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Minkowski content of the set of singular points with multiplicityQ.

Mathematics Subject Classification (2010). 49Q20, 53A10, 49N60.

Keywords. Multiple-valued functions, Dirichlet energy, rectifiability, singularities, regularity.

1. Introduction

Q-valued functions were introduced by Almgren in [2] in order to model branching
singularities of area minimizing currents in higher codimension. Indeed, it was first
noticed by De Giorgi in his pioneering work [6] that an area minimizing hypersurface
can be very well-approximated by the graph of a harmonic function if it is sufficiently
close (in a weak sense) to a Euclidean plane. In higher codimension, this statement is
not true anymore at points of highmultiplicity as it is well known that areaminimizing
surfaces can have branching singularities, cf. [8, Section 5.2]. Almgren introduced a
suitable notion of Dirichlet energy for functions taking a fixed number Q of values
in order to approximate efficiently area-minimizing currents in a neighborhood of a
singular point of branching typewithmultiplicityQ. He then showed that “harmonic”
(namelyDirichlet minimizing)Q-valuedmapsmight be singular but the codimension
of their singular set is at least 2. In turn his monograph [2] used such regularity
property as a starting point to show that the Hausdorff dimension of the singular set
ofm-dimensional area-minimizing currents is at mostm�2: in a nutshell Almgren’s
program in [2] is a (fairly complicated) linearization procedure which reduces the
bound on the dimension of the singular set for an area minimizing current to the same
bound for the singular set of harmonic multivalued maps (cf. [7,8] for a more precise
description of Almgren’s program which follows the recent approach of [9–13]).

In this note we establish a more refined regularity property for the singular set
of Dirichlet minimizing Q-valued functions on an m-dimensional domain, showing
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that indeed it is .m � 2/-rectifiable (and hence Hm�2 � -finite). The latter property
has already been shown by Krummel and Wickramasekera in [21] whenQ D 2 and
the same authors have announced that their proof can be extended to anyQ, cf. [20].
Our argument is however different, since it is based on the techniques introduced
recently by Aaron Naber and the fourth author in [24], whereas [21] draws on the
approach of Simon (cf. for instance [25]). Thus a byproduct of our proof is the
additional information that the subset of singular points with highest multiplicity has
locally finite Hausdorff .m � 2/-dimensional measure (indeed it is possible to give
an upper bound for its Minkowski .m � 2/-dimensional content). On the other hand
Krummel and Wickramasekera, adapting the techniques of Simon, obtain different
byproducts, most notably the uniqueness of the tangent functions at Hm�2-a.e. point
and, for Q D 2 and in the neighborhood of some special singular points, higher
regularity of the singular set, cf. Remark 2.7, [21, Theorem C] and [19]. Of course,
in view of Almgren’s program, rectifiability results might be the starting point for a
refined study of the singular set of area-minimizing currents, possibly leading to a
solution to [1, Problem 5.3].

Aside from applications to minimal currents, this work and the techniques
developed here to study problems with variable homogeneity can be adapted to
different topics in mathematics, see for example the recent works on free boundary
problems [15], liquid crystals [3] and Z=2 harmonic spinors [26]. We also mention
the recent works on the non-continuous singularities for Q-valued harmonic maps
in [18].

Q-valued functions are simply functions taking values in the space of unordered
Q-tuples of points in Rn, which is denoted by AQ.Rn/. Following Almgren’s
convention, we will denote a point T 2 AQ.Rn/ as T D

PQ
iD1JPiK, where JPiK

is the Dirac measure concentrated on Pi 2 Rn. This space can be endowed with a
natural distance given by

d.T1; T2/ D d

� QX
iD1

JPiK;
QX
iD1

JSiK
�
D min
�2PQ

p
QX
iD1

ˇ̌
Pi � S�.i/

ˇ̌2
; (1.1)

where PQ is the group of permutations ofQ elements. With this distance, AQ.Rn/
is a complete metric space. For a domain � � Rm, the Dirichlet energy and the
spaceW 1;2.�;AQ.Rn// are defined in [2] following a rather involved, albeit natural,
geometric procedure (cf. [8, Section 7.3]). It has been noticed in [13] that modern
analysis in metric spaces can be used to give an intrinsic simple definition of both
objects. We refer to [2, 13] for a more detailed description of the space ofQ-valued
functions and Dirichlet minimizers, here we simply recall that Dirichlet minimizers
are Hölder continuous functions with exponent ˛ D ˛.m; n;Q/.
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A point x 2 � is a regular point for a Q-valued Dirichlet minimizer u if there
exists a neighborhood B of x and Q harmonic functions ui WB ! Rn such that for
all y 2 B:

u.y/ D

QX
iD1

Jui .y/K ; (1.2)

and either ui .y/ ¤ uj .y/ for all y 2 B , or ui � uj . The complement of regular
points are the singular points of u, denoted by†u. Note that this set is automatically
a closed set. Moreover, the main result regarding Q-valued functions in [2] is that
the Hausdorff dimension of †u is bounded from above by m � 2. In particular:
Theorem 1.1 ([2], and [13, Proposition 3.22]). If u is a Dirichlet-minimizing
Q-valued function uW� � Rn ! AQ.Rn/, then †u is a relatively closed subset
of � with Hausdorff dimension no larger than m � 2.

An important subset of †u consists of those singular points where all the values
of u.x/ coincide, in other words

�Q D
˚
x 2 †u s.t. u.x/ D QJP K for some P 2 Rn

	
: (1.3)

By Hölder regularity of the functions u, also the set �Q is closed.
The main result of this note is then the following theorem. In the rest of the paper

we will use the notation Br.E/ for the open r-tubular neighborhood of the set E,
namely Br.E/ D fp W dist .p;E/ < rg.
Theorem 1.2. Let uW� � Rm ! AQ.Rn/ be a Dirichlet minimizing function. Then
for any compact setK of�, Hm�2.�Q\K/ <1, and indeed we have the stronger
Minkowski-type estimate

jBr.�Q/ \Kj � C.K; u/r
2; 8r < 1 : (1.4)

Moreover�Q is .m�2/-countably rectifiable, namely it can be covered by countably
many C 1 surfaces of dimension m � 2, except for a set of Hm�2 measure zero.

As an immediate corollary of the latter statement we obtain:
Theorem 1.3. The singular set †u of a Dirichlet minimizer Q-valued function u is
.m � 2/-countably rectifiable.

Acknowledgements. C. D.L. and A. M. were supported by ERC grant “Regularity
of area-minimizing currents” (306247). D. V. has been supported by SNSF grants
200021_159403/1 and PZ00P2_168006.

2. Main statements and plan of the paper

2.1. Preliminaries. Before going into details, we want to underline again that for
the reader who is inexperienced with Q-valued functions, a complete and readable
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introduction can be found in [13]. In what follows for the values of the function u we
will use the notation u.x/ D

P
iJui .x/K and Du.x/ D

P
iJDui .x/K. We refer the

reader to [13] for all the conventions and terminologies.
In this section, we gather some preliminary results that will allow us to reduce our

main theorems to a simpler version. First of all, we show how Theorem 1.3 follows
from Theorem 1.2.

Proof of Theorem 1.3. The proof follows easily from an inductive argument in Q.
Indeed, for Q D 1 we clearly have no singular set at all. For Q D 2, the whole
singular set coincides with �Q, and thus this is a corollary of Theorem 1.2. For a
given Q� � 3 we assume by induction that the statement of the theorem holds for
allQ < Q�. We fix a Dirichlet minimizingQ�-valued map on some open set� and
let †u D �Q� [†0u, where †0u D †u n�Q� . Thus †0u is a relatively closed subset
of the open set �0 D � n�Q� . In particular, for all x 2 †0u, we have

u.x/ D

Q�X
iD1

JPiK ; (2.1)

where at least one pair fPi ; Pj g consists of different points. By Hölder continuity
of u, there exists a neighborhoodB of x and two multiple valued functions u1 and u2
such that u1 has Q1 values, u2 has Q2 values, Q1 CQ2 D Q�Q1 � 1, Q1 � 1,
Q2 � 1 and

ujB D u1 C u2 : (2.2)

Moreover, the images of u1 and u2 are disjoint. Thus †u \ B is contained in the
union of the singular sets of u1 and u2, which are .m � 2/-rectifiable by inductive
assumption. By a straightforward covering, this implies that†0u is .m�2/-rectifiable
aswell. The rectifiability of†u follows now from the .m�2/-rectifiability of�Q.

Thus, from now on we will focus just on the set of Q-points �Q. Before
going further we state a useful simplification of our problem. Consider the function
�WAQ.Rn/! Rn defined by taking the average of theQ-tuple T , i.e.,

�.T / WD �

� QX
iD1

JPiK
�
D

1

Q

QX
iD1

Pi : (2.3)

Note that this is a well-defined function on AQ.Rn/, since its value is independent
of the ordering in the Q-tuple T . It is useful to notice (see [13, Lemma 3.23]) that
if u is a Dirichlet-minimizer, then so is � ı u, thus in particular this is a classical
harmonic function. Moreover, see again [13, Lemma 3.23], if we introduce the map

u0.x/ D
X
i

Jui .x/ � � ı uK
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then u0 is again a Dirichlet-minimizer, and it satisfies the additional “balancing
condition” � ı u0 � 0. Note that the singular points of u coincide with the singular
points of u0, and thus for the purposes of this article we can assume for simplicity
and without loss of generality that � ı u D 0. Note that under such assumption
�Q � fx W u.x/ D QJ0Kg. However, [13, Proposition 3.23] delivers the following
stronger information:
Theorem 2.1. If � � Rm is connected and uW� ! AQ.Rn/ is a Dirichlet
minimizing map, then either u � QJ� ı uK or �Q D fx W u.x/ D QJ0Kg and
has Hausdorff dimension at most m � 2.

Therefore we can from now on assume, without loss of generality, that the
following holds
Assumption 2.2. � is a convex open subset of Rm, uW�! AQ.Rn/ is a minimizer
of the Dirichlet energy with � ı u � 0 and positive Dirichlet energy. In particular

�Q D
˚
x W u.x/ D QJ0K

	
(2.4)

and that �Q is a strict subset of �.

2.2. Frequency function and main steps. Theorem 1.2 will be split into two
separate steps, namely the upper Minkowski estimate (Theorem 2.5) and the
rectifiability (Theorem 2.6), proved in the last two sections. In order to state the
two steps, we need to introduce some notation and terminology.

For every z 2 Rm, we set �z WRmnfzg!Sm�1 given by �z.y/ WD.y � z/=jy � zj.
D.x; r/ denotes the Dirichlet energy of u on the ball Br.x/:Z

Br .x/

jDuj2:

The height function H.x; r/ and Almgren’s frequency function I.x; r/ are defined
as

H.x; r/ WD

Z
@Br .x/

juj2 and I.x; r/ WD
rD.x; r/

H.x; r/
:

In this paper we will however mainly work with a “smoothed” version of D, H ,
and I , first introduced in [12].
Definition 2.3. Let � be a Lipschitz nonincreasing function that is identically 1 on
Œ0; 1

2
� and identically 0 on Œ1;1Œ. The smoothed Dirichlet, height and frequency

functionsD� ,H� , and I� are given, respectively, by

D�.x; r/ WD

Z ˇ̌
Du.y/

ˇ̌2
�
�
jy�xj
r

�
dy; (2.5)

H�.x; r/ WD �

Z ˇ̌
u.y/

ˇ̌2
jy � xj�1�0

�
jy�xj
r

�
dy; (2.6)

I�.x; r/ WD
rD�.x; r/

H�.x; r/
: (2.7)
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We also introduce

E�.x; r/ D �

Z ˇ̌
@�xu.y/

ˇ̌2
jy � xj�0

�
jy�xj
r

�
dy : (2.8)

We omit x if it is the origin.
Observe that, under Assumption 2.2, from Theorem 1.1 we conclude that �Q

is a set of measure zero in the ball Br.x/, whenever x 2 � and r < dist.x; @�/.
Thus H�.x; r/ is positive for every such x and r , which in turn implies that the
frequency function is well defined for all such values. In some cases we will have
to compute the above quantities for different functions v’s: we will then use the
notation D�;v.x; r/;H�;v.x; r/ and so on to denote such dependence. The main
tool of Almgren’s regularity theory and of this paper is the monotonicity of the
classical frequency function I in the variable r . Almgren’s computation can be
easily extended to I� for any weight function � as in the definition above (a fact
first remarked in [12]). In particular both the classical frequency function and the
smoothed ones can be defined at r D 0 by taking the limit as r # 0.

