spanned byW andX ˙Y form a bi-Engel structure. Of course
our theorem is not needed in this case, as one can check explicitly that the D˙ are
Engel structures subordinate to E whose intersection is obviously W , and which
induce opposite orientations on E . This was done in [15].

All these structures on Sol41 are left-invariant, and therefore descend to closed
four-manifolds obtained as quotients by lattices. Examples of such quotients are
certain mapping tori of Nil3-manifolds, with the monodromy preserving the contact
structure induced by � on the fibers of the mapping torus.

5.2. Suspensions of contact-Anosov flows. We nowwant to discuss a large class of
bi-Engel structures obtained by suspending contact-Anosov flows. As in the previous
example, the manifolds we obtain in this way are mapping tori, but the fibers will be
very different.

We begin with a more general setup in arbitrary dimensions. Suppose that E

is an even contact structure with volume-preserving characteristic foliation W ,
cf. Lemma 2.3. We choose a defining form ˛ with d˛ of constant rank 2n � 2.
Any flow tangent to W preserves the form ˛, and therefore preserves the symplectic
structure2 defined by d˛ on E=W . Now assume that the flow of a spanning vector
fieldW of W is not just weakly hyperbolic in the sense of Definition 3.1, but satisfies
the following genuine hyperbolicity condition: there exist a continuous metric and a
positive constant b, such that for the flow 't of W we have

kD't .v�/k � K
�1e�btkv�k 8v� 2 E� ;

kD't .vC/k � Ke
bt
kvCk 8vC 2 EC ;

for all t > 0.
2Here the symplectic structure itself is invariant, not just its conformal class.
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Lemma 5.1. In this situation E˙ are both of dimension n � 1, and are Lagrangian
for the symplectic structure defined by d˛ on EC ˚ E�.

Proof. Suppose v;w 2 E�. Then, using LW ˛ D 0, we find

d˛.v;w/ D .'�t d˛/.v; w/ D d˛
�
D't .v/;D't .w/

�
:

Using the auxiliary metric g, we find that there is a constant c such that

jd˛.v;w/j � c � kd˛k � kD't .v/k � kD't .w/k � c � kd˛k �K
�2e�2bt � kvk � kwk:

Letting t go to infinity, the right-hand-side becomes arbitrarily small. Therefore
d˛.v;w/ D 0, and E� is isotropic for d˛. By the analogous argument, letting t
go to �1, we conclude that EC is also isotropic. As the two distributions are
complementary, they must be equidimensional and Lagrangian.

Example 5.2. Let N be a manifold of dimension 2n � 1, with a contact Anosov
vector field X . This means that we have a continuous invariant Anosov splitting
TN D RX ˚Es ˚Eu with the flow  t of X being exponentially contracting on Es

and exponentially expanding on Eu, and that the one-form ˛ with kernel Es ˚ Eu

and ˛.X/ D 1 is a contact form. Then ˛ is invariant under  t , so that ˛ descends
to the mapping torusM of the time one map  1. The kernel of ˛ onM is an even
contact structure E . Its characteristic foliation W is spanned by the monodromy
vector field W of the fibrationM �! S1. This integrates to a flow 't onM , such
that '1 restricted to a fiber coincides with  1. Thus the characteristic foliation W

satisfies the strengthening of the weak hyperbolicity condition described above.
As the monodromy  1 is isotopic to the identity, the mapping tori M in the

example are diffeomorphic to N � S1. For any N supporting a contact Anosov
flow, we obtain an even contact structure on N � S1 whose characteristic foliation is
weakly hyperbolic (and much more). By the work of Foulon and Hasselblatt [8], it
is now known that there are very many closed three-manifolds N admitting contact
Anosov flows. For any such N the product N � S1 has bi-Engel structures obtained
by suspension. Note that by varying the time t for which one suspends, one obtains
even contact structures on N � S1 with varying dynamics, e.g. closed orbits of W

appear and disappear with varying t .

5.3. Rigidity of curves tangent to W . That the Engel planes of a bi-Engel structure
never make full turns around W leads to a global rigidity property for their integral
curves tangent to W . Consider two points p and q in M , and let �D.p; q/ be the
space of piecewise C 1 paths from p to q, which are tangent to an Engel structure D ,
equipped with the C 1 topology. As D is bracket-generating, the Chow–Rashevskii
theorem implies that �D.p; q/ is non-empty for any pair of points. A path in
�D.p; q/ is called rigid, if it has a neighbourhood in �D.p; q/ such that every
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element of this neighbourhood is a reparametrisation of the original path. Bryant
and Hsu [4] proved that a path tangent to an Engel structure is rigid if and only if it
is tangent to the characteristic foliation W , and has the property that along the path
the Engel plane does not make (more than) a full turn around W . As a corollary we
have:
Proposition 5.3. If an Engel structureD is part of a bi-Engel structure, then any path
tangent to the characteristic foliation W � D of the induced even contact structure
is rigid.

The absence of full turns of the bi-Engel planes around W is in marked contrast
with the properties of the Engel structures constructed by Casals, Pérez, del Pino and
Presas [5]. Their construction crucially relies on the presence of several full turns
along certain orbits, and therefore never produces this kind of structure. The original
existence proof of the second author [16] can always be made to have some leaves
of W with full turns, but, unless one adds these by hand, it may also produce Engel
structures without full turns.

There are very few explicit examples of Engel structures known not to have full
turns which do not come from bi-Engel structures. In [15] Engel structures without
full turns were found not only on the Thurston geometry Sol41, which is bi-Engel, but
also on some other solvable geometries and on Nil4, which are not bi-Engel.
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