In the rest of the paper we will often work under the following additional
assumption.
Assumption 2.4. � D B64.0/ and I�.64/ � ƒ. �0.t/ D �2 for every t 2 Œ1

2
; 1�

and 0 otherwise.
A simple covering argument allows then to recover Theorem 1.2 from the follow-

ing theorem:
Theorem 2.5. Under the Assumptions 2.2 and 2.4 there is a constant C D

C.m; n;Q;ƒ/ such thatˇ̌
B�.�Q/ \ B1=8.0/

ˇ̌
� C�2; 8� > 0 : (2.9)

Theorem 2.6. Under the Assumptions 2.2 and 2.4 the set�Q \B1=8.0/ is countably
.m � 2/-rectifiable.
Remark 2.7. The singular set �Q can be further subdivided according to the
value of the frequency function I.x; 0/, which must be positive at each singular x
(cf. Lemma 3.3). For Q D 2 the minimal value of I.x; 0/ at singular points is 1

2

and the combination of the works [21] and [19] imply the real analiticity of �2 in a
neighborhood of any such point. Moreover [19] shows the real analiticity of�2 \U
in any open set U for which the frequency function is constant on �2 \ U .

2.3. Spines and pinching. Our proof is a nontrivial adaptation of the techniques
of [24]. In particular, themain estimates will be derived from aReifenberg-type result
and estimates on the Jones’ numbers of the sets�Q and suitable discretizations of it.

The main ingredient is again the frequency function I� . As mentioned above, for
Dirichlet minimizers I� is a monotone function of r . The other impotant property
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is that I� controls the degree of homogeneity (or approximate homogeneity) of u.
Indeed, u is homogeneous of degree ˛ at a point x if and only if I�.x; r1/ D
I�.x; r2/ D ˛ for some r1 < r2 (in which case it turns out that r 7! I�.x; r/ is in
fact constant). If u were a classical function, its homogeneity would be equivalent to

u.x C �p/ D �˛u.x C p/ or ˛u.x C p/ D hru.x C p/; yi : (2.10)

From this formula, it is immediate to see that if u is homogeneous of the same
degree ˛ at two points x ¤ y, then automatically u is invariant with respect to the
line joining x and y. Indeed, we easily have

hru.p/; x � yi D ˛u.p/ � ˛u.p/ D 0; for all p 2 Rn. (2.11)

The same conclusions hold forQ-valued functions provided we introduce the correct
terminology.

If u happens to be homogeneous with respect to some points fxig spanning
a k-dimensional subspace, then u is invariant with respect to this subspace. By
Theorem 1.1, a u which satisfies Assumption 2.2 and is invariant with respect to
an m � 1 dimensional does not exist, thus must have empty �Q, thus making m � 2
the maximum number of invariant directions that allow for some singular behaviour
of u. Moreover, if u has an invariant subspace of dimensionm� 2, then the singular
set �Q is either empty or it coincides with this subspace.

The monotonicity formula for I� gives a quantitative measurement (in an integral
sense) of how close u is to being homogeneous of degree I� at a point x. The precise
statement can be found in Proposition 4.3. In turn this leads to the most important
estimate of the note:
Definition 2.8. Let u and � be as in Assumptions 2.2 and 2.4. For every x 2 B1 and
every 0 < s � r � 1 we let

W r
s .x/ WD I�.x; r/ � I�.x; s/ (2.12)

be the “pinching” of the frequency function between the radii s and r .
Theorem 2.9 (cf. Theorem 4.2). There existC4:2 D C4:2.ƒ;m; n;Q/ > 0 such that,
if u and � satisfy the Assumptions 2.2 and 2.4, x1; x2 2 B1=8.0/ and jx1 � x2j � r=4,
thenˇ̌
I�
�
z; r/ � I�

�
y; r/

ˇ̌
� C4:2

h�
W 4r
r=8.x1/

�1=2
C
�
W 4r
r=8.x2/

�1=2i
jz � yj;

8z; y 2 Œx1; x2� : (2.13)

With the latter estimate we will be able to bound in a quantitative way the distance
between�Q\Br.x/ and a carefully chosenm�2 dimensional planeLx;r for all x; r
(cf. Section 5). This, combined with an inductive covering of�Q and the generalized
Reifenberg theorem proved in [24], will allow us to conclude the proof.
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2.4. Plan of the paper. The rest of the note is organized as follows:
– Section 3 gives several important bounds and identities on the smoothed frequency
function. In particular, Proposition 3.1 states the crucial monotonicity identities and
the related computations used later; Lemma 3.3 shows a fundamental "-regularity
theorem, namely that I�.x; r/ cannot go below a certain threshold when x 2 �Q;
Lemma 3.4 gives useful bounds for the frequency and height function at different
points and scales.
– Section 4 gives the most important new ingredient of the paper, namely it proves
Theorem 2.9. Similar estimates are a fundamental starting point for the results of [24]
on the rectifiability of the singular set for harmonic maps and are a direct consequence
of the monotonicity formula. In our framework the proof is instead rather nontrivial.
– Proposition 4.2 is used in Section 5 to show that the average of the frequency drop
at scale r with respect to a general measure � controls the .m � 2/-mean flatness
of �, also called Jones’ number ˇ2, cf. Proposition 5.3.
– In turn, Proposition 5.3 is combined with the Reifenberg-type methods developed
in [24] to prove the Minkowski bound of Theorem 2.5.
– Finally, the Minkowski bounds and Proposition 5.3 allows a suitable estimate of
average of the Jones’ number of the measure Hm�2 �Q: the results of [24] and
of [4] characterize the rectifiability of � in terms of such average and imply therefore
directly Theorem 2.6.

3. Smoothed frequency function and relevant identities

3.1. Properties of the frequency function. We recall next themonotonicity identity
for the smoothed frequency function, which is the counterpart of the monotonicity of
Almgren’s “classical” frequency function I , cf. [13, Eq. (3.48)]. The monotonicity
of I� is contained in the arguments of [12], but since this is not explicitly mentioned
there, we provide here the relevant statements and the short proof. Moreover we
will differentiate the functions also in the variable x. We summarize the relevant
identities in the following Proposition.
Proposition 3.1. Under Assumption 2.2 we have that the functions D� , H� , and I�
are C 1 in both variables. Moreover the following identities hold:

D�.x; r/ D �
1

r

Z
�0
�
jy�xj
r

� QX
iD1

@�xui .y/ � ui .y/ dy; (3.1)

@rD�.x; r/ D
m � 2

r
D�.x; r/C

2

r2
E�.x; r/; (3.2)

@vD�.r; x/ D �
2

r

Z
�0
�
jy�xj
r

� QX
iD1

@�xui .y/ � @vui .y/ dy; (3.3)
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@rH�.x; r/ D
m � 1

r
H�.x; r/C 2D�.x; r/; (3.4)

@vH�.x; r/ D �2

Z
�0
�
jy�xj
r

�
jy � xj�1

QX
iD1

ui .y/ � @vui .y/ dy : (3.5)

In particular both I�.x; r/ and r1�mH�.x; r/ are nondecreasing functions of r and
we have the following identities

@rI�.x; r/ D
2

rH�.x; r/2

�
H�.x; r/ E�.x; r/ � r

2D�.x; r/
2
�
� 0 (3.6)

s1�mH�.x; s/ D r
1�mH�.x; r/ exp

�
� 2

Z r

s

I�.x; t/
dt

t

�
: (3.7)

Remark 3.2. Note that by letting � " 1Œ0;1Œ we recover corresponding statements
for the classical Dirichlet, height and frequency functions, at the price of a loss of
smoothness: some of the identities are, in particular, true in a suitable a.e. sense.
A particularly useful inequality that is instead valid for every x; s and r is the
monotonicity

s1�mH.x; s/ � r1�mH.x; r/; 80 < s � r < dist.x; @�/ : (3.8)

Proof. First of all we can assume, without loss of generality that � is smooth: indeed
in this case
� the smoothness of I� in r is an obvious consequence of the smoothness of �;
� the smoothness of I� in x follows from the usual fact that the convolution of a
smooth kernel with an integrable function is smooth.

After having established the above identities for � smooth we can approximate any
Lipschitz test with a sequence of bounded�k that are smooth, have uniformly bounded
derivatives and converge strongly inW 1;p for every p <1. It is then easy to see that
@vD�k and @rH�k converge uniformly and to conclude in the limit the corresponding
formulae. As already noticedH� is positive and thus I� is also C 1.

(3.1) follows from testing [13, Eq. (3.5)] with the map

 .y; u/ WD �
�
jy�xj
r

�
u :

Differentiating in r we get

@rD�.x; r/ D �

Z ˇ̌
Du.y/

ˇ̌2 jy�xj
r2

�0
�
jy�xj
r

�
dy :

Testing [13, Eq. (3.3)] with the vector field

'.y/ D �
�
jy�xj
r

�
.y � x/
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we obtain (3.2). Similarly, differentiating in x we achieve

@vD�.x; r/ D

Z ˇ̌
Du.y/

ˇ̌2
�0
�
jy�xj
r

�
y�x
rjy�xj

� v dy

and from the latter we derive (3.3) testing [13, Eq. (3.3)] with the vector field

'.y/ D �
�
jy�xj
r

�
v :

Changing variables in the integral we rewrite the formula for the height in two
different ways

H�.x; r/ D �

Z
ju.x C z/j2jzj�1�0

�
jzj
r

�
dz

D �
1

rm�1

Z ˇ̌
u.x C r�/

ˇ̌2
j�j�1�0

�
j�j
�
d�:

(3.9)

Next, since u is a continuous W 1;2 map and AQ.Rn/ 3 P ! jP j2 D
P
i Pi is a

locally Lipschitz map, juj2 is indeed aW 1;2
loc map. Moreover the chain rule formulae

[13, Proposition 1.12] imply

@vjuj
2.y/ D 2

X
i

ui .y/@vui .y/ : (3.10)

We thus differentiate the first integral in (3.9) in v and the second integral in (3.9)
in r to get

@vH�.x; r/ D �2

Z
jzj�1�0

�
jzj
r

�X
i

@vui .x C z/ � ui .x C z/ dz; (3.11)

@rH�.x; r/ D
m � 1

r
H�.x; r/

�
2

rm�1

Z
j�j�1�0

�
j�j
�X

i

@�ui .x C r�/ � ui .x C r�/ d� :

(3.12)

Changing the integration variable back to y in (3.11) we achieve (3.5). Changing
variable in (3.12) we get

@rH�.x; r/ D
m � 1

r
H�.x; r/ � 2

Z
�0
�
jy�xj
r

�X
i

@�xui .y/ � ui .y/ dy

and hence we conclude (3.4) from (3.1).
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The expression for @rI�.x; r/ in (3.6) is an obvious consequence of (3.2) and (3.4),
whereas such expression turns out to be nonnegative using (3.1) and the Cauchy–
Schwartz inequality:

r2D�.x; r/ D

�Z
��0

�
jy�xj
r

�X
i

@�xui .y/ � ui .y/ dy

�2
�

Z
��0

�
jy�xj
r

�
jy � xj�1

X
i

jui .y/j
2 dy

�

Z
��0

�
jy�xj
r

�
jy � xj

X
i

j@�xui .y/j
2 dy

D H�.x; r/E�.x; r/ :

Note that the assumption ��0 � 0 is used crucially only in the inequality above.
Finally, we can rewrite (3.4) as

@r log
�
r1�mH�.x; r/

�
D
@rH�.x; r/

H�.x; r/
�
m � 1

r
D 2

D�.x; r/

H�.x; r/
D
2

r
I�.x; r/ :

Integrating the latter identity we achieve (3.7) and the monotonicity of r1�mH�.x; r/
follows from the positivity of I� .

3.2. "-regularity. The following lemma is, loosely speaking, an "-regularity theo-
rem that shows that, if the frequency is sufficiently small at a certain scale, there are
noQ-points at a slightly smaller scale.
Lemma 3.3. There is a constant 0 < �3:13.m; n;Q/ � 1with the following property.
Under Assumption 2.2,

I�.x; r/ � �3:13 H) �Q \ Br=4x D ; : (3.13)

Proof. Without loss of generality, we can assume x D 0 and r D 1. Suppose that
I�.1/ � 1 and that there exists y 2 �Q \ B1=4.0/. By [13, Theorem 3.9], we have
the existence of constants ˛.m;Q/ > 0 and C.m; n;Q/ such that

Œu�C0;˛.B1=4/
� C

�Z
B1=2

jDuj2
�1=2
� CD�.1/

1=2 : (3.14)

In particular, since u.y/ D QJ0K for some y 2 B1=4.0/, we haveZ
@B1=4

juj2 � CD�.1/ : (3.15)

Note next that by passing in polar coordinates we use (3.8) to derive

H�
�
1
4

�
� C

Z
@B1=4

juj2 � CD�.1/ :
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By the growth estimates (3.7), since we assumed that I�.1/ � 1, we obtain

H�.1/ � CH�
�
1
4

�
� CD�.1/ ; (3.16)

which immediately implies

I�.1/ � C
�1
� �3:13.m; n;Q/ :

3.3. Elementary upper bounds. We now prove that the value of H� (resp: I�) at
a point x, at a certain scale, gives a uniform upper bounds in a ball around x on the
same quantity at smaller scales.
Lemma 3.4. There exists a constant C.m; �/ with the following property. If u
satisfies Assumption 2.2, then

H�.y; �/ � CH�.x; 4�/; 8y 2 B�.x/ � B4�.x/ � � ; (3.17)
I�.y; r/ � C

�
I�.x; 16r/C 1

�
; 8y 2 Br=4.x/ � B16r.x/ � � : (3.18)

Proof. The proof is a standard computation, see for example [17, Theorem 2.2.8] in
the case of harmonic functions and for the classical frequency and height.

We first argue for (3.17) and assume, without loss of generality x D 0 and � D 1.
Using (3.8) we easily see thatZ

B2

juj2 � C

Z
@Br

juj2; 8r 2�2; 4Œ :

Averaging the right hand side against the measure �r�1�0.r=4/ dr and passing to
polar coordinates we achieve Z

B2

juj2 � CH�.4/ :

On the other hand, sinceB1.y/ � B2, it is obvious thatH�.y; 1/ � C
R
B2
juj2. This

showsH�.y; 1/ � CH�.0; 4/ and completes the proof of (3.17).
We next argue for (3.18) and assume, again, x D 0 and r D 1. (3.17), (3.6) and

(3.7) give

H�.y; 4/ � CH�.0; 16/ � Ce
CI�.0;16/H�

�
0; 1
4

�
� CeCI�.0;16/H�.y; 1/

D CH�.y; 4/ exp
�
CI�.0; 16/ � 2

Z 4

1

I�.y; t/
dt

t

�
:

SinceH�.y; 4/ is positive, taking the logarithm we conclude

2I�.y; 1/

Z 4

1

dt

t
� C

�
1C I�.16/

�
:
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4. Main estimate on the frequency pinching

The main goal is to prove Theorem 4.2 below: this is the essential ingredient that
allows us to use the techniques of [24] in our framework and eventually conclude the
.m � 2/-rectifiability and Hm�2-local finiteness of the set �Q.
Definition 4.1. Let u and � be as in Assumptions 2.2 and 2.4. For every x 2 B1 and
every 0 < s � r � 1 we let

W r
s .x/ WD I�.x; r/ � I�.x; s/ (4.1)

be the “pinching” of the frequency function between the radii s and r .
The next theorem shows how the variations of the frequency in nearby points are

controlled by the pinching of the two points.
Theorem 4.2. There exist C4:2 D C4:2.ƒ;m; n;Q/ > 0 such that, if u and � satisfy
the Assumptions 2.2 and 2.4, x1; x2 2 B1=8.0/ and jx1 � x2j � r=4, thenˇ̌
I�.z; r/ � I�.y; r/

ˇ̌
� C4:2

h�
W 4r
r=8.x1/

�1=2
C
�
W 4r
r=8.x2/

�1=2i
jz � yj;

8z; y 2 Œx1; x2� : (4.2)

A main ingredient in the proof of the theorem will also play a fundamental role
in the next estimate and for this reason we show it here.
Proposition 4.3. There exist C4:3 D C4:3.ƒ;m; n;Q/ > 0 such that, if u and �
satisfy the Assumptions 2.2 and 2.4, then, for every x 2 B1=8,Z

B2.x/nB1=4.x/

X
i

ˇ̌
.z�x/ �Dui .z/�I�

�
x; jz�xj

�
ui .z/

ˇ̌2
dz � CW 4

1=8.x/ : (4.3)

4.1. Intuition for the proof. In order to get an intuition for the theorem, we explain
briefly the underlying idea with an example. Let h be aQ-valued function such that
I.0; 4/ � I.0; 1=8/ D 0 and I.x; 4/ � I.x; 1=8/ D 0, where x 2 B1=8.0/ n f0g. For
the sake of simplicity, one could assume here that h is actually an harmonic function,
thus smooth.

By unique continuation, we immediately get that the frequency I is constant for
all radia both at the origin and at x. Set I.0; 0/ D d and I.x; 0/ D d 0. Note that the
two values may a priori be different, but we want to show that this is not the case.
The monotonicity formula for I implies that h is a d -homogeneous function wrt 0
and d 0-homogeneous wrt x. In other words for all y 2 Rm

hDu.y/; yi D du.y/ ; hDu.y/; y � xi D d 0u.y/ : (4.4)

By subtracting these two equations, we prove that

hDu.y/; xi D .d � d 0/u.y/ : (4.5)
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Consider the function f .t/ D log.I.tx; 1//, then naively we can make use of the
external variation formulas and write

f 0.t/ D
d

dt
log

�R
B1.0/

jDuj2R
@B1.0/

juj2

�
D

R
B1.0/

hDu;DxDuiR
B1.0/

jDuj2
�

R
@B1.0/

uDxuR
@B1.0/

u2

D

R
@B1.0/

DnuDxuR
@B1.0/

uDnu
�

R
@B1.0/

uDxuR
@B1.0/

u2
;

(4.6)

where we used without proper justification the integration by parts for Q-valued
functions. By (4.5), we have

f 0.t/ D .d � d 0/ � .d � d 0/ D 0 ; (4.7)

which in turn implies that f .0/ D f .1/, and so d D d 0.
Theorem 4.2 is the quantitative version of this statement. For its proof, we will

use the quantitative version of (4.4), which is given in Proposition 3.1.

4.2. Proof of Proposition 4.3. Assume H�.1/ D 1. Using Proposition 3.1 we can
compute

W 4
1=4.x/ D

Z 4

1=4

@rI�.x; �/ d�

D

Z 4

1=4

2
�
�H�.x; �/

��1�
E�.x; �/ � �I�.x; �/D�.x; �/

�
d�

D

Z 4

1=4

2
�
�H�.x; �/

��1�
E�.x; �/ � 2�I�.x; �/D�.x; �/C I�.x; �/

2H�.x; �/
�
d�

D

Z 4

1=4

2
�
�H�.x; �/

��1 Z
��0

�
jy�xj
�

�
jy � xj�1�

j@�xuj
2
� 2I�.x; �/

X
i

@�xui � ui C I�.x; �/
2
juj2

�
dy d�

D

Z 4

1=4

2
�
�H�.x; �/

��1 Z
��0

�
jy�xj
�

�
jy � xj�1X

i

ˇ̌
.y � x/ �Dui .y/ � I�.x; �/ui .y/

ˇ̌2
•

DW�.y;�/

dy d� :

(4.8)
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Observe that �0 D �21Œ1=2;1�. Hence the integrand in (4.8) vanishes outside
f
1
2
� � jy � xj � �g and considering that the integral in � takes place on the

interval Œ1
4
; 4�, we can assume 1

8
� jy � xj � 4. Next we introduce the function

�.y/ WD
X
i

ˇ̌
.y � x/ �Dui .y/ � I�

�
x; jy � xj

�
ui .y/

ˇ̌2
and, using the observation above, the monotonicity of I�.x; �/ and the triangle
inequality, we conclude

�.y/ � 2�.y; �/C 2
ˇ̌
I�.x; �/ � I�

�
x; jy � xj

�ˇ̌
ju.y/j2

� 2�.y; �/C 2W 4
1=8.x/ju.y/j

2 :

Inserting the latter inequality in (4.8) we infer

W 4
1=4.x/ �

Z 4

1=4

�
�H�.x; �/

��1 Z
��0

�
jy�xj
�

�
jy � xj�1�.y/ dy d�

� 2W 4
1=8.x/

Z 4

1=4

�
�H�.x; �/

��1 Z
��0

�
jy�xj
�

�
jy � xj�1ju.y/j2 dy d�

�

Z 4

1=4

�
�H�.x; �/

��1 Z
��0

�
jy�xj
�

�
jy � xj�1�.y/ dy d� � 8W 4

1=8.x/ :

(4.9)
Next, using (3.18) we conclude I�.x; �/ � C for every � � 4 and we can therefore
use (3.17) and (3.7) (together with H�.1/ D 1) to find a uniform bound from below
forH�.x; �/ when � 2 Œ1=4; 4�. Hence, from (4.9)

CW 4
1=8.x/ �

Z
�.y/

Z 4

1=4

��0
�
jy�xj
�

�
jy � xj�1 d�

�
DWM.y/

dy :

Since �0 D �21Œ1=2;1� we can explicitly compute

M.y/ D
2

jy � xj

�
min

˚
4; 2jy � xj

	
�max

˚
1
4
; jy � xj

	�
� 21B2.x/nB1=4.x/.y/ ;

which clearly completes the proof.

4.3. Proof of Theorem 4.2. Without loss of generality, we assume r D 1 and
H�.1/ D 1. For simplicity, we fix the notation

W.x/ WD W 4
1=8.x/ D I�.x; 4/ � I�.x; 1=8/ (4.10)

and we introduce the measure

�x WD �jy � xj
�1�0

�
jy � xj

�
dy
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and the vectors

�x.y/ WD y � x D jy � xj�x.y/; v WD x2 � x1 :

Combining (3.3) and (3.5), we deduce

@vI�.x; 1/ D 2H�.x; 1/
�1� Z X

i

@vui � @�xui d�x � I�.x; 1/

Z X
i

ui � @vuid�x

�
: (4.11)

Let

E`;i .z/ WD @�x`ui .z/ � I�
�
x`; jz � x`j

�
ui .z/; for ` D 1; 2 and i 2 f1; : : :Qg:

By linearity of the (multivalued) differential, we have

@vui .z/ D Dui .z/ � v

D Dui .z/ � .z � x1/ �Dui .z/ � .z � x2/

D @�x1ui .z/ � @�x2ui .z/

D
�
I�
�
x1; jz � x1j

�
� I�

�
x2; jz � x2j

��
“

DWE3.z/

ui .z/C E1;i .z/ � E2;i .z/:

Substituting the above expression in (4.11) we conclude that

@vI�.x; 1/ D 2H�.x; 1/
�1

Z X
i

�
E1;i � E2;i

�
� @�xui d�x

—
DW.A/

�2
D�.x; 1/

H�.x; 1/2

Z X
i

�
E1;i � E2;i

�
� ui d�x

–
DW.B/

C 2H�.x; 1/
�1

"Z X
i

E3ui@�xuid�x � I�.x; 1/

Z
E3juj

2 d�x

#
“

DW.C/

: (4.12)

In order to exploit some cancellation property, we re-write E3.z/ as

E3.z/ D I�.x1; 1/ � I�.x2; 1/�
WDE

C I�
�
x1; jz � x1j

�
� I�.x1; 1/�

WDE4.z/

�
�
I�
�
x2; jz � x2j

�
� I�.x2; 1/

�
�

WDE5.z/

: (4.13)
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Note first that �x is supported in B1.x/ n B1=2.x/, thus 1
2
� jz � xj � 1. Note

moreover that, if x belongs to the segment Œx1; x2�, then jx � x`j � 1
4
and thus we

conclude that 1
4
� jz � x`j � 2.

Thus we conclude

jE4.z/j C jE5.z/j � W.x1/CW.x2/; 8z 2 spt.�x/; 8x 2 Œx1; x2� : (4.14)

Moreover, notice thatZ
E
X
i

ui@�xui � ui d�x � I�.x; 1/

Z
Ejuj2d�x

D E

� Z X
i

ui@�xui � ui d�x �D�.x; 1/

�
D E

�
�

Z
�0
�
jy � xj

�X
i

@�xui .y/ � ui .y/ dy �D�.x; 1/

�
(3.1)
D 0 :

This equation is the equivalent of (4.7), where E plays the role of .d � d 0/. Thus we
obtain

.C / �
�
W.x1/CW.x2/

�
2H�.x; 1/

�1

Z �
juj2 C jujjDuj

�
d�x

�
�
W.x1/CW.x2/

�
2H�.x; 1/

�1

�
2H�.x; 1/C

Z
jDuj2d�x

�
�
�
W.x1/CW.x2/

�
4
�
1C CH�.x; 1/

�1D�.x; 2/
�
;

where the constant C depends on �. By (3.18) we have I�.x; 4/ � C.m; �;ƒ/ and
thus, using (3.7),

H�.x; 1/
�1D�.x; 2/ � CH�.x; 2/=H�.x; 1/ � C:

We have thus concluded .C / � C.W.x1/CW.x2//.
Coming to (A) observe that, using Cauchy–Schwartz

.A/2 � 4H�.x; 1/
�2

Z X
i

jE1;i � E2;i j
2 d�x

Z X
i

j@�xui j
2d�x

� 4H�.x; 1/
�2

Z X
i

jE1;i � E2;i j
2 d�x

Z
jDuj2d�x :

(4.15)

Next, using (3.18) we conclude I�.x; �/ � C for every � � 4 and we can therefore
use (3.17) and (3.7) (together withH�.0; 1/ D 1) to find a uniform bound from below
forH�.x; �/ when � 2 Œ1=4; 4�. Thus, arguing as above we conclude

j.A/j � C

�Z X
i

�
jE1;i j

2
C jE2;i j

2
�
d�x

�1=2
: (4.16)

The same bound is obviously valid for j.B/j as well, following the same arguments.



754 C. De Lellis, A. Marchese, E. Spadaro and D. Valtorta CMH

Thus in particular we obtain

@vI�.x; 1/ � C
�
W.x1/CW.x2/

�
CC

�Z X
i

�
jE1;i j

2
CjE2;i j

2
�
d�x

�1=2
: (4.17)

Let xt WD tx1 C 1 � tx2. We next wish to establish the estimateZ X
i

jE`;i j
2 d�xt � CW.x`/ ; (4.18)

which clearly would complete the proof. If we introduce the function

�`.y/ WD
X
i

jE`;i j
2.y/

we can writeZ X
i

jE`;i j
2d�xt D

Z
��0

�
jy � xt j

�
jy � xt j

�1

Ÿ
DWm.y/

�`.y/ dy :

Observe next that 0 � �jy � xt j�1�0.jy � xt j/ � 4 and thus m.y/ � 4. Recall that
�0.s/ vanishes when s < 1

2
and s > 1. Hence we can assume 1

2
� jy � xt j � 1.

On the other hand jxt � x`j � 1
4
for every t 2 Œ0; 1�, hence 1

4
� jy � x`j �

5
4
and

so m.y/ � 41B2.x`/nB1=4.x`/.y/. Therefore (4.18) follows from Proposition 4.3. We
thus conclude the pointwise estimate

@vI�.x; 1/ � C
�
W.x1/CW.x2/

�
; 8x 2 Œx1; x2� :

Indeed reversing the role of x1 and x2 we then conclude

j@vI�.x; 1/j � C
�
W.x1/CW.x2/

�
; 8x 2 Œx1; x2� :

Integrating the last inequality between any two given points in the segment Œx1; x2�
we derive the desired estimate.

5. L2-best approximation

Here we prove some distortion bounds in the spirit of [24]. We use the standard
notation dist.y; A/ WD infx2A jy � xj.
Definition 5.1. Given a Radon measure� in Rm and k 2 f0; 1; : : : ; m�1g, for every
x 2 Rm and for every r > 0, we define the kth mean flatness of � in the ball Br.x/
as

Dk
�.x; r/ WD inf

L
r�k�2

Z
Br .x/

dist.y; L/2 d�.y/; (5.1)

where the infimum is taken among all affine k-dimensional planes L � Rm.
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Remark 5.2. In the literatureDk
� is often called the Jones’ˇ2 number of dimension k

(see for example [4, 5]). For the aim of this article, we will not need to use any ˇp
for p ¤ 2, this is why we use this different notation.

The following is an elementary characterization of themeanflatness. Letx0 2 Rm

and r0 > 0 be such that �.Br0.x0// > 0, and let us denote by xxx0;r0 the barycenter
of � in Br.x0/, i.e.

xxx0;r0 WD
1

�.Br0.x0//

Z
Br0 .x0/

x d�.x/

and let bWRm�Rm ! R be the symmetric positive semi-definite bilinear form given
by

b.v; w/ WD

Z
Br0 .x0/

�
.x � xxx0;r0/ � v

� �
.x � xxx0;r0/ � w

�
d�.x/; 8 v;w 2 Rm:

By standard linear algebra results there exists an orthonormal basis of vectors in Rm

that diagonalizes the form b: namely, there is fv1; : : : ; vmg � Rm (in general not
unique) such that

(i) fv1; : : : ; vmg is an orthonormal basis: i.e. vi � vj D ıij ;

(ii) b.vi ; vi / D �i , for some 0 � �m � �m�1 � � � � � �1 and b.vi ; vj / D 0

for i ¤ j .

Note that, in particular, by simple manipulations, the following identities hold:Z
Br0 .x0/

�
.x � xxx0;r0/ � vi

�
x d�.x/ D �i vi ; 8 i D 1; : : : ; m: (5.2)

The kth mean flatness of a measure �, as well as the optimal planes L in
Definition 5.1, can be then characterized in the following way: let x0 2 Rm and
r0 > 0 be such that �.Br0.x0// > 0, then

Dk
�.x0; r0/ D r

�k�2
0

mX
lDkC1

�l (5.3)

and the infimum in the definition ofDk
� is reached by all the affine planesL D xx0;r0C

Spanfv1; : : : ; vkg for every choice of an eigenbasis v1; : : : ; vm with nonincreasing
eigenvalues �1 � �2 � � � � � �m.

The main point of this section is that, if u is as in Assumptions 2.2 and 2.4 and �
is a measure concentrated on the set�Q, its .m� 2/th mean flatness is controlled by
the pinching W .
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Proposition 5.3. Under the Assumptions 2.2 and 2.4, there existsC5:3.ƒ;m; n;Q/ >
0 such that the following holds. If � is a finite nonnegative Radon measure with
spt .�/ � �Q, then

Dm�2
� .x0; r=8/ �

C5:3

rm�2

Z
Br=8.x0/

W 4r
r=8.x/ d�.x/; (5.4)

for every x0 2 B1=8 and for all r 2 .0; 1�.
The proposition will need the following corollary of Almgren’s regularity theory.

Lemma 5.4. Let � � Rm be a connected open set and xuW� ! AQ.Rn/ a Dir-
minimizer. Assume there is a ballB Nr.p/ � � and a system of coordinates x1; : : : ; xm
for which the restriction of xu to B Nr.p/ is a function of the variable x1 only. Then xu
is a function of the variable x1 only on �.

Proof. The lemma is a simple consequence of the unique continuation for harmonic
functions when Q D 1: moreover, it follows easily from the condition �˛ D 0 that
any harmonic function on a ball B Nr.p/ that depends only on the variable x1 takes the
form ˛.x/ D ax1Cb for some constants a and b. Recalling [13, Theorem 0.1], there
is a (relatively closed) singular set † � � of Hausdorff dimension at most m � 2
such that, locally on � n†, the map xu is the superposition of Q classical harmonic
sheets. Since † does not disconnect � we can use the classical theory of harmonic
functions to conclude that each such sheet can be written locally as ax1 C b for
constants a and b. We then easily conclude that xu is the superposition of harmonic
sheets globally on � n†, each taking the form aQx1 C bQ for a choice a1; : : : ; aQ,
b1; : : : ; bQ of constant vectors in Rn. This completes the proof.

Proof of Proposition 5.3. By scale-invariance, we can assume rD1 andH�.0; 1/D1.
Without loss of generality we assume that �.B1=8/ > 0 (otherwise the inequality is
obvious) which implies

�Q \ B1=8 ¤ ; : (5.5)
From now on any constant that depends onƒ;m; n andQ will be simply denoted

by C . Let xx D xxx0 be the barycenter of � in B1=8.x0/, and let fv1; : : : ; vmg be
any diagonalizing basis for the bilinear form b introduced above with eigenvalues
0 � �m � �m�1 � � � � � �1. From (5.2) and the definition of barycenter we
also deduce that, for every j D 1; : : : ; m, for every i D 1; : : : ;Q and for every
z 2 B3=2.x0/ n B1=2.x0/, we have

��j vj �Dui .z/ D

Z
B1=8.x0/

�
.x�xx/�vj

� �
.z�x/�Dui .z/�˛ ui .z/

�
d�.x/; (5.6)

for any constant ˛. In particular the latter identity holds for

˛ WD
1

�.B1=8.x0//

Z
B1=8.x0/

I�.x; 1/ d�.x/: (5.7)
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By squaring the two sides of (5.6) and summing in i we get

�2j
ˇ̌
@vj u.z/

ˇ̌2
�

�Z
B1=8.x0/

X
i

ˇ̌
.x � xx / � vj

ˇ̌ˇ̌
.z � x/ �Dui .z/ � ˛ ui .z/

ˇ̌
d�.x/

�2
�

Z
B1=8.x0/

X
i

�
.x � xx / � vj

�2 d�.x/Z
B1=8.x0/

ˇ̌
.z � x/ �Dui .z/ � ˛ ui .z/

ˇ̌2 d�.x/
D �j

Z
B1=8.x0/

X
i

ˇ̌
.z � x/ �Dui .z/ � ˛ ui .z/

ˇ̌2 d�.x/ ;
from which we conclude

�j
ˇ̌
@vj u.z/

ˇ̌2
�

Z
B1=8.x0/

X
i

ˇ̌
.z � x/ �Dui .z/ � ˛ ui .z/

ˇ̌2 d�.x/ : (5.8)

Integrating with respect z 2 B5=4.x0/ nB3=4.x0/ and summing in j D 1; : : : ; m� 1,
we finally get

Dm�2
� .x0; 1=8/

Z
B5=4.x0/nB3=4.x0/

m�1X
jD1

ˇ̌
@vj u.z/

ˇ̌2 dz
D

Z
B5=4.x0/nB3=4.x0/

.�m�1 C �m/

m�1X
jD1

ˇ̌
@vj u.z/

ˇ̌2 dz
� 2

Z
B5=4.x0/nB3=4.x0/

�m�1

m�1X
jD1

ˇ̌
@vj u.z/

ˇ̌2 dz
� 2

Z
B5=4.x0/nB3=4.x0/

mX
jD1

�j
ˇ̌
@vj u.z/

ˇ̌2 dz
(5.8)
� C

Z
B5=4.x0/nB3=4.x0/

Z
B1=8.x0/

X
i

ˇ̌
.z � x/ �Dui .z/ � ˛ ui .z/

ˇ̌2 d�.x/ dz
� C

Z
B1=8.x0/

Z
B3=2.x/nB1=2.x/

X
i

ˇ̌
.z � x/ �Dui .z/ � ˛ ui .z/

ˇ̌2 dz d�.x/:

(5.9)

We next claim thatZ
B5=4.x0/nB3=4.x0/

m�1X
jD1

ˇ̌
@vj u.z/

ˇ̌2 dz � c.ƒ/ > 0: (5.10)
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Indeed, since I�.0; 1/ � ƒ, by (3.7),Z
B1

jDuj2 � D�.0; 4/ � ƒH�.0; 4/ � CƒH�.0; 1/ D Cƒ:

If the claim were not correct, there would be a sequence of maps uk with � ıuk � 0,
uk.yk0 / D QJ0K (recall (5.5)),

R
B2
jDukj

2 � Cƒ, 2
R
B1nB1=2

jukj
2 D 1, butZ

B5=4.x
k
0
/nB3=4.x

k
0
/

m�1X
jD1

ˇ̌
@vj u

k.z/
ˇ̌2dz � 1

k
;

for some choice of points xk0 , y0k inB1=8.0/ and of orthonormal vectors vk1 ; : : : ; vkm�1.
By a simple compactness argument, up to extraction of subsequences, uk would
converge to a Dir-minimizer xu such that � ı xu � 0,Z

B1nB1=2

jxuj2 D 1 and
Z
B1

jDxuj2 � cƒ :

Moreover there would be a point p 2 SB1=8 and orthonormal vectors Nv1; : : : ; Nvm�1
such that Z

B5=4.p/nB3=4.p/

m�1X
jD1

ˇ̌
@ Nvj xu

ˇ̌2
D 0 :

Thus, there is ball B�.q/ � B2.0/ over which xu is a function of one variable
only. By Lemma 5.4 we conclude that xu is a function of one variable on the whole
domain B2.0/. However, since xu.xq/ D QJ0Kfor some xq 2 B1=8we conclude that
necessarily �Q has dimension at least m � 1. However xu is nontrivial and thus we
would contradict Theorem 1.1.

Next, using (5.10) and the triangular inequality in (5.9) we conclude that

Dm�2
�

�
x0;

1
8

�
� C

Z
B1=8.x0/

Z
B3=2.x/nB1=2.x/

X
i

ˇ̌
.z � x/ �Dui .z/ � I�.x; 1/ ui .z/

ˇ̌2 dz d�.x/
•

DW.I/

C C

Z
B1=8.x0/

Z
B3=2.x/nB1=2.x/

�
I�.x; 1/ � ˛

�2
ju.z/j2 dz d�.x/

�
DW.II/

:

Recalling our choice of ˛ in (5.7) we can estimate the second integral easily as

.II/ � C
Z
B1=8.x0/

�
I.x; 1/ �

1

�.B1=8.x0//

Z
B1=8.x0/

I�.y; 1/ d�.y/
�2

d�.x/
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D C

Z
B1=8.x0/

�
1

�.B1=8.x0//

Z
B1=8.x0/

�
I�.x; 1/ � I�.y; 1/

�
d�.y/

�2
d�.x/

�
C

�.B1=8.x0//

Z
B1=8.x0/

Z
B1=8.x0/

�
I�.x; 1/ � I�.y; 1/

�2 d�.y/ d�.x/
Thus, using Theorem 4.2 we conclude

.II/ �
C

�.B1=8.x0//

Z
B1=8.x0/

Z
B1=8.x0/

�
W 4
1=8.x/CW

4
1=8.y/

�
d�.y/ d�.x/

D 2C

Z
B1=8.x0/

W 4
1=8.x/ d�.x/:

(5.11)

As for the first integral, we split it as

.I/ � C
Z
B1=8.x0/

Z
B3=2.x/nB1=2.x/

�
I�.x; 1/ � I�

�
x; jz � xj

��2
juj2 dz d�.x/

”
DW.I1/

C C

Z
B1=8.x0/

Z
B3=2.x/nB1=2.x/

X
i

ˇ̌
.z � x/ �Dui .z/ � I�

�
x; jz � xj

�
ui .z/

ˇ̌2 dz d�.x/
•

.I2/

:

(5.12)
Observe now that, for z in the domain of integration, and x 2 spt .�/ \ B1=8.0/,
1=4 � jz � xj � 4 and thus, by the monotonicity of the frequency function,ˇ̌

I�
�
x; jz � xj

�
� I�.x; 1/

ˇ̌
� I�.x; 4/ � I�.x; 1=4/ ;

which leads to

.I1/ � CH�.0; 1/
Z
B1=8.x0/

W 4
1=4.x/

2 d�.x/ � C

Z
B1=8.x0/

W 4
1=4.x/ d�.x/ : (5.13)

As for .I2/ by Proposition 4.3Z
B3=2.x/nB1=2.x/

X
i

ˇ̌
.z � x/ �Dui .z/ � I�

�
x; jz � xj

�
ui .z/

ˇ̌2 dz � CW 4
1=8.x/ :

(5.14)
Integrating the latter inequality in x and adding the estimate (5.13) we conclude

.I/ � C
Z
B1=8.x0/

W 4
1=8.x/ d�.x/ : (5.15)

The inequalities (5.11) and (5.15) clearly complete the proof of (5.4).
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6. Approximate spines

It is well known that for Q-valued functions of dimension 2, �Q is discrete,
see for example [16, Corollary 3.4]. This is a consequence of the fact that if
I�.0; 2/ � I�.0; 1=4/ is sufficiently small, then �Q \ .B1.0/ n B1=2.0// D ;. For
functions of m variables, a similar statement is true if we assume pinching of the
frequency over m � 1 points that are sufficiently spread. In this section, if A is a
subset of RN , we denote by spanA the linear subspace generated by the elements
of A (with the usual convention span; D f0g).
Definition 6.1. Given a set of points fxigkiD0 � Br.x/, we say that this set of points
are �r-linearly independent if for all i D 1; : : : ; k:

d
�
xi ; x0 C span fxi�1 � x0; : : : ; x1 � x0g

�
� �r : (6.1)

Definition 6.2. Given a set F � Br.x/, we say that F r�-spans a k-dimensional
affine subspace V if there exists fxigkiD0 � F that are r�-linearly independent and
V D x0 C span fxi � x0g.

The following simple geometric remark will play an important role in the next
section:
Remark 6.3. If a set F \ Br.x/ does not r�-span a k-dimensional affine subspace,
then it is contained in B�r.L/ for some .m� 3/-dimensional subspace L. The proof
is very easy, but we include it for the reader’s convenience. First of all, by scaling
we can assume that r D 1. Now pick the maximal � 2 N for which there is a set
fx0; : : : ; x�g � F that �-spans a �-dimensional affine spaceL. Clearly we must have
� < k but also F � B�.L/: the latter is given by the maximality of � because if
there were y 2 F nB�.L/, then fx0; : : : ; x� ; ygwould �-span a .�C1/-dimensional
space.
Lemma 6.4. Let u be as in Assumptions 2.2 and 2.4. Let �; N�; z� 2�0; 1Œ be given.
There exists an � D �.m; n;Q;ƒ; �; N�; z� / > 0 such that the following holds.

If fxigm�2iD0 � B1.0/ is a set of �-linearly independent points such that

W 2
z� .xi / D I�.xi ; 2/ � I�.xi ; z� / < �; 8i ; (6.2)

then
�Q \ .B1.0/ n B N�.V // D ; ; (6.3)

where V D x0 C span fxi � x0 W 1 � i � m � 2g.
Under the same assumptions of the previous lemma, we also obtain that I�.x; r/ is

almost constant onV if r is notmuch smaller than z�. In fact, a suitablemodification of
the proof of Theorem 4.2 leads to the following much more precise estimate when we
estimate the oscillation of the frequency function at the same scale. Since, however,
such a precise control is not needed later, we omit its proof.
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Proposition 6.5. Fix any � > 0, and consider the set

F.ı/ D
˚
y 2 B1=8.0/ s.t. W 4

1=8.y/ � ı
	
: (6.4)

If F �=8-spans some subspace V , then for all y; y0 2 V \ B1=32.0/ˇ̌
I�.y; 1/ � I�.y

0; 1/
ˇ̌
� C
p
ı ; (6.5)

where C D C.ƒ;m; n;Q; �/.
Indeed we need a less precise version of such oscillation bound at all scales

between z� and 1. We record the precise statement in the following lemma for which
we provide a proof later.
Lemma 6.6. Let u be as in Assumptions 2.2 and 2.4 and �; z�; N� 2�0; 1Œ be given. For
all ı > 0, there exists an � D �.m; n;Q;ƒ; �; z�; N�; ı/ > 0 such that the following
holds.

Let fxigm�2iD0 � B1.0/ be a set of �-linearly independent points, and assume that
for all i :

W 2
z� .xi / D I�.xi ; 2/ � I�.xi ; z� / < � : (6.6)

Then for all y; y0 2 B1.0/ \ V and for all r; r 0 2 Œ N�; 1� we haveˇ̌
I�.y; r/ � I�.y

0; r 0/
ˇ̌
� ı : (6.7)

where V D x0 C span fxi � x0 W 1 � i � m � 2g.

6.1. Compactness and homogeneity. The rest of the section is devoted to proving
the above lemmas. In both cases we will argue by compactness. The crucial
ingredients are the following proposition, where we show that a uniform control
upon the frequency function I� ensures strong L2 compactness, and the subsequent
elementary lemma.
Proposition 6.7. Let uqWBr.x/! AQ.Rn/ be a sequence ofW 1;2 maps minimizing
the Dirichlet energy with the property that

sup
q

�
I�;uq .x; r/CH�;uq .x; r/

�
<1 :

Then, up to subsequences, uq converges strongly in L2 to a map u 2 W
1;2
loc .

Moreover u is a local minimizer, namely its restriction to any open set� �� Br.x/
is a minimizer, and the convergence is locally uniform and strong in W 1;2

loc .
Lemma 6.8. Let uWRm ! AQ.Rn/ be a continuous map that is radially
homogeneous with respect to two points x1 and x2, namely there exists positive
constants ˛1 and ˛2 such that

u.x/ D
X
i

r
jx � x1j

˛1ui

�
x�x1
jx�x1j

C x1

�z
; 8x ¤ x1;

u.x/ D
X
i

r
jx � x2j

˛2ui

�
x�x2
jx�x2j

C x2

�z
; 8x ¤ x2 :
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Then ˛1 D ˛2, u is invariant along the x2�x1 direction, namelyu.yC�.x2�x1// D
u.y/ for every y and every � 2 R, and finally u.�x1 C .1 � �/x2/ D QJ0K for
every � 2 R.

A last technical observation which will prove useful here and in other contexts
is the following “unique continuation” type result for Q-valued minimizers of the
Dirichlet energy.
Lemma 6.9. Let � � Rm be a connected open set and u; vW� ! AQ.Rn/ two
maps with the following property:
� both u and v are local minimizers of the Dirichlet energy, namely for every p 2 �
there exists a neighborhood U such that ujU and vjU are both minimizers;

� u and v coincide on a nonempty open subset of �.
Then u and v are the same map.

Proof of Proposition 6.7. After suitable scaling, translation and renormalization we
can assume that Br.x/ D B1.0/ and that H�;uq .0; 1/ D 1. We therefore conclude
thatD�;uq .0; 1/ is uniformly bounded and thatDuq is uniformly bounded inL2.B�/
for every � < 1, becauseZ

B�.0/

jDuqj
2
�

1

2 � 2�
D�;uq .0; 1/; 8� 2�

1
2
; 1Œ :

Observe also that Z
B1.0/nB1=2.0/

juqj
2
� H�;uq .0; 1/ ;

which combinedwith the uniform control of
R
B2=3.0/

jDuqj
2 gives a uniform estimate

on
R
B1.0/

juqj
2. Hence the sequence .uq/ is uniformly bounded in W 1;2.B�.0//

for every � < 1: the compact embedding of W 1;2.B�.0// in L2.B�.0// (cf. [13,
Proposition 2.11]) and a standard diagonal argument gives the existence of a
subsequence, not relabeled, converging strongly in L2loc to a W 1;2

loc map u.
We claim next the existence of a constant C such that

Huq .0; �/ D

Z
@B�

juqj
2
� C; 8q and 8� 2�

1

2
; 1Œ : (6.8)

The latter clearly implies thatZ
B1.0/nB�.0/

juqj
2
� C.1 � �/

and thus upgrades the strong L2loc convergence to strong convergence in L2.B1.0//.
Arguing as in [13, Proof of Theorem 3.15] we derive that the map � 7! hq.�/ D

H�;uq .0; �/ belongs to W
1;1
loc and we compute

h0q.�/ D
m � 1

r

Z
@B�

juqj
2
C 2

Z
B�.0/

jDuqj
2
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(cf. [13, (3.46)]. Integrating in � we then concludeZ 1

1=2

ˇ̌
h0q.�/

ˇ̌
d� � C

Z
B1.0/nB1=2.0/

juqj
2
C 2

Z 1

1=2

Z
B�.0/

ˇ̌
Duq.x/

ˇ̌2
dx d�

�
.I/

:

On the other hand notice that reversing the order of integration in (I) we easily
conclude

.I/ D
Z ˇ̌

Duq.x/
ˇ̌2
�
�
jxj
�
dx D D�;uq .0; 1/ :

Hence the sequence hq is uniformly bounded in W 1;1. �1
2
; 1Œ /, which in turn gives

a uniform bound on its L1 norm. This completes the proof of the first part of the
proposition. The local uniform convergence follows instead from [13, Theorem 3.19],
whereas the local minimality of u and its strong convergence in W 1;2

loc follows from
[13, Proposition 3.20].

Proof of Lemma 6.8. We start by observing that u.x1/ D u.x2/ D QJ0K simply by
homogeneity and continuity. Moreover, if we show the invariance of the function
along the x2�x1 direction, then the equality ˛1 D ˛2 is a triviality. After translating
and rescaling we can assume, without loss of generality, that x1 D 0 and that
x2 D e D .1; 0; 0; : : : ; 0/. We let .z1; : : : ; zm/ be the corresponding standard
Cartesian coordinates on Rm. Our goal is to show that u is a function of the variables
z0 D .z2; : : : ; zm/ only.

We first claim that
u.e C w/ D u.w/ : (6.9)

The identity is obvious if w D 0. Fix thus w ¤ 0.

�w D e C j�w � ej
�w � e

j�w � ej
DW e C j�w � ejw� :

Note that for � ! 1, e C w� ! e C w
jwj

. Using the homogeneity of the function
we then concludeX

i

J�˛1ui .w/K D
X
i

Jj�w � ej˛2ui .e C w�/K : (6.10)

Clearly, if u.w/ D QJ0K, then u.e C w�/ D QJ0K and sending � to infinity we
conclude u.e C w

jwj
/ D QJ0K: thus by homogeneity u.e C w/ D QJ0K D u.w/.

With a symmetric argument we conclude that if u.e C w/ D QJ0K, then u.w/ D
QJ0K D u.eCw/. If both u.w/ and u.eCw/ are different fromQJ0K, then sending
�!1 we conclude that the

lim
�!1

je � �wj˛2

�˛1
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exists, it is finite and nonzero. Hence ˛1 D ˛2, which implies that the limit is
indeed jwj. Plugging this information in (6.10), sending � to infinity and using the
homogeneity of u we achieve (6.9).

Next consider z1 > 0 and z0 2 Rm�1. We then have

u.z1; z
0/ D

X
i

Jz˛11 ui .1; z
�1
1 z0/K D

X
i

Jz˛11 ui .0; z
�1
1 z0/K D u.0; z0/ :

If instead z1 < 0, we can then argue

u.z1; z
0/ D

X
i

J.�z1/˛1ui
�
� 1; .�z1/

�1z0
�
K

D

X
i

J.�z1/˛1ui
�
0; .�z1/

�1z0
�
K D u.0; z0/ :

Proof of Lemma 6.9. We prove it by induction over Q. For Q D 1 the statement
is the unique continuation for classical harmonic functions. Assume therefore that
Q0 > 1 and that the claim has been proved for every Q < Q0. Let �Q.u/ be
the set of points where u D QJ� ı uK. We know from [13, Proposition 3.22] that,
either �Q.u/ coincides with �, or it has dimension at most m � 2. If it coincides
with�, then�Q.v/ has nonempty interior and again invoking [13, Proposition 3.22]
we conclude that �Q.v/ D �. In this case v D QJ� ı vK and u D QJ� ı uK: since
� ı u and � ı v are harmonic functions that coincide on a nonempty open set, they
coincide over all � and we conclude u D v.

We can thus assume that both�Q.u/ and�Q.v/ have dimension at mostm� 2.
Therefore the open set�0 WD �n .�Q.u/[�Q.v// is a connected open set. Clearly,
by continuity of u and v it suffices to show that u and v coincide on �0. Consider
therefore in �0 the set � which is the closure of the interior of fu D vg. Such set
is nonempty and closed. If we can show that it is open the connectedness of �0
implies � D �0.

Let thus p be a point in � . Clearly there are T 2 AQ1.R
n/ and S 2 AQ2.R

n/

with Q1 C Q2 D Q, spt.T / \ spt.S/ D ;, and u.p/ D v.p/ D T C S .
In particular, there is a ı > 0 such that maxfG .T 0; T /;G .S; S 0/g � ı implies
spt.T 0/ \ spt.S 0/ D ;. It follows that anyQ-point P with G .P; T C S/ < ı can be
decomposed in a unique way as S 0 C T 0 with G .S 0; S/;G .T 0; T / < ı.

Using the continuity of u and v, in a sufficiently small ball B�.p/ we have

kG .u; T C S/k C kG .v; T C S/k < ı :

In particular this defines in a unique way continuous maps u1; u2; v1; v2 such that
ujB�.p/ D u1 C u2, vjB�.p/ D v1 C v2, and

kG .u1; T /k0; kG .u2; S/k0; kG .v1; T /k0; kG .v2; T /k0 < ı :
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Note moreover that, by possibly choosing � smaller, we can assume that both ujB�.p/
and vjB�.p/ areminimizers. It follows then that themapsui and vi must beminimizers
of the Dirichlet energy. By definition of � , there is a nonempty open set A � B�.p/
where u and v coincide. Given the uniqueness of the decomposition P D S 0 C T 0

discussed above when G .P; T C S/ < ı, we conclude that u1 D v1 and u2 D v2
on A. By inductive assumption, this implies that u1 D v1 and u2 D v2 on the whole
ball B�.p/. In other words B�.p/ � � and thus p is an interior point of � . By the
arbitrariness of p we conclude that � is open, thus completing the proof.

6.2. Proof of Lemma 6.4. Assume by contradiction that the lemma does not hold.
Then there is a sequence of uq satisfying the Assumptions 2.2 and 2.4 and a sequence
of collections of points Pq D fxq;0; xq;1; : : : ; xq;m�2g with the following properties:
� each Pq is �-linearly independent for some fixed � > 0;
� I�;uq .xq;i ; 2/ � I�;uq .xq;i ; z� /! 0 as q !1 for some fixed z� > 0;
� �Q.uq/ \ .B1.0/ n B N�.Vq// contains at least one point yq , where N� > 0 is some
fixed constant and Vq D xq;0 C span fxq;1 � xq;0; : : : ; xq;m�2 � xq;0g).

Without loss of generality we can assume that H�;uq .0; 64/ D 1. Recalling that
I�;uq .0; 64/ � ƒ, we can apply the Proposition 6.7 and, up to a subsequence not
relabeled, assume that
� uq ! u in L2.B64.0// and locally uniformly;
� u is a minimizer of the Dirichlet energy and uq ! u strongly in W 1;2

loc ;
� Pq converges to some �-linearly independent set P D fx0; : : : ; xqg;
� the points yq converge to some y 2 xB1.0/ with u.y/ D QJ0K.
Observe first that H�;u.0; 64/ D 1 and that � ı u � 0. By [13, Proposition 3.22],
either�Q.u/ has Hausdorff dimension at mostm�2, or u D QJ�K for some classical
harmonic function �. The latter alternative would however imply � D � ı u � 0

and hence H�;u.0; 64/ D 0. We conclude therefore that �Q.u/ has dimension at
most m � 2.

In particular H�;u.x; �/ ¤ 0 for any positive �. In turn we conclude from the
convergence properties of uq that I�;uq .yq; �/! I�;u.y; �/ whenever � < 64� jyj
and yq ! y. Hence we infer that

I�;u.xi ; 2/ D I�;u.xi ; z� / :

In turn this implies that the function u is homogeneous in jx � xi j in the annulus
B2.xi / n Bz�.xi / with homogeneity exponent ˛i � 0. We can thus extend u to a
function vi with the same homogeneity over the whole Rm. A simple rescaling
argument implies that for every p ¤ 0 there is a neighborhood U of p where vi
is a minimizer of the Dirichlet energy. Using Lemma 6.9, vi and u coincide on
B64.0/ n fxig. But then by continuity we conclude that u D vi on B64.0/.
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Hence we have that

u.x/ D
X
j

r
jx � xi j

˛iuj

�
xi C

x�xi
jx�xi j

�z
: (6.11)

Note that, if˛i were 0, then themapuwould take a constant value different fromQJ0K,
which is not possible because u.y/ D QJ0K. Thus each ˛i is positive.

Now, although u is defined on B64.0/, using its homogeneity with respect to
any of the points xi , it could be extended to a map vi on the whole Rm, as done
above. Each such extension would be a local minimizer of the Dirichlet energy and,
by unique continuation (cf. Lemma 6.9), all such extensions must coincide. We can
therefore consider u as defined on the whole space Rm, with (6.11) valid everywhere
and for every xi . Using Lemma 6.8 we conclude that, if

V D x0 C span fxi � x0 W 1 � i � m � 2g DW x0 C V;

then u is a function of the variables orthogonal to V and u.x0 C v/ D QJ0K for
every v 2 V . On the other hand, since the notion of �-linear independence is stable
under convergence, V is an .m� 2/-dimensional space. Lemma 6.8 implies also that
the ˛i ’s are equal to a number ˛. Summarizing, if we denote by S the unit circle of the
two dimensional space V ?, we have that there is a continuous map �WS ! AQ.Rn/
such that

u.x0 C v C �w/ D
X
j

J�˛�j .w/K; 8v 2 V; 8w 2 S; 8� � 0 : (6.12)

On the other hand the point y (which is the limit of the points yq) cannot belong to V .
Since u.y/ D QJ0K, we would conclude that u � QJ0K on the .m� 1/-dimensional
space x0 C spanL [ fy � x0g. This however is a contradiction with the dimension
estimate on �Q.u/.

6.3. Proof of Lemma 6.6. The proof is entirely analogous to the previous one.
Again by contradiction assume that the statement is false. Then there is a sequence
of uq satisfying the Assumptions 2.2 and 2.4 and a sequence of collections of points
Pq D fxq;0; xq;1; : : : ; xq;m�2g with the following properties:
� each Pq is �-linearly independent for some fixed � > 0;
� I�;uq .xq;i ; 2/ � I�;uq .xq;i ; z� /! 0 as q !1 for some fixed z� > 0;
� if Vq D xq;0 C span fxq;1 � xq;0; : : : ; xq;m�2 � xq;0g, then there are two points
yq;1; yq;2 2 .xq;0CVq/\B1.0/ and two radii rq;1; rq;2 2 Œ N�; 1� with the property
that ˇ̌

I�;uq .yq;1; rq;1/ � I�;uq .yq2 ; rq;2/
ˇ̌
� ı > 0 : (6.13)
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Without loss of generality we can assume that H�;uq .0; 64/ D 1. Recalling that
I�;uq .0; 64/ � ƒ, we can apply the Proposition 6.7 and, up to a subsequence not
relabeled, assume that
� uq ! u in L2.B64.0// and locally uniformly;
� u is a minimizer of the Dirichlet energy and uq ! u strongly in W 1;2

loc ;
� Pq converges to some �-linearly independent set P D fx0; : : : ; xqg;
� the points yq;i converge to some yi and the radii rq;i to some ri 2 Œ N�; 1�.
Again arguing as above the plane

L D x0 C spanfxi � x0 W 1 � i � m � 2g D x0 C V

is .m� 2/-dimensional and u has the form (6.12) for some ˛ > 0. We conclude that

I�;u.x; r/ D ˛; for any r > 0 and any x 2 L. (6.14)

On the other hand y1; y2 2 L and I�;uq .yq;i ; rq;i / ! I�;u.yi ; ri /. Thus (6.13)
and (6.14) are in contradiction.

7. Minkowski-type estimate

In this section we combine the previous theorems with the Reifenberg-type methods
developed in [24] to give a proof of the Minkowski upper bound in Theorem 2.5. We
follow in particular the simplified construction of [23].

The following result, which we simply quote from [24, Theorem 3.4], allows us to
turn a small bound on the mean flatness into volume bounds for a general measure �.
Note that generalizations of this result appeared recently in [14, 22].
Theorem7.1 ([24, Theorem3.4]). Fixk � m 2 N, let fBsj .xj /gj2J � B2.0/ � Rm

be a sequence of pairwise disjoint balls centered in B1.0/, and let � be the measure

� D
X
j2J

skj ıxj : (7.1)

There exist constants ı0 D ı0.m/ and CR D CR.m/ depending only on m such that
if for all Br.x/ � B2.0/ with x 2 B1.0/ we have the integral boundZ

Br .x/

�Z r

0

Dk
�.y; s/

ds

s

�
d�.y/ < ı20r

k ; (7.2)

then the measure � is bounded by

�.B1.0// D
X
j2J

skj � CR : (7.3)
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7.1. Efficient covering. In fact the latter theorem and the results of the previous
sections will be used to prove the following intermediate step

Proposition 7.2. Let u be as in the Assumptions 2.2 and 2.4. Fix any x 2 B1=8.0/
and 0 < s < r � 1=8. Let D � �Q \ Br.x/ by any subset of �Q, and set
U D sup

˚
I�.y; r/ j y 2 D

	
. There exist a positive ı D ı7:2 D ı.m; n;Q;ƒ/, a

constantCV D CV .m/ � 1, a finite covering with ballsBsi .xi / and a corresponding
decomposition ofD in sets Ai � D with the following properties:

(a) Ai � Bsi .xi / and si � s;

(b)
P
i s
m�2
i � CV r

m�2;

(c) for each i , either si D s, or

supfI� .y; si / W y 2 Aig � U � ı : (7.4)

With this proposition at hand the theorem follows easily:

Proof of Theorem 2.5. We consider the set D0 WD �Q \ B1.0/ and recall that, by
Lemma 3.4,

U0 D supfI�.y; 1=8/ W y 2 D0g � C.ƒC 1/ : (7.5)

Apply Proposition 7.2 with r D 1, s D � and D D D0 and let fAig and fBsi .xi /g,
i 2 I1, be the corresponding decomposition and covering ofD0. In particularX

i2I1

sm�2i � CV :

Let I g1 WD fi W si D �g. For each si > � we instead have the frequency drop

supfI� .y; si / W y 2 Aig � U0 � ı :

For every i 2 I1 n I g1 apply the Proposition 7.2 again with D D Ai , r D si and
s D �. We then find a decomposition fAi;j g of each Ai and corresponding balls
fBsi;j .xi;j /g, j 2 I i1 , with X

j2I i
1

sm�2i;j � CV s
m�2
i :

We now define I2 as the union of I g1 and all I ij with i 62 I g1 . By renaming the sets
and the radii, we have a new decomposition fAig of�Q\B1=8.0/, i 2 I2, and a new
covering fBsi .xi /g, i 2 I2, withX

i2I2

sm�2i � CV
X
i2I1

s2i � C
2
V :
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This time, however, if si > �, then the frequency drop is given by

supfI� .y; si / W y 2 Aig � U0 � 2ı :

Proceeding inductively for each k we find a decomposition fAigi2Ik and correspond-
ing covering fBsi .xi /g with the properties thatX

i2Ik

sm�2i � C kV

and either si D �, or

supfI� .y; si / W y 2 Aig � U0 � kı :

Clearly, since the frequency function is always positive, after atmost � D bı�1U0cC1
steps all si for i 2 I� equal �. We have thus found a family of N balls B�.xi /
with N�m�2 � C �V D C.m; n;Q;ƒ/ which cover �Q \ B1.0/. Obviously,

B�
�
�Q \ B1=8.0/

�
� [iB2�.xi /

and we thus concludeˇ̌
B�
�
�Q \ B1=8.0/

�ˇ̌
� 2mN�m � C�2 :

7.2. Intermediate covering. Proposition 7.2 will in fact be reached through an
intermediate covering.
Lemma 7.3. Let u be as in Assumptions 2.2 and 2.4, � � 100�1 and � < � � 1

8
be

three given positive numbers and x 2 B1=8.0/. Let D be any subset of �Q \ B� .0/
and set U � supy2D I�.y; �/. Then there are a ı7:3 D ı.m; n;Q;ƒ; �/ > 0,
a constant C D CR.m/ and a covering of D by balls Bri .xi / with the following
properties
(a) ri � 10�� ;
(b)

P
i2I r

m�2
i � CR�

m�2;
(c) For each i , either ri � � , or the set of points

Fi D D \ Bri .xi / \ fy W I�.y; �ri / > U � ıg (7.6)

is contained in B�ri .Li / \ Bri .xi /, for some .m � 3/-dimensional affine
subspace Li .

Proof. By a simple scaling and translation argument, from now on we can simply
assume that � D 1

8
and x D 0. Observe that after this operation I�.0; 64/might have

increased: anyway, according to Lemma 3.4, we will still be able to bound it in terms
of ƒ. For the rest of the argument we treat ı > 0 as fixed and detail the conditions
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that it will have to satisfy along the steps of the proof: we will see at the end that all
such conditions are met if ı is chosen sufficiently small.

The first part of the proof consists in constructing a first covering via an inductive
procedure consisting of � D �blog10�.8�/c steps (note that � is the smallest integer
exponent such that 8�1.10�/� � � ). At each step k we will thus have a covering
of D by balls C.k/ D fB�i .xi / W i 2 Ikg. The starting cover is given by fB1=8.0/g
and the cover C.k C 1/ is obtained by modifying C.k/ suitably: in particular we
keep some “bad” balls B of C.k/ in C.k C 1/ and we refine the covering on some
other “good” balls B . Along this procedure we have the following conditions:
(i) the radii of the balls in C.k/ are all equal to some 8�1.10�/j with integer

exponents j ranging from 0 to k;

(ii) if Br.x/; Br 0.x0/ 2 C.k/, then Br=5.x/ \ Br0=5.x0/ D ;;

(iii) if a ball in C.k/ has radius larger than 8�1.10�/k , then it is certainly kept
in C.k C 1/.

Step 1. Inductive procedure. Consider a ball Br.x/ 2 C.k/. If r D 8�1.10�/j for
some j < k, then we assign it to C.k C 1/. If r D 8�1.10�/k , consider the set

F D F.Br.x// WD D \ Br.x/ \ fy W I�.y; �r/ > U � ıg :

We then:

(bad): assign Br.x/ to C.k C 1/ if F does not �r-span an .m � 2/-dimensional
spaceI

(good): discard Br.x/ if F �r-spans an .m � 2/-dimensional space, which we call
L D L.Br.x//:

We note first that, if (bad) holds, then there is an .m� 3/-dimensional affine space L
such that F � B�.L/, cf. Remark 6.3. If (good) holds, we must replace Br.x/
in C.k C 1/ with a new collection fB10�r.xi /g.

More precisely, in the latter case consider an .m� 2/-dimensional affine space V
that is �r-spanned by F . By Lemma 6.4, if ı is chosen smaller than a constant
Nı.m; n;Q;ƒ; �/, we can assume that D \ B1.0/ is contained in B�r.V /. Consider
now all the good balls fB ig D G .k/ � C.k/, the corresponding affine spaces Vi and
the set

G.k/ WD D \
[
i

B�.10�/k .Vi / :

We can cover G.k/ with a collection F .k C 1/ of balls with radius .10�/kC1 such
that the corresponding concentric balls of radii 2�.10�/k are pairwise disjoint. It
will also be important for the next step that such balls are chosen so that their centers
are contained inD \ .[iB i \ Vi /.
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Consider now the collection B.k/ � C.k/ of balls that have been kept in the
coveringC.kC1/ and letB1=5.k/ be the corresponding collection of concentric balls
shrunk by a factor 1

5
. We include B 2 F .k C 1/ in the covering C.k C 1/ if and

only if B does not intersect any element of B1=5.k/. We need however to check that
C.kC1/ is still a covering ofD. Consider that, by construction B.k/[F .kC1/ is
certainly a covering ofD. Pick a point x 2 D: if it is contained in an element ofB.k/

we are fine. Otherwise it must be contained in an element B of F .k C 1/. If B is
not contained in C.k C 1/, then there is a ball Br 0.x0/ 2 B.k/ such that Br0=5.x0/
intersectsB . Since however the radius ofB is at most than 10r 0 � r 0=10, it is obvious
that B is contained in Br 0.x0/.

Step 2. Frequency pinching. We next claim the following pinching estimate: for any
given � > 0, if we choose ı sufficiently small, then

either C.�/ D fB1=8.0/g or I�.x; �s=5/ � U � �; 8Bs.x/ 2 C.k/ : (7.7)

Indeed, unless the refining procedure stops immediately, for any Bs.x/ 2 C.k/ we
must have s D 8�1.10�/jC1 for some j 2 N. Following our construction, we then
find a good ball B 0 D B8�1.10�/j 2 C.j / such that F.B 0/ 8�1�.10�/j -spans an
.m � 2/-dimensional affine space V with x 2 V \ B 0. Moreover V \ B 0 contains
at least one point z 2 F.B 0/. It then follows from Lemma 6.6 that, if we choose ı
sufficiently small (depending on � and �), then we can ensure

jI�.x; �s=5/ � I�.z; s/j �
�

2
:

Since however I�.z; s/ � U � ı, the claim follows by imposing additionally ı < �
2
.

Step 3. Discrete measures. The covering of the statement of the lemma is now given
by C.�/ and it is clear that to complete the proof it just suffices to prove the packing
bound X

Bs.x/2C.�/

sm�2 � CR.m/ :

For this reason, from now we enumerate the balls in C.�/ as B5si .xi /, i 2 I . Since
our goal is to use Theorem 7.1, we introduce the measures

� D
X
i2I

sm�2i ıxi and �s D
X

i2I;ri�s

sm�2i ıxi :

Observe that:
� �t � �� if t � � ;
� � D �1=40;
� if we define Nr D 1

40
.10�/� , then �s D 0 for s < Nr .
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We will show that �s.Bs.x// � CR.m/sm�2 for every s and every x. Indeed, if we
set ~ D log2. Nr�1=8/ � 4, it suffices to show that

�s.Bs.x// � CR.m/s
m�2; for all x and for all s D Nr2j with j D 0; 1; 2; : : : ; ~.

(7.8)
Note indeed that, unless fBsi .xi /g is the trivial cover fB1=8.0/g, all the radii si
are smaller than 10�

40
�

1
400

and thus (7.8) shows that �.B1=128.x// � CR.m/ for
every x 2 B1=8.0/. Covering B1=8.0/ with finitely many balls of radius 1

128
implies

then the desired packing estimate.
The estimate (7.8) will be proved by induction over j . Note that the starting step

is fairly easy. Indeed, � Nr.B Nr.x// D N.x; Nr/ Nrm�2, where N.x; Nr/ is the number of
balls Bsi .xi / with si D Nr and xi 2 B Nr.x/. Since such balls are pairwise disjoint and
contained in B2 Nr.x/, the number, N.x; s/ is bounded by 2m.

The remaining portion of the proof is devoted to show that if (7.8) holds for
some j < ~ then it holds for j C 1. Hence from now on we set r D 2j Nr

and, assuming �r.Br.x/ � CR.m/r
m�2 for every x, we want to show that

�2r.B2r.x// � Cr.m/.2r/
m�2 for every x.

Step 4. Inductive packing estimate: coarse bound. We first show the coarser bound

�2r.B2r.x// � C.m/CR.m/.2r/
m�2 ; (7.9)

where CR.m/ is a dimensional constant larger than 1. This is rather easy to achieve
since we can split

�2r D �r C
X

i2I; r<si�2r

sm�2i ıxi DW �r C z�r :

Since B2r.x/ can be covered by C.m/ balls Br.xi /, the inductive assumption clearly
implies

�r.B2r.x// � C.m/CR.m/r
m�2 :

On the other hand
z�r.B2r.x// � N.x; 2r/.2r/

m�2;

whereN.x; 2r/ is the number of balls Bsi with i 2 I , r < si � 2r and xi 2 B2r.x/.
The corresponding smaller balls Br.xi / are then all pairwise disjoint and contained
in B3r.x/, from which the bound N.x; r/ � C.m/ follows readily.

Step 5. Inductive packing estimate: mean flatness and conclusion. We now wish to
improve the coarse bound (7.9) to

�2r.B2r.x// � CR.m/.2r/
m�2 : (7.10)
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We set for convenience x� WD �2r B2r.x/. The idea is to apply a (scaled version)
of Theorem 7.1. If we can show thatZ

Bt .y/

�Z t

0

Dm�2
x� .z; s/

ds

s

�
d x�.z/ < ı20t

m�2
8y 2 B2r.x/;80 < t � 2r

(7.11)
(where ı0 is the constant of Theorem 7.1), we will then conclude

x�.B2r.x// � CR.2r/
m�2;

which is the desired bound.
The key for deriving (7.10) is that, by (7.7), we can, without loss of generality,

assume
I�.xi ; �si / � U � � : (7.12)

In fact if this estimate did not hold the covering fBsi .xi /gwould be given by fB1=8.0/g
and the claim (7.8) would be trivially true.

In order to obtain the bound (7.11), we first set

SWs.xi / WD

(
W 32s
s .xi / D I�.xi ; 32s/ � I�.xi ; s/; if s > si ,

0; otherwise;
(7.13)

and then observe that for all i

Dm�2
x� .xi ; s/ � C.m; n;Q;ƒ/s

�.m�2/

Z
Bs.xi /

SWs.y/ d x�.y/; for all 0 < s < 1.

(7.14)
Indeed, if s<si , the above inequality reduces to 0D0 because spt.�/\Bs.xi /Dfxig.
Otherwise, it follows from Proposition 5.3.

Fix any t � 2r . Using (7.14) we bound

I WD

Z
Bt .y/

�Z t

0

Dm�2
x� .z; s/

ds

s

�
d x�.z/

� C

Z
Bt .y/

Z t

0

s1�m
Z
Bs.z/

SWs.�/ d x�.�/ ds d x�.z/

D C

Z t

0

s1�m
Z
Bt .y/

Z
Bs.z/

SWs.�/ d x�.�/ d x�.z/ ds :

(7.15)

In (7.15) we can certainly intersect the domains of integrations with B2r.x/, since x�
vanishes outside. We also claim that we can substitute x�with�s . First we look at the
innermost integral: if � 2 spt.x�/ n spt.�s/, then � D zi for some i 2 I with si > s
and, by definition SWs.�/ D 0. As for the integral in z, if z D zi for some i 2 I with
si > s, then Bs.z/ \ spt.x�/ contains only z and the innermost integrand vanishes
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because SWs.z/ D 0. Substituting x� with �s and applying again Fubini’s theorem,
we can write

I � C

Z t

0

s1�m
Z
BtCs.y/\B2r .x/

SWs.�/

Z
Bs.�/\B2r .x/

d�s.z/ d�s.�/ ds : (7.16)

Next, for s � r we can use the inductive estimate (7.8), whereas for r � s � 2r we
can use the coarser bound (7.9) to estimate the inner integrand with C.m/sm�2. We
therefore achieve

I � C.m; n;Q;ƒ/

Z t

0

Z
BtCs.y/\B2r .x/

SWs.�/ d�s.�/
ds

s

� C

Z t

0

Z
BtCs.y/\B2r .x/

SWs.�/ d�t
ds

s

� C

Z
B2t .y/

Z t

0

SWs.�/
ds

s
d�t .�/ :

(7.17)

Next fix � 2 spt.�t /. Then obviously � D zi for some i . Recall that SWs.zi / D 0 if
s < si and that SWs.zi / D I�.zi ; 32s/�I�.zi ; s/ otherwise. Consider now the largest
integer � such that 2�si � t and note that 32 � 2�C1si < 1

8
. Then we can derive the

following estimateZ t

0

SWs.�/
ds

s
D

Z t

si

SWs.zi /
ds

s
D

Z t

si

�
I�.zi ; 32s/ � I�.zi ; 2s/

� ds
s

�

�X
jD0

Z 2jC1si

2j si

�
I�.zi ; 32s/ � I�.zi ; s/

� ds
s

�

�X
jD0

�
I�.zi ; 32 � 2

jC1si / � I�.zi ; 2
j si /

� Z 2jC1si

2j si

ds

s

D log 2
�X
jD0

�
I�.zi ; 2

6Cj si / � I�.zi ; 2
j si /

�
D log 2

5X
`D0

�X
jD0

�
I�.zi ; 2

jC`C1si / � I�.zi ; 2
jC`si /

�
D log 2

5X
`D0

�
I�.zi ; 2

�C`C1si / � I�.zi ; 2
`si /

�
� 6 log 2

�
I�
�
zi ;

1
8

�
� I�.zi ; si /

� (7.7)
� 6� log 2 : (7.18)
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Next, with an obvious covering argument we can use the inductive estimate (7.8)
(for t � r) and the coarser estimate (7.9) (in the case r < t � 2r), to estimate
�t .B2t .y// � C.m/t

m�2. Combined with (7.18), the latter bound in (7.17) yieldsZ
Bt .y/

�Z t

0

Dm�2
x� .z; s/

ds

s

�
d x�.z/ � C.m; n;Q;ƒ/ � tm�2 : (7.19)

At this point, choosing � smaller than some appropriate constant c.m; n;Q;ƒ/
(which requires ı to be chosen smaller than a suitable positive constant c.m; n;Q;
ƒ; �/) allows us to fulfill (7.11) and thus complete the proof of (7.8).

7.3. Proof of Proposition 7.2. As in the proof of the previous lemma, we start by
observing that without loss of generality we can assume x D 0 and r D 1

8
. The proof

of the Proposition is again an inductive procedure to generate the correct covering,
where we use Lemma 7.3. The parameter � appearing in the Lemma is, for the
moment, fixed: it will be chosen, sufficiently small, only at the end.

We start by applying Lemma 7.3 a first time with � D 1
8
and � D s. Let

C.0/ D fBri .xi /g be the corresponding covering. We then divide C.0/ as

G .0/ D fBri .xi / W ri � sg and B.0/ D fBri .xi / W ri > sg:

Next, for each Bri .xi / 2 B.0/ consider the set Fi and the affine plane Li given by
Lemma 7.3. EachB2�i ri .Li /\Bri .xi / can be covered by a numberN � C.m/�3�m
of balls of radius 4�ri . If 4�ri < s we then include these balls in a new (additional)
collection C.1/. Otherwise we apply to each of these balls and for each i Lemma 7.3
again and include all these balls in the new collection C.1/. Observe that we have
the bound X

Bri .xi /2C.1/

rm�2i � C.m/�3�m
X

Brj .xj /2C.0/

.�rj /
m�2
D C.m/�

X
Brj .xj /2C.0/

rm�2j :

In particular if � is chosen sufficiently small, we can ensure that

C.m/� �
1

2
” � � .2C.m//�1 WD �0.m/ : (7.20)

We repeat the procedure finitely many times until we find a C.k/ that contains no
balls of radius larger than s. We then define the collection C D [j�kC.j /. Clearly

X
Bri .xi /2C

rm�2i �

kX
`D0

2�`
X

Brj .xj /2C.0/

rm�2j � 2CR.m/ :

From now on � is fixed, depending only on the dimension m.
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We then define inductively the sets A0i for each Bri .xi / 2 C . We start with the
elements C.0/:
� if Bri .xi / 2 B.0/, namely ri � s, we then set A0i D D \ Bri .xi /;
� otherwise we set A0i D .D \ Bri .xi // n Fi , where Fi are the sets of Lemma 7.3.
Observe that by construction the Fi ’s are covered by C.1/ and thus

D �
[

Bri .xi /2C.0/

A0i

[
Bri .xi /2C.1/

Bri .xi / :

We then proceed inductively and notice that at the final step all balls of C.k/ have
radii no larger than s. Thus the final collection of sets A0i is a covering ofD.

Moreover, by definition, either ri � s, or

supfI� .y; �ri / W y 2 A0ig � U � ı :

This condition differs from (7.4) just by a factor of � D �.m/ inside the frequency I� .
Since A0i � Bsi .xi /, we can clearly cover this set by a family of C.m/��m D C.m/
balls B�si .xij / (recall that � has already been fixed as a positive geometric constant
depending only on m in (7.20)). By setting Aij D B�si .xij / \ A

0
i , we get (7.4) on

this set, and preserve up to a constant C.m/ the packing estimate.
Finally, some of the balls in C have radii strictly smaller than s. However by

construction they are all larger than 10�s. Hence we can substitute such balls with
balls of radius s at the price of paying another multiplicative constant C.m/ in the
packing estimate.

8. Rectifiability

In this section we complete our plan by giving a proof of Theorem 2.6. The crucial
ingredient is the content of [4, Corollary 1.3], which we cite here without proof.
Theorem 8.1 ([4, Corollary 1.3]). Let S � Rn beHk-measurable withHk.S/ <1

and consider � D Hk S . Then S is countably k-rectifiable if and only ifZ 1

0

Dk
�.x; s/

ds

s
<1; for �-a.e. x. (8.1)

Using a different proof, a similar result was obtained in [24, Theorem 3.3], which
in some sense is the “continuous version” of Theorem 7.1. Indeed, the rectifiability
result is a corollary of the proof of Theorem 7.1, since in order to obtain the uniform
bounds for the measure � one needs to build smooth manifolds that approximate
the measure � at smaller and smaller scales. If instead of a discrete measure �
one considers the k-dimensional Hausdorff measure Hk restricted to a set S , the
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construction basically works in the sameway and produces a Lipschitz approximation
forS that coincideswithS up to a set of smallmeasure. By repeating this construction
inductively, one proves rectifiability.

Notice also that in order to obtain the estimate (8.1), we will need to use the
uniform upper Ahlfors bounds on the measure Hk �Q, which is the main product
of our construction, and the main point of Theorem 7.1. With this uniform estimate
in hand, it is easier to apply directly Theorem 8.1 instead of going through the details
of [24, Theorem 3.3].

Proof of Theorem 2.6. We know from Theorem 2.5 that � D Hm�2 .�Q \ B1=8/

is a finite Radon measure. But in fact, by a simple scaling argument, we achieve the
uniform estimate

�.Br.x// � C.m; n;Q;ƒ/r
m�2 : (8.2)

As in the last step of the proof of Lemma 7.3 we use Proposition 5.3 to estimateZ
Bt .y/

Z t

0

Dm�2
� .z; s/

ds

s
d�.z/

� C

Z
Bt .y/

Z t

0

s1�m
Z
Bs.z/

W 32s
s .�/ d�.�/ ds d�.z/

D C

Z t

0

s1�m
Z
Bt .y/

Z
Bs.z/

W 32s
s .�/ d�.�/ d�.z/ ds

� C

Z t

0

s1�m
Z
BtCs.y/

W 32s
s .�/

Z
Bs.�/

d�.�/ d�.z/ ds

(8.2)
� C

Z t

0

s�1
Z
BtCs.y/

W 32s
s .�/ d�.�/ ds

� C

Z
B2t .y/

Z t

0

W 32s
s .�/

ds

s
d�.�/ :

(8.3)

Next arguing as in the proof of (7.18), we reachZ t

0

W 32s
s .�/

ds

s
� 6 log 2

�
I�.�;

1
8
/ � I�.�; 0/

�
� C.m; n;Q;ƒ/ ;

as long as 32t < 1
8
. Inserting the latter estimate in (8.3) and using (8.2) we then

conclude Z
Bt .y/

Z t

0

Dm�2
� .z; s/

ds

s
d�.z/ <1 ;

whenever t < 1
8
�
1
32
. We can thus apply Theorem 8.1 to conclude the rectifiability

of �Q \ B1=8.0/.
